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Abstract. We present a refinement method for Java programs which
is motivated by the challenge of verifying security protocol implemen-
tations. The method can be used for stepwise refinement of abstract
specifications down to the level of code running in the real application.
The approach is based on a calculus for the verification of Java programs
for the concrete level and Abstract State Machines for the abstract level.
In this paper we illustrate our approach with the verification of a M-
Commerce application for buying movie tickets using a mobile phone
written in J2ME. The approach uses the interactive theorem prover KIV
[1].

1 Introduction

Refinement is an established method for proving algorithms correct. A concrete
specification is a refinement of a more abstract specification if every state change
that can be performed on the concrete level is also possible on the abstract level.
State based refinement methods (e.g. [8] [25] [3]) have been used in numerous
case studies for the verification of algorithmic correctness. The underlying theory
and the methods for applying those approaches, also on the level of tool support,
are elaborated and widely used.

Much less work has been done on refinement methods for the verification of
Java implementations. Although there are many examples Java [14] program ver-
ification, e.g. [13] [5] [6] [17] [12], the authors are not aware of a larger case study
of interactive verification using a refinement framework for proving functional
correctness of a Java program respecting an abstract specification.

In the field of security protocol implementations the past has shown that
implementation flaws are very common and can be very subtle. We present
a refinement method inspired by the challenge of verifying security protocol
implementations. In this paper the method is illustrated with the verification of
a Java M-Commerce application, the Cindy1 case study. However, the refinement
approach is not limited to the field of security protocols. Using the mechanisms
described below we can prove functional correctness for all kinds of programs
with input, output and state change.

1 Cinema Handy (german word for mobile phone)



The paper is organized as follows: Section 2 presents the case study, Section
3 illustrates the refinement method and proof obligations. Section 4 describes
the mapping of abstract data types to Java classes. Section 5 presents some
difficulties the refinement method has to solve stemming from this representation
and Section 6 gives some details on the verification of the case study. Finally
Section 7 compares the approach to related work and Section 8 concludes.

2 The Cindy Case Study

With Cindy users can buy cinema tickets using mobile phones. A user can order a
ticket using a Java application running on the device. Payment can be done using
the usual phone bill. After having ordered a ticket it is sent to the mobile phone
as a MMS (Multimedia Messaging Service) message. The ticket contains the
movie data and an additional unique identifier for the ticket. It can be displayed
on the phone using a two-dimensional data matrix barcode and is scanned at the
entrance to the cinema directly from the display using a barcode scanner. This
kind of application exists e.g. in the Netherlands [2]. Additionally the German
railway company, Deutsche Bahn, has recently implemented a similar service for
buying train tickets using a mobile phone.

One important question for the cinema is, of course, how to avoid fraud. The
idea is simple: Every ticket contains a nonce, a unique random number that is
too long to guess. Therefore it is virtually impossible to ‘forge’ a ticket.

Full details on the abstract model of Cindy as well as the details on the
verification of security properties on this abstract level can be found in [10]. The
next section describes the approach for verifying an implementation of Cindy
running on a mobile phone written in J2ME.

3 The Refinement Method

We assume the reader is roughly familiar with data refinement theory, which in
this section we will adopt to Java programs using the notation based on [9].

The abstract level is given as a data type ADT = (GS,AS,AINIT, {AOPi}i∈I

,AFIN) consisting of a set of global states GS and a set of (local) states AS.
Total relations AINIT ⊆ GS × AS and AFIN ⊆ AS × GS initialize and finalize the
data type. AOPi ⊆ AS × AS (using an index i ∈ I) are the operations possible
on the data type. The concrete level is given similarly as CDT = (GS,CS,CINIT

, {COPi}i∈I, CFIN).
Our operations are total so we use the approach of [11] and a forward sim-

ulation R ⊆ AS × CS leading to the following proof obligations for refinement
correctness:

– CINIT ⊆ AINIT o
9 R (“initialization”)

– ∀ i ∈ I. R o
9 COPi ⊆ AOPi

o
9 R (“correctness”)

– R o
9 CFIN ⊆ AFIN (“finalization”)



In the specification of the Cindy example different agents are involved mod-
elling the different protocol participants. Every agent has a type type(agent) (the
type can be cellphone, cinema, user or attacker). The index set I of AOPi now con-
sists of the different agents, where e.g. AOPcellphone(n) denotes the protocol steps
of the cellphone agent with number n.

The state as : AS consists a function astate : agent → Atype(agent) that maps
each agent to its internal state in Atype(agent) (this is e.g. the list of current tickets
stored on a phone). Additionally, as contains the current context actxt : context

of the communication infrastructure (connections and inputs for every agent that
represent the messages that are currently in transit). Together as = astate × actxt.
The global state GS is ignored in AINIT, in AFIN extracts the list of tickets sold
so far.

We now refine the cellphone agent type to Java. The approach works by
stepwise replacement of an agent type by an implementation for that kind of
agent, preserving every other part of the specification.

A concrete state cs : CS is defined as cs = cstate × cctxt with cctxt : context

and cstate : agent → Btype(agent). The context needs to be preserved like in the
abstract level because the communication infrastructure is not implementable
(it represents the messages currently in transit). The state of a Java program
is stored in an algebraic data type called store in KIV. A store can be seen
as the equivalent of the heap of a Java virtual machine (in our case the JVM
running on a mobile phone). All the runtime information about pointer struc-
tures is contained inside the store. Full details on the store and on the Java
Calculus implemented in KIV can be found in [21] [20]. On the concrete level
the state of a refined agent is now replaced with a store st : store. The state of
non-refined agents remains the same as on the abstract level. This means that
Bcellphone = store and Bagenttype = Aagenttype for agenttype 6= cellphone.

The abstract specification of the functionality of the protocol in Cindy is
given as an Abstract State Machine [4] consisting of models for all the differ-
ent agents in the scenario. Abstract State Machines are modeled in KIV using
Dynamic Logic (DL). In DL, the formula 〈α〉 ϕ states, that ϕ holds after the
execution of program α. The operation AOPagent of the agent agent is given as
a DL procedure APROGagent. Those procedures are all total. So AOPagent can be
defined as follows:

AOPagent(astate, actxt, astate
′, actxt′) ↔

〈APROGagent(astate, actxt)〉 (astate = astate′ ∧ actxt = actxt′)

On the concrete level, the steps of a refined agent need a data transformation
step from the abstract state into the store. The inputs of the Java agent (given
by actxt) need to be refined to Java data types representing the input. The
reverse transformation has to be done for the output. This is done by the opera-
tions TOSTORE and FROMSTORE. More details on this transformation can be
found in section 4. Java method calls are written in the Java calculus in KIV as
〈st ; step()〉 ϕ, which states that formula ϕ holds after the execution of method



step() in the context of store st . Together with TOSTORE and FROMSTORE,
we define COPagent as:

COPagent(cstate, cctxt, cstate
′, cctxt′) ↔

if ¬ is refined(agent) then

AOPagent(cstate, cctxt, cstate
′, cctxt′)

else (∃ st, st′. st = TOSTORE(cctxt, cstate(agent)) ∧
〈st; step()〉 (st = st′) ∧
cstate′ = cstate[agent 7→ st′] ∧
cctxt′ = FROMSTORE(st′, cctxt))

An operation of a non-refined agent (¬ is refined(agent)) is the same as on
the abstract level. For the refined agents, the inputs are transformed into Java
objects in the store (TOSTORE(cctxt, cstate(agent))). Then a Java method call
step() implementing the protocol and starting in this store st must result in a
store st′, which is given by cstate′ (cstate′ = cstate[agent 7→ st′]).

Figure 1 gives an overview over the refinement structure. The constructor
call of the Java class implementing the protocol is new Protocol(), step() is the
Java method call of the protocol implementation.

RR RR

CFIN

AFIN

RRgs

as

cs cs2

as2 as3

cs3

TOSTORE

cs4

as4 as5 as6

cs6

FROMSTORE

cs5

gs’

COP(java−agent)

ABSTRACT LEVEL

AINIT

CINIT

CONCRETE LEVEL

AOP(non−refined−agent)

COP(non−refined−agent)

AOP(java−agent)

step()

new Protocol()

Fig. 1. Refinement diagram

All together the main proof obligation for the refinement of the Java agent
schematically looks like this:

R(astate, actxt, cstate, cctxt)
∧ st = TOSTORE(cctxt, cstate(agent))
∧ 〈st; step()〉 (st = st′)
∧ cstate′ = cstate[agent 7→ st′]
∧ cctxt′ = FROMSTORE(st′, cctxt) →
∃ astate′, actxt′. AOPagent(astate, actxt, astate

′, actxt′)
∧ R(astate′, actxt′, cstate′, cctxt′)



If the retrieve relation holds for two states and the concrete level performs
a sequence of TOSTORE, the actual protocol step step() and FROMSTORE,
resulting in state cstate′ × cctxt′, then there must be the possibility to perform
a similar step on the abstract level (AOP) which leads to a state astate′ × actxt′

in which the retrieve relation holds again.
Additionally we have to prove that the constructor call of the Java imple-

mentation performs the same initialization steps as AINIT for the refined agent
type. This proof obligation is omitted here because it is very similar to the main
proof obligation above (excepting TOSTORE and FROMSTORE because there
is no input or output for the constructor).

The retrieve relation R between the abstract and the concrete level has to
express how the state of the Java program and the abstract state of the protocol
ASM relate to each other. The general form of this relation is:

R(astate, actxt, cstate, cctxt) ↔
actxt = cctxt ∧ AINV(astate, actxt) ∧ CINV(cstate, cctxt) ∧
(∀ agent.if is refined(agent) then extract(cstate(agent)) = astate(agent)

else cstate(agent) = astate(agent))

The extract function gets the state of the agent from the store (more precisely
it looks at the fields of the classes implementing the protocol and converts those
fields back into an abstract state). Then for every refined agent the state on
the abstract level (astate(agent)) must be equal to the corresponding value in
the store (extract(cstate(agent))). For every agent that is not refined the state
must be equal. The context (like the inputs of the agents) must be equal in
every case. Additionally we need an invariant on the abstract state (AINV) and
an invariant on the concrete state (CINV) that is preserved by every step. The
invariants basically state that everything is well-formed and reasonable for our
application, e.g. the list of tickets contains only tickets, not other entries.

4 The Mapping to the Concrete Level

Java programs and Abstract State Machines use different internal types. On the
one hand we have the Java class hierarchy consisting of interfaces, classes and
primitive types, on the other hand we have algebraically specified abstract data
types and state functions for the state of our ASMs.

For our M-Commerce example same external behavior means sending of the
same output messages in reply to the same input messages. On the abstract
level input and output are specified using an abstract data type called docu-
ment. This data type is quite similar to the messages used in [18] or [7]. It is
specified algebraically as follows:

document = intdoc (. .int : int)
| keydoc (. .key : key)
| noncedoc (. .nonce : nonce)



| secretdoc (. .secret : secret)
| hashdoc (. .doc : document)
| encdoc (. .key : key; . .doc : document)
| sigdoc (. .key : key; . .doc : document)
| doclist (. .list : documentlist)

A document can contain an arbitrary large integer (intdoc). Intdocs are also
used to model arbitrary data since every data can be represented as an inte-
ger. Documents can also contain a key (keydoc), a nonce (noncedoc) or a secret
(secretdoc). Furthermore a document can be the result of a cryptographic hash-
ing operation (hashdoc) or can be an encrypted document with a certain key
(encdoc) or a signature of a document with a certain key (sigdoc). To model
composition of messages our document type also contains a type doclist con-
taining a list of other documents. In our ASM model the inputs of all agents are
represented as an ASM state function inputs : agent → documentlist (which is a
part of the context described in section 3).

On the concrete level a natural representation of the abstract document data
type is a class hierarchy which is directly implementing our abstract data type.
The Cindy application relies on the security of GSM communication which al-
ready supports encryption of all sent messages. Therefore the protocol of Cindy
only uses IntDocs for modelling the ticket data or concepts like phone num-
bers, Noncedocs for modelling the unique identifier of the ticket and Doclists for
composing those basic documents to MMS messages.

The class hierarchy we use

− nonce : Nonce

NonceDoc * Nonce

− value : byte[] 

1

Doclist
Document

<<abstract>>
*

*

IntDoc

− value : byte[] 

− Document[] docs

Fig. 2. Document Classes

in the implementation of Cindy
is shown in Figure 2. We im-
plement every constructor of
the abstract data type docu-
ment by a separate Java class
type for exactly that type of
document. For our general re-
finement approach to security
protocols the other document
types are implemented as well but omitted here. In addition to input/output
behavior we furthermore have to prove that the same state changes are per-
formed on both levels. In the cindy example the state of the mobile phone
consists of a list of documents representing tickets which are currently stored
on the phone. This list is specified using the Doclist abstract type on the
abstract level, respectively implemented by the Doclist class for the concrete
state. The state function tickets : agent → documentlist specifies this for the ab-
stract level (part of astate(cellphone) according to Section 3). In addition the
state function inputs : agent → documentlist is relevant for the refinement be-
cause it contains the input messages of each agent. Those two functions have
to be taken into account for the refinement and have to be transformed to
Java data types. Using the abstract data types and the store we define map-



ping functions for the transformation of the abstract data type into the con-
crete pointer structure inside the store and vice versa. The store defines a
mapping of keys to values. Store keys are a combination of a reference (a
memory address) and a class field or a array index. Getting the value for the
field f of the instance at reference r is written as st[r.f]. The lookup for static
fields can be written as st[.f]. The value can be a primitive value or a refer-
ence to another class instance or an array. The operations for the transforma-
tion of documents are called addDoc : document × store → reference × store and
getDoc : reference × store → document (all operations below are specified alge-
braically). addDoc for e.g. the IntDoc type works as follows:

addDoc-intdoc:
[r1, r2] = newrefs(2, st) →

addDoc(intdoc(i), st) =
r1 × addobj(r1, IntDoc, .value × r2,

addarray(r2, byte type, int2bytes(i), st))

Adding an Intdoc with value i to the store works by adding an object of class
IntDoc via the operation addobj : reference × type × fieldvalues× store → store.
The reference r1 of this new object must not be already contained in the store
([r1, r2] = newrefs(2, st)). The actual value i of the intdoc is encoded as an ar-
ray of bytes. This array must also be added to the store via the operation
addarray : reference × type × arrayvalues × store → store. The reference r2 of this
array must also be a new reference in the store (. . . = newrefs(2, st)). The ar-
ray values are obtained by transforming the integer i to a sequence of bytes
(int2bytes(i)). The function addDoc additionally returns the reference r1 of the
IntDoc instance as well as the store because we have to know where the new
instance is placed inside the store.

The getDoc function for the IntDoc type works the other way:

getDoc-intdoc:
r 6= null ∧ st[r.type] = IntDoc →

getDoc(r, st) = intdoc(bytes2int(getbytearray(st[r.value], st)))

Getting the document of type IntDoc (st[r.type] = IntDoc, where .type is a
special field containing the type information of a reference) back from the store
is done by first getting the byte array representing the value from the store
(getbytearray(st[r.value]). The resulting byte sequence is transformed to an integer
using the operation bytes2int and the resulting integer value is used to construct
the intdoc.

The operations TOSTORE and FROMSTORE basically use addDoc and getDoc

to transform the input messages of the agents into the Java store. Additionally
getDoc implements the extract function described in Section 3 in the retrieve re-
lation of the refinement for the list of tickets of an agent. This works because in
Cindy both input/output messages and the state are specified using documents.



5 Additional Attacks on the Concrete Level

An interesting observation is the fact that when implementing the data types by
pointer structures there are more possible values on the concrete level than on
the abstract level. The reason is that on the concrete level there can be pointer
structures that do not have any abstract counterpart.

One example for this fact are instances of class IntDoc which contain a null
pointer in their value field. Since the value field is the counterpart of the abstract
value of the integer contained in the IntDoc and since null does not represent
a number this document has no counterpart. In the following we will call those
additional inputs invalid.

A refinement not respecting invalid inputs would not be correct because in
the real world other inputs than the abstract ones may be given to the program
by an attacker and may cause implementation errors or even security leaks.

The solution for this problem is to consider the invalid inputs on the concrete
level by implementing a check on the input which checks whether the concrete
input has an abstract counterpart. We add an additional document type ⊥ (rep-
resenting all the invalid inputs) and specify that the abstract level performs an
error treatment (e.g. a reset operation on the internal state) when receiving ⊥.
Then the concrete step which receives an invalid input (and discovers this using
the input check) has to be a refinement of the abstract error treatment step.
With such a refinement nothing bad can happen on the concrete level when
receiving invalid inputs. The TOSTORE operation now relates ⊥ to all invalid
documents. An attacker sending ⊥ on the abstract level is therefore now able to
send any invalid document on the concrete level.

Formally, the predicate validDoc : reference × store specifies when a pointer
structure is a representation of an abstract document. The result r × st of addDoc

always satisfies validDoc(r, st). The check for valid inputs is done in the receive()
method in the Java implementation. Therefore the implementation of receive()
must satisfy:

Receive-correct:
. . . // reference r is a valid communication interface in st
∧ st = st0 →
〈st; r0 = r.receive(); 〉

st = st0[.input, null] ∧
((validDoc(st0[.input], st0) → r0 = st0[.input]) ∧
(¬ validDoc(st0[.input], st0) → r0 = null))

If the input is a valid representation (validDoc(...)) of an abstract document,
the return value r0 of receive is the reference which was added in the TOSTORE

operation (st0[.input]). Otherwise null is returned. Additionally receive sets the
input to null (st[.input, null]).

It is not desirable to verify the correctness of a concrete input/output checker
for every single application. E.g. all our security protocol implementations use
the document data type as the input type. We have used this type to implement



Cindy and also e.g. for the Mondex [22] application. Also, a real implementa-
tion would not directly send pointer structures but do some kind of encoding
(e.g. to byte arrays or XML, which is then sent by MMS). The data checker can
be integrated in such a transformation function. We provide an implementation
for such a transformation and data check layer which can be verified separately.
This enables us to split the refinement proof into two layers. In the first layer the
refinement of an abstract specification of the protocol into an implementation
working on the document class type is shown using receive-correct as an assump-
tion. The second refinement adds the transformation and data check layer. Then
TOSTORE has to add an encoding of the input document instead of a pointer
structure to the store. The receive method has to check this input and transform
it into a pointer structure. Then the property of receive above can be proven
using correctness properties of the check and transformation layer.

6 The Cindy Refinement

The interesting part of the abstract specification for the refinement is the step of
an agent of type cellphone. An excerpt of this step which performs the protocol
step to actually load a ticket on the mobile phone is shown below:

CELLPHONE(agent, inputs, tickets){
let indoc = first(inputs(agent)) in

inputs(agent) := rest(inputs(agent))
if is load message(indoc) ∧

#tickets(agent) < MAXTICKETLEN then

tickets(agent) := tickets(agent) + getPart(2, indoc).data

else . . . // other protocol steps }

First a document is taken from the input (CELLPHONE is only called when
the input is non-empty) and the list of input messages is shortened. If the input
message has the structure of a message to load a ticket (is load message(indoc))
and there is space in the list of tickets of the actual agent (#tickets(agent) <

MAXTICKETLEN) then the ticket contained in the input document (getPart(2,

indoc).data) is added to the list of tickets. The implementation2 of this protocol
step in J2ME on the mobile phone is:

public class Protocol {

private Doclist tickets; // bought tickets

...

public void step(){

if(comm.available()){

Document inmsg = comm.receive();

2 This source code is actually running on two mobile phones (Nokia 3250 and Sony
Ericsson W550i), the receive operation uses the J2ME API to access the MMS
messages of the mobile phone.



phoneStep(inmsg);}}

private void phoneStep(Document inmsg) {

Document originator = inmsg.getPart(1);

inmsg = inmsg.getPart(2);

Doclist ticket = getTicket(inmsg);

if(ticket != null && tickets.len() < MAXTICKETLEN){

tickets = tickets.attach(ticket);}

... //other protocol steps}

private Doclist getTicket(Document indoc) {

if(indoc != null && indoc.is_comdoc()){

byte[] ins = indoc.getPart(1).getValue();

if(ins.length == 1 && ins[0] == LOADTICKET){

indoc = indoc.getPart(2);

if(indoc != null && indoc.len() == 2){

Document indoc1 = indoc.getPart(1);

Document indoc2 = indoc.getPart(2);

if(indoc1 != null && indoc1.is_intdoc() &&

indoc2 != null && indoc2.is_noncedoc()){

return indoc;}}}}

return null;}}

The method step() is the top-level method for executing a protocol step.
First of all the method tests whether input is available. If there is an input the
receive method is called and a step is performed via the method phonestep().
This method now tests the structure of the input message with the getTicket()
method. getTicket() does some checks regarding the structure of the input doc-
ument and returns the data part of the input document if it was a valid repre-
sentation of a ticket and null otherwise. phonestep() then adds the returned data
to the list of actual tickets if the input was valid.

Starting with the general proof obligation given by the refinement theory
we first symbolically execute the two abstract state machines. The cases for the
non-refined agents (such as the attacker) are trivial because they are the same in
both specifications. For the refined agent it makes sense to formulate theorems
for each Java method which relate the behavior of the method to the abstract
counterpart of its input. The corresponding theorem for the load-ticket protocol
step is:

is load message(first(inputs(agent))) ∧ st1 = store(agent) ∧
st = TOSTORE(inputs, st1) ∧ INV(st1) ∧ . . .

→ 〈st; Protocol.step(); 〉
(getDoc(st[Protocol.tickets], st) =

tickets(agent) + first(inputs(agent))
∧ st[.input] = null ∧ INV(st))

If the actual input document (first(inputs(agent))) is a correct load message
(is load message) on the abstract level and if this document is added to the



store via TOSTORE then the step method performs the correct state changes: It
computes the correct ticket list (the new ticket attached to the old tickets) and
the input was accepted (st[.input] = null). Additionally an invariant that holds
before the execution of the method (INV(st)) holds again afterwards.

With such theorems the refinement proof obligation is divisible in different
proof obligations for every protocol step. This makes the whole proof feasible.
The case study as a whole consists of around 1000 lines of code. The imple-
mentation of Cindy itself consists of around 350 lines of code. The rest is the
implementation of the document classes and some utility classes (e.g. for han-
dling byte arrays). The verification of the refinement starting with the creation
of the concrete and abstract specification of the protocol and ending with the
refinement proof took around one and a half man months with KIV. The case
study consists of 329 theorems which took 11408 proof steps. 4655 of those steps
were done by the user. The degree of automation thereby is nearly 60 %. We
expect a much higher degree of automation for upcoming case studies because
of the high reusability of the Document implementation and the corresponding
library.

7 Related Work

Related work concerning the verification of Java programs was already men-
tioned in Section 1. Here we focus on related work concerning refinement ap-
proaches for security protocols:

[15] describes a similar approach for Java Smart Cards. The authors specify
protocols using a high level specification language for proving security properties
and a more concrete one which works on the level of byte arrays. They specify
lengths and contents of messages using byte arrays and then use static program
analysis on the JavaCard implementation to decide whether the implementation
is correct. This approach is limited to the very specific class of protocols the spec-
ification language allows while our approach allows any abstract specification.
Additionally, because of the automated analysis and the fact that implemen-
tation correctness is undecidable this approach cannot give reliable answers in
every case.

[23] uses the Spi Calculus for specifying security protocols and a code genera-
tion engine to transform this specification to an implementation. They also map
messages of the protocol to Java objects. Code generation yields very large imple-
mentations that are much less readable than our code and cannot be optimized
without losing correctness. Their mapping to concrete data types is not formally
verified and does not address the problem of invalid inputs on the concrete level.

The Mondex [16] case study has recently received a lot of attention because
its tool supported verification has been set up as a challenge for today’s ver-
ification tools [24]. The original refinement proofs using Z have been done on
a very detailed level by hand [22]. [19] shows that the same verification can
be done with good tool support and in a short period of time using KIV. The
Mondex refinement basically splits a world view of an application into compo-



nents implementing a protocol. But even the lowest level of the Mondex case
study is a only an abstract specification of the communication protocol of the
involved parties that does not contain cryptographic operations. The approach
presented here can be used to do an additional refinement for Mondex adding a
real implementation. This is current work in progress.

8 Conclusion

We presented a refinement method for Java programs instantiating data refine-
ment. The method is based on a calculus for Java verification and Abstract State
Machines using the interactive theorem prover KIV. The approach can transfer
a security proof for an abstract specification down to running Java code. We
have shown how to handle invalid inputs that only exist on the concrete level
of Java pointer structures. With Cindy, we have demonstrated that the method
is suitable to handle case studies of relevant size. Further work includes the full
verification of an implementation of the described input check layer and the
application of our approach to other case studies like Mondex.
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