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Abstract. Soft constraints have proved to be a versatile tool for the specifica-
tion and implementation of decision making in adaptive systems. A plethora of
formalisms have been devised to capture different notions of preference. Wirsing
et al. have proposed partial valuation structures as a unifying algebraic structure
for several soft constraint formalisms, including quantitative and qualitative ones,
which, in particular, supports lexicographic products in a broad range of cases.
We demonstrate the versatility of partial valuation structures by integrating the
qualitative formalism of constraint relationships as well as the hybrid concept of
constraint hierarchies. The latter inherently relies on lexicographic combinations,
but it turns out that not all can be covered directly by partial valuation structures.
We therefore investigate a notion for simulating partial valuation structures not
amenable to lexicographic combinations by better suited ones. The concepts are
illustrated by a case study in decentralized energy management.

1 Introduction

Adaptive systems consisting of a large number of interacting components as treated
in Organic Computing [26] or Ensembles [14] rely on formalisms to specify models
of their complex behavior. Equipped with adequate abstract goal models that describe a
corridor of correct behavior, these systems become amenable to formal verification [20]
as well as testing [11]. Modeling both the concrete and the abstract components’ behav-
ior in terms of relations of their system variables representing input and output naturally
leads to the framework of constraint programming. If these models are also used by
the system at runtime to actually implement the decision-making, constraint satisfac-
tion and optimization techniques can be applied. Clearly, problems can become over-
constrained. Hence, constraint satisfaction has been extended to soft constraints [19].

In constraint hierarchies [8], users qualitatively put constraints into layers repre-
sented by a family of sets of constraints (Hi)i∈I where a constraint in layer Hj is
valued less important than a constraint in layer Hi if j > i. A lexicographic ordering
is then established by prioritizing the satisfaction degree of more important layers. This
satisfaction degree is evaluated on an assignment and may include metric real-valued
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error functions for constraints. So-called comparators define the ordering over assign-
ments. By definition, constraint hierarchies tend to ignore all constraints on higher lev-
els which leads to a strongly hierarchical evaluation. One satisfied constraint is possibly
worth more than a whole set of other, violated constraints.

More recently, constraint relationships [21] have been proposed to capture qualita-
tive statements over soft constraints such as “Prefer a solution violating constraint a
to one that violates b” without having to express this fact numerically. This allows for
flexible use especially with problems changing at runtime [22,17] as faced with dynam-
ically reconfiguring groups of power plants as described in Sect. 2. However, constraint
relationships only consider predicates in lieu of using error metrics. Problems from
distributed energy management [2] call for both those formalisms. If a problem admits
metric real-valued error functions, one may want to use constraint hierarchies. If, on the
other hand, the solution quality is measured by the number and importance of satisfied
boolean properties, constraint relationships provide a less restrictive framework.

A broad variety of soft constraint approaches have been captured by the generaliz-
ing algebraic formalisms of c-semirings and valued constraints. That way, users may
specify their preferences in the most suitable formalism for the task at hand and rely
on a well-defined algebraic underpinning. C-semirings [5] include a set of satisfaction
degrees, one operator to combine and one to compare (i.e., calculating a supremum)
them as well as a minimal and maximal element to express total dissatisfaction and
satisfaction. Frameworks and algorithms based on c-semirings have been devised to
build a general theory of soft constraints as well as to provide common solvers [18,10].
Valued constraints [24], on the other hand, use valuation structures, i.e., totally ordered
monoids instead of the partial order implied by the comparison operator in a c-semiring.
The theoretical connection between c-semirings and valued constraints is well under-
stood for totally ordered c-semirings [6]. Recently, the totality in valuation structures
was relaxed in [12] following earlier work by Hölzl, Meier and Wirsing [13] to form
partial valuation structures that also admit lexicographic products for many instances
– as opposed to c-semirings. This combination operator offers to specify one’s pref-
erences in a more structured way to capture different criteria of descending priority.
More complicated partial valuation structures can be formed from elementary ones –
allowing for modular implementations and (re)combinations at runtime. These consid-
erations pave the way for the further development of common constraint propagators [9]
and search algorithms based on partial valuation structures [13].

As a unifying effort we first represent constraint relationships as partial valuation
structures using an algebraically free construction in Sect. 4. For constraint hierarchies,
Hosobe established that a reasonable class can be expressed as c-semirings [15]. It re-
mained, however, unclear how to properly draw the boundary between expressible and
non-expressible hierarchies. Using Wirsing’s results, we can now exploit the lexico-
graphic ordering in constraint hierarchies by mapping layers to partial valuation struc-
tures in Sect. 5. Using the insight that certain elements of monoidal soft constraints can
be collapsing [12], i.e., making comparable elements equal when used with the com-
bination operator, we can give necessary conditions on the partial valuation structures
representing layers. In Sect. 5.2 we show that in particular idempotent comparators such
as the worst-case comparator in constraint hierarchies cannot directly be represented as
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a collapse-free partial valuation structure and thus not used in a lexicographical product.
However, in Sect. 6 we introduce a notion of simulation where another partial valua-
tion structure reasonably mimics the behavior of the worst-case comparator by using a
suitable p-norm to induce a collapse-free partial valuation structure.

2 Soft Constraints in Distributed Energy Management

We first give elementary definitions in the realm of classical constraint programming
that are then exemplified by a real world application in distributed energy management.

A constraint domain (X,D) is given by a set X of variables and a family D =
(Dx)x∈X of variable domains where each Dx is a set representing the possible values
for variable x. An assignment for a constraint domain (X,D) is a dependent map v ∈
Πx ∈ X .Dx, i.e., v(x) ∈ Dx; we abbreviate Πx ∈ X .Dx by [X → D]. A constraint
c over a constraint domain (X,D), or (X,D)-constraint, is given by a map c : [X →
D]→ B. We also write v |= c for c(v) = tt .

A constraint satisfaction problem (CSP) consists in finding an assignment that yields
true for a set of constraints, i.e., a solution, and a constraint satisfaction optimization
problem (CSOP) further seeks to optimize an objective [28] among all solutions. Clas-
sical hard constraints are generalized to soft constraints by removing the restriction of
constraints to map to true or false [19] but rather an ordered domain. We call these
evaluations gradings of assignments. In particular, we consider CSOPs that search for
maximal gradings in terms of soft constraints.

Such problems occur in many adaptive systems. They are particularly interesting if
individual constraint problems must be combined. Adaptive power management pro-
vides us with an illustrative example. The main task in power management systems is
to maintain the balance between energy production and consumption to avoid instabil-
ities leading to blackouts. Since the prosumers’ ability to change their prosumption is
subject to physical inertia (e.g., limited ramping rates), the prosumption of controllable
prosumers has to be stipulated beforehand as schedules for future points in time.1

The concept of Autonomous Virtual Power Plants (AVPPs) [27] has been presented
as an approach to deal with scalability issues in future smart grids. Each AVPP rep-
resents a self-organizing group of two or more prosumers of various types and has
to satisfy a fraction of the overall consumption. To accomplish this task, each AVPP
autonomously and periodically calculates schedules for its prosumers. Due to uncer-
tainties such as weather conditions, AVPPs can change their composition at runtime
to remain manageable. Moreover, the rising complexity with increasing numbers of
controlled prosumers motivates the formation of a hierarchical structure of AVPPs fol-
lowing a system-of-systems approach in which hierarchy levels are dynamically created
and dissolved. Hence, each AVPP controls less prosumers (including AVPPs) compared
to the non-hierarchical case, resulting in shorter scheduling times for each AVPP.

When creating schedules, AVPPs not only have to respect the physical models – in
terms of hard constraints – but also their prosumers’ individual preferences concern-
ing “good” schedules. For example, a baseload power plant might be reluctant to be

1 We use the term “prosumer” to refer to producers and consumers, and the term “prosumption”
to refer to production and consumption.
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switched on and off frequently, whereas a peaking power plant is designed for exactly
that purpose. Certainly, prosumers should be free to use whatever specific formalism
is most adequate to model their real-life preferences. Consequently, the dynamics of
this self-organizing system calls for the treatment and combination of heterogeneous
preference specifications at runtime.

To illustrate these considerations, we regard a concrete example of an AVPP consist-
ing of three prosumers: A garbage incineration plant as a thermal power plant where
steam drives a generator (thermal), a biogas power plant using an engine to produce
power (biogas), and an electric vehicle that can be used as a power storage when con-
nected to the power grid (EV). Each of these prosumers is described by a relational
model restricting its physically and economically feasible behavior. These individual
models are combined and define the space of feasible schedules [22], ordered by the or-
ganizational goal, i.e., to keep mismatches between demand and production (violations)
low and the combined preferences of the prosumers. Since blackout prevention is crit-
ical, the organizational goal is compared “pessimistically”, i.e., by a schedule’s worst
anticipated violation over a set of future time steps. For instance, two schedules with
violations (0, 0, 3) and (3, 3, 3), respectively, for three time steps would be esteemed
equal due to the worst violation. For this process of combining shared and individual
aspects [23], a common constraint domain (X,D) is used consisting of the smallest set
of shared variables, e.g., those for scheduled prosumptions pat for the prosumed power
by prosumer a at time step t. Since we are particularly concerned with soft constraints,
we deliberately omit the prosumers’ hard constraints.

In addition, each prosumer defines its own set of soft constraints in a formalism
of its choice over the common constraint domain and additional individual variables.
As shown in Fig. 1, biogas and EV use constraint relationships while thermal uses
constraint hierarchies. The overall model lexicographically arranges the organizational
preference (violationorg) similar to constraint hierarchies where violationorg is put
at a higher levelHorg

1 than the individual soft constraints placed on levelHorg
2 since the

AVPP’s primary objective is arguably to reduce the probability of blackouts. This is
regulated by a limitation maxVio of the absolute value of the difference between de-
mand dt and produced power

∑
a∈A p

a
t . As indicated before, this reflects the semantics

of the worst case comparator in constraint hierarchies which could not be expressed by
c-semirings in [15]. We provide an explanation for this as well as a solution in Sect. 6.

The electric vehicle can also consume power to load its batteries in which case pat is
negative. With regard to the time horizon T schedules are created for, the error function
eviolationorg associated with the constraint violationorg maps to the maximum value
by which the threshold maxVio is exceeded:

violationorg ≡ ∀t ∈ T .
∣∣dt −∑a∈A p

a
t

∣∣ ≤ maxVio

eviolationorg ≡ max
t∈T

max{0,
∣∣dt −∑a∈A p

a
t

∣∣− maxVio}

The model for biogas specifies preferences regarding the use of its gas storage tank.
It is advisable that this tank is not entirely filled and that the plant runs upon a certain
filling threshold since inflow can not be regulated (gasFullbio). The plant has to run if
the tank is full. Furthermore, the power plant has an economic “sweet spot” which op-
timizes the ratio of fuel consumption to power production (ecoSweetbio) and it should
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Fig. 1. Case study depicting individual and organizational preference specifications in context

not be frequently switched on and off to minimize maintenance cost (onOffbio). Both
ecoSweetbio and onOffbio are desirable but deemed less important than gasFullbio.
No statement regarding their importance is however made. It need not hold that satisfy-
ing gasFullbio is worth violating the two others in a strict hierarchical sense. There-
fore, constraint relationships are used (see Sect. 4 for details on how an order over
assignments is thereby induced).

The preferences of EV address its battery status. A preferred battery level should be
maintained to allow for emergency trips (prefBLEV). To reduce the charging cycles, a
soft constraint prescribes that the amount of energy taken out of the battery should not
exceed a certain threshold within a specific time frame (limitBUEV). Finally, a higher
battery charge is required in the morning to assure the trip to work (earlyBirdEV).
Dually to biogas, limitBUEV is considered less important than the other constraints.

Finally, thermal restricts both the production ranges and the changes in power pro-
duction due to inertia. The former limitation ensures economically reasonable assign-
ments similar to biogas and the latter ensures that thermal does not have to be cooled
down and heated up all the time at high costs due to energy-intensive processes. As
metric error functions are easily found for these constraints, a constraint hierarchy is
employed which puts constraints for economical optimality (ecoOpttherm) and inertia-
based change limits (inertiatherm) on level Htherm

1 and constraints for economically
still good ranges (ecoGoodtherm) on level Htherm

2 .
Concluding, this example presents three challenges to a soft constraint framework:

Adaptive heterogeneous systems need 1) different preference formalisms, 2) combi-
nations of such preference specifications at runtime, and 3) algorithms to solve the
resulting soft constraint problems in a general manner.

3 Partial Valuation Structures as a Unifying Formalism

As presented, heterogeneous preference formalisms can show up in soft constraint based
systems. Yet, algorithms to find feasible and high quality solutions need some struc-
ture to perform constraint propagation or apply branch-and-bound techniques. Seminal
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work in unifying formalisms has been done in the frameworks of valuation structures
and c-semirings. Our following constructions rely on partial valuation structures [12]
that turn out to generalize valuation structures [24] by dropping the restriction that the
ordering has to be total. Connections with c-semirings are discussed in [16]. First soft
constraint solvers based on partial valuation structures using branch-and-boundand con-
straint propagation have been presented in [13] and [17]2.

3.1 Partial Valuation Structures

Partial valuation structures (also called ic-monoids [13] or meet monoids [16]) capture
essential operations for specifying gradings for assignments: Besides providing the set
of gradings, they show an associative, commutative multiplication for combining grad-
ings, a partial ordering on gradings such that the multiplication is monotone w.r.t. this
ordering, and a top element w.r.t. the partial ordering capturing the best grade, i.e., total
satisfaction, that simultaneously is the neutral element for the multiplication.

Definition 1. A partial valuation structure M = (X, ·, ε,≤) is given by an underlying
set X , an associative and commutative multiplication operation · : X × X → X ,
a neutral element ε ∈ X for ·, and a partial ordering ≤ ⊆ X × X such that the
multiplication · is monotone in both arguments w.r.t. to ≤, i.e., m1 ·m2 ≤ m′

1 ·m′
2 if

m1 ≤ m′
1 and m2 ≤ m′

2, and ε is the top element w.r.t. ≤.
We write m1 < m2 if m1 ≤ m2 and m1 �= m2, and m1 ‖ m2 if neither m1 ≤ m2

nor m2 ≤ m1. We write |M | for the underlying set and ·M , εM , and ≤M for the other
parts of M . ��

Intuitively, m ≤ n says that grading m is “worse than” n, so ε will be the top (and
best) element of the ordering. In fact, requiring that ε is top is equivalent to requiring
that m · n ≤ m. An illustrative example is the partial valuation structure (N,+, 0,≥)
used in weighted CSP [19]. The natural numbers represent penalties for violating con-
straints, with 0 representing satisfaction, and the goal is to minimize the sum of penal-
ties. Another example (previously considered in [4] as a c-semiring) is an inclusion-
based partial valuation structure (P(A),∪, ∅,⊇), where smaller sets are considered
better, i.e., ∅ being best. The sets could, e.g., represent violated constraints.

3.2 Soft Constraints

Classical CSPs are turned into soft CSPs by means of soft constraints mapping as-
signments to arbitrary gradings instead of B. For a partial valuation structure M , an
M -soft constraint over a constraint domain (X,D), or (X,D)-M -soft constraint, is
given by a map μ : [X → D] → |M |. The solution degree of an assignment w.r.t. a
finite set of (X,D)-M -soft constraints M is obtained by combining all gradings using
·M , i.e., M(v) =

∏
M{μ(v) | μ ∈ M}. This gives rise to the assignment comparison

�M ⊆ [X → D] × [X → D] with w �M v ⇐⇒ M(w) ≤M M(v), where w is con-
sidered worse. The maximum solution degrees and the maximum solutions of M, which
are the goal for solving algorithms, are given by

2 See http://git.io/mH_pOg for this solver.

http://git.io/mH_pOg
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M∗ = Max≤M {M(v) | v ∈ [X → D]} ,

Max�M [X → D] = {v ∈ [X → D] | M(v) ∈ M∗} .

In the process of searching maximum solutions, a vital question is to ask whether
the problem formulation actually admits optima. Consider, for example, the constraint
domain (X,D) with X = {x}, Dx = [0, 1], and the partial valuation structure M =
([0, 1],max, 0,≥) with≥ the usual ordering on real numbers. Let μ : [X → D]→ |M |
be defined by μ({x 
→ r}) = r if r > 0, and μ({x 
→ 0}) = 1, and let M = {μ}. Then
M∗ = ∅ since the set of solution degrees is the open interval (0, 1], i.e., no maximum
solution degrees and no maximum solutions exist.

Definition 2. A set of (X,D)-M -soft constraints is admissible if M is finite and for
each v ∈ [X → D] there is an m ∈ M∗ such that M(v) ≤M m. ��

Sufficient conditions for the finite set M of (X,D)-M -soft constraints to be admis-
sible are that X and

⋃
x∈X Dx are finite, or that <M has no infinite ascending chains.

3.3 Product Operators for Partial Valuation Structures

For runtime combinations of different soft constraint formulations as are prevalent in
adaptive systems, partial valuation structures admit finite (direct) products but also lex-
icographic products, as shown by Gadducci, Hölzl, Monreale, and Wirsing [12].

First, let us consider the direct product that is defined component-wise obviously
yielding a partial valuation structure:

Definition 3. Let M and N be partial valuation structures. Let

– P = |M | × |N |,
– ·P : P × P → P given by (m1, n1) ·P (m2, n2) = (m1 ·M m2, n1 ·N n2),
– εP = (εM , εN ),
– ≤P ⊆ P × P given by (m1, n1) ≤P (m2, n2)⇐⇒ m1 ≤M m2 ∧ n1 ≤N n2.

The (direct) product of M and N , written as M ×N , is given by the partial valuation
structure (P, ·P , εP ,≤P ). ��

This product leaves many combinations incomparable. Let us thus turn our atten-
tion to lexicographic products introduced by [12] useful in situations where a prefer-
ence is composed of multiple criteria of decreasing priority. The lexicographic ordering
≤M�N ⊆ |M × N | × |M × N | on the direct product distinguishes first by ≤M and
then by ≤N if the first comparison yields equality:

(m1, n1) ≤M�N (m2, n2) ⇐⇒ (m1 <M m2) ∨ (m1 = m2 ∧ n1 ≤N n2) .

However, for ·M×N still to be monotone now w.r.t. ≤M�N , we would have to show
that (m1, n1) ·M×N (m,n) ≤M�N (m2, n2) ·M×N (m,n) holds if (m1, n1) ≤M�N

(m2, n2). But this fails, if there are m1,m2,m ∈ |M | such that m1 <M m2 and at the
same time m1 ·M m = m2 ·M m. In this case, order-preservation w.r.t. ≤N does not
hold, ifm1 <M m2 but n1 >N n2, since we would have (m1, n1)·M×N (m,n) >M�N

(m2, n2) ·M×N (m,n), clearly violating monotonicity.
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First, the notion of collapsing elements [12] captures the objectionable elements of
M as the set

C(M) = {m ∈ |M | | ∃m1,m2 ∈ |M | .m1 <M m2 ∧m1 ·M m = m2 ·M m} .

All idempotent elements w.r.t. ·M different from εM are collapsing: if m ·M m = m,
we havem <M εM but m ·M m = ε ·M m = m. On the other hand, εM /∈ C(M) since
m1 <M m2 implies m1 ·M εM <M m2 ·M εM . Furthermore, |M | \ C(M) is closed
under ·M , and thus (|M | \ C(M), ·M , εM ,≤M ) forms a partial valuation structure.

Second, the notion of bounded partial valuation structures [12] allows to avoid the
comparison of pairs (m,n) with m ∈ C(M) by requiring that then n must be the
smallest element of N : A partial valuation structureN is bounded if |N | has a smallest
element⊥N w.r.t.≤M . Then⊥N is unique and annihilating for ·N , i.e., n ·N⊥N = ⊥N

for all n ∈ |N |. We can always lift a partial valuation structure M into a bounded
partial valuation structure M⊥ = (|M | ∪ {⊥}, ·M⊥ , εM ,≤M⊥) by using a fresh ⊥ and
extending ·M and ≤M by m ·M⊥ ⊥ = ⊥ and ⊥ ≤M⊥ m for all m ∈ |M | ∪ {⊥}.

Equipped with these concepts, we can define the lexicographic product of partial
valuation structures. The well-definedness of this construction, i.e., that it indeed yields
a partial valuation structure, has been shown in [12].

Definition 4. Let M be a partial valuation structure and let N be a bounded partial
valuation structure. Let

– L = ((|M | \ C(M))× |N |) ∪ (C(M)× {⊥N}),
– ·L : L× L→ L given by (m1, n1) ·L (m2, n2) = (m1 ·M m2, n1 ·N n2),
– εL = (εM , εN),
– ≤L ⊆ L × L given by (m1, n1) ≤L (m2, n2) ⇐⇒ (m1 <M m2) ∨ (m1 = m2 ∧
n1 ≤N n2).

The lexicographic product of M and N , written as M � N , is given by the partial
valuation structure (L, ·L, εL,≤L). ��

Consequently, all collapsing elements have to be ignored for the lexicographic prod-
uct. However, idempotent operators such as a worst case combination found in con-
straint hierarchies (and present in our case study in Sect. 2 when evaluating an assign-
ment based on the worst violation over several time steps) or fuzzy and possibilistic
constraints [19] necessarily lead to collapsing elements – an issue we address in Sect. 6.

However, using combinations of partial valuation structures by means of direct and
lexicographic products, we are able to model the scenario depicted in Sect. 2 and also
reuse them to present constraint hierarchies as partial valuation structures. But first we
consider constraint relationships as a representative.

4 Constraint Relationships as Partial Valuation Structures

Partial valuation structures enable us to give an algebraic structure capable of repre-
senting preferences specified with constraint relationships. We revisit this construction
first presented in [17] and [16], where we describe how to lift a quantitative preference
specification over constraints to sets of violated constraints (representing assignments).
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4.1 Constraint Relationships

A directed acyclic graph, or DAG, G = (|G|,→G) is given by a set |G| and a binary
relation→G ⊆ |G|×|G| such that→+

G is irreflexive. If x→G y, then x is a predecessor
of y, and y is a successor of x. We obtain a partial order PO〈G〉 = (|G|,→∗

G) from G
by taking the reflexive, transitive closure of→G, and write g ≤PO〈G〉 h if g →∗

G h.
A constraint relationship over a constraint domain (X,D), or (X,D)-constraint

relationship, is given by a DAG C with |C| a finite set of (X,D)-constraints. We think
of a constraint c′ ∈ |C| as more important than another constraint c ∈ |C| if c→C c′.

For V,W ⊆ |C|, which we think of being sets of violated constraints by (X,D)-
assignments v and w (i.e., V = {c ∈ |C| | v �|= c} and similarly for W ), we want to ex-
press thatW is worse than V w.r.t.C. We describe two kinds of liftings of the partial or-
dering induced by the DAG C to an ordering over subsets of |C|, using two dominance
properties p: single-predecessor dominance (p = SPD) and transitive-predecessors
dominance (p = TPD) as originally defined in [21]. Intuitively, dominance properties
denote how much more important a constraint is compared to its predecessors to the
quality of a solution. In SPD, a constraint can dominate only one less important one; in
TPD, a single constraint is deemed more important than a whole set of predecessors.

We write V �p
C W for “V worsens to W for dominance property p over C”. Both

dominance properties share the following worsening rule, expressing that violating
strictly more constraints is worse (V1 $ V2 denotes the union of V1 and V2 simulta-
neously requiring that V1 and V2 are disjoint):

V �p
C V $ {c} if c ∈ |C| (W)

The remaining rules for SPD and TPD express which constraint violations can be
“traded” under the ceteris paribus assumption represented by $:

V $ {c}�SPD
C V $ {c′} if c→C c′ (SPD)

V $ {c1, . . . , ck}�TPD
C V $ {c′} if ∀i . ci →+

C c′ (TPD)

These worsening relations induce partial orderings ≤p
C over sets of (violated) con-

straints for p ∈ {SPD,TPD}, when defining W <p
C V if, and only if, V (�p

C)
+ W

(meaning repeated sequential application of the rules); this is to be read as “W is worse
than V ”. Note that, by definition, the empty set is the top element w.r.t. to these or-
derings, meeting the intuition that “no violations” should be considered optimal since
∅ �p

C V �= ∅. By abuse of notation, for assignments we also write w <p
C v if

{c ∈ |C| | w �|= c} <p
C {c ∈ |C| | v �|= c}, also read as “w is worse than v”.

4.2 From Constraint Relationships to Partial Valuation Structures

When abstracting from constraint relationships and casting them as a partial valuation
structure, one might be tempted to start from the inclusion-based structure and extend-
ing it to accept an ordering over the constraints. The empty set, representing the fact that
no constraints are violated, is the top element and simultaneously the neutral element
for the union. But set union is idempotent. Consider an exemplary constraint relation-
ship C with |C| = {a, b} and b →C a. Then {a} <SPD

C {b} holds. Multiplying on
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both sides with {a}, i.e., taking the union, would result in {a} ≤SPD
C {a, b} by the re-

quired monotonicity of the multiplication. Hence, violating a only would be worse than
violating both a and b, contradicting (W). However, we can patch this defect by not
considering sets and their union but multisets and the multiset union as hinted by the
disjointness assumptions in (SPD) and (TPD). Incidentally, when equipping multisets
with an appropriate ordering induced by the partial order from the constraint relation-
ship, the free partial valuation structure over the constraint relationship is obtained.

We denote the set of finite multisets over a set S by Mfin(S), and the multiset union
by ∪−. For a partial order P = (|P |,≤P ), we define the upper or Smyth ordering3 on
Mfin |P | as the binary relation ⊆− P ⊆ (Mfin |P |) × (Mfin |P |) given by the transitive
closure of

T ⊆− U implies T ⊆− P U ,

p ≤P q implies T ∪− �p� ⊆− P T ∪− �q� .

This relation is indeed a partial ordering on Mfin |P | and PVS〈P 〉 = (Mfin |P |,∪−, ��,
⊆− P ) indeed a partial valuation structure. Moreover,PVS 〈P 〉 is the free partial valuation
structure over the partial order P in the sense of universal algebra. Thus, we have (for a
detailed proof, see [16, §12]):

Lemma 1. Let P be a partial order. Then PVS 〈P 〉 = (Mfin |P |,∪−, ��,⊆− P ) is the free
partial valuation structure over P . ��

The upper ordering, when employed for sets, exactly corresponds to≤SPD
C−1 for a con-

straint relationshipC: We need to invertC, i.e., consider PVS 〈PO〈C−1〉〉, as violating
more important constraints has to lead to worse solutions. We get the corresponding set
of (X,D)-PVS 〈PO〈C−1〉〉-soft constraints P = {ϕc | c ∈ |C|} where ϕc(v) = �c�
if v �|= c and �� otherwise for v ∈ [X → D]. However, the transitive-predecessors
dominance can only be achieved by using a more specialized ordering.

This partial valuation structure can now be used to capture the preferences issued
by the prosumers EV and biogas from our case study, see Fig. 1. For biogas we have
the DAG C = ({onOffbio, gasFullbio, ecoSweetbio}, {onOffbio →C gasFullbio,
ecoSweetbio →C gasFullbio}). Assume we were to choose between the assignments
v1 and v2 with v1 �|= {gasFullbio, ecoSweetbio}, v2 �|= {onOffbio, ecoSweetbio}.
In PVS 〈PO〈C−1〉〉, v1 is graded as P(v1) = �gasFullbio, ecoSweetbio� and v2

is graded as P(v2) = �onOffbio, ecoSweetbio�. Thus we get that P(v1) ⊆− PO〈C−1〉

P(v2), i.e., P(v1) is worse than P(v2) since gasFullbio →C−1 onOffbio and therefore
gasFullbio ≤PO〈C−1〉 onOffbio. This meets our intuition as gasFullbio is denoted
more important (and thus more detrimental if violated) than onOffbio.

5 Expressing Constraint Hierarchies as Lexicographic Products

As motivated by Sect. 2, constraint relationships provide the ability to combine un-
related preferences without introducing bias, as would occur if categorizing unrelated

3 This multiset ordering mimics the eponymous ordering used in powerdomain constructions
[1, Ch. 9], where partial orders are lifted to semi-lattices with an idempotent multiplication.
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constraints into more or less equivalent layers in constraint hierarchies. However, con-
straint hierarchies are more appropriate when metric error functions are available or a
clear dominance of one layer over others exists – as might be the case in relating orga-
nizational vs. individual goals. Using lexicographic combinations, both approaches can
be seamlessly combined.

We first recast the original definitions of constraint hierarchies [8] to position them
within the scope of partial valuation structures. In particular, we represent a constraint
hierarchy as a lexicographical product of partial valuation structures in place of the lay-
ers. We discuss the existing propositions of weighting functions but increase the gener-
ality of the approach as arbitrary partial valuation structures could eventually be lexico-
graphically combined to form hierarchies. The presence of collapsing elements gives us
a criterion that algebraic structures defining a combination operation for gradings such
as partial valuation structures or c-semirings representing layers in a constraint hierar-
chy need to show in order to be used in lexicographic combinations: Soft constraints in
all but the least important layer should not map to collapsing elements to preserve all
gradings. All constraint hierarchies classified as “rational” in [15] (and thus expressible
as c-semirings) are void of collapsing elements.

Formally, a constraint hierarchy H = (Ck)1≤k≤n over a constraint domain (X,D),
or (X,D)-constraint hierarchy, is given by a family of sets Ck of (X,D)-constraints.
The constraints in level 1 ≤ k ≤ n are considered as strictly more important than the
ones in level k + 1. An (X,D)-constraint hierarchy is finite if

⋃
1≤k≤n Ck is finite.

Let H = (Ck)1≤k≤n be a finite (X,D)-constraint hierarchy, let W = (Mk)1≤k≤n

be a corresponding family of partial valuation structuresMk representing the individual
layers, and let for each 1 ≤ k ≤ n and for each c ∈ Ck, μc be the associated (X,D)-
Mk-soft constraint. We call H = (Mk)1≤k≤n with Mk = {μc | c ∈ Ck} for 1 ≤ k ≤ n
a (X,D)-W -soft constraint hierarchy. For a v ∈ [X → D] the solution degree for
(Mk)1≤k≤n of v is defined to be (Mk(v))1≤k≤n. Define a binary relation <H ⊆ [X →
D]× [X → D] by

w <H v ⇐⇒ ∃1 ≤ k ≤ n . (∀1 ≤ i ≤ k − 1 .Mi(w) = Mi(v))

∧Mk(w) <Mk
Mk(v) ,

saying that the assignmentw is strictly worse than the assignment v if ties up to a certain
level k−1 (or no ties if k = 1) are resolved by a strict inequality in k. This corresponds
to the lexicographic order on the set {(Mk(v))1≤k≤n | v ∈ [X → D]}, i.e.,

w <H v ⇐⇒ (Mk(w))1≤k≤n <M1�...�Mn (Mk(v))1≤k≤n

if, on the one hand, everyMk is a bounded partial valuation structure for all 2 ≤ k ≤ n,
and, on the other hand, Mk(v),Mk(w) /∈ C(Mk) for all 1 ≤ k ≤ n, or, equivalently,
if μc(v), μc(w) /∈ C(Mk) for each c ∈ Ck, 1 ≤ k ≤ n. The first requirement, that
each Mk is bounded, can be achieved by moving from Mk to its lifted variant (Mk)⊥.
The second hinges on the selected partial valuation structure, guaranteeing order equiv-
alence only if no collapsing elements are present. In practice, this requires that no soft
constraint maps to any collapsing element.
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5.1 Locally Predicate Better

In the literature, many different variants are used for the comparison of solution degrees
of individual layers. A straightforward approach requests that an assignment is consid-
ered worse if it is Pareto-dominated in terms of soft constraints, i.e., it violates a strict
superset of constraints of another assignment’s violation set. Consider a single level k
of a finite (X,D)-constraint hierarchyH = (Ck)1≤k≤n, and letC = Ck. The so-called
locally-predicate-better (LPB)-comparator [8] for C corresponds to requiring

w <LPB
C v ⇐⇒ {c ∈ C | w �|= c} ⊃ {c ∈ C | v �|= c} .

This is expressed by the partial valuation structure M = (Pfin(C),∪, ∅,⊇) where
Pfin(C) stands for finite subsets of C and the set of (X,D)-M -soft constraints M =
{μc | c ∈ C} with μc(v) = {c} if v �|= c and μc(v) = ∅ otherwise, for each c ∈ C.
However, all elements of M are idempotent, and thus the collapsing elements of M
are Pfin(C) \ {∅}. Hence, M is not suitable for a lexicographic product. Choosing in-
stead the partial valuation structure N = (Mfin(C),∪−, ��, ⊆− ), where Mfin(C) denotes
finite multisets over C, N has no collapsing elements and the set of (X,D)-N -soft
constraints N = {νc | c ∈ C} with νc(v) = �c� if v �|= c and νc(v) = �� otherwise, for
each c ∈ C, deviates this situation, since we have for all v, v′ ∈ [X → D] that

M(v) ≤M M(v′) ⇐⇒ N(v) ≤N N(v′)

as any ν(c) adds at most one occurrence of c to the combined grading.
One may think of the ordering over [X → D] induced by M as preference spec-

ification that is implemented by N which is applicable to lexicographic products due
to the absence of collapsing elements. More specifically, from a user’s point of view,
the used structure is not relevant as long as the intended ordering is preserved. We can
generalize this idea of substituting a specifying partial valuation structure by another
implementing collapse-free counterpart:

Definition 5. A finite set of (X,D)-M -soft constraints M and a finite set of (X,D)-
N -soft constraints N are optima equivalent, written as M ≈ N, if Max�M [X → D] =

Max�N [X → D]. ��

5.2 Globally Weighted Better

The locally predicate better comparator, however, leaves us with various incomparable
assignments due to the proper subset relation. Moreover, predicate evaluations may be
too strict and metric error functions can take their role. Additionally, constraints may be
weighted. Thus, a more general approach does not consider constraints at the individual
level but maps a layer to one aggregated value (corresponding toMk(v)). Borning called
these comparators global [8]. That way, we can also treat locally predicate (and metric)
better as special cases.

Formally, a weighting for a set C of (X,D)-constraints is given by a function g :
C × [X → D] → R≥0 with g(c, v) = 0 iff v |= c for v ∈ [X → D] and c ∈ C. This
function subsumes both the metric aspects and weights. Traditionally, the following
combinations of weights have been considered, where a valuation is deemed worse
than another if its combined weight is greater than the combined weight of the other.
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– Weighted sum: W1(v) =
∑

c∈C g(c, v).

– Least squares: W2(v) =
√∑

c∈C g(c, v)
2.

– Worst case: W∞(v) = max{g(c, v) | c ∈ C}.
These comparators can be recast as partial valuation structures based on the real

numbers where the ordering is just ≥:

Definition 6. A real partial valuation structureR has 0 ∈ |R| ⊆ R≥0 for its underlying
set, 0 as its neutral element and the (inverted) usual ordering on the real numbers≥ as
its ordering. ��

The following real partial valuation structures capture the global comparators; the
notationR∞ is justified by the well-known fact that limp→∞(rp+sp)1/p=max{r, s}:4

– Weighted sum: R1 = (R≥0, ·1, 0,≥) with r ·1 s = r + s;
– Least squares: R2 = (R≥0, ·2, 0,≥) with r ·2 s =

√
r2 + s2;

– p-norm for p > 0: Rp = (R≥0, ·p, 0,≥) with r ·p s = (rp + sp)1/p;
– Worst case: R∞ = (R≥0, ·∞, 0,≥) with r ·∞ s = max{r, s}.

Given a real partial valuation structureR and a weighting g : C×[X → D]→ |R| ⊆
R≥0, the (R, g)-weighting of a v ∈ [X → D] is now given by W g

R(v) =
∏

R{g(c, v) |
c ∈ C}. Each such weighting W induces a relation �W

C ⊆ [X → D] × [X → D] on
assignments with w �W

C v denoting w is worse than v, defined by

w �W
C v ⇐⇒ W (w) ≥W (v) .

Let us now turn to the question how to use these real partial valuation structures
in a lexicographic product. All real partial valuation structures R with ·R = ·p for
some p > 0 are appealing as they have no collapsing elements, since r ·p s = (rp +
sp)1/p is strictly monotonic in both arguments. The choices of weighted-sum-better
and least-squares-better are thus readily applicable to lexicographic products. For real
partial valuation structures with ·R = ·∞, however, C(R) = |R| \ {0}, since ·∞ is
idempotent. Consequently, one cannot use them to mimic the ordering of a (X,D)-
W -soft constraint hierarchy using a lexicographic product since the resulting partial
valuation structures would degrade to ({0}, ·∞, 0,≥). Assume, e.g., that C has three
different constraints c1, c2, and c3; that there are assignments v1 violating only c1, v2
violating only c2, v13 violating exactly c1 and c3, and v23 violating exactly c2 and c3;
and that the weightings are independent of the valuation, i.e., g(c1, v1) = g(c1, v13) and
g(c2, v2) = g(c2, v23) and g(c3, v13) = g(c3, v23). Also assume that the weightings for
v1, v2, v13, and v23 are related by

W g
R∞(v1) = g(c1, v1) > g(c2, v2) = W g

R∞(v2) ,

W g
R∞(v13) = max{g(c1, v13), g(c3, v13)} =

max{g(c2, v23), g(c3, v23)} =W g
R∞(v23) .

4 The choice of ·R for a real partial valuation structure is somewhat limited by the following
theorem by Bohnenblust [7]: If |R| = R≥0 and (t · r) ·R (t · s) = t · (r ·R s) holds in the
real partial valuation structure R for all r, s, t ∈ R≥0 (where · is the usual multiplication),
then either 1 ·R 1 = 1 and r ·R s = max{r, s} for all r, s ∈ R≥0, or 1 ·R 1 > 1 and
r ·R s = (rp + sp)1/p for all r, s ∈ R≥0 for some p > 0.



128                    

Intuitively, g(c3, v) is greater than g(c1, v) and g(c2, v) if v �|= c3, but as only the worst
case is considered, all other gradings do not contribute to the distinction. Therefore,
previously comparable assignments become equal when combined with g(c3, v). Any
set of (X,D)-M -soft constraints M = {μc | c ∈ C} reflecting the ordering induced by
W g

R∞ on assignments, i.e., M(v) ≤M M(v′) ⇐⇒ W g
R∞(v) ≥ W g

R∞(v′), would thus
have μc3 mapping to a collapsing element in M . To still implement a partial valuation
structure that meets our preference specifications originally stated in R∞, we have to
abandon the search for optima equivalence (see Def. 5) for a less restrictive property.

6 Simulating Partial Valuation Structures

A variety of application scenarios, however, motivate the evaluation of assignments
based on the worst criterion including our examples in Sect. 2. To still be able to use
“worst case” as a valid comparator for lexicographic products, we first relax our notion
of optima equivalence to the asymmetric optima simulation. A similar effort was made
by Bistarelli, Codognet, and Rossi, who discuss abstractions of c-semiring-based soft
constraint problems by means of Galois connections [3]. The problem can also be seen
in the context of viewpoints in model reformulation [25] in the sense that we seek an
alternative partial valuation structure that reflects the same underlying user preferences.

Definition 7. A finite set of (X,D)-N -soft constraints N optima simulates a finite set
of (X,D)-M -soft constraints M, written as N � M, if for each vM ∈Max�M [X → D]

there is a vN ∈ Max�N [X → D] with M(vM) = M(vN), and, vice versa, if for each
vN ∈Max�N [X → D] there is a vM ∈ Max�M [X → D] with M(vM) = M(vN). ��

Intuitively, our definition of optima simulation allows that assignments in the same
equivalence class w.r.t. M are further distinguished in N as long as each equivalence
class in Max�M [X → D] is represented in Max�N [X → D] (we do not “lose” optima)
and no assignment suboptimal in M is considered optimal in N. Then, N is a reasonable
candidate for substituting M, constituting a kind of refinement. Obviously, M ≈ N if,
and only if, N � M and M � N. We can furthermore give sufficient criteria for the
relations of assignments evaluated in M and N to check if N � M holds, provided that
both M and N are admissible:

Lemma 2. Let (X,D) be a constraint domain, and let M and N be admissible sets of
M - andN -soft constraints over (X,D), respectively, such that for all v, v′ ∈ [X → D]

M(v) <M M(v′) implies N(v) <N N(v′)

M(v) ‖M M(v′) implies N(v) ‖N N(v′)

Then N � M.

Proof. Let first v1 ∈ Max�M [X → D]. Let v1 /∈ Max�N [X → D]. Then, since N is ad-
missible, there is a v2 ∈ Max�N [X → D] with N(v1) <N N(v2). Moreover, there is a
v′1 ∈Max�M [X → D] with M(v2) ≤M M(v′1), since M is admissible. But M(v2) <M

M(v′1) is impossible, since then also N(v2) <N N(v′1) contradicting N(v2) ∈ N∗.
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Thus M(v2) = M(v′1). Moreover, either M(v1) ‖M M(v′1) or M(v1) = M(v′1) since
both M(v1) and M(v′1) are elements of M∗. But M(v1) ‖M M(v′1) is impossible, since
we would have M(v1) ‖M M(v2) = M(v′1) and N(v1) <N N(v2). Thus M(v2) =

M(v′1) = M(v1). — Now let v2 ∈ Max�N [X → D]. If v2 /∈ Max�M [X → D], there
would be, since M is admissible, a v1 ∈Max�M [X → D] such that M(v2) <M M(v1),
i.e. N(v2) <N N(v1), contradicting N(v2) ∈ N∗. ��

The requirements of the lemma prove helpful in finding a collapse-free simulating
partial valuation structure for a real partial valuation structure using ·∞. In particular,
we investigate the use of ·p as a substitute for ·∞, since this directly avoids collapsing
elements. For that purpose, for a 0 ∈ V ⊆ R≥0, let, for each p > 0, Vp be the real
partial valuation structure (〈V 〉p, ·p, 0,≥) with 〈V 〉p the smallest subset of R≥0 with
r ·p s ∈ 〈V 〉p if r, s ∈ 〈V 〉p; and let V∞ denote the real partial valuation structure
(V, ·∞, 0,≥). The second requirement of the lemma for moving from a V∞ to some
Vp is trivially satisfied for real partial valuation structures, since ≥ is total. For the first
requirement we have the following characterization:

Lemma 3. Let 0 ∈ V ⊆ R≥0, and p > 0. Then for each n ≥ 1∏
∞ �r <

∏
∞ �s implies

∏
p �r <

∏
p �s for all �r, �s ∈ V n (∗p)

if, and only if,

r < s implies n1/p · r < s for all r, s ∈ V. (∗∗p)

Proof. Let first (∗p) hold and let r, s ∈ V with r < s. Choose r1 = . . . = rn = r,
s1 = . . . = sn−1 = 0, and sn = s. Then

∏
∞(ri)1≤i≤n = r < s =

∏
∞(si)1≤i≤n,

and thus n1/p · r =
∏

p(ri)1≤i≤n <
∏

p(si)1≤i≤n = s. — Now, let (∗∗p) hold and let
r =

∏
∞(ri)1≤i≤n <

∏
∞(si)1≤i≤n = s. Define r′1 = . . . = r′n = r and s′1 = . . . =

s′n−1 = 0, s′n = s. Then
∏

p(ri)1≤i≤n ≤
∏

p(r
′
i)1≤i≤n = n1/p · r, since ri ≤ r for

all 1 ≤ i ≤ n, and s =
∏

p(s
′
i)1≤i≤n ≤

∏
p(si)1≤i≤n, since 0 ≤ si for all 1 ≤ i ≤ n.

Then
∏

p(ri)1≤i≤n ≤ n1/p · r < s ≤
∏

p(si)1≤i≤n. ��

The lemma shows that r < n1/p · r < s is required for all 0 �= r < s ∈ V . But this
is only satisfiable if there is no t ∈ V with r < t ≤ n1/p · r, since by (∗∗p) we would
get r < n1/p · r < t. In particular, V = R≥0 cannot be simulated.

We call a 0 ∈ V ⊆ R≥0 δ-separated for some δ > 1 if s/r ≥ δ for all 0 �= r <
s ∈ V . For each δ-separated V and n ≥ 1, (∗∗p) holds if p > lnn/ ln δ, i.e. n1/p < δ:
Let r < s for r, s ∈ V . Then either r = 0, and thus n1/p · r = 0 = r < s, or r �= 0,
and thus n1/p · r < δ · r ≤ s. Moreover, not only does δ-separation provide us with a
suitable p, a set 0 ∈ V ⊆ R≥0 must be δ-separated for (∗∗p) to hold: If 0 ∈ V ⊆ R≥0

for each δ > 1 shows 0 �= r < s ∈ V with s/r < δ, then (∗∗p) is violated for each
p > 0, since we can choose 0 �= r < s ∈ V with s/r < n1/p, and then n1/p · r > s.

Example 1. (1) Let 0 ∈ V ⊆ R≥0 be finite. Then there is a ε > 0 such that |r1−r2| ≥ ε
for all r1 �= r2 ∈ V . Let 0 �= r < s ∈ V . Then s/r ≥ (r + ε)/r = 1 + ε/r ≥
1 + ε/maxV . Thus V is (1 + ε/maxV )-separated.
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(2) Let c ∈ R with c > 1 and let V c = {cn | n ∈ N} ∪ {0}. If 0 �= r < s ∈ V c, then
there are m < n with r = cm and s = cn. Then cn/cm = cn−m ≥ c holds. Thus, V c

is c-separated and unbounded.
(3) Let d ∈ R with d > 1 and let V d = {d−n | n ∈ N} ∪ {0}. If 0 �= r < s ∈ V d, then
there are m < n with r = d−n and s = d−m. Then d−m/d−n = d−m+n > d holds. In
addition, 0 < d−n ≤ d for all n ∈ N. Hence, V d is d-separated and bounded. ��

Wrapping up, we can define a suitable simulating partial valuation structure for V∞
by means of a p-norm to deal with preference specifications requiring the worst case.

Proposition 1. Let (X,D) be a constraint domain, 0 ∈ V ⊆ R≥0 δ-separated, M∞
an admissible set of (X,D)-V∞-soft constraints, and p > ln |M∞|/ ln δ. Define τp :
|V∞| → |Vp| by τp(r) = r and the finite set of (X,D)-Vp-soft constraints Mp by
Mp = {τp ◦ μ | μ ∈ M∞}. If Mp is admissible, then Mp � M∞.

Proof. The claim that Mp � M∞ follows from Lem. 2 by the choice of p and the
totality of the order in V∞. ��

This construction gives us a tool for practical scenarios requiring a worst-case com-
parator that are, as we showed, not directly expressible in lexicographic products of par-
tial valuation structures or c-semirings [15] due to the presence of collapsing elements.
For a finite set of (X,D)-constraints C and for a weighting g : C × [X → D]→ R≥0,
let V = {g(c, v) | c ∈ C, v ∈ [X → D]} ∪ {0}. It has now to be checked that V is
δ-separated for some δ > 1. Classical CSPs are dealing with finite domains, and thus
δ-separatedness is readily applicable in these scenarios. For real-valued possible error
values, one could turn to discretizing and bounding a domain according to Ex. 1(1). We
may then choose p > ln |C|/ ln δ. For each c ∈ C, we have the (X,D)-V∞-soft con-
straint cg∞ by cg∞(v) = g(c, v), and the (X,D)-Vp-soft constraint cgp by cgp(v) = g(c, v).
Then, since C is finite, we obtain {cgp | c ∈ C} � {cg∞ | c ∈ C}, provided that both
{cg∞ | c ∈ C} and {cgp | c ∈ C} are admissible. But if V is finite, this is guaranteed as
observed in Sect. 3.2. Example 1(3), however, shows that δ-separatedness alone does
not imply admissibility.

Let us apply the construction to the organizational preferences of Sect. 2. Assume
that the possible error values representing violations are given by V = {0, 1, 2, 3} and
that the finite set of Vx-soft constraints Vx = {υt | t ∈ T } represent the violations at
time step t ∈ T = {1, 2, 3} (with x = ∞ or x = p). Assume two assignments w1 and
w2 such that υ1(w1) = 3 and υt(w1) = 0 if t > 1; and further υt(w2) = 2 for all t ∈ T .
Since V is finite, by Ex. 1(1) we get that it is δ-separated with δ = 1+1/3 ≈ 1.3. In fact,
it is also 1.5-separated since 3 cannot take the role of r in Ex. 1(1). With n = |V| = 3,
we get that we have to choose p greater than ln 3/ ln 1.5 ≈ 2.71 for Vp � V∞ to work.
Indeed, we get that while V∞(w1) = 3 > V∞(w2) = 2, p = 2 is not high enough
to preserve this ordering as V2(w1) = 3 < V2(w2) ≈ 3.46, leading to an incorrect
preference decision. But choosing p = 3 already preserves the ordering correctly as
V3(w1) = 3 > V3(w2) = 2.88 and we thus have V3 � V∞.

This makes the construction applicable for a lexicographic product with its controlled
prosumers’ preferences. These are in turn also given as partial valuation structures: for
biogas and EV, we use the free partial valuation structure over the partial order induced



                                                       131

by their constraint relationships calling them Pbiogas and PEV; for thermal we use
p-norms to either directly translate the desired comparators or also use simulation to
get a worst-case comparator and a lexicographic product to obtain a partial valuation
structure P 1

thermal �P 2
thermal. Since no prosumer is considered more important than the

others, we combine their preferences with a direct product. In accordance with Fig. 1
we thus get the partial valuation structure

V3 � (Pbiogas × PEV × (P 1
thermal � P 2

thermal))

for the overall soft constraint problem where Pbiogas and PEV are partial valuation struc-
tures originating in constraint relationships and (P 1

thermal � P 2
thermal) represents a con-

straint hierarchy.

7 Conclusions

Based on results of Wirsing et al., we showed how to express different qualitative and
quantitative preference formalisms as partial valuation structures. First we expressed the
representation of constraint relationships as partial valuation structures by a free con-
struction. Second, the lexicographical product associated with partial valuation struc-
tures allowed us to reformulate constraint hierarchies to position them in a soft con-
straint framework. This process also led to the negative result that a direct translation of
the worst-case comparator necessarily leads to partial valuation structures with collaps-
ing elements. This fact hindered previous attempts at expressing constraint hierarchies
as c-semirings. However, it is possible to look for collapsing-free partial valuation struc-
tures that fulfill several qualities regarding the assignment ordering. We therefore intro-
duced the notion of optima simulation and provided an example of a real-valued partial
valuation structure implemented with p-norms which can be used to order assignments
in lieu of the original collapsing worst-case comparator. We have also demonstrated
by means of a small case study that adaptive and organic computing applications can
benefit from the presented ideas since reconfiguration and clustering call for composi-
tionality which the more conventional c-semirings do not offer to the same extent.

However, our simulation result for the worst-case comparator still is burdened by
some computational effort for the involved p-norms. In fact, it seems that a more general
construction for optima simulation at least for totally-ordered partial valuation struc-
tures (i.e., valuation structures) is reachable, that may avoid this effort. Furthermore,
based on these constructions, efficient solving and optimization algorithms and propa-
gators need to be devised to make them available to problems of practical interest.

Dedication. The authors express their gratitude to Martin Wirsing for his encouraging
style in research and teaching, displaying a kind and appreciative attitude towards the
work of colleagues as well as motivating to connect rigorous methods with software
engineering.
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