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Abstract�In this paper, we present a new approach for service 
discovery combining semantic web and peer-to-peer techniques. 
A reference ontology is used to describe and discover services in 
our approach. We do not need a central point of control at any 
time. All information required for service description and 
discovery is completely distributed across the nodes of a peer-to-
peer overlay network. We describe the design of a Semantically-
enhanced Distributed Discovery System (SDDS) allowing 
dynamic and efficient registration and discovery of services. We 
also present performance analysis and discuss open issues of our 
system. 
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I.  INTRODUCTION 

Services computing has become a strategic research area of 
information technology. Its scope covers the whole lifecycle of 
services including service creation, service deployment, service 
discovery and service composition, to mention just a few 
aspects. Amongst those, service discovery is an important field 
as before a service can be invoked, it has to be located first. In 
the meantime, services have also found their way into Grid 
technologies. The Open Grid Services Architecture (OGSA) [1] 
represents an evolution towards a Grid architecture based on 
web service concepts and technologies. 

Common service description languages such as the Web 
Service Description Language (WSDL) offer a way to describe 
abstract and technical functionalities of a service. They do not 
include semantic information, so two services can have totally 
different intentions although having similar or even the same 
descriptions. Regarding automated service discovery and 
composition, more than syntactical and technical information is 
required. This is where semantic techniques come into play. 
The formal meaning of syntactical data is usually specified by 
adding meta-data. In that area, OWL-S [2] and SAWSDL [3] 
are recent techniques, which help annotating services with 
semantic information. 

The present scheme of service discovery is based on 
directories designed in a centralized or hierarchical way, just as 
Universal Discovery, Description and Integration (UDDI) [4] 
or the Globus Monitoring and Discovery System (MDS) [5]. 
Due to their design, such systems have two shortcomings. 
Firstly, there is a performance issue as all communication flows 
through a single component, which may become a bottleneck 
when a lot of inquiries have to be processed at the same time. 

Secondly, any centralized system represents a single point of 
failure. This might be evaded using redundant data on multiple 
servers, but the fundamental issue still persists. With a large 
number of services and a large number of participants in a 
system, distributed service discovery is the way to be preferred. 

In this paper, we present a new approach for service 
discovery called Semantically-enhanced Distributed Discovery 
System (SDDS). Our approach avoids any bottleneck or single 
point of failure and makes use of semantic information for 
service discovery at the same time. The design of SDDS is 
based on a structured peer-to-peer (P2P) overlay network, 
where knowledge about the services is completely distributed. 
All information necessary is self-organized in a structured 
Chord ring. Every node within that ring represents a service 
provider or a service requestor or both at the same time. As a 
service may comprise several operations, we actually refer to 
service operations rather than to services. We annotate input 
and output parameters of service operations on the basis of a 
reference ontology. Service operations are described and 
discovered on the basis of these annotations. We do realize that 
semantic service descriptions actually include more details 
such as preconditions and effects. For the time being, we focus 
on input and output parameters as a first step; further aspects 
are to be added later. 

There have been some approaches for service discovery 
which try to avoid a centralized architecture and make use of 
semantic information when describing and discovering 
services. An approach which uses semantic descriptions of 
services combined with a P2P network topology is described in 
[6]. A drawback of this method is a lot of communication 
overhead due to the unstructured underlying architecture. 
Another approach is undertaken by METEOR-S providing a 
solution based on a P2P network of UDDI registries including 
semantic annotations, as described in [7] and [8]. However, the 
architecture envisioned in METEOR-S suffers from a single 
point of failure as there is only one single entry point to enter 
the network of registries. The approach described in [9] is 
similar to our one, but uses an unstructured P2P network. By 
contrast, we specially target a structured network architecture 
in order to enable efficient service discovery. 

The rest of this paper is organized as follows. In chapter II, 
we give an introduction to ontologies and P2P systems. In 
chapter III, we describe the design of SDDS. Finally, open 
issues are discussed in chapter IV of this paper, and a summary 
is given in chapter V. 



II. TECHNICAL BACKGROUND 

A. Ontologies 

An ontology is a data model representing concepts of a 
certain domain and relations between them, whereas concepts 
are called classes and relations are called properties. By the use 
of ontologies, knowledge of a certain domain can be shared and 
reused. There has been a lot of research about ontologies due to 
the Semantic Web initiative started by Tim Berners-Lee [10]. 
Ontologies are a powerful technology enabling interoperability 
and mechanical reasoning over web content. In the meantime, 
specification of ontologies has been standardized by the W3C 
consortium by introducing the Web Ontology Language 
(OWL) [11]. 

We now regard a simplified and slightly modified version 
of W3C�s ontology example about wines. There is a class 
called Wine with two object properties describing the wine�s 
color and maker, represented by the two classes WineColor and 
Winery. The latter one is equivalent to a class Vineyard, which 
itself is derived from a more general class Producer. Fig. 1 
shows a graphical representation of this example. 

Trying to find out the producer of a wine, one might search 
for a service operation offering Wine as input and Producer as 
output parameter. Probably, no service offers an operation with 
exactly the signature desired. This will be the case if there are 
two services, ServiceA offering OperationA with Wine as input 
and Winery as output parameter, ServiceB offering OperationB 
again with Wine as input but WineColor as output parameter, 
for example. Surely, ServiceB is not applicable for finding out a 
vine�s producer. However, it is a different matter with 
ServiceA. Although OperationA returns Winery instead of 
Producer, the result does satisfy the initial request. Regarding 
the semantic information represented by the ontology, one can 
see that Winery is equivalent to Vineyard and Vineyard is a 
subclass of Producer, so Vinery is a specialization of Producer. 
It is the task of our Semantically-enhanced Distributed 
Discovery System to perform semantic conclusions concerning 
equivalence and subclass properties within an ontology as
described in the wine example above. 

B. P2P Systems 

We now summarize peer-to-peer systems, as the 
architecture of our discovery system is based on recent work in 
that area. According to Foster and Iajnitchi, peer-to-peer 
systems are decentralized, self-organizing, distributed systems, 
in which all or most communication is symmetric [12]. Peer-to-
peer systems usually involve a large number of participants, 
also called nodes or peers. Such networks are useful for a lot of 
purposes. Sharing content files containing audio, video or other 
digital data has become very common, but applications 

Figure 1.  Simple ontology about wines 

using P2P technology for passing real-time data such as 
telephony traffic have also gained attraction. 

Starting in the nineties, several peer-to-peer based file 
sharing systems have been developed. One of the first systems 
was Napster, designed especially for sharing MP3 files 
amongst participants [13]. Although Napster became very 
popular, it implied a big drawback as it used a central index 
server for locating users' files. The approach had limited 
scalability and contained a single point of failure, which made 
it quite easy for jurists to shutdown Napster after several legal 
proceedings. Gnutella is another early file sharing system [14]. 
In contrast to Napster, there is no central authority to organize 
the Gnutella network. Instead, each node is connected to a 
couple of other nodes resulting in an unstructured overlay 
network. The structure of the network is highly dynamic as 
nodes constantly join or leave; most nodes remain in the 
network for less than 24 hours. Gnutella uses a flooding-based 
approach to route queries. In order to avoid flooding the whole 
network, a time-to-live field and the number of hops along the 
routing path are used to limit further routing at a certain point. 
Gnutella�s highly distributed design eliminates a single point of 
failure. However, the approach makes search results 
indeterministic and does not guarantee that a file desired can be 
reached at all, even if it exists at some distant node of the 
network. 

In order to overcome the shortcomings of early P2P 
systems concerning resource discovery, distributed hash table 
(DHT) approaches were introduced such as Pastry [15] or 
Chord [16]. They construct structured overlay networks with 
all nodes having equal roles and responsibilities. Different 
routing algorithms are utilized in order to forward messages 
purposively instead of flooding the whole network. Thus, 
benefits of distribution are preserved while efficient retrieval of 
objects is guaranteed, resulting in good scalability, fault 
tolerance and low maintenance cost. Search results are correct 
and complete. Correctness implies that only relevant objects 
are found; completeness implies that all relevant objects are 
discovered. A key technique used to achieve these goals is the 
fact that each node only coordinates with a few other neighbor 
nodes, typically O(log n) in an n-node network. When nodes 
join or leave the network, only a limited amount of work is 
necessary to keep the overlay structure. Such systems can 
finish a search operation in O(log n) hops using O(log n) 
messages, depending on the exact routing algorithm used. 

III. THE DESIGN OF SDDS 

In this chapter, we describe the design of our Semantically-
enhanced Distributed Discovery System. As mentioned 
previously, we use a reference ontology to annotate parameters 
of service operations. Each input and output parameter is 
annotated with a class of the reference ontology. All semantic 
annotations are stored decentralized in a Chord ring. One may 
search for services at any peer by specifying one or more 
classes as input or output parameters or both at the same time. 
In our approach, the reference ontology is known to each 
service provider and requestor. Like that, consistent usage of 
terms is achieved. At the moment, the reference ontology is 
used in a static way, so its structure and classes need to be 
known at deployment time. We do not focus on a certain 
language to specify service descriptions and semantic 
annotations as our approach is a conceptual one. 
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A. Chord 

The design of SDDS is based on the structured Chord 
overlay network, which we describe now. In Chord, objects are 
designated by a key, which may be a filename or any other 
distinctive qualifier. Each node and each key is assigned a 
unique m-bit identifier out of a circular identifier space 
containing 2m identifiers. A node�s identifier is obtained by 
hashing its IP address and port number; a key�s identifier is 
obtained by hashing the key�s value itself. All nodes self-
organize into a ring topology in ascending order based on their 
node identifiers in the circular space. Keys are assigned to 
nodes using consistent hashing; i.e. key K is assigned to the 
first node whose identifier is equal to or greater than the 
identifier of K. This node is responsible for the resource with 
key K and is called its successor node, signified by 
successor(K). Please note that, due to the ring topology, 
comparisons and calculations concerning identifiers are 
performed modulo 2m. Chord�s consistent hashing mechanism 
offers two benefits. Firstly, hash values created are evenly 
spread with high probability. Secondly, only an O(1/n) fraction 
of all keys are reassigned in case the responsible node leaves 
the n-node network [17]. However, it is important to set m to a 
value large enough in order to ensure that hash values of all 
identifiers are disjoint. To simplify matters, we use the terms 
node and key for their identifiers respectively. 

Each Chord node basically maintains a set of successors, 
called finger nodes. The finger nodes represent a node�s routing 
information and are spaced exponentially around the identifier 
space. The i-th finger of node N is the first node that succeeds 
N by at least 2i-1 on the identifier circle, where 1  i  m. The 
first finger node (i = 1) is the immediate successor of N. Thus, 
each node maintains at most m finger nodes in a so-called 
finger table with size O(log n). Chord improves fault tolerance 
and efficiency by additionally maintaining the predecessor and 
a constant number of successors for each node. Fig. 2 shows a 
Chord ring consisting of eight nodes storing three keys; the 
finger nodes and finger table of node 38 are shown 
exemplarily. 

In order to lookup an object with key K, a node N will route 
a lookup request to successor(K) as the latter one is the node 
responsible for K. Based on its finger table, N forwards the 
request to the finger node whose identifier most immediately 

Figure 2.  A Chord ring consisting of 8 nodes storing 3 keys 

precedes K. By repeating this process, the request gets closer 
and closer to successor(K). Finally, successor(K) receives the 
lookup request for K and returns the respective object back to 
node N. As finger nodes are spaced exponentially around the 
identifier space, each hop clockwise from one node to the next 
one covers at least half of the distance between N and 
successor(K). This is why a lookup requires O(log n) routing 
hops in an n-node network. 

As nodes may join and leave the network, some effort is 
necessary to maintain the ring topology. For this purpose, each 
Chord node periodically runs a stabilization protocol in the 
background ensuring each node�s successor pointer is up to 
date. Basically, each node N asks for the predecessor of its 
immediate successor N� at regular intervals. N itself will 
usually be the response of such a query, of course. In case a 
new node N�� joins the network between N and N�, N will 
realize the change at the next run of its stabilization protocol. 
Now, successor and predecessor pointers are updated and all 
keys K with N < K  N�� are reassigned from N� to N��. There 
are two scenarios for a node leaving the network. If a node 
leaves the network on purpose, it will first reassign all keys and 
objects it is responsible for to its successor and inform its 
successor and predecessor about being neighbors from now on. 
The breakdown of a node is handled by the stabilization 
protocol which again updates predecessor and successor 
pointers. However, Chord does not provide fault tolerance for 
the objects stored on a broken node; this data may be lost when 
a node fails. 

B. Ontology Managers 

The underlying DHT mechanism of the Chord system 
offers distributed lookup based on exact matches for a given 
key. However, Chord does not support several types of queries 
that are desirable in the field of services computing such as 
multi-attribute queries or queries allowing for richer data 
structures. Therefore, we extend the Chord system by putting 
an additional management layer on top. This layer consists of 
one Ontology Manager (OM) per peer and undertakes tasks the 
basic Chord system cannot cope with. The Ontology Managers 
collaboratively perform service discovery and deal with 
registration of new service operations as well as deregistration 
of existing ones at runtime. Appropriate interfaces are provided 
by each OM. Fig. 3 shows the basic system model of SDDS. 

The discovery mechanism of SDDS is not limited to exact-
match queries for input and output parameters as equivalence 
and subclass properties within the reference ontology are taken 
into account as well, as mentioned in chapter II.A. In order to 
properly handle them, we need to be aware which classes can 
be substituted by other ones when searching for service 
operations. A class can obviously be substituted by another one 

Figure 3.  Basic system model of SDDS 
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expressly specified as equivalent class, no matter if it is about 
input or output. However, classes can be substituted by 
subclasses or superclasses as well, depending if an input or 
output parameter is desired. In the following, we use a set input 
containing desired input parameters of the search and a set 
output for output parameters respectively. Assume a search 
with input = {C}, which means we are looking for service 
operations accepting C as input parameter. A service operation 
offering a superclass C� of C as input also satisfies the query, 
because C� is more general than C and thus can be passed an 
object of type C just as well. In object orientated programming, 
this principle of substitution is known as contravariance. With 
output parameters, it is just the other way round. Given a 
search with output = {C}, another service operation offering a 
subclass C�� of C as output also satisfies the query, because a 
more special object is returned, which is even more information 
than requested. This principle is also known as covariance. For 
these purposes, we introduce the concept of substitutional sets. 
substI(C) contains classes which can substitute an input 
parameter C; substO(C) contains classes which can substitute an 
output parameter C. Formal definitions of substI and  substO are 
given in (1) to (6). 

C  substI(C) (1) 
C� equivalent to C  C�  substI(C)  C�  substI(C) (2) 

C�� superclass of C�  C�  substI(C)  C��  substI(C) (3) 

C  substO(C) (4) 
C�� equivalent to C�  C�  substO(C)  C�  substO(C) (5) 
C�� subclass of C�  C�  substO(C)  C��  substO(C) (6) 

Let us once more regard the example given in chapter II.A, 
where a search for input = {Wine} and output = {Producer} is 
performed. Instead of only searching for Wine and Producer 
respectively, all classes in substI(Wine) as possible input and all 
classes in substO(Producer) as possible output parameters are 
considered. OperationA of ServiceA is a satisfying answer to 
the query as its input parameter Wine is included in 
substI(Wine) = {Wine} and its return parameter Winery is 
included in substO(Producer) = {Producer, Vineyard, Winery}. 

We now have a closer look onto how the Ontology 
Managers perform service discovery. There are several steps 
performed collaboratively by the peers. First of all, a query for 
more than one parameter is split up into subqueries and each 
parameter is processed separately. In our example, there would 
be a subquery for Wine as input and another one for Producer 
as output. For each input and output parameter desired, the 
respective substitutional set is determined next, resulting in 
substI(Wine) and substO(Producer). For each substitutional set, 
service operations amongst all services are determined that 
have a parameter matching with a class in the substitutional set 
considered. Finally, the results of the subqueries are collected 
and analyzed in order to filter those service operations that 
require at most the input parameters provided and return at 
least the output parameters requested. 

Two major tasks are to be solved in order to realize this 
approach in a distributed and efficient way. For both tasks, the 
Ontology Managers take advantage of the underlying Chord 
system. Firstly, the substitutional set is determined for each 

parameter requested. As the reference ontology remains static 
in our approach, we only calculate the substitutional sets for 
each class of the reference ontology once at deployment time 
and store them for later usage. Storage is performed in a 
distributed way using Chord�s consistent hashing mechanism.
The keys to be hashed are the names of the classes; the objects 
to be stored are the substitutional sets. Like that, each class C 
of the reference ontology is assigned to a certain node that is 
responsible for C and stores substI(C) and substO(C). This 
structure is also called inverted vertically partitioned index 
[18]. Such an index minimizes the cost of searches by ensuring 
that no more than m nodes are responsible for answering a 
query containing m classes. Like that, it takes O(log n) hops to 
determine a substitutional set of one class in an n-node 
network. Fig. 4 shows how substI(Producer) and 
substO(Producer) are stored in a Chord ring, assuming 
consistent hashing assigns the class Producer to node 1. 

Secondly, starting from a substitutional set for a certain 
parameter requested, matching service operations are 
determined. Depending on the reference ontology�s size, the 
substutional sets can become rather large, so processing each 
class within a substutional set separately would not be a good 
idea. Therefore, we store mappings of whole substitutional sets 
onto service operations. Substitutional sets are not disjoint and 
parameters usually occur in several substitutional sets, so this 
approach requires more space for storage. However, this is a 
good tradeoff as a lot of efficiency is gained for discovery. The 
mappings described are again stored in a distributed way using 
Chord�s consistent hashing mechanism. The keys to be hashed 
are the substitutional sets; the objects to be stored are 
references to appropriate service operations. Like that, each 
substitutional set subst is assigned to a certain node that is 
responsible for subst and able to return references to 
appropriate service operations. Please note that it is not 
necessary to distinguish between substI and substO at this point; 
now the only task is to match the  substitutional sets onto input 
and output parameters of service operations. We also refer to 
such matches as input and output matches, matchI and matchO. 
Equations (7) and (8) give formal definitions of matchI and 
matchO, where paramsI(Op) are the input and paramsO(Op) are 
the output parameters of operation Op. 

matchI(S) = {Op |  PI  paramsI(Op) . PI  S} (7) 
matchO(S) = {Op |  PO  paramsO(Op) . PO  S} (8) 

Given a substitutional set S, it takes O(log n) hops to 
determine input matches matchI(S) and output matches 
matchO(S), n being the number of nodes in the network. Fig. 5 
shows how input and output matches of the set {Producer, 
Vineyard, Winery} are stored at a certain node of a Chord ring, 
assuming consistent hashing assigns S to node 32. We refer to 
an operation Op of a service S as S.Op. 

Figure 4.  Storage of substitutional sets in a Chord ring 
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Figure 5.  Mapping of substitutional sets onto service operations 
in a Chord ring 

After determining input and output matches for each 
parameter, the resulting service operations are filtered in such a 
way that only those operations remain which require at most 
the input classes provided and which return at least the output 

classes desired. In other words, an operation is allowed to have 
more output parameters than requested but must not have more 
input parameters than specified. The result of the overall 
discovery process is formally defined in (9) to (11). A 
discovery for service operations on the basis of m classes in an 
n-node network takes O(m log n) hops altogether, which lets 
the system scale well, even if the number of nodes becomes 
very high. Fig. 6 shows the steps that are performed in the 
example about wines when searching operations with Wine as 
input and Producer as output parameter, as described in 
chapter II.A. 

resultI = {Op |  PI  paramsI(Op)  CI  input . PI  substI(CI) (9) 
resultO = {Op |  CO  output  PO  paramsO(Op) . PO  substO(CO) (10) 

result = resultI  resultO (11) 

Figure 6.  Discovery mechanism on the basis of the wine example 
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New service operations may be registered at runtime by any 
peer, and existent ones may be unregistered as well. In both 
cases, the substitutional sets are not affected as the reference 
ontology remains the same. However, input and output matches 
need to be updated. If a new service operation is registered, an 
input match will be added wherever a substitutional set 
contains a class corresponding to an input parameter of the 
operation; output matches will be added for output parameters 
respectively. With the design presented so far, all nodes would 
have to be checked, so this would take O(m n) hops for an 
operation containing m parameters in an n-node network. In 
order to improve efficiency, additional knowledge is stored 
telling which substitutional sets contain a certain class. Like 
that, the number of hops required can be reduced to O(m log n). 
Deregistration of existent service operations is performed 
analogously. 

IV. SUMMARY AND OPEN ISSUES 

In this chapter, we summarize a couple of important 
characteristics of SDDS before discussing open issues. First of 
all, our system works completely decentralized avoiding any 
central component that could become a bottleneck or single 
point of failure. All nodes have equal roles and tasks. At the 
same time, good scalability is achieved as the number of nodes 
participating in the network may change without bounds. Even 
with a very large number of nodes, discovery is performed 
efficiently due to logarithmic number of hops necessary 
compared to the number of nodes in the network. Furthermore, 
our discovery mechanism guarantees correctness and 
completeness of search results. Node failures do not impact the 
structure of the system as they are resolved by Chord�s 
stabilization protocol. Thus, SDDS offers attractive properties 
of self-organization. 

There are some open issues to be discussed. Firstly, our 
approach assumes that service operations are fully specified. 
However, it is worth to think about partly specifications and 
smooth queries based on incomplete information. As 
mentioned before, the structure of the system is resistant to 
node failures. However, information stored at a failed node 
may be lost. An appropriate replication mechanism would be a 
desirable feature. Concerning the ontology involved, only 
classes and hierarchical relations between them have been 
regarded so far. More details need to be considered for fully-
fledged service discovery, such as properties, preconditions and 
effects. Furthermore, our system is designed on the basis of a 
static reference ontology. It would be desirable to allow each 
peer having its own, possibly incomplete ontology, which is 
completed by knowledge distributed over the network, as 
proposed in [19], for example. Besides that, security issues 
have not yet been addressed. In some environments, 
information about service location could be considered 
sensitive, so communication would require authentication and 
authorization. Next, we will create a prototype implementation 
of our system and perform measurements about performance 
and scalability on the basis of a significant test series. 

V. CONCLUSIONS 

In this paper, we presented a new approach for service 
discovery in a distributed and semantically-enhanced way. Our 
system uses a reference ontology to annotate input and output 
parameters of service operations. All information is completely 

distributed over a structured peer-to-peer overlay network. We 
illustrated the core algorithm and explained how it enables our 
system to discover the service operations desired, even if there 
is no service operation whose signature exactly matches the 
parameters desired. This has been achieved by mapping the 
structure of the reference ontology and the signatures of the 
service operations onto a Chord ring. Furthermore, we 
presented performance analysis of our system and showed that 
the number of hops required to answer a query is logarithmical 
compared to the number of nodes in the network, offering good 
scalability for large networks. Based on our results, we think 
the ideas presented in this paper will be useful for service 
discovery in future services computing environments. 
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