
SMT-Based False Positive Elimination
in Static Program Analysis

Maximilian Junker1, Ralf Huuck2, Ansgar Fehnker2, and Alexander Knapp3

1 Technische Universität München, Munich, Germany
junkerm@in.tum.de

2 NICTA, University of New South Wales, Sydney, Australia
{ansgar.fehnker,ralf.huuck}@nicta.com

3 Universität Augsburg, Augsburg, Germany
knapp@informatik.uni-augsburg.de

Abstract. Static program analysis for bug detection in large C/C++ projects typ-
ically uses a high-level abstraction of the original program under investigation.
As a result, so-called false positives are often inevitable, i.e., warnings that are
not true bugs. In this work we present a novel abstraction refinement approach
to automatically investigate and eliminate such false positives. Central to our ap-
proach is to view static analysis as a model checking problem, to iteratively com-
pute infeasible sub-paths of infeasible paths using SMT solvers, and to refine our
models by adding observer automata to exclude such paths. Based on this new
framework we present an implementation of the approach into the static analyzer
Goanna and discuss a number of real-life experiments on larger C code projects,
demonstrating that we were able to remove most false positives automatically.

1 Introduction

Static program analysis of industrial size C/C++ programs for the detection of quality
as well as security bugs has had some considerable success in the recent years. A num-
ber of software tools and companies [23,12] resulted from theoretical advances and
increased computing power, leading to the detection of complex source code defects
with minimal effort from the side of the developers.

However, static analysis techniques are based on approximations of the original
source code semantics. As such, the results of static analyzers might contain spurious
warnings, i.e., false positives. The task of assessing the validity of tool warnings falls
back to the developer. But with the increasing complexity of the bugs that those tech-
niques can uncover, this assessment is getting more and more difficult. In large software
projects developers may be forced to spend a lot of time reconstructing a warning of a
static analysis tool just to discover that the claimed bug is not real. Therefore, it is vital
for static analysis tools not only to find many complex bugs, but also to assure that the
majority of those are not false positives.

Unlike static program analysis, traditional software model checking has established
methods in dealing with abstractions and false positives, which are referred to as spu-
rious counter-examples. One particular prominent method is counter-example guided

 317

abstraction refinement (CEGAR) [6]. In the world of static program analysis, how-
ever, there is no good notion of automatic iterative refinement. Moreover, CEGAR ap-
proaches typically refine in each iteration the whole program/function under consider-
ation and re-run the analysis on the new model, which can often be costly.

In this work we adopt some ideas from such established techniques, but take a sig-
nificantly different approach. The individual key insights and contributions are:

1. We define static program analysis problems in terms of syntactic model checking
problems. In this context a bug is a violation of a syntactic model checking formula
resulting in a counter-example.

2. We symbolically evaluate the feasibility of such a counter-example on a low-level
program semantics using an SMT solver. If the counter-example path is infeasible
we compute slices of this path that are the cause for its infeasibility and we construct
an observer automaton that excludes all paths with the same cause.

3. Unlike in CEGAR we do not refine the whole model, but only add the observer
automaton to the original model. We repeat the procedure until either all counter-
examples are eliminated or a bug is found that could not be eliminated.

We evaluate our approach by applying it to a number of case studies from the NIST SA-
MATE program [23] and show that most of the relevant false positives can be efficiently
removed using the proposed method.

Outline. In Sect. 2 we give a high-level introduction and overview of our model check-
ing approach to static analysis as well as the ideas of the refinement loop using observers
to exclude infeasible paths. We provide more details on computing infeasible sub-paths
in Sect. 3 and on the construction of the observers for language refinement in Sect. 4.
This is followed by large scale experiments in Sect. 5. Related work is discussed in
Sect. 6. Finally, we conclude with an outlook to future work in Sect. 7.

2 Syntactic Model Checking and Language Refinement

In this section we describe our model checking approach to static program analysis and
explain the key concepts of our false-positive elimination procedure. The idea of using
model checking for static program analysis has first been introduced by Steffen and
Schmidt [24], discussing how data flow analysis problems can be expressed in modal
μ-calculus. This has later been expanded and further developed in [18,8,19].

The main idea is to abstractly represent a program (or a single function) by its control
flow graph (CFG) annotated with labels representing propositions of interest. Example
propositions are whether memory is allocated or freed in a particular location, whether
a pointer variable is assigned null or whether it is dereferenced. In this way the pos-
sibly infinite state space of a program is reduced to the finite set of locations and their
propositions.

The annotated CFG consisting of the transition system and the (atomic) propositions
can then be transformed into the input language of a model checker. Static analysis
bug patterns can be formulated in a temporal logic and evaluated automatically by the
model checker. As the annotated CFG discards most of the program semantics apart

318

void foo() {
l0 : int x, *a;
l1 : int* p = malloc(sizeof(int));

for(l2 : x = 10; l3 : x > 0; l7 : x--) {
l4 : a = p;
l5 : if(x == 1)

l6 : free(p);
}

}

l0

l1 mallocp

l2

l3

l4 usedp

l5

l6freep
l7

l8

Fig. 1. Example of an annotated CFG for a function foo. The locations are also annotated in the
listing.

from the annotations and reduces a program to its syntactical structure the approach is
called syntactic model checking [13].

To illustrate the approach, we use a contrived function foo shown in Fig. 1. It works
as follows: First a pointer variable p is initialized and memory is allocated accordingly.
Then, in a loop, a second pointer variable a is assigned the address saved in p. After
the tenth assignment p is freed and the loop is left.

To automatically check whether the memory allocated for p is still accessed after
it is freed (a use-after-free in static analysis terms) we define atomic propositions for
allocating memory mallocp, freeing memory freep and accessing memory usedp, and
we label the CFG accordingly. The above check can now be expressed in CTL as:

AG(mallocp ⇒ AG(freep ⇒ AG¬usedp))

This means, whenever memory is allocated, after a freep there is no occurrence of a
usedp. Note that once a check has been expressed in CTL, the proposition can be gener-
ically pre-defined as a template of syntactic tree patterns on the abstract syntax tree
of the code and determined automatically. Hence, it is possible to automatically check
a wide range of programs for the same requirement. However, since our approach for
false-positive elimination is based on checking path-infeasibility, we are restricted to
formulas that allow linear counter-examples.

2.1 False-Positive Detection

Model checking the above property for the model depicted in Fig. 1 will find a violation
and return a counter-example. The following path denoted by the sequence of locations
is such a counter-example: l0, l1, l2, l3, l4, l5, l6, l7, l3, l4, l5.

However, if we match up the counter-example in the abstraction with the concrete
program, we see that this path cannot possibly be executed, as the condition x == 1

 319

Fig. 2. Parallel composition of observers with original model

cannot be true in the first loop iteration and, therefore, l5 to l6 cannot be taken. This
means, the counter-example is spurious and should be discarded. We might get a dif-
ferent counter-example in the last loop iteration . . . , l5, l6, l7, l3, l4, l5. But again, such a
counter-example would be spurious, because once the condition x == 1 holds, the loop
condition prevents any further iteration.

To detect the validity of a counter-example we subject the path to a fine-grained
simulation using an SMT solver. In essence, we perform a backward simulation of the
path computing the weakest precondition. If the precondition for the initial state of the
path is unsatisfiable, the path is infeasible and the counter-example spurious.

2.2 Observer Computation

Once we identified a counter-example as being spurious we know that this particular
path is infeasible, but that does not mean that there are no other counter-examples for
the same property. Therefore, we need to rerun the check on a refined model to see if
there are other counter-examples. To get a refined model we construct a set of observer
automata that have the following properties:

1. The observers can be run with the original abstract model, but they restrict the ab-
stract model by excluding the previously computed infeasible paths.

2. The observers are based on the minimal infeasible sub-paths of a counter-example.
This means, we do not need to encode each infeasible path individually, but only
the set of statements that are unsatisfiable. As an example consider the assignment
x = 10 and the condition x == 1. Any path through these two statements, and not
modifying x in between, will be infeasible. Hence, an observer monitoring the sub-
path can be sufficient for ruling out many paths simultaneously.

Figure 2 schematically illustrates the idea of running the original model with a set of
observers each representing a minimal reason for paths being infeasible. We require that
in the newly composed model no observer can reach its final state, i.e., all infeasible
sub-paths are excluded.

2.3 Refinement Loop

After constructing the observers based on the infeasible sub-paths, the original abstract
model can be rerun to see if there are other possible counter-examples. The full path
refinement loop is presented in Fig. 3. The refinement loop successively constructs new
observers for new infeasible paths and extends the original model accordingly. There
are two termination conditions: Firstly, we terminate whenever no bug in a program is
found, i.e., there is no counter-example in the (extended) model. Secondly, we terminate

320

Fig. 3. Counter-example guided path refinement loop

when a path cannot be discharged as infeasible. There are two reasons for the latter:
Either we found a genuine bug or our program semantics encoded in the SMT solver
does not model certain aspects that are necessary to dismiss a path.

There are a few things worth noting: As we will see in the subsequent section we
cover a wide variety of aspects in the C semantics including pointer aliasing. However,
some constructs such as function pointers are not taken into account. In our experience,
these program constructs are rarely the cause of false positives. Moreover, in the worst
case we have to construct one observer for each infeasible path and there might be an
exponential number of infeasible paths w.r.t. the number of conditional statements in
a program. In practice, we found the number of required observers to be quite small.
For most real-life cases the abstraction refinement loop terminates after two or three
iterations.

2.4 A Word on SMT Solvers

In general, SMT solving tackles the satisfiability of first-order formulae modulo back-
ground theories. The approach presented in this paper is largely independent of the
particular SMT solver used. However, in order to represent our semantic model of C,
we require a minimum set of theories including uninterpreted functions, linear integer
arithmetic and the theory of arrays, and we consider the SMT solver to support infeasi-
ble core computation.

Using additional theories (such as bit-vectors) can improve the overall precision of
the presented approach for a potential penalty in runtime. We discuss the results with
the given sets of theories in Sect. 5.

3 Computing Reasons for Infeasible Paths

For the path reduction refinement loop we have to identify infeasible paths. Moreover,
we are interested in a small sequence of statements that explains why a path is infeasi-
ble. Such an explanation will allow us to exclude all paths with that infeasible sequence
of statements. For instance, in the path through l0, l1, l2, l3, l4, l5, l6, l7, l3, l4 of foo in
Fig. 1 not all statements are contributing to it being infeasible, but only l2 : x = 10

 321

and (l5, l6) : x == 1. We call the sequence of edges (l2, l3), (l3, l4), (l4, l5), (l5, l6) an
infeasible sub-path.

Next, we explain how to detect infeasible paths in a C program by means of satisfi-
ability checking of weakest preconditions using an SMT solver. Moreover, we provide
a strategy to efficiently compute an infeasible sub-path from an infeasible path, which
enables the construction of an efficient observer.

3.1 Detecting Infeasible Paths

For checking the feasibility of a path we first collect the sequence of statements in
that path along the CFG. Moreover, we encode branching decisions along that path
as assertions in the sequence of statements, resulting in a straight-line program. Next,
we compute the weakest precondition for this straight-line program. The SMT solver
might return that the weakest precondition is unsatisfiable, i.e., that the path cannot be
executed and, therefore, is infeasible. In the following we provide the basic ideas for
modeling program statements, their semantics and the representation in an SMT solver.
The details of the underlying semantics and the memory model can be found in [21].

Path programs. Computing the straight-line program corresponding to a path through
the CFG amounts to collecting the sequence of assignments and function calls taken on
the path. Additionally, assert statements record what must be true at a point of execution
to follow the path through control-flow statements, like taking the then-branch of an if.
For example, the path (l2, l3), (l3, l4), (l4, l5), (l5, l6), (l6, l7) of the CFG of foo in Fig. 1
is represented by the path program

x = 10; assert(x > 0); a = p; assert(x == 1); free(p);

More formally, a path program is a sequence of statements s containing expressions e.
A statement can be e1 = e2; for assignments, assert(e); for checking a (boolean) con-
dition and f (e1, . . ., en); respectively e0 = f (e1, . . ., en); for function calls
(optionally assigning the return value). In our approach, an expression may be almost
any valid C-expression [20] including pointers and using structs. Currently, how-
ever, we do not support function pointers, and string literals are treated as fresh pointer
variables. We make the simplifying assumption that identifiers such as program vari-
ables and field names of structs are globally unique.

Weakest precondition. The set of states from which a path program can be executed
without violating any assertion is given by the weakest precondition of the path program
w.r.t. the trivial postcondition true. Generally, the weakest precondition wp(p, ψ) of a
path program p w.r.t. a condition ψ on states is given by a condition ϕ which is satisfied
by exactly those states from which an execution of p terminates in a state satisfying
ψ. In particular, wp(assert(e);, ψ) is equivalent to e ∧ ψ, indeed asserting that e must
already hold.

The computed formula wp(p, true) characterizing successful executability of p will
be handed to an SMT solver for checking unsatisfiability. However, we will not always
be able to represent executability faithfully in terms of a full C-semantics, but may

322

have to use safe approximations. These approximations have to ensure (under certain
assumptions) that the unsatisfiability of wp(p, true) implies that p is not executable.

In particular, our definition of wp is based on a simple memory model that allows
a good precision even in the presence of variable aliasing and basic pointer arithmetic.
The memory model is similar to the one described by Burstall [5]. The main idea is to
have a separate store, represented by a separate variable, for each primitive data type.
We use a simple type system consisting of primitive types like integers and pointer types
as well as struct-like composite types. Each store is again segmented into partitions,
one for each field of a struct and a distinguished partition for data that is not part
of a struct. The rationale behind this kind of model is that by introducing logical
structure such as distinct memories we achieve the property that certain aliasing is not
possible, such as aliasing between variables of different types or between different fields
of a struct. Properties that we do not get by construction are enforced by axioms. An
example for such an axiom is that local variables do not alias.

The memory model can be easily encoded in a language for SMT solvers. In our
experiments we used the theory of arrays [25]. The theory provides two operations:
access(m, a) (sometimes called read or select) to access the value of an array m at
location a and update(m, a, v) (sometimes called write or store) to get a version of
m that is updated at location a with value v . Using the theory of arrays, the memory
model can be represented as an array with tuples (containing a partition name and a
position) as indices.

To illustrate the use of the memory model in the wp-semantics we consider a simple
assignment x = v, where the value of local variable x of type τ is assigned the value of
a local variable v, also of type τ . The wp-semantics in this case is

wp(x = v, ϕ) = ϕ{Mτ
→ update(Mτ , loc(x), v)} ∧ v = access(Mτ , loc(v))

where Mτ is the memory variable for τ and loc is a function mapping a variable name
to a location (i.e. partition and position).

A limitation with regard to the definition of wp are function calls. We currently do not
consider the true effect of called functions, but approximate the effect by assuming that
only those locations in the memory are touched that are explicitly passed as a pointer.
An exception in this regard is the malloc function. As it is central to handle pointers
sufficiently precise we use axioms to specify its semantics. An example for such an
axiom is that malloc always returns fresh memory locations, which are not aliased
with any other. On the other hand, no special axioms are needed for free, ignoring
whether its argument points to allocated memory. More details on the wp-semantics
can be found in [21].

Infeasible Paths. Based on the weakest precondition semantics, infeasibility follows
naturally as: A path through the CFG is called infeasible if wp(p, true) for its corre-
sponding path program p is unsatisfiable.

For example, the path (l2, l3), . . . , (l6, l7) from above is infeasible since

wp(x = 10; assert(x > 0); a = p; assert(x == 1); free(p);, true)

is unsatisfiable due to incompatibility of x = 10 and x == 1. Next, we explain how to
identify shorter sub-paths capturing the relevant causes for infeasible paths.

 323

3.2 Computing Infeasible Sub-paths

The general idea of this work is to create observers to exclude infeasible paths in static
program analysis. We would like, however, to avoid to generate one observer for each
path, but instead to identify smaller sub-paths that capture unsatisfiable inconsistencies.
Excluding these sub-paths might exclude a wider set of paths passing through those
fragments and, as a result, one observer will be able to exclude many infeasible paths
at once. For instance, the path (l2, l3), . . . , (l6, l7) above shows that with respect to
infeasibility it is irrelevant how an execution reaches l2 : x = 10 and how it continues
after (l5, l6) : assert(x == 1);: Due to the incompatibility of x = 10 and x == 1 on
that path, any path containing (l2, l3), (l3, l4), (l4, l5), (l5, l6) as a sub-path is infeasible.

Generally, let us say that path π′ is a sub-path of path π and π includes π′ if π is of
the form π0 π

′ π1 for some (possibly empty) paths π0 and π1. This leads to:

Proposition 1. Every path including an infeasible sub-path is infeasible.

Thus, if we find an infeasible sub-path in a path from a counter-example, we can exclude
all paths that include this sub-path. We can compute the infeasible sub-paths by com-
puting the unsatisfiable sub-formulae of the weakest precondition. In order to match
sub-formulae and sub-paths we split the weakest precondition into named conjuncts
each of which corresponds to a statement in the considered path (see [21] for details).

SMT solvers usually can be instructed to deliver an unsatisfiable sub-formula. It is
advantageous to identify small unsatisfiable sub-formulae leading to short infeasible
sub-paths, thus allowing to exclude potentially more paths. However, finding all mini-
mal unsatisfiable sub-formulae requires exponentially many calls to the SMT solver in
the worst case (for algorithms see, e.g., [9] and [22]). We therefore heuristically enu-
merate unsatisfiable sub-formulae using the solver and employ an exponential algorithm
only to minimize these [21].

4 Observer Construction and Refinement

In this section we formally define how to construct observers based on sub-paths. More-
over, we show how to compose the observers with the original model in a refinement
loop for eliminating false positives.

In short, for the observer construction we view a CFG as a finite automaton that
accepts paths as sequences of edges through the CFG as words. From an infeasible
sub-path we construct an “observing” finite non-deterministic automaton. The language
of this observing automaton is the set of paths which include the infeasible sub-path.
We consider the synchronous product of the CFG automaton and the complemented
observing automaton, where synchronization is on the shared alphabet, i.e., the edges.
This product automaton accepts exactly those paths as sequences of edges that do not
show an infeasible sub-path.

4.1 Representing Programs as Automata

We rely on the conventional notion of a finite (non-deterministic) automaton M = (A,
S ,T , I ,F) consisting of an alphabet A, a finite set of states S , a transition relation

324

l0

l1 mallocp

l2

l3

l4 usedp

l5

l6freep
l7

l8

(l0, l1)

(l1, l2)

(l2, l3)

(l3, l4)

(l4, l5)

(l5, l6)

(l5, l7)

(l6, l7)

(l3, l8)

(l7 ,l3)

Fig. 4. CFG automaton for the function foo. The dashed edges represent an infeasible sub-path.

T ⊆ S × A × S , a set of initial states I ⊆ S , and a set of final states F ⊆ S . The
words accepted by M are denoted by L(M). We write M × N for the synchronous
product of the finite automata M and N over the same alphabet; then L(M × N) =
L(M) ∩ L(N) holds. The finite automaton yielding language complement is denoted
by M c, i.e., L(M c) = A∗ \ L(M) where A is the alphabet of M .

A CFG can naturally be regarded as such a finite automaton with the states being the
locations. For the alphabet we choose pairs of locations(l , l ′), i.e., making the edges of
the CFG “observable”. The transition relation of the automaton just follows from the
CFG. All the states are both initial and final to capture arbitrary sub-paths in the CFG.

Definition 1 (CFG Automaton). For a CFG with locationsL and edges E ⊆ L×L, its
corresponding CFG automaton is the finite automaton given by (E ,L,T ,L,L), where
the alphabet is the set of edges E , the states are the locations L, the transition relation
is T = {(l , (l , l ′), l ′) | (l , l ′) ∈ E}, and all states are both initial and final.

The words accepted by a CFG automaton correspond exactly to the paths as se-
quences of control-flow edges through the CFG. Therefore, we will also call these ac-
cepted words “paths”. The CFG automaton for the function foo is shown in Fig. 4.

A CFG automaton can also be directly used for model-checking, as the annotations
of the CFG such as mallocp can be interpreted as predicates over its states. For foo we
would define mallocp ≡ l1 or usedx ≡ l3 ∨ l5.

4.2 Computing Observers from Counter-Examples

If the model checking procedure yields a counter-example as a path through a CFG
automaton, which is infeasible, we want to exclude this path in further model checking
runs. In fact, the notion of infeasible sub-paths allows us to exclude all paths that include
some infeasible sub-path due to Prop. 1. Consider, for example, the CFG automaton in
Fig. 4. The dashed edges represent an infeasible sub-path π = (l5, l6), (l6, l7), (l7, l3),

 325

(l3, l4) of an infeasible counter-example reported by the model checker. We can not
only exclude π but also a path that represents a two-fold loop iteration and then contin-
ues as before. On the other hand, we cannot exclude a path that has (l5, l7) instead of
(l5, l6), (l6, l7).

For a sub-path π accepted by the CFG automaton, we construct an automaton that
accepts exactly those paths π′ for which π is a sub-path. We define:

Definition 2 (Observer). Let P be a CFG automaton with alphabet E and let π =
e1 . . . ek be a path accepted by P . The CFG observer automaton Obs(E , π) is the au-
tomaton (E , SObs ,T , S0,F), where

– SObs is the set of states {s1, . . . , sk−1} ∪ {Init, Infeasible}.
– T ⊆ SObs × E × SObs is the transition relation. A triple (s , e, s ′) is in the relation

if and only if one of the following holds:
1. s = Init and s ′ = Init and e �= e1
2. s = si and s ′ = si+1 and e = ei+1 and 1 ≤ i ≤ k − 2
3. s = sk−1 and s ′ = Infeasible and e = ek
4. s �= Infeasible and s ′ = s1 and e = e1
5. s = si and s ′ = Init and e ∈ E \ {e1, ei+1} and 1 ≤ i ≤ k − 1
6. s = Infeasible and s ′ = Infeasible

– S0 = {Init} is the set of initial states.
– F = {Infeasible} is the set of final states.

The rationale for the particular choice of the observer’s components is as follows: The
states mirror how much of π has already been observed on a run without interruption.
When the observer is in state Init, nothing has been observed at all or a part of π has been
observed, but then the sequence was interrupted. If the observer is in state Infeasible the
whole path π has already been observed, which means no matter how the program
model continues, the current run already represents an infeasible path. If the automaton
is in state si , we know π has been observed until and including ei . The transition relation
reacts to an edge on the run:

1. As long as the initial edge e1 of π has not been observed, the observer needs to stay
in Init.

2. If the observer has already observed the first i edges of π and now observes the next
edge ei+1 it proceeds one step further, as long as ei+1 is not the last edge of π.

3. If the situation is as in (2) but ei+1 is the last edge of π, the observer transitions to
Infeasible.

4. It may happen that the observer already is in state sj when another sequence of π
starts. Intuitively, π is interrupted by itself. Therefore the observer may transition to
s1 as soon as it observes e1, even if it is currently in some sj .

5. If the sequence is interrupted in a different way, the observer returns to Init.
6. As soon as the observer is in state Infeasible, it remains there forever.

Example 1. We illustrate the observer construction with our running example. Regard-
ing the CFG automaton of the function foo, a path containing the sub-path π = (l5, l6),
(l6, l7), (l7, l3), (l3, l4) is infeasible. The constructed observer automaton is depicted in

326

Init s1 s2 s3 Infeasible
(l5, l6) (l6, l7) (l7, l3) (l3, l4)

(l5, l6)

(l5, l6)

Fig. 5. Observer automaton for infeasible path of Example 1. Unlabeled edges mean “any other”.

Fig. 5. As soon as it observes the sequence π it enters the state Infeasible and remains
there forever. If the sequence is interrupted, it either returns to Init or, if the interruption
equals (l5, l6) as the first edge of π, it returns to s1. Hence, as long as the observer is
not in state Infeasible the sequence π has not been observed completely. As Infeasible is
the only accepting state, the observer only accepts paths that contain π, i.e., infeasible
paths.

Let π denote a path accepted by a CFG automaton P with the alphabet E of control-
flow edges and let P(π) be the set of paths in E∗ including π. By construction, we have
P(π) = L(Obs(E , π)), that is, the words accepted by Obs(E , π) are exactly the paths
including π. Furthermore,

L(P ×Obs(E , π)c) = L(P) ∩ L(Obs(E , π)c) =

L(P) ∩ (E∗ \ L(Obs(E , π))) = L(P) ∩ (E∗ \ P(π)) .

Thus by applying Prop. 1, that all paths including an infeasible sub-path are infeasible,
we get

Proposition 2. Let P be a CFG automaton P with alphabet E and let π be an infea-
sible path of P . Then the CFG automaton resulting from the synchronous product of P
and Obs(E ,w)c excludes the infeasible paths that include π.

4.3 Implementing Observers

The observer is in general non-deterministic. Computing the complement of a non-
deterministic automaton would involve first creating its deterministic equivalent, which
can have exponential size compared with the non-deterministic automaton. We avoid
directly constructing the complement of the observer and instead implement the com-
plementation by adding a fairness constraint in the model checker [14]. The fairness
constraint in our case forbids that the observer enters state Infeasible. Although fair
CTL model checking is more complex than regular CTL model checking, it works well
in our experiments, as the next section shows.

5 Experiments

In this section we report on the implementation of the aforementioned false-positive
elimination techniques as well as on analysis results from representative, large code

 327

bases. All the experimental data has been obtained from projects and benchmarks pro-
vided by NIST and the Department of Homeland Security for the 2010 and 2011 Static
Analysis Tool Exposition (SATE) [23]. The experiments show that the proposed solu-
tion provides a significant decrease in false positives while only moderately increasing
the overall runtime.

5.1 Implementation

We implemented a prototype of the SMT-based path reduction approach in our static
analysis tool Goanna1. Goanna is a state-of-the-art static analysis tool for bug detection
and security vulnerability analysis of industrial C/C++ programs. Currently, Goanna
supports around 150 classes of different checks ranging from memory leak detection
and null -pointer dereferences to the correct usage of copy control in C++ as well as
buffer overruns.

The Goanna tool itself as well as the new false -positive elimination procedure is
implemented in the functional programming language OCaml. For the infeasible path
detection in our experiments we used the Z3 SMT solver [10], as it provides an OCaml
interface which allowed quick prototyping using Goanna.

5.2 Experimental Evaluation

As representative test beds for our experiments we chose the two main open source
projects from the NIST SATE 2010 and 2011 exposition: Wireshark 1.2.9 and Dove-
cot 2.0 beta6. Wireshark is a network protocol analyzer consisting of around 1.4MLoc
of pure C/C++ code that expand to roughly 16MLoc after pre-processing (macro ex-
pansions, header file inclusion etc.). Dovecot is a secure IMAP and POP3 server that
consists of around 170KLoc of pure C/C++ code expanding to 1.25MLoc after prepro-
cessing. We experimented with other in-house industrial code of different sizes as well
and obtained very similar results as for the two mentioned projects.

The evaluation was performed on a DELL PowerEdge SC1425 server, with an Intel
Xeon processor running at 3.4GHz, 2MB L2 cache and 1.5GB DDR-2 400MHz ECC
memory.

False-Positive Removal Rates. As mentioned earlier, Goanna performs a source code
analysis for around 150 classes of checks. However, not all checks are path-sensitive,
i.e., some checks only require tree-pattern matching, and of those checks that are path-
sensitive not all are amenable to false path elimination. The reasons are as follows: Cer-
tain path-sensitive checks such as detecting unreachable code already state that there
is no path satisfying a certain requirement. Hence, removing infeasible paths will not
change the results. A similar example is having no path where a free() occurs af-
ter a malloc() and alike. The results below only include checks where false path
elimination can alter the analysis results.

The false-positive elimination results for Wireshark and Dovecot are summarized
in Table 1. For Wireshark, our original Goanna implementation detected 98 relevant

1 http://www.nicta.com.au/goanna

http://www.nicta.com.au/goanna

328

Table 1. False Positive Detection Rate for Wireshark and Dovecot

Wireshark 1.2.9 Dovecot 2.0 beta6

lines of code 1, 368, 222 167, 943
after pre-processing 16, 497, 375 1, 251, 327
number of functions 52, 632 5, 256
issued warnings 98 75
false positives removed 48 38
% removed warnings 49.0% 50.6%
correctly identified false positives 48 (100%) 38 (100%)

Table 2. Runtime Performance for False-Positive Elimination

Wireshark 1.2.9 Dovecot 2.0 beta6

total running time (no timeout) 8815s 1025s
time spent in refinement loop 1332s (15%) 302s (29.5%)
% of time in SMT 10.5% 12.2%
% of time in model checking 87.5% 86.3%
number of Goanna timeouts 12 1
number of SMT loops exceeding (20) 11 3
number of SMT solver timeouts 0 5

path-sensitive issues. Running Goanna with the new SMT-based false path elimination
approach removed 48 issues. This means, around 49% of the produced warnings were
eliminated fully automatically. We manually investigated all of the removed warnings
and were able to confirm that these were indeed all false positives.

The results for Dovecot are very similar to the Wireshark results. The original im-
plementation raised 75 warnings and we were able to automatically identify 38 of those
warnings as false positives. This means, the number of warnings was reduced by 50.6%.
Again, all the automatically removed warnings were confirmed false positives.

For both projects, we investigated the remaining issues manually in detail. There
were several remaining false positives for various reasons: Due to the incompleteness
of the procedure, e.g., missing further knowledge about functions calls, a path could not
be identified as infeasible. Another reason is that we imposed a loop limit of 20 refine-
ment iterations. Sometimes this limit was reached before a warning could be refuted.
This happened 11 times in Wireshark, but only 3 times in Dovecot. As a side note, as
discussed in [15], there are in general various reasons for false positives and often addi-
tional context information known to the developer is the key for refuting false positives.
Moreover, it is worth noting that for path-insensitive checks (e.g., pattern matching) the
number of false positives tends to be much lower or even zero.

Run-time Performance. The runtime results for the experiments are shown in Table 2.
For the experiment we introduced timeouts both in Goanna as a whole as well as the
SMT solver. For Goanna including the SMT path reduction loop an upper limit of 120s
per file was set and in the SMT solver of 2s per solving. Moreover, we limited the
maximum depth of SMT loops by 20. The timeouts, however, were only triggered very
sporadically: Goanna timeouts occurred 12 times in Wireshark and once in Dovecot,

 329

which in both projects accounts for roughly 0.02% of all functions. Loop limits were
reached similarly often and SMT timeouts occurred never in Wireshark and 5 times in
Dovecot. In the remainder the analysis results are based on all non-timeout runs.

As shown in Table 2 the overall runtime for Wireshark was around two and a half
hours, for Dovecot around 17min. In Wireshark for checks that can be improved through
false path elimination around 15% of the runtime was spent in the SMT refinement loop.
For the same objective the overhead in Dovecot was slightly higher with around 30%.

Interestingly, the vast majority of the overhead time is spent in the repeated model
checking procedure rather than the SMT solving. Although the additional observers in-
crease the state space in theory, the reachable state space will always be smaller than
in the original model, since the observers constrain the set of reachable states. We have
since then identified unnecessary overheads in our model checking procedure that should
reduce the overall runtime in the future. However, given the value of a greatly reduced
number of false positives, which can otherwise cost many engineering hours to iden-
tify, we believe that a run-time overhead of 15%–30% is already acceptable in practice;
especially, if it equates to around 22min in over one million lines of C/C++ code.

6 Related Work

Counter-example based path refinement with observers for static program analysis has
been introduced by Fehnker et al. [14]. This work was based on using interval abstract
interpretation to refute infeasible paths. While fast, it was limited to simple root causes
for infeasible paths and much less precise than the SMT approach in this work. On
the other hand, the application of predicate abstraction in conjunction with on-demand
refinement has long been present in the CEGAR [6] approach and is used in many
software model checkers such as SLAM [17] and BLAST [4,3]. This approach refines
the whole model iteratively instead of eliminating sets of paths and using observers to
learn from it. To an extent, a comparison of both approaches is still missing given their
origin from different domains, namely static analysis and software mode checking.

The detection of infeasible paths and its use for program analysis has been explored
by other authors, as well. Balakrishnan et al. [2] use this technique in the context of
abstract interpretation. Delahaye et al. [11] present a technique how to generalize in-
feasible paths, but they have not investigated its use in static analysis. Yang et al. [26]
propose the use of SMT solvers to remove infeasible paths by Dynamic Path Reduc-
tion. However, the work only addresses programs without pointers employing standard
weakest precondition and it is not aimed at false-positive elimination. Harris et al. [16]
describe a way to do program analysis by enumerating path programs. In contrast to
our work they are not in a model-checking setting and their approach is not driven by
counter-examples.

Finally, there are many examples of using SMT solvers in the realm of software
model checking, e.g., as reasoning engine for bounded model checking [1,7].

7 Conclusions and Future Work

We have introduced a novel approach to reducing false positives in static program anal-
ysis. By treating static analysis as a syntactical model checking problem, we make static

330

analysis amenable to an automata-based language refinement. Moreover, unlike tradi-
tional CEGAR approaches we create observer automata that exclude infeasible sub-
paths. The observers are computed based on a weakest precondition semantics using an
SMT solver. We have shown that the approach works very well in practice and detects
many relevant false positives.

Future work will further explore the limits of false-positive removal. We plan to
investigate if more expensive SMT theories will lead to more false-positive removals
or if, in fact, there are hardly any cases where this is necessary. Also, we will focus on
further comparison with existing software model checking approaches and investigate
if we can “out-source” some false-positive removal directly to a software model checker
without much runtime penalty.

References

1. Armando, A., Mantovani, J., Platania, L.: Bounded Model Checking of Software Using SMT
Solvers Instead of SAT Solvers. Int. J. Softw. Tools Techn. Transf. 11(1), 69–83 (2009)

2. Balakrishnan, G., Sankaranarayanan, S., Ivančić, F., Wei, O., Gupta, A.: SLR: Path-
Sensitive Analysis through Infeasible-Path Detection and Syntactic Language Refinement.
In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 238–254. Springer, Hei-
delberg (2008)

3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic Predicate Abstraction of C
Programs. In: Proc. 2001 ACM SIGPLAN Conf. Programming Language Design and Imple-
mentation (PLDI 2001), pp. 203–213. ACM (2001)

4. Ball, T., Rajamani, S.K.: The SLAM Toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.)
CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

5. Burstall, R.: Some Techniques for Proving Correctness of Programs which Alter Data Struc-
tures. Mach. Intell. 7, 23–50 (1972)

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Re-
finement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169.
Springer, Heidelberg (2000)

7. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for Em-
bedded ANSI-C Software. In: Proc. 24th IEEE/ACM Int. Conf. Automated Software Engi-
neering (ASE 2009), pp. 137–148. IEEE (2009)

8. Dams, D.R., Namjoshi, K.S.: Orion: High-Precision Methods for Static Error Analysis of C
and C++ Programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 138–160. Springer, Heidelberg (2006)

9. de la Banda, M., Stuckey, P., Wazny, J.: Finding All Minimal Unsatisfiable Subsets. In:
5th Int. ACM SIGPLAN Conf. Principles and Practice of Declarative Programming (PPDP
2003), pp. 32–43. ACM (2003)

10. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

11. Delahaye, M., Botella, B., Gotlieb, A.: Explanation-Based Generalization of Infeasible Path.
In: Proc. 3rd Int. Conf. Software Testing, Verification and Validation (ICST 2010), pp. 215–
224. IEEE (2010)

12. D’Silva, V., Kroening, D., Weissenbacher, G.: A Survey of Automated Techniques for Formal
Software Verification. IEEE Trans. CAD Integ. Circ. Syst. 27(7), 1165–1178 (2008)

13. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model Checking Software at
Compile Time. In: Proc. 1st Joint IEEE/IFIP Symp. Theoretical Aspects of Software Engi-
neering (TASE 2007), pp. 45–56. IEEE (2007)

 331

14. Fehnker, A., Huuck, R., Seefried, S.: Counterexample Guided Path Reduction for Static Pro-
gram Analysis. In: Dams, D., Hannemann, U., Steffen, M. (eds.) Concurrency, Composition-
ality, and Correctness. LNCS, vol. 5930, pp. 322–341. Springer, Heidelberg (2010)

15. Fehnker, A., Huuck, R., Seefried, S., Tapp, M.: Fade to Grey: Tuning Static Program Analy-
sis. In: Proc. 3rd Int. Wsh. Harnessing Theories for Tool Support in Software (TTSS 2009),
pp. 38–51. UNU-IIST (2009)

16. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program Analysis via Satisfia-
bility Modulo Path Programs. In: Proc. 37th ACM SIGPLAN-SICACT Symp. Principles of
Programming Languages (POPL 2010), pp. 71–82. ACM (2010)

17. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with BLAST. In:
Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–239. Springer, Heidel-
berg (2003)

18. Holzmann, G.J.: Static Source Code Checking for User-Defined Properties. In: Proc. 6th
World Conf. Integrated Design and Process Technology (IDPT 2002). SDPS (2002)

19. Huuck, R., Fehnker, A., Seefried, S., Brauer, J.: Goanna: Syntactic Software Model Check-
ing. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS,
vol. 5311, pp. 216–221. Springer, Heidelberg (2008)

20. ISO/IEC. ISO/IEC 9899:2011 Information Technology – Programming Languages – C. ISO,
Genève (2011)

21. Junker, M.: Using SMT Solvers for False Positive Elimination in Static Program Analysis.
Master’s thesis, Universität Augsburg (2010),
http://www4.in.tum.de/˜junkerm/publications/thesis.pdf

22. Liffiton, M.H., Sakallah, K.A.: On Finding All Minimally Unsatisfiable Subformulas. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer, Heidelberg
(2005)

23. Okun, V., Delaitre, A., Black, P.E. (eds.): Report on the Third Static Analysis Tool Exposition
(SATE 2010). SP-500-283, U.S. Nat. Inst. Stand. Techn. (2011)

24. Schmidt, D.A., Steffen, B.: Program Analysis as Model Checking of Abstract Interpretations.
In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer, Heidelberg (1998)

25. Stump, A., Barrett, C., Dill, D., Levitt, J.: A Decision Procedure for an Extensional Theory
of Arrays. In: Proc. 16th Ann. IEEE Symp. Logic in Computer Science (LICS 2001), pp.
29–37. IEEE (2001)

26. Yang, Z., Al-Rawi, B., Sakallah, K., Huang, X., Smolka, S., Grosu, R.: Dynamic Path Reduc-
tion for Software Model Checking. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS,
vol. 5423, pp. 322–336. Springer, Heidelberg (2009)

http://www4.in.tum.de/~junkerm/publications/thesis.pdf

	Title

	Preface
	Organization
	Table of Contents
	Invited Speech

	Toward Practical Application of Formal
Methods in Software Lifecycle Processes
	Formal Methods in the Aerospace Industry:
Follow the Money
	References

	Applying Term Rewriting to Speech Recognition
of Numbers

	Concurrency

	Variable Permissions
for Concurrency Verification
	Introduction
	Motivating Example
	Programming and Specification Languages
	Variable Permissions for Safe Concurrency
	Verification Rules
	Inferring Variable Permissions
	Eliminating Variable Aliasing

	Discussion
	Applicability of the Proposed Variable Permissions
	Phased Accesses to Shared Variables

	Experimental Results
	Related Work
	Conclusion
	References

	A Concurrent Temporal Programming Model
with Atomic Blocks
	Introduction
	Temporal Logic
	Projection Temporal Logic
	Framing Issue

	Temporal Logic with Atomic Blocks
	The Logic PTL
	Support Framing in Atomic Interval Formulas

	Temporal Programming with Atomic Blocks
	Expressions and Statements
	Semi-normal Form
	The Interleaving Semantics with Atomic Blocks

	Examples
	Related Works and Conclusions
	References

	A Composable Mixed Mode Concurrency
Control Semantics for Transactional Programs
	Introduction
	Programming Model
	Programming Language
	Program Text Preprocessing
	Preliminaries
	Thread Command Semantics
	Program Move Semantics
	Properties

	Java Memory Model
	Correctly Synchronised Programs
	Execution Semantics

	Related Work
	Summary
	References

	Applications of Formal Methods to New Areas

	Towards a Formal Verification Methodology
for Collective Robotic Systems
	Introduction
	A Collective Robotics Scenario
	Formal Foundations of the Verification Approach
	Specification of the Robotics Scenario
	Stochastic Specification and Analysis
	Concluding Remarks
	References

	Modeling Resource-Aware Virtualized
Applications for the Cloud in Real-Time ABS
	Introduction
	Abstract Behavioral Specification with Real-Time ABS
	Modeling Timed Behavior in ABS
	Modeling Deployment Architectures in Real-Time ABS

	Resource Management and Cloud Provisioning
	Case Study: The Montage Toolkit
	The Problem Description
	A Model of the Montage Workflow in Real-Time ABS
	Simulation Results

	Related Work
	Conclusion
	References

	Specification and Model Checking of the Chandy and Lamport Distributed
Snapshot Algorithm in Rewriting Logic
	Introduction
	The Chandy and Lamport Algorithm
	Maude
	System Specification of the Algorithm
	Basic Data Used
	Observable Components and (Meta) Configurations
	State Transitions for Underlying Systems and the Algorithm

	Model Checking of Reachability Properties
	Related Work
	Conclusion
	References

	Quantity and Probability

	Quantitative Program Dependence Graphs
	Introduction
	Preliminaries
	Program Dependence Graph
	Random Variables and Programs
	Information Entropy

	The Semantics and Program Dependences
	The Abstract Syntax
	Semantic Domains
	The Semantics

	Quantitative Program Dependence Graph
	Reducing QPDG by Slicing for Flow Analysis
	Reducing QPDG
	Applying to Quantified Flow Analysis

	Conclusions
	References

	Quantitative Analysis of Information Flow
Using Theorem Proving
	Introduction
	Measure, Integration and Probabilities
	Measures of Information Leakage
	Radon-Nikodym Derivative
	Kullback-Leibler Divergence
	Mutual Information and Entropy
	Conditional Mutual Information

	Degrees of Information Leakage
	Information Leakage Degree
	Conditional Information Leakage Degree

	Application
	Related Work
	Conclusions
	References

	Modeling and Verification of Probabilistic Actor
Systems Using pRebeca
	Introduction
	Related Work
	Preliminaries
	Rebeca
	Markov Decision Process

	pRebeca
	Syntax
	Semantics

	Model Checking pRebeca
	Case Study

	Conclusion and Future Work
	References

	Formal Verification

	Modular Verification of OO Programs with Interfaces
	Introduction
	Interfaces and Verification: Basics
	VeriJ: An OO Language with Specifications
	Verification Framework
	An Example
	Related Work and Conclusion
	References

	Separation Predicates: A Taste
of Separation Logic in First-Order Logic
	Introduction
	Motivating Example
	Separation Predicates
	Inductive Definitions
	An Axiomatization of Footprints
	Mutation Axioms
	Implementation

	A Case Study: Composite Pattern
	The Problem
	Code and Specification
	Proof

	Function Footprints
	Related and Future Work
	References

	The Confinement Problem
in the Presence of Faults
	Introduction
	Effect Systems and Monads
	The Confinement Calculus
	Isolation Kernels in Confinement Calculus
	Mechanizing the Logic in Coq
	Related Work
	Conclusions
	References

	Modeling and Development Methodology

	Verification of ATL Transformations
Using Transformation Models and Model Finders
	Introduction
	Running Example
	Transformation Models for ATL
	An Algorithm to Derive Transformation Models for ATL
	Validity of the Translation

	Employing Model Finders to Verify ATL Transformations
	Verification Using UML2Alloy
	Scalability

	Related Work
	Conclusion and Future Work
	References

	Automatic Generation of Provably
Correct Embedded Systems
	Introduction
	Related Work
	Preliminaries
	Design and Synthesis Flow
	Modeling
	Scheduling
	Formal Verification
	Implementation Mapping
	Automatic Code Generation

	Case Studies
	Conclusion and Future Work
	References

	Complementary Methodologies
for Developing Hybrid Systems with Event-B
	Introduction
	Methodological Approach
	Design Patterns for Linear Hybrid Systems
	Using Matlab
	Invariant and Guard Discoveries with the Rodin Platform
	Introducing Sensors and Actuators for Refining Ideal Systems

	Examples
	Press
	Water Tank
	Mutual Exclusion
	Sensors

	Conclusion
	References

	Temporal Logics

	A Temporal Logic with Mean-Payoff Constraints
	Introduction
	LTL with Mean-Payoff Constraints
	Multi-threshold Mean-Payoff Büchi Automata
	Definitions
	Emptiness Problems

	Decision and Optimization Problems of LTLmp
	Conclusions and Future Work
	References

	Time Constraints with Temporal Logic
Programming
	Introduction
	Preliminaries
	PTL
	Modeling, Simulation and Verification Language

	Timed Projection Temporal Logic
	Syntax
	Semantics
	Derived Formulas and Logic Laws

	Timed-MSVL
	Syntax and Semantics
	Normal Form of Programs
	Operational Semantics of TMSVL

	Applications
	Description of Real-Time Systems
	A Video-On-Demand System

	Related Work
	Conclusion
	References

	Stepwise Satisfiability Checking Procedure for Reactive System Specifications by Tableau
Method and Proof System
	Introduction
	Open Reactive System
	Specification
	Syntax
	Semantics
	Specification
	Stepwise Satisfiability

	Decision Procedure
	Tableau Method
	Decision Procedure for Stepwise Satisfiability

	Proof System
	Soundness
	Proof Examples

	Implementation
	Experiment
	Conclusion
	References

	Abstraction and Refinement

	Equational Abstraction Refinement
for Certified Tree Regular Model Checking
	Introduction
	Background
	Tree Regular Model Checking with Completion
	R/E-Automata
	Solving the Reachability Problem with R/E-Automaton
	The Completion Step C
	The Widening Step W

	A CEGAR Procedure for R/E-Automata
	Implementation, Application and Certification
	Conclusion
	References

	SMT-Based False Positive Elimination
in Static Program Analysis
	Introduction
	Syntactic Model Checking and Language Refinement
	False-Positive Detection
	Observer Computation
	Refinement Loop
	A Word on SMT Solvers

	Computing Reasons for Infeasible Paths
	Detecting Infeasible Paths
	Computing Infeasible Sub-paths

	Observer Construction and Refinement
	Representing Programs as Automata
	Computing Observers from Counter-Examples
	Implementing Observers

	Experiments
	Implementation
	Experimental Evaluation

	Related Work
	Conclusions and Future Work
	References

	Predicate Analysis with Block-Abstraction
Memoization
	Introduction
	Preliminaries
	Block-Abstraction Memoization
	Lazy Abstraction
	Experimental Results
	Conclusion
	References

	Heuristic-Guided Abstraction Refinement
for Concurrent Systems
	Introduction
	Basics
	Spotlight Abstraction
	Heuristic-Guided Refinement
	Experimental Results
	Conclusion
	References

	More Anti-chain Based Refinement Checking
	Introduction
	Background
	Trace Refinement
	Trace Refinement Checking with Anti-chain

	Failures/Divergence Refinement Checking with Anti-chain
	Stable Failures Refinement Checking
	Failures-Divergence Refinement Checking
	Implementation and Evaluation

	Probabilistic Refinement Checking with Anti-chain
	MDP and ProbabilisticModel Checking
	Anti-chain Based Approach

	Conclusion
	References

	Tools

	An Analytical and Experimental Comparison
of CSP Extensions and Tools
	Introduction
	CSPM vs. CSP#: Syntax
	CSPM vs. CSP#: Operational Semantics
	Verification Tool Support
	Verification
	Experiment

	Conclusion
	References

	Symbolic Model-Checking of Stateful Timed CSP
Using BDD and Digitization
	Introduction
	Stateful Timed CSP
	BDD Encoding
	Encoding Stateful Timed CSP Processes with FSMs
	Encoding Stateful Timed CSP Processes with Compositional Functions
	Limitations on BDD Encoding

	Implementation and Evaluation
	Conclusion
	References

	Annotations for Alloy: Automated Incremental
Analysis Using Domain Specific Solvers
	Introduction
	Background
	Alloy
	Alloy Model - Binary Search Tree Example
	Declarative Slicing - Binary Search Tree Example

	Our Approach
	Incremental Analysis with Parallel Reasoning
	Dedicated Solver Integration via Annotations

	Evaluation
	Related Work
	Conclusion
	References

	State Space c-Reductions of Concurrent Systems
in Rewriting Logic
	Introduction
	Preliminaries
	C-Reductions for Kripke Structures
	Correct c-Reductions in Rewriting Logic
	Specifying and Verifying Group Actions
	Checking that
 Preserves Atomic Predicates
	Checking that
 is a Bisimulation
	Defining and Verifying Canonizer Functions
	Defining c-Reductions

	Related Work and Conclusions
	References

	Testing and Runtime Verification

	A Practical Loop Invariant Generation Approach Based on Random Testing, Constraint
Solving and Verification
	Introduction
	Preliminaries
	Motivation Example
	Automated Generation of Loop Invariants
	Experimental Results
	Related Work
	Conclusions
	References

	ConSMutate: SQL Mutants for Guiding
Concolic Testing of Database Applications
	Introduction
	Motivating Example
	Related Work
	ConSMutate Test Case Generator for DB-Applications
	Generation of Test Cases and Associated Path Constraints Using Application Branch Analyzer
	Deployment of Mutation Analyzer
	Deployment of Constraint Solver: Finding Satisfiable Assignment for
	Correctness Criteria of ConSMutate

	Preliminary Results
	Evaluation Criteria
	Evaluation Test-Bed
	Summary of Evaluation
	Execution Time Overhead

	Conclusion and Future Work
	References

	Demonic Testing of Concurrent Programs
	Introduction
	Example Testing Run
	Demonic testing
	Application of Rely-Guarantee Reasoning
	The Domain Description Language
	Class Transformation
	Routine Instrumentation
	The demonL Tool
	Handling Synchronization Primitives

	Experimental Evaluation
	Conversion from Source Programs
	Results
	Annotation Complexity
	Discussion

	Related Work
	Conclusion
	References

	Towards Certified Runtime Verification
	Introduction
	Related Approaches
	Guiding Examples
	A Rain-Sensor Application
	Timing-Properties

	Prerequisites
	A Formalization of RV Basics
	Regular Expressions

	OCaml Based RV Monitors
	Certified Monitors with Coq
	Formalization of Monitor Correctness in Coq
	Verification of a Monitor with Respect to a Regular Expression
	Verification of Abstractions

	Evaluation
	Conclusion and Future Work
	References

	Author Index

