Social Signal Processing for Dummies

lonut Damian, Michael Dietz, Frank Gaibler, Elisabeth André
Human Centered Multimedia
Augsburg University, Augsburg, Germany
{lastname}@hcm-lab.de

ABSTRACT

We introduce SSJ Creator, a modern Android GUI enabling
users to design and execute social signal processing pipelines
using nothing but their smartphones and without writing a
single line of code. It is based on a modular Java-based social
signal processing framework (SSJ), which is able to perform
realtime multimodal behaviour analysis on Android devices
using both device internal and external sensors.

CCS Concepts

eHuman-centered computing — Ubiquitous and mobile
computing systems and tools;

Keywords

social signal processing; behaviour analysis; realtime; online

1. INTRODUCTION

Recent advancements in computing have enabled the de-
velopment of wearable computers and sensors. Such devices
allow us to take computational platforms away from enclosed
spaces and perform in-the-wild data processing. One par-
ticular area which can benefit from this shift is social sig-
nal processing. Considering the computational power and
sensing capabilities of modern smartphones, it is possible to
envision systems which perform state-of-the-art social signal
processing on the go.

Unfortunately, the majority of (freely available) social sig-
nal processing solutions still rely on powerful personal com-
puters to do the processing. While there are some excep-
tions, none of them offer a flexible and accessible way for cre-
ating powerful multimodal social signal processing pipelines.
Platforms such as BeTelGeuse [4] and Dynamix[1] lack sup-
port for advanced signal classification techniques and also
require programming expertise to operate. On the other
hand, MobileSSI [3], the Android-compatible UNIX port of
the popular OpenSSI framework [5], struggles with basic in-
put/output tasks, such as interfacing with bluetooth sensors,

This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in:

Copyright is held by the owner/author(s).
ICMI’16, November 12—-16, 2016, Tokyo, Japan

ACM. 978-1-4503-4556-9
http://dx.doi.org/10.1145/2993148.2998527

Figure 1: SSJ Creator — An Android app for build-
ing and executing social signal processing pipelines.

due to the incomplete C++ API of Android.

To address these issues, we implemented the SSJ frame-
work, a Java-native solution for social signal processing fully
compatible with modern mobile devices. Moreover, in an ef-
fort to put social signal processing at the finger tips of as
many researchers, students or aficionados as possible, we
developed a user-friendly Android app for building and exe-
cuting SSJ pipelines (see Figure 1). For the first time, users
are able to design and perform social signal processing ex-
periments on a smartphone and without writing a single line
of code.

2. THE SSJ FRAMEWORK

This section introduces SSJ, a framework for extracting,
processing and classifying multimodal social signals with the
help of external sensing hardware. SSJ has been inspired by
Wagner’s Social Signal Interpretation (SSI) Framework [5]
for windows, and thus borrows several design principles from
it. However, unlike SSI, SSJ is written natively in Java, giv-
ing it access to the entire Android API. Furthermore, thanks
to the abstraction layer offered by Android’s Java virtual
machine, SSJ is device independent, and thus able to run on
virtually all devices in the Android ecosystem. This allows
an unprecedented flexibility and mobility for doing social
signal processing. By combining this with a robust multi-
threaded architecture and aggressive memory management



guidelines, SSJ is able to also run smoothly on older and
less powerful hardware. So far, SSJ has been successfully
deployed on common smartphones (Android API 16 - 24),
smart glasses (e.g. Google Glass, Lumus DK-40) and smart
watches (e.g. Moto 360).

At the heart of SSJ lies the concept of pipelines for han-
dling and processing data. In a pipeline, data flows from one
side to the other during which it sequentially passes various
processing steps which transform the data in realtime. Every
pipeline starts with a Sensor and a SensorProvider. A Sen-
sor is a component which manages the connection with an
internal (e.g. accelerometer, GPS) or bluetooth-connected
sensor device (e.g. Myo, Microsoft Band). Each sensor de-
vice output is managed by a SensorProvider. The Sensor-
Provider receives the data from the sensor device and for-
wards it into the pipeline. Once inside the pipeline, the
data is passed through each individual registered processing
step, or Transformer, in a sequential order. A Transformer
transforms one or more inputs in an effort to filter or ex-
tract characteristic features from the raw data. The pro-
cessed data is then pushed back to the pipeline. The end of
the pipeline is usually marked by a Consumer, which, unlike
a Transformer, does not have an output, only one or more
inputs. Most commonly, Consumers represent the culmina-
tion of the pipeline, carrying out the actual classification of
the data using either simple threshold or more advanced ma-
chine learning-based approaches. However, Consumers can
also be used to communicate the behaviour analysis results
with the user using graphs or camera painters, or with other
applications (e.g. a feedback generator in a social augmen-
tation scenario [2]) using Bluetooth, network or SSJ’s own
event interface for communication between applications on
the same device. At the current time, there are more than
20 different sensors and over 30 transformers and consumers
implemented in SSJ. Furthermore, thanks to an active com-
munity, additional components get added regularly.

3. SSJ CREATOR

In order to allow users to build and execute SSJ pipelines
on the go from the palm of their hands, we implemented an
Android app called SSJ Creator. The app is built around the
classic build-test—iterate concept, allowing users to quickly
build and test pipelines.

To facilitate this, SSJ Creator uses a proven tab-based lay-
out. The first tab features a prominent pipeline view where
the current pipeline configuration including the components,
the connection between the components and the data flow is
illustrated (Figure 1 3®). Users are able to edit pipelines by
adding new components using the edit menu (Figure 1 @),
altering the options of each components by tapping on their
icon in the pipeline view or dragging and dropping compo-
nents to create links between them. Moreover, SSJ Creator
also supports saving and loading of pipelines using the file
menu (Figure 1 @). Pipelines are stored using a human-
readable XML format akin to SSI’s XML pipelines [5]. Once
the user finishes building a pipeline, she or he can launch it
using the play button (Figure 1 ®).

When the pipeline is running, the second tab provides a
view of SSJ’s log (Figure 1 @). This facilitates easy inspec-
tion and efficient debugging of SSJ pipelines. Based on the
configuration of the pipeline, new tabs will be dynamically
created and placed to the right of the log tab. More precisely,
every output component (e.g. signal or camera painters) will

receive a dedicated tab (Figure 1 ®) which will allow the
user to inspect the data output.

4. SIMPLE PIPELINE EXAMPLE

Say that, for a study we need to record and analyse the
users’ movement so that we can later compare between user
groups. This can be achieved with an SSJ Pipeline running
on a smartphone which the users carry in their pockets. To
create the pipeline, we first add an AndroidSensor and, from
the options menu (accessed by tapping on the sensor), we
configure the sensor to output the linear acceleration. We
then add an AndroidSensorProvider and connect it to the
sensor by dragging the sensor over the provider. To pro-
cess the raw acceleration data, we add the OverallActivation
transformer and connect it to the provider. This computes
the amount of movement per frame (the frame size can be
changed from the options menu). Finally, we add a Simple-
FileWriter consumer to store the data on the SD card as
well as a SignalPainter to visualize the data in the app, and
connect both to the transformer. The pipeline is now ready
for testing.

This simple pipeline can be further extended by including
additional sensors (e.g. a Microsoft Band for heart rate) or a
Socket Writer to stream the data to an external application.
Furthermore, if we build a model with the recorded data (e.g.
using SST’s [5] Naive Bayes classifier), we can then use SSJ
to automatically classify the activity of the user in realtime.

5. CONCLUSION

SSJ and SSJ Creator provide the first complete solution
to designing, building and executing social signal processing
pipelines on mobile devices using an easy-to-use graphical
user interface. Both SSJ and SSJ Creator are open source
and freely available for download®.

Acknowledgments. The work was partially funded by
the German Federal Ministry of Education and Research
(BMBF) - project “EMPAT” (FKZ 16SV7229K).

6. REFERENCES

[1] D. Carlson and A. Schrader. Dynamix: An open
plug-and-play context framework for android. In
Proceedings IOT, pages 151-158, 2012.

[2] I. Damian, C. S. Tan, T. Baur, J. Schéning, K. Luyten,
and E. André. Augmenting social interactions:
Realtime behavioural feedback using social signal
processing techniques. In Proceedings CHI, pages
565-574, 2015.

[3] S. Flutura, J. Wagner, F. Lingenfelser, A. Seiderer, and
E. André. MobileSSI: Asynchronous fusion for social
signal interpretation in the wild. In Proceedings ICMI.
ACM, 2016 (in press).

[4] J. Kukkonen, E. Lagerspetz, P. Nurmi, and
M. Andersson. BeTelGeuse: A platform for gathering
and processing situational data. IEEE Pervasive
Computing, 8(2):49-56, 2009.

[5] J. Wagner, F. Lingenfelser, T. Baur, I. Damian,

F. Kistler, and E. André. The social signal
interpretation (SSI) framework - multimodal signal
processing and recognition in real-time. In Proceedings
of ACM MULTIMEDIA, 2013.

"http:/ /http://hemlab.github.io/ssj/


http://http://hcmlab.github.io/ssj/

	Introduction
	The SSJ Framework
	SSJ Creator
	Simple Pipeline Example
	Conclusion
	References

