UNIVERSITAT AUGSBURG

The Mondex Case Study:
From Specifications to Code

H. Grandy, N. Moebius, M. Bischof,
D. Haneberg, G. Schellhorn, K. Stenzel, W. Reif

Report 31 2006

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright © H. Grandy, N. Moebius, M. Bischof, D. Haneberg, G. Schellhorn, K. Stenzel, W. Reif
Institut fiir Informatik
Universitdt Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg. DE
— all rights reserved —

The Mondex Case Study:
From Specifications to Code

H. Grandy, N. Moebius, M. Bischof, D. Haneberg, G. Schellhorn, K. Stenzel, W. Reif
Lehrstuhl fiir Softwaretechnik und Programmiersprachen,
Universitat Augsburg, D-86135 Augsburg, Germany

Abstract

In this paper we introduce three different implementations for the Mondex electronic purse ver-
ification challenge [Woo06] [SCW00]. In previous work ([SGHRO06] [SGHT07] and [HSGRO6])
we verified security and correctness properties of the Mondex money transfer protocol. Here we
present a way to translate the formal specifications into running JavaCard code. We introduce
three different ways to implement the protocol, one using symmetric cryptography, one using
asymmetric cryptography and finally one using special datatypes for cryptographic protocols and
symmetric cryptography. All implementations presented in this paper are able to run on a Gemplus
GemxpressoRAD ProR3 SmartCard.

Chapter 1

Introduction

Mondex [MCI] cards are smart cards which can be used as electronic purses. They store money
and can be used to transfer money from one card to another.

The Mondex case study recently received a lot of attention because its formal verification is
seen as a challenge for verification tools [Woo06]. The original specification [SCW00] made in Z
[Spi92], the proofs were made by hand with an enourmous effort. In [SGHRO06] we have shown
that this verification can now be done in a few weeks using the elaborated verification support
of the interactive theorem prover KIV [KIVb]|. In [SGH'07] (resp. the corresponding technical
report [SGHT06]) we describe a weakness of the communication protocol of Mondex which allows
a denial of service attack against the cards. There we also show that a slight modification of the
protocol corrects this error and verify the modified protocol. Furthermore, the original Mondex
specification does not contain any formalization of cryptographic operations. Instead it simply
assumes that certain (critical) protocol messages cannot be forged. In [HSGRO06] we extend the
abstract protocol of Mondex with cryptographic operations and verify that the new protocol is
actually a refinement of the original abstract protocol.

All our specifications of the Mondex case study are given as Abstract State Machines [Gur95)
[BS03] and all refinements use the ASM Refinement Theory [BR95] [Sch01] [B6r03] [Sch05]. Figure
1.1 shows an overview of our specification levels for the case study.

The logical consequence of this development approach for Mondex is the refinement of the
abstract specifications down to running source code (the last level in Fig. 1.1).

We chose the JavaCard programming language and Java SmartCards as a platform. In this paper
we present three different ways to implement the abstract protocol of Mondex.

The first version implements the protocol using symmetric cryptography. This approach follows
the specifications given in the communication protocol level (the concrete level of the original
Mondex work) in Figure 1.1 very closely. It is introduced in Section 2.

Using only symmetric cryptography has some weaknesses. For example, all security proper-
ties rely on the fact that the secret key is unknown to an attacker. This means if one card is
compromised then all cards would be compromised. Therefore, our second implementation uses
asymmetric cryptography to address those weaknesses. This implementation also follows the com-
munication protocol level of Fig. 1.1, but has some little modifications. The reason is that in
reality message lengths for smart cards are bounded, so you cannot send very long input messages
(such as signatures) together with some other data. This will be explained in Section 3.

Finally, our last implementation for Mondex uses symmetric cryptography and special protocol
data types. It is the result of the consequent development using stepwise refinement and therefore
follows the specification of the security protocol level very closely. This implementation follows
our general approach for security protocol code refinement as described in [GHRS06] [GSRO6b].
The corresponding code will be explained in Section 4.

This paper is a follow-up for [SGHRO06], [SGH"07] and [HSGR06]. We will not repeat all
the details about the specification levels ”transactions”, ”communication protocol” and ”security
protocol” here. Please refer to these papers for more information about those levels.

‘ Transactions ‘

original specifications
of Mondex as in
[SCWO00], [SGHRO06]

refine

‘ Communication Protocol

refine

‘ addition of cryptography

‘ Security Protocol [HSGRO6]

refine

implementation by code

JavaCard Code)
(this paper)

Figure 1.1: Overall structure of our Mondex refinement approach

Chapter 2

A Protocol using symmetric
Cryptography

2.1 Implementation

The basis for the following implementation is the specification of the Mondex communication
protocol level as shown in Fig. 1.1.

On the communication protocol level transferring money is done using a protocol with 5 steps
(for details see also [SGHRO6]). To execute the protocol each purse needs a status that indicates
how far it has progressed in the execution of the protocol steps. The possible states a purse
may be in are given by the enumeration status = idle | epr | epv | epa. Purses not participating in
any transfer are in the idle state. To avoid replay attacks each purse stores a sequence number
nextSeqNo that is used in the next transaction. This number is incremented at the start of every
protocol run. The current amount of money stored on the card is given by the field balance.
During the run of the protocol each purse stores the current payment details (paydetails). These
are tuples consisting of the names of the from and to purse, the sequence numbers they use and
the amount of money that is transferred. The state of a purse also contains a log exLog of failed
transfers represented by their payment details.

This state is now implemented in an applet class for a Java Smart Card. Our class implementing
the communication protocol is called Purse. Its definition and its fields (representing the ASM
state functions of [SGHRO6]) is given as:

public class Purse extends Applet {

// protocol fields

private short balance;

private byte][] name;

private short seqNo;

private byte state;

// pay details and exzception log

private byte[] currentPD;

private byte][] exlog;

private short currentExLoglIndex;
// key

private DESKey sharedkeyobj;

The actual money balance of the card is represented as a short value (our JavaCards do not
support integers). The name is given as a byte array of 8 bytes. The sequence number (segNo) is
also a short value. Payment details (currentPD) are given as a byte array containing the same in-
formation as the abstract data type paydetails above. The currentPD array is 22 bytes long: 2 * 8

bytes are used to store the two card names (from and to), 2 * 2 bytes are used for the two sequence
numbers (fromno and tono) and 2 bytes are used for the amount of money to be transferred (value).
The exception log (exlog) which is a list of paydetails in the specification is implemented as a byte
array of length 5 * 22. This is sufficient to store 5 PayDetails one after another. The next free
index in this exception log array is given by the field currentExLogIndexr. Additionally, we have to
consider encryption. The ASM communication protocol level does not contain any cryptographic
operations. Messages are simply considered to be unforgeable. Of course, when giving an imple-
mentation, cryptography has to be used. The cryptographic protocol for the symmetric version of
Mondex written in a commonly used standard notation for cryptographic protocols [Car94] is:

1. terminal — from : STARTFROM, seqNo(to), name(to), amount

2. from — to : {STARTTO, seqNo(from), name(from), amount}x,
3. to — from . {REQ,paydetails}k,

4. from — to . {VAL,paydetails}k,

5. to — from . {ACK,paydetails}k,

The secret key Kg is shared between all Mondex cards. In our implementation, this key is given
by the field sharedkeyobj as an object of type DESKey (representing a 3DES symmetric key). An
overview of the protocol on the concrete level is shown in Fig. 2.1.

fo : Purse term : Terminal from : Purse
T
getName+SeqNo+Bal
getName+SegNo+Bal | [~ e
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, name, SeqNo, bal
[T name, SeqNo, bal idle
) I startFrom
idle >
stariTo
stariTo <
-t epr
req
> req
epv -
balance :=
balance - value
val
val <
balance := a
balance + value P
ack -
ack

idle idIeLH

Figure 2.1: An overview of the Mondex protocol

The first message getNamet+SeqNo+Bal (shown by dashed lines in Fig. 2.1) is needed in a real
implementation of the Mondex scenario, since the terminal must be able to get the information
about card names, their sequence numbers and balances. This information is used in the next
protocol step startFrom.

When using Java SmartCards, communication is based on byte arrays. Smart cards commu-
nicate using Application Protocol Data Units (APDU). APDUs are byte arrays which consist of

a header and a data part. The header is 5 bytes long and contains an instruction byte and length
information. Each message sent to a smart card will be transformed by the JCRE (the operating
system of the smart card) in a parameter for the process(APDU) method defined in the applet
class implementing the protocol. The message format for our symmetric implementation is given
in the following table (header information is omitted. Only the instruction byte is given as the
first part of each message):

Protocol Step Input Output
GetNameSeqNoBal | GNS name
+ seqNo
+ balance
StartFrom SF + name(to) ST

+ { ST + name(from)
+ segNo(from) + amount }k

+ seqNo(to) 4+ amount

StartTo ST
+ { ST + name(from)
+ segNo(from) + amount }k

REQ
+ { REQ + paydetails}kg

Req REQ VAL

+ { REQ + paydetails }g + {VAL + paydetails}k
Val VAL ACK

+ {VAL + paydetails}k + {ACK + paydetails}k
Ack ACK -

+ { ACK + paydetails }kg
GetExLog GEL {name + exlog}k,
DeleteExlog DEL -

+ {DEL + exlog}k,

Additionally to the original money transfer protocol we implemented the archiving functionality
for the exception log. The exception log can be sent to the bank (using a key Kg shared between
the banking server and all Mondex cards). When receiving the encrypted exception log of a card,
the server decrypts it, stores the log in its internal database, encrypts it again using the same key
and sends it back to the card. When the card receives this encrypted message it decrypts it and
checks whether the transmitted exception log and its own exception log match. If they do the
card can be sure that the server got the exception log and can safely delete it.

The full implementation of the protocol can be found in appendix A. In the following we will
describe the implementation of the protocol step val as an example. The implementations of the
other protocol steps are similar to this.

The input message for val is VAL + {VAL + currentPD}sparedkey. The card is supposed
to be in the EPV (”expecting value”) state. The relevant part of the main protocol method
process(APDU) for our implementation is:

public void process (APDU arg0) throws ISOException {
JCSystem . beginTransaction ();
byte[] buffer = arg0.getBuffer ();
byte ins = buffer [ISO7816.0OFFSET_INS];
if (ins = ISO7816.INS_SELECT)
return;
else if (...)

else if (state =— EPV && ins =— VAL
&& checkStep (argd, VAL))
val (arg0);
else if (...)

else {

abort ();

JCSystem . commitTransaction ();

ISOException. throwIt (ISO7816 .SW.COMMANDNOT ALLOWED) ;
}

JCSystem . commitTransaction ();

}

Every protocol step starts with a call of JCSystem.beginTransaction() to ensure that the pro-
tocol step will be finished as a whole or completely rolled back in case of card removal or any
other error. Afterwards, we do a case distinction over the instruction byte and the internal state
of the card to determine which step should be performed. If the applet is in state EPV and the
instruction byte is VAL (as it should be) we additionally have to check whether the (encrypted)
content of the message is wellformed. This is done by the method checkStep(APDU, byte) (which
is reused in the steps REQ and ACK because the checks in those steps are the same):

private boolean checkStep (APDU arg0, byte ins) {
short 1 = arg0.setIncomingAndReceive ();
if (1 != (short) 24)
return false;

byte[] buffer = arg0.getBuffer ();

decrypt (sharedkeyobj, buffer, ISO7816.0OFFSET_CDATA,
(short) 24);

// encrypted instruction has to be ok, pay details must
// match
if (buffer [ISO7816 .OFFSET.CDATA] != ins
|| Util.arrayCompare(buffer ,
(short) (ISO7816.0OFFSET_CDATA + 1), currentPD,
(short) 0, (short) currentPD.length) != 0)
return false;
return true;

}

At first, checkStep tests whether the input data block has the correct length of 24 bytes
(3 encrypted 3DES blocks of length 8 bytes). Then, it decrypts the input buffer in place and
checks whether the contained instruction byte matches the protocol step (it should be VAL here).
Additionally, we have to check whether the pay details contained in the encrypted block match
the local copy of the pay details. This ensures that the current message was sent by the right from
purse. If everything is ok the method returns ¢rue. Now, the method val(APDU) is called.

private void val(APDU arg0) {
byte[] buffer = arg0.getBuffer ();

// increment balance
balance = (short) (balance + Util.getShort (currentPD
index_amount));

// build apdu for other card

// we can use current input buffer, wvalues should be

// right already

// except encryption/instruction byte

buffer [1] = ACK;

buffer [5] = ACK;

encrypt (sharedkeyobj, buffer, ISO7816.0OFFSET_CDATA,
(short) (currentPD.length + 1));

state = IDLE;

arg0.setOutgoingAndSend ((short) 0, (short) 29);
}

The wal protocol step increments the stored balance by the amount currently in transit and
constructs an output message. This is the ACK message for the other card. The current input
buffer is reused, since it already contains the information that is needed (the current pay details).
Only the instruction byte has to be changed (once in the header and once in the encrypted block).
The state is reset to IDLE and the message is sent out. This completes the val protocol step.

If something has gone wrong during the checkStep method or the input instruction or the inter-
nal state do not match, the purse has to abort the current transaction, since obviously something
bad happened (either an attack or a transmission error). This is done by the abort method:

private void abort () {
loglfNeeded ();
state = IDLE;

}

private void logIfNeeded () {
if (state = EPV || state == EPA) {
Util.arrayCopy (currentPD, (short) 0, exlog,
currentExLogIndex, (short) currentPD.length);
currentExLogIndex += (short) currentPD.length;

}
}

If the purse is in state EPV or EPA (those two are the only two critical protocol states where
money could be lost), abort has to store the current pay details into the ezlog. This is done in the
method loglfNeeded. Logging is performed by copying the current pay details currentPD into the
exlog array at the next free position currentExLoglndex. Afterwards currentExLogInder has to be
incremented accordingly.

Since we are talking about a real implementation and not (as in the specification of Mondex)
about a list of pay details in the exception log, we have to care about exception log overflows.
This is handled by the checks done when receiving the initial startTo and startFrom messages
which start a new protocol run. Those checks now have to test whether the exlog is currently
full (currentExlogIndex is equal to exlog.length). If this happens, no further protocol run can be
started and the exlog has to be deleted.

2.2 Properties

The desired property for an implementation of Mondex is full functional correctness. When proving
functional correctness additional properties of the program are needed, for example that no runtime
exceptions occur. This is relevant for the logging when the current paydetails are copied to the
exlog array (an ArraylIndexOutOfBoundsException may occur here).

Since the abstract specification talks about unbounded data types such as lists or natural
numbers, the presented implementation of Mondex differs a little from its abstract specification.
When implementing the specification the unbounded data types are replaced by finite arrays or
short values. This leads to the necessity of additional checks for overflows (which may occur if
positive values are loaded onto the card) and underflows (which may occur if negative values are
loaded).

That implies that for verification purposes an invariant on the class is needed. E.g. the following
properties for the currentExrLogIndex should always hold before and after process' is called and
should prevent an ArrayIndexOutOfBoundsException when logging (using the notation of the Java
calculus in KIV [Ste04] [Ste05] where st.applet is a reference to the Purse applet object):

1Please note that this property is no class invariant, it does not hold before and after loglfNeeded for example.

(st[st.applet.state] # IDLE —
st[st.applet.currentExLogIndex] + 22 < st[st.applet.exlog.length])
A(Fi. 0 <iAi<5 A stlst.applet.currentExLogIndex] = 22 * i)

If the applet is not in the IDLFE state (line 1), the currentExzLoglndez is small enough to allow
at least one additional log entry (line 2). Additionally, the currentExLoglndex is always a multiple
of 22 (the currentPD.length) and is at most equal to 5 * 22 bytes (line 3) because this is the
maximum exlog length (supporting five log entries).

The invariant for the balance and the current pay details would at least be:

0 < st[st.applet.balance]
A 0 < getShort(st[st.applet.currentPD], 20, st) //amount of money to transfer
A (st[st.applet.state] = EPV
— getShort(st[st.applet.currentPD], 20, st)
+ st[st.applet.balance] < 32767)
A (st[st.applet.state] = EPR
— 0 < st[st.applet.balance]
- getShort(st[st.applet.currentPD], 20, st))

The balance and the amount currently in transit (stored in the currentPD array at index
20, encoded as two bytes) are always positive. Additionally, if there is any value currently in
transit and the purse is in EPV state (meaning that a transaction to this purse is currently going
on), the amount in transit plus the current balance is lower or equal than 32767 (the maximum
positive short value). This will guarantee that no overflow will occur in the val protocol step. The
counterpart to this property is that if the purse is in epr state the amount in transit will not lead
to an underflow of the balance.

Certainly, for verification of functional correctness, much more properties would be needed.
The ones presented in this section should be seen as an example.

Chapter 3

A Protocol using asymmetric
Cryptography

3.1 Implementation

The implementation of the Mondex protocol introduced in Section 2 using symmetric encryption
has the disadvantage that the same symmetric key is used by all purses. That means, if an at-
tacker is able to find out this key he is able to decrypt all messages that are exchanged between two
arbitrary purses. Thus, to avoid this weakness we implemented a second version of the Mondex
protocol using asymmetric cryptography which is introduced here. Instead of using symmetric
encryption each purse has an asymmetric key pair that is used to sign the data to be sent, i.e. to
guarantee data integrity.

As the implementation of the symmetric version this implementation is based on the specification
of the Mondex communication protocol level. In the specification a predicate authentic : name —
bool is defined which specifies if a purse with name name is authentic. In the asymmetric version
of the protocol the check of authenticity is implemented by verifying that a signature issued by
the bank. Each purse stores a signature Sigprivkey(bank) (Pubkey(purse), name(purse)), i.e. the
public key and name of a purse signed by the bank. This implementation fulfils the same security
properties as the symmetric variant but is closer to the specification because of the implemented
check of authenticity.

Another difference between the specification and implementation of the asymmetric protocol is
caused by the fact that the length of messages sent to resp. from Java SmartCards is restricted to
255 bytes. Since the startFrom and startTo messages of the asymmetric protocol are longer than
255 bytes, these messages are divided into submessages. Thus, the protocol hast two startFrom
and three startTo messages.

The cryptographic protocol for the asymmetric version of Mondex is:

1. term — from startFroml : pubkey(to), name(to), seqNo(to), amount

2. term — from startFrom2 : Sigpivkey(bank) (Pubkey(to), name(to))

3. from — to startTol : pubkey(from), name(from), seqNo(from), amount
4. from — to startTo2 : Sigprivkey(bank) (Pubkey(from), name(from))

5. from — to startTo3 : Sigprivkey(from) (Message 3, message 4)

6. to— from REQ : paydetails, Sigpivkey(to) (REQ, paydetails)

7. from — to VAL : paydetails, Sigprivkey(from)(VAL, paydetails)

8. to — from ACK : paydetails, Sigprivkey(to) (ACK, paydetails)

to and from denote the from resp. to purse, term denotes the terminal. pubkey(to), name(to)
and seqNo(to) indicate the public key, name and sequence number of the to purse, amount is
the amount of money that is going to be transfered. privkey(bank) denotes the private key of

the bank that issues the signatures for all purses. In this implementation the public key of the
bank is known to all purses and stored by each purse in a field bankkey. Sigwey (data) denotes the
signature of data with the key. Paydetails are the details of the current transaction, i.e. name(to),
name(from), seqNo(to), seqNo(from) and amount.

Figure 3.1 shows the communication between the purses and terminal during a protocol run.

to : Purse term : Terminal from : Purse
getName+SeqNo
pubKey, name, seqNo idle
getSignature
,,,,,, Signature startFrom1
>
idle ‘ ‘ startFrom2 J—H epsf2
»
‘ stariTo1 ‘ ‘
stariTo1 [‘4
< I continueST1 _ ‘ epcstl
st2 g
ep: L‘J‘ startTo2 ‘ ! » stariTo2 ‘ ‘
L] epcst2
continueST2
e | T]
startTo3 ‘ le startTo3
re epr
] . 1 .]
>
epv balance :=
balance - value|
val
val T
balance :=
balance + value epa
ack -
gl ack _
idle]
idle

Figure 3.1: An overview of the asymmetric Mondex protocol

After requesting the public key, name, sequence number and signature of the to purse (getName-
SeqNo and getSignature), these values as well as the amount to be transfered are forwarded to the
from purse (startFrom1 and startFrom2). The from purse verifies the signature of the to purse
and creates the paydetails of the current transaction. Afterwards it sends its public key, name,
sequence number, amount to be transfered as well as its signature to the to purse (startTol and
startTo2). Finally, the signature of these two messages is sent to the to purse (startTo3). The to
purse verifies both signatures and creates the paydetails of the current transaction. The following
messages, i.e. req, val and ack, are the same as in the specification of the Mondex communication
protocol level with the modification that each message is signed by the sending purse. The fol-
lowing table gives detailed information about the messages that are sent. The format is the same
as the one used in Section 2.

Protocol Step | Input Output
GetNameSeqNo | GNS pubkey
-+ name
+ seqNo
StartFrom1 SF1 -
+ pubkey(to) + name(to)
+ seqNo(to) + amount

10

StartFrom?2 SF2 ST1
+ Sigprivkey (bank) (Pubkey(to), + pubkey(from) + name(from)
name(to)) + seqNo(from) + amount
StartTol ST1 -
+ pubkey(from) 4+ name(from)
+ seqNo(from) + amount
ContinueST1 - ST2
+ Sigprivkey(bank) (pubkey(from),
name(from))
StartTo2 ST2 -
+ Sigprivk‘ey(bank) (pubkeY(from)a
name(from))
ContinueST2 - ST3
+ Sigp'rivkey(f'rom) (ST37
pubkey(from), name(from),
seqNo(from), amount,
Sigp'rivkcy(bank) (pUbke}’(from))
name(from)))
StartTo3 ST3 REQ
+ Sigprivkey (from) (ST3, + paydetails
pubkey(from), name(from), | 4 Sigyrivkey(to) (REQ, paydetails)
seqNo(from), amount,
Sigprivkey(bank) (pubkey(from)7
name(from)))
Req REQ VAL
+ paydetails + paydetails
+ Sigprivkey (1) (REQ, paydetails) + Sigprivkey(from) (VAL, paydetails)
Val VAL ACK
+ paydetails + paydetails
+ Sigprivkey (from) (VAL, paydetails) + Sigprivkey(t0) (ACK, paydetails)
Ack ACK -
+ paydetails
+ Sigprivkey(t0) (ACK, paydetails)
GetExLog ARCHIVE exlog + name
+ Sigprivkey (exlog, name)
DeleteExlog DELLOG -
+ Sigprivkey(b(mk) (eXIOg)
GetBalance BAL balance

The implementation has the same fields as the symmetric version (i.e. balance, name, seqNo,
state, currentPD, exlog, exlogCounter), only the keys differ. A purse stores its own private and
public key as well as the public key of the bank. Moreover, the public key of the second purse
participating in the money transfer is stored during the transaction process. All keys are of type
RSAPublicKey resp. RSAPrivateKey. To sign data we use RSA-SHAT1 signatures with PKCS1
padding.

The method process that is called when sending a command APDU to the smart card is the same
as the one in the implementation of the symmetric protocol. As in Section 2 we will describe the
protocol step VAL as an example step. The remaining steps are implemented in a similar way.

If a purse receives an APDU with instruction byte VAL, is in state EPV and checkStep(APDU
arg0) returns true, the message val(APDU arg0) is called. In checkStep it is checked if the message
has a length of 150 bytes, i.e. 22 bytes containing the paydetails and 128 bytes for the signature.
Furthermore, the method checks whether the received paydetails are equal to the paydetails stored
by the purse and the signature is verified.

11

private boolean checkStep (APDU arg0, byte ins) {
if (!(arg0.setIncomingAndReceive() == 150)) {
return false;}

byte[] buffer = arg0.getBuffer ();

//compare received paydetails with current paydetails
if (1(Util.arrayCompare(buffer , 1SO7816.0OFFSET_-CDATA, currentPD ,
(short) 0, (short)22) =— 0)) {return false; }

// copy INS, currentPD to temp
temp [0] = ins;
Util.arrayCopy (currentPD, (short) 0, temp, (short) 1, (short) 22);

//verify signature Sig[otherpurse](INS, currentPD)

sign.init (otherrsapub , Signature .MODE_VERIFY) ;

if (! sign.verify (temp, (short)0, (short)23, buffer, (short)
((short)ISO7816 .OFFSET_.CDATA + (short)22), (short)128)) {return false;}

return true;

}

The method val(APDU arg0) increases the balance of the to purse by the amount of the current
transfer, generates the ACK message and sends it back to the terminal. Therefore, the purse signs
the byte array (ACK, currentPD) and creates the command APDU that is sent to the terminal
and then forwarded to the from purse.

private void val (APDU arg0) {
byte[] buffer = arg0.getBuffer ();

// increase balance of to purse
balance = (short) ((short) balance 4+ Util.getShort(
currentPD , index_amount));

// send ack message

// copy currentPD to buffer

Util.arrayCopy (currentPD , (short) 0, buffer, ISO7816.0FFSET.CDATA,
(short) currentPD.length);

// create signature and copy signature to buffer

temp [0] = ACK;

//temp [1]..temp [22] stores the current paydetails (see method checkStep)
sign.init (myrsapriv, Signature .MODESIGN);

sign.sign (temp, (short) 0, (short)((short)currentPD.length + (short)l),

buffer , (short)((short)ISO7816.0FFSET_.CDATA + (short)currentPD.length));

buffer [0] = (byte) 0x90; // CLA

buffer [1] = ACK; // INS

buffer [2] = (byte) 0; // PI

buffer [3] = (byte) 0; // P2

buffer [4] = (byte) 150; // length of data:

// currentPD.length + signature.length

arg0.setOutgoingAndSend ((short) ISO7816.0FFSET.-CLA, (short)155);
state = IDLE;

}

The archiving of exception logs of a purse at the bank and deleting it from the card is implemented
by sending the exception log, the name of the purse as well as the signature Sigpriviey (€xlog, name)
to the bank. It is assumed that the bank knows the public key of all purses, verifies the signature

12

and archives the received exception log. Afterwards, the bank sends the message DELLOG +
Sigprivkey(bank) (€xlog) back to the purse that compares the signed exlog with its own exlog. If
the signature check is successful the purse knows that the bank has stored its log and deletes it.
Otherwise it ignores the message.

The full implementation of the protocol can be found in Appendix B.

3.2 Properties

For the asymmetric version of the protocol the same properties concerning runtime exceptions as
for the symmetric version have to hold. Additionally, one has to consider the temp array that is
used to temporarily store values in the asymmetric implementation. Since some protocol steps
as startFrom and startTo are divided into multiple messages, some values are copied to the temp
array in one method and read from there in another method for signature verification that is called
afterwards. Thus, for functional correctness one has to prove that data that is expected to be
stored in the temp array was set correctly by a previous method and the array fields have not
been modified afterwards.

13

Chapter 4

A Protocol using special Data
Types

4.1 Implementation

The last implementation we show is different from the two previous ones. It is based on our generic
refinement approach for security protocols called PROSECCO and described in [GHRS06] [HGRS05]
[GSR06a]. [HSGRO6] gives an overview of a security protocol specification for the Mondex case
study. It uses a generic security protocol data type called document for the messages and for
the internal state of the cards. The use of such a generic message data type is common in the
literature for security protocol analysis, see e.g. [Pau98]. The following implementation transforms
the document data type to Java classes. Since the communication interface of smart cards is based
on APDUs (which are plain byte arrays), we have to add a transformation layer to the smart card
implementation. This transformation layer is responsible for encoding and decoding Java objects
to byte arrays and sending them using the normal APDU I/0 interface. Some details regarding
this transformation and the corresponding layer can be found in [GSRO6D].

With the use of such Java classes a proof that the Java source code is a refinement of the
security protocol specification becomes possible. Applying the refinement approach to the source
code of Mondex presented below is current work in progress.

A part of the specification of the document data type is given as an example:

Document = ... | IntDoc(value : int) | HashDoc(hash : Document) |
EncDoc(key : Key, doc : Document) |
Doclist(docs : Documentlist) | ...

A document is either an IntDoc that represents an integer, a HashDoc that represents the hash
value of a document, or an EncDoc that represents a document which is encrypted with a key. A
Doclist contains a list of other documents.

Since it must be proven that the implementation produces the same output as the abstract
specification claims (including the same type), a similar distinction of the types of the messages is
crucial for the refinement. When using the Java language it is a natural approach to use objects
for the representation of messages. For example, the implementation for IntDocs is:

public class IntDoc extends Document {
private byte[] value;

public IntDoc(byte[] val) {
value = val;

}

public byte[] getValue(){

14

return value;

}

The integer value of the abstract type IntDoc is implemented by a byte array which represents
the arbitrary large abstract integer. The other types of documents are described later on. When
using such an implementation for security protocols there must be a method for sending and
receiving the Java document instances.

The full implementation for all document classes as well as the Mondex implementation using
documents can be found in Appendix C. Some explanations can be found in [GSR06b] and
[GSROGa].

Again, we use the wval protocol step as an example. At first, we take a look at the implemen-
tation of the state of the purses:

public class Purse{
// state fields

private byte[] name;

private short sequenceNo ;
private short balance;
private byte state;
private Doclist pd;

private short exLogCounter;
private Doclist [] exLog;

// KEY

private SessionKey key;
// COMMUNICATION
private SimpleComm comm;

The state of the purse is given by a byte array for the name, two shorts for the current sequence
number and the card balance and a byte for the current state (idle, epr, epv, epa) as in the other
two implementations. The current payment details are now implemented by an instance of class
Doclist (which is a list of Documents). The structure of the payment details is illustrated by the
following initialization statement taken from the Purse constructor:

pd = new Doclist (
new Document

{

]
new byte

[
new IntDoc([8]), // from—purse card name
new IntDoc(new byte[2]), // from—purse sequence number
new IntDoc(new byte[8]), // to—purse card name
new IntDoc(new byte[2]), // to—purse sequence number
new IntDoc(new byte[2]) // amount

1)

The payment details are given as a list of documents (Doclist) consisting of five IntDocs, which
store the relevant values.

The exception log exlog is stored as an array of Doclist instances. The elements of this array
have the same structure as the payment details. The next free index in this exlog array is given
by an exLogCounter, similar as in the previous two implementations.

The implementation uses the same security protocol as the one described in Section 2. For
this protocol [HSGRO6] gives a formal specification which uses cryptography. The main idea
behind the implementation here is to adhere to the security protocol specification as good as
possible. Communication in this specification is done by sending documents between the cards.
The implementation now does the same using an implementation of the communication interface
shown below:

15

public interface SimpleComm {
public void send(Document d);
public boolean available ();
public Document receive ();

This interface provides methods to send a document (which means encoding it into an APDU
and sending the APDU), to receive a document (which means decoding of a received APDU into a
document class instance and returning it) and to check, whether some input is currently available
for the card. The implementation of this communication interface uses a TLV encoding style. It
is omitted here but can be downloaded from our website at [KIVal.

We now have a look at the implementation of the main method for executing protocol steps
in class Purse which uses the communication interface above. This is the method step in class
Purse:

public void step () {
Document outdoc = null;
Document indoc = null;
// check if there is a document in the inbox
if (comm.available())
indoc = comm. receive ();
else return;
// mothing received
if (indoc=null) return;
// mo memory available
if (exLogCounter = exLog.length) return;
indoc = checkIndoc (indoc);
switch (getInsByte (indoc)) {
case INS_START FROM:
.; break;
case :
.; break;
case INS_VAL:
outdoc = val(indoc.getPart (2));
break ;

default:
abort (); break;

}
// send outdoc

if (outdoc!=null)
comm . send (outdoc);

The method first checks whether some input for the card is available (comm.available()). If
there is some, we receive it as a Document pointer structure. If the input is non-null and the
card’s exception log is not full, we first check if the input document is wellformed. This is done
by the method checkIndoc which checks whether the input document has the correct structure
expected for the current protocol step. E.g. a wellformed wval message is an encrypted message
(EncDoc) which contains a Doclist with an IntDoc (with the instruction VAL) and Doclist instance
containing the current payment details (see above). This means checkIndoc first decrypts the
received message with the shared key and then checks the described structure if the instruction
inside the encrypted part was VAL.

After successfully checking the input document, the actual val protocol step is performed by
the val(Document) method:

private Document val(Document paydetailsother) {
if (!pd.equals(paydetailsother))
return null;
balance =

16

(short)(balance +
Util. getShort (
pd.getPart ((short)5). getValue(),(short)0));
state = STATE_IDLE;
return generate_ReqValAck_msg (INS_ACK);

}

To perform a wal protocol step, we first check whether the transmitted payment details are
equal to the local copy (pd.equals(...)). If they are, we increment the balance by the amount given
by the payment details and set the state to IDLFE. In the end, we generate an acknowledge mes-
sage (generate_ReqValAck_msg(INS_ACK)), which constructs a corresponding document pointer
structure). Finally, we return the ACK message which will be sent to the other card at the end
of the step method described above.

4.2 Properties

The implementation described in this Section makes extensive use of pointer structures to represent
the messages sent between the cards and to implement the state of the cards. The idea here is
to implement the document data type of the security protocol very closely. When verifying such
an implementation (the refinement proof for this implementation is current work in progress),
we discovered that it is crucial to have good verification support for pointer structures. Some
results for the verification technique for programs using complex pointer structues can be found
in [SGRO6].

For the Mondex example we use an invariant for the Purse class, which describes that the
corresponding pointer structure is wellformed. Since memory allocation on smart cards cannot
be done at runtime (there is no garbage collection and the memory is very limited), we have to
allocate every piece of memory that is needed already inside the constructor of the purse. This
also means that all document messages that will be sent by the card have to be pre-allocated at
instance creation time. The same is true for the payment details field, the exception log and every
other field of the purse.

This leads to an invariant that describes for every field which pointer structure is stored within
the field. An example is given below for the payment details field pd of class Purse. This example
uses the notation and predicates of the Java Calculus in KIV described in [Ste04] [Ste05] [SGROG6].

is-pd-ref(r,st) <

validrefnotnull(r, Doclist,st)

A validrefnotnull(st[r — .docs].refval, mkarraytype(Document),st)
A st[r.docs.length] = 5

A st[r.docs.type] = mkarraytype(Document)

A validrefnotnull(st[r.docs[0]], IntDoc, st)

A validrefnotnull(st[r.docs[1]], IntDoc, st)
A validrefnotnull(st[r.docs[2]], IntDoc, st)
A validrefnotnull(st[r.docs[3]], IntDoc, st)
A validrefnotnull(st[r.docs[4]], IntDoc, st)

A okarray(st[r.docs[0].value],byte_type,8,st

]
]
]
]

[0].value])
A okarray(st[r.docs[1].value],byte_ type,?,st)
A okarray(st[r.docs[2].value],byte_type,8,st)
A okarray(st[r.docs[3].value],byte_type,2,st)
A okarray(st[r.docs[4].value],byte_type,2,st)

Predicate is-pd-ref(r,st) describes when a pointer structure starting at reference r is a valid
representation of payment details in Java store st. The reference itself has to have type Doclist
and must not be null (validrefnotnull(r, Doclist,st)). The docs field of this Doclist has to be of
the right type (array of Document) and its length must be five (since payment details have five
slots). Every payment detail entry must be of type IntDoc (given by walidrefnotnull(stfr.docsfif],

17

IntDoc, st)) and the values of the entrys must be arrays of type byte of the correct length (okar-
ray(stfr.docs/i].value],byte_type,j,st)).

18

Chapter 5

Conclusion

We presented three implementations for the Mondex case study.

Two of them are based on APDU communication with byte arrays. Both implementations try
to implement the communication protocol specification level (see Fig. 1.1) as close as possible. The
communication protocol level (the concrete level of [SCWO00] or [SGHRO06]) does not contain any
cryptography in the specification yet. Both implementations have to add cryptography to ensure
security of the protocol. One of them is using symmetric cryptography, the other one is using
asymmetric cryptography. The use of asymmetric cryptography has some security advantages (if
one card is hacked physically, this does not lead to the possibiliy of an attack against all other
cards), but also requires a more complicated protocol because of limited APDU lengths.

We also show a way to implement the Mondex case study using specialized security protocol
data types and symmetric cryptography. This implementation is based on the security protocol
level which already introduces cryptography and is shown to be a refinement of the communication
protocol level in [HSGRO6]. The direct transformation of the datatypes of this specification level
into Java classes makes a refinement proof for the Java code possible. This is current work in
progress based on the approach described in [GSRO06a).

19

Appendix A

Source Code: Symmetric
cryptography using byte arrays

NS
*

Copyright (C) 2006 Holger Grandy, Department of Software
Engineering, University of Augsburg, Germany This program
is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be
useful , but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License
for more details. You should have received a copy of the
GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110—1301, USA

* Kk X X X X X X X X X X X ¥

S
* %
™~

Mondex FElectronic Purse Implementation using symmetric
cryptography and pre shared keys Author: Holger Grandy,
Department of Software Engineering, University of
Augsburg, Germany This is an example implemenation for
the Mondex electronic purse scenario. This implementation
is a case study for research and for academic purposes
only. It has nothing to do with the real implementation
of Mondex FElectronic Purses owned by Mastercard
International. There is absolutely mno relationship
between the authors of this source code and National
Westminster Bank, Mastercard International or any other
institution involved in the Mondex Smart Cards. The
underlying specification for this implementation can be
found at

hittp ://www. informatik . uni—augsburg.de/swt/projects /mondex. html
in Project "Mondex ASM Refinement — improved version”

* K X X K X X K X X X X X X X ¥

*/

package mondex;
import javacard.framework .APDU;

import javacard.framework. Applet;
import javacard.framework.ISO7816;

20

import javacard.framework.ISOException;
import javacard.framework.JCSystem;
import javacard.framework. Util;

import javacard.security .DESKey;

import javacard.security .KeyBuilder;
import javacardx.crypto.Cipher;

public class Purse extends Applet {
// instructions

private static final byte SF = (byte) 2;
private static final byte ST = (byte) 6;
private static final byte REQ = (byte) 12;
private static final byte VAL = (byte) 14;
private static final byte ACK = (byte) 16;
private static final byte GNS = (byte) 18;
private static final byte GEL = (byte) 20;
private static final byte DEL = (byte) 22;
private static final byte INIT = (byte) 24;
// states

private static final byte IDLE = (byte) 1;
private static final byte EPR = (byte) 5;
private static final byte EPV = (byte) 6;
private static final byte EPA = (byte) T7;
private static final byte EPI = (byte) 8;

// pd indizes
private static final byte index_fromname = ()
private static final byte index_toname = ()
private static final byte index_fromseqno = (byte) O0;
private static final byte index_toseqno = ()

()

private static final byte index_amount = (byte) 20;
private Cipher cipher;

// my protocol fields

private short balance;

private byte][] name ;

private short seqNo;

private byte state;

// pay details and exzception log

private byte][] currentPD;

private byte[] exlog;

private short currentExLoglndex;
// keys and signatures

private byte[] sharedkey ;

private byte][] bankkey ;

private DESKey sharedkeyobj;
private DESKey bankkeyobject ;

Vax:
x Constructor, initialize fields and cryptographic keys
*/
public Purse() {
currentPD = new byte[8 /x name x/+ 8 /x other name x/
+ 2 /% seqno *x/4+ 2 /x other seqno */
+ 2 /% amount x/
I
// support 5 exception log entries
exlog = new byte[(short) (5 x currentPD.length)];
currentExLogIndex = 0;
// symmetric 3DES session key for communication with

21

// other cards

// value will be set in init phase

sharedkey = new byte[24];

// symmetric 8DES banking key, wused only for archiving

// and deleting

// exception logs, wvalue will be set in init phase

bankkey = new byte[24];

// session key object, wvalue will be set in init phase

sharedkeyobj = (DESKey) KeyBuilder.buildKey (
KeyBuilder . TYPEDES, KeyBuilder . LENGTH DES33KEY,
true);

// banking key object, wvalue will be set in init phase

bankkeyobject = (DESKey) KeyBuilder.buildKey (
KeyBuilder . TYPEDES, KeyBuilder . LENGTH DES33KEY,
true);

// current state

state = EPI;

// name will be set in INIT phase

name = new byte [8];

// initial balance will be set in INIT phase

balance = 0;
cipher = Cipher.getlnstance (Cipher . ALGDES_ CBCNOPAD,
true);
register ();
}
VAT
x create a new instance of this purse
*
/

public static void install (byte[] b, short i, byte b0) {
new Purse ();
}

Vix:
* moting to do when selecting this applet
*/
public boolean select () {
return true;
}

Var:
* main case distinction , checks input / state and
x corresponding protocol step function
*
/
public void process (APDU arg0) throws ISOException {
JCSystem . beginTransaction ();
byte[] buffer = arg0.getBuffer ();
byte ins = buffer [ISO7816.0FFSET_INS];
if (ins == ISO7816.INS_SELECT)
return;
else if (state =— EPI && ins = INIT)
setFields (arg0);
else if (state = IDLE && ins == GNS)
getNameSeqNoBal (arg0) ;
else if (state = IDLE && ins = GEL)
getExlog(arg0);
else if (state — IDLE && ins = DEL
&& checkExlog(arg0))

22

delExlog (arg0);
else if (state = IDLE && ins = SF
&& checkStartFrom (arg0))
startFrom (arg0);
else if (state = IDLE && ins == ST
&& checkStartTo (arg0))
startTo (arg0);
else if (state = EPR && ins == REQ
&& checkStep (argd, REQ))
req(arg0);
else if (state = EPV && ins == VAL
&& checkStep (argd, VAL))
val (arg0);
else if (state = EPA && ins = ACK
&& checkStep (argd, ACK))
ack (arg0);
else {
abort ();
JCSystem . commitTransaction ();
ISOException. throwIt (ISO7816 .SW.COMMANDNOTALLOWED) ;
}

JCSystem . commitTransaction ();

}

/) sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok K R K K K K R R R KRR R R R R R R K
// personalize card
/)RR R KKK ok ok ok KK KK SR R KKK SR R R KKK SR SRR KK KK SRR KK Kk ok ok
Vix:
x sets internal fields (both keys, mame, balance), only
x called once after initial installation of applet this
x must happen in a secured environment at the bank
x before the customer gets the card
*/
private void setFields (APDU arg0) {
short 1 = arg0.setIncomingAndReceive ();
if (1 != 58)
return;
byte[] buffer = arg0.getBuffer ();
// set banking key
Util.arrayCopy (buffer , ISO7816.0OFFSET.CDATA, bankkey,
(short) 0, (short) 24);
bankkeyobject .setKey (bankkey, (short) 0);
// set shared card key
Util.arrayCopy (buffer ,
(short) (ISO7816.0OFFSET_CDATA + 24), sharedkey ,
(short) 0, (short) 24);
sharedkeyobj.setKey (sharedkey, (short) 0);
// set own mame
Util.arrayCopy (buffer ,
(short) (ISO7816.0OFFSET_CDATA + 24 + 24), name,
(short) 0, (short) 8);
// set initial balance
balance = Util. getShort (buffer
(short) (ISO7816.OFFSET.CDATA + 24 + 24 + 8));
// init state
state = IDLE;

23

/) s s ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok o s K K K K K K K KRR KRR KRR KRR R K
// check methods for input / state
/)RR R KKK R KK KK SR R KK KK SR R K KKK K R R KK KK KO KKKk ok ok
VAT
x check method for input / state when receiving
x req/val/ack
*/
private boolean checkStep (APDU arg0, byte ins) {
short 1 = arg0.setIncomingAndReceive ();
if (1 != (short) 24)
return false;
byte[] buffer = arg0.getBuffer ();
decrypt (sharedkeyobj, buffer, ISO7816.0OFFSET_CDATA,
(short) 24);
// encrypted instruction has to be ok, pay details must
// match
if (buffer [ISO7816 .OFFSET_-CDATA] != ins
|| Util.arrayCompare(buffer ,
(short) (ISOT7816.0OFFSET.CDATA + 1), currentPD
(short) 0, (short) currentPD.length) != 0)
return false;
return true;

}
Vix:

* check method, called when receiving startTo
*
/
private boolean checkStartTo (APDU arg0) {
short 1 = arg0.setIncomingAndReceive ();
if (1 != (short) 16)
return false;
byte[] buffer = arg0.getBuffer ();
// check seq no
if (seqNo == 32767)
return false;
decrypt (sharedkeyobj, buffer, ISO7816.0OFFSET_CDATA,
(short) 16);
// check instruction
if (buffer [ISO7816.0OFFSET.CDATA| != ST)
return false;
// check other name != own name
if (Util.arrayCompare(buffer ,
(short) (ISOT7816.0OFFSET.CDATA + 1 + 2), name,
(short) 0, (short) name.length) = (short) 0)
return false;
// check exlog not full
if (currentExLogIndex = exlog.length)
return false;
// check positive amount
if ((short) (Util.getShort(buffer,
(short) (ISO7816.0OFFSET CDATA + 1 + 2 + 8))) <= (short) 0)
return false;
// check overflow
if ((short) (Util.getShort(buffer ,
(short) (ISO7816.OFFSET.CDATA + 1 + 2 + 8)) + balance) <= (short)
return false;
return true;

24

Vax:
x check method, called when receiving startFrom
*
/
private boolean checkStartFrom (APDU arg0) {
short 1 = arg0.setIncomingAndReceive ();
byte[] buffer = arg0.getBuffer ();
if (1 1= 12)
return false;
// check seq no
if (seqNo == 32767)
return false;
// check other name != own name
if (Util.arrayCompare(buffer ,
(short) (ISO7816.0OFFSET_CDATA + 2), name,
(short) 0, (short) name.length) = (short) 0)
return false;
// check ezlog not full
if (currentExLoglndex = exlog.length)
return false;
// check positive amount
if ((short) (Util.getShort(buffer,
(short) (ISO7816.OFFSETCDATA + 1 + 2 + 8))) <= (short) 0)
return false;
// check underflow
if ((short) (Util
.getShort (buffer , (short) (ISO7816.0FFSET.CDATA
+ (short) 2 + (short) 8))) > balance)
return false;
return true;

}
VAT

x check method, called when receiving a ”delete exlog”
*x message
x input: DEL + Enc[Bank](DEL + ezlog)
* output: ok
*/
private boolean checkExlog(APDU arg0) {
arg0.setIncomingAndReceive ();
byte[] buffer = arg0.getBuffer ();
decrypt (bankkeyobject , buffer , ISO7816.0FFSET_CDATA,
(short) 112);
// check instruction
if (buffer [(short) (ISO7816.0FFSET.CDATA)] != DEL)
return false;
// decrypted exlog must match
if (Util.arrayCompare(buffer ,
(short) (ISO7816.0OFFSETCDATA + 1), exlog,
(short) 0, (short) exlog.length) != 0)
return false;
return true;

}

[/ R R K KKK K R KK KK K R S KK KK K R KK KKK K ok K KKK K o K K KK oK
// aborting and logging
[/ Rk R K KKk Rk KK KR K R S KK KK R R S KK KK R R R K KK R K R K K KR R Ok

Vix:

25

x resets state and logs current pay details if in EPA
x or EPV
*/
private void abort () {
loglfNeeded ();
state = IDLE;

}
Vil

x logs current pay details if in EPA or EPV
*/
private void logIfNeeded () {
if (state = EPV || state = EPA) {
Util.arrayCopy (currentPD, (short) 0, exlog,
currentExLoglndex, (short) currentPD.length);
currentExLogIndex += (short) currentPD.length;

}
}

/ 3k 3k sk >k >k sk skok sk ook 3k 3kok sk sk >k 3k 3k sk sk sk 3k sk sk sk sk >k 3k sk sk sk sk >k 3k 3k sk sk ok >k sk sk sk sk >k 3k skok sk ok ok

// archiving stuff
/)RR R R K KKK K R KK KK K R S KK KK K R S KK KKK K R K KKK K R K KKK K
Vax:
x getExLog protocol step
* input: GEL
% output: Enc[Bank](name + ezlog)
*
/
private void getExlog (APDU arg0) {
byte[] buffer = arg0.getBuffer ();
Util.arrayCopy (name, (short) 0, buffer, (short) 0,
(short) name.length);
Util.arrayCopy (exlog, (short) 0, buffer, (short) 8,
(short) exlog.length);
short len = encrypt(bankkeyobject, buffer, (short) 0,
(short) (exlog.length + name.length));
arg0.setOutgoingAndSend ((short) 0, len);

}
VAT

x delete exlog entries and reset counter
*/
private void delExlog(APDU arg0) {
for (short i = 0; i < (short) exlog.length; i++)
exlog[i] = 0;
currentExLogIndex = 0;

}

[/ Rk R o Kk Rk KK KR R R S KK KR R R KK KK R R R K KR R R K K KR R
// protocol steps from here
/o ko K o K R oK o K o K K o Ko o K o o ok o Kok o K Kk o
VAT

* ack protocol step

x input: ACK + Enc[SharedKey](ACK + Paydetails)

* output: ok

*/
private void ack(APDU arg0) {

state = IDLE;

}

26

Vax:
x val protocol step
* input: VAL + Enc[SharedKey](VAL + Paydetails)
* output: ACK + Enc[SharedKey|(ACK + Paydetatls)
*
/
private void val(APDU arg0) {
byte[] buffer = arg0.getBuffer ();
// increment balance
balance = (short) (balance + Util.getShort (currentPD
index_amount));
// build apdu for other card
// we can wuse current input buffer, wvalues should be
// right already
// except encryption/instruction byte
buffer [1] = ACK;
buffer [5] = ACK;
encrypt (sharedkeyobj, buffer , ISO7816.0OFFSET_CDATA,
(short) (currentPD.length 4+ 1));
state = IDLE;
arg0.setOutgoingAndSend ((short) 0, (short) 29);

}
VAT

x req protocol step

x input: REQ + Enc[SharedKey](REQ + Paydetails)

x output: VAL + Enc[SharedKey|](VAL + Paydetails)

*

/

private void req(APDU arg0) {
byte[] buffer = arg0.getBuffer ();
balance = (short) (balance — Util.getShort (currentPD,

index_amount));
// build apdu for other card
// we can use current input buffer, wvalues should be
// right already
// except encryption/instruction byte
buffer [1] = VAL;
buffer [5] = VAL;
encrypt (sharedkeyobj, buffer, ISO7816.0OFFSET_CDATA,
(short) (currentPD.length 4+ 1));

buffer [(short) (ISO7816.0OFFSET-CDATA + 24)] = (byte) 30;
state = EPA;
arg0.setOutgoingAndSend ((short) 0, (short) 30);

N,

I T .

startTo protocol step
input:
STARTTO + Enc[SharedKey] (STARTTO
+ seqno_other + name_other + amount)
output:
REQ + Enc[SharedKey](REQ + Paydetails)
*

/
private void startTo (APDU arg0) {
byte[] buffer = arg0.getBuffer ();
// copy other seq mo
Util.arrayCopy (buffer ,

(short) (ISO7816.0OFFSET-CDATA + 1), currentPD,

27

index_fromseqno, (short) 2);

// copy other name

Util.arrayCopy (buffer ,
(short) (ISO7816.0OFFSET CDATA + 1 + (short) 2),
currentPD, index_fromname, (short) 8);

// copy amount

Util.arrayCopy (buffer , (short) (ISO7816.0OFFSET_.CDATA
+ 1 + (short) 2 + (short) 8), currentPD,
index_amount , (short) 2);

// set own seqno

Util.setShort (currentPD, index_-toseqno, seqNo);

// set own name

Util.arrayCopy (name, (short) 0, currentPD,
index_toname, (short) 8);

// build apdu for other card

buffer [0] = (byte) 0x90;

buffer [1] = REQ;

buffer [4] = (byte) 24;

buffer [ISO7816 .OFFSET.CDATA] = REQ;

// copy paydetails

Util.arrayCopy (currentPD, (short) 0, buffer,
(short) (ISO7816.0FFSET.CDATA + 1),
(short) currentPD.length);

encrypt (sharedkeyobj, buffer, ISO7816.0OFFSET_CDATA,
(short) (currentPD.length + 1));

buffer [(short) (ISO7816.0FFSET_CDATA + 24)] = (byte) 30;

state = EPV;

seqNo += (short) 1;

arg0.setOutgoingAndSend ((short) 0, (short) 30);

N,

* K KK X X X

*
startFrom protocol step
input:
STARTFROM + seqno_other + mame_other + amount
output:
STARTTO + Enc[SharedKey | (STARTFRom +
seqno + name + amount)
*/

private void startFrom (APDU arg0) {

byte[] buffer = arg0.getBuffer ();

// copy other seq no

Util.arrayCopy (buffer , (short) (ISO7816.0OFFSET_.CDATA),
currentPD, index_toseqno, (short) 2);

// copy other name

Util.arrayCopy (buffer ,
(short) (ISO7816.0OFFSETCDATA + (short) 2),
currentPD, index_toname, (short) 8);

// copy amount

Util.arrayCopy (buffer , (short) (ISO7816.0FFSET_-CDATA
+ (short) 2 + (short) 8), currentPD, index_amount,
(short) 2);

// set own seqno

Util.setShort (currentPD , index_fromseqno, seqNo);

// set own name

Util.arrayCopy (name, (short) 0, currentPD,
index_fromname, (short) 8);

// build apdu for other card

28

buffer [0] = (byte) 0x90;
buffer [1] = ST;
buffer [4] = (byte) 16;

buffer [5] = ST;

Util.setShort (buffer ,

(short) (ISO7816.0OFFSET_CDATA + 1), seqNo);

Util.arrayCopy (name, (short) 0, buffer,

(short) (ISO7816.0OFFSET.CDATA + 1 + 2),
(short) name.length);

Util.arrayCopy (currentPD , index_amount, buffer
(short) (ISO7816.0OFFSET.CDATA + 1 + 2 + 8),
(short) 2);

encrypt (sharedkeyobj, buffer, ISO7816.0OFFSET_CDATA,
(short) 13);

buffer [(short) (ISO7816.0FFSET.CDATA + 16)] = (byte) 30;

// increment seq no

seqNo += (short) 1;

state = EPR;

arg0.setOutgoingAndSend ((short) 0, (short) 22);

}

/) sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok R K K K K R KRR R R R R R R K
// query messages from here
/)RR R R KRk Rk KK KK SR R KK KK SR R K KKK SR R R KK KK SR KK Kk ok ok
Vix:
x getNameSeqNoBalance protocol step
* input: GNS
* output: seqno + name + balance
*/
private void getNameSeqNoBal(APDU arg0) {
byte[] buffer = arg0.getBuffer ();
// copy my seq mo
Util.setShort (buffer, (short) (ISO7816.0OFFSET-CDATA),
seqNo);
// copy my mame
Util.arrayCopy (name, (short) 0, buffer,
(short) (ISO7816.0FFSET.CDATA + 2),
(short) name.length);
// copy my balance
Util.setShort (buffer ,
(short) (ISO7816.0FFSET_CDATA + 2 + name.length),
balance);
state = IDLE;
arg0.setOutgoingAndSend (ISO7816 .OFFSET_CDATA,
(short) (name.length + (short) 2 + (short) 2));

}

J /s sk koK KRR R ok R OR K KR R K SR KKK KRR K K SR KR KRR K K SR KKK K K K oK oK oK K
// cryptography
/) ks sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok o o o o R R K R R R R K R K KK KRR R K
VAT
x encrypt buffer beginning at inder encryptionbegin
* with length len with Key k, store result in place
*/
private short encrypt(DESKey k, byte[] buffer ,
short encryptionbegin, short datalen) {
short i = datalen;
if (datalen % 8 != 0)

29

i = (short) (datalen — (datalen % 8) + 8);
for (short j = datalen; j < i; j++) {

buffer [(short) (ISO7816.0OFFSET_-CDATA + j)] = (byte)
}
cipher.init (k, Cipher .MODEENCRYPT);
cipher.doFinal(buffer , encryptionbegin, i

encryptionbegin);

return i;

, buffer ,

}
Vix:

x decrypt buffer beginning at indexr begin with length
x len with Key k, store result in place
*/
private void decrypt(DESKey k, byte[] buffer ,
short begin, short len) {
cipher.init (k, Cipher .MODEDECRYPT);
cipher.doFinal (buffer , begin, len, buffer, begin);

30

Appendix B

Source Code: Asymmetric
cryptography using byte arrays

NS
*

Copyright (C) 2006 Nina Moebius, Department of Software
Engineering, University of Augsburg, Germany This program
is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be
useful , but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License
for more details. You should have received a copy of the
GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110—1301, USA

* Kk X X X X X X X X X X X ¥

S
* %
™~

Mondex FElectronic Purse Implementation wusing asymmetric
cryptography Awuthor: Nina Moebius, Department of Software
Engineering, University of Augsburg, Germany This is an
example implemenation for the Mondex electronic purse
scenario. This implementation is a case study for
research and for academic purposes only. It has nothing
to do with the real implementation of Mondex FElectronic
Purses owned by Mastercard International. There is
absolutely no relationship between the authors of this
source code any National Westminster Bank, Mastercard
International or any other institution involved in the
Mondex Smart Cards. The underlying specification for this
implementation can be found at

http ://www. informatik . uni—augsburg.de/swt/projects /mondex. html
in Project "Mondex ASM Refinement — improved wversion”

¥Rk XK X X X K X X X X X X X ¥

*/

package mondex;

import javacard .framework .APDU;

import javacard.framework. Applet;
import javacard.framework.ISO7816;
import javacard.framework.ISOException;

31

import
import
import
import
import
import

javacard .
javacard .
javacard .
javacard .
javacard .
javacard .

framework . Util ;
framework . JCSystem ;

security
security
security
security

. KeyBuilder;
.RSAPublicKey ;
.RSAPrivateKey;
.Signature;

// Mondex Implementation using asymmetric cryptography
public class Purse extends Applet {

// instructions
private static
private static
private static
private static
private static
private static
private static
private static
private static
private static
private static
private static
private static
private static
private static
// states
private static
private static
private static
private static
private static
private static
private static
private static
private static

// state + instruction overloaded

private static
private static
private static
private static
// pd indizes
private static
private static
private static
private static
private static
// my protocol
private short
private byte][]
private short
private byte

// pay details
private byte][]
private byte][]
private short
// my keys and
private byte][]
private byte][]

final byte SF1

final byte SF2

final byte ST1

final byte CONTINUE_ST1
final byte CONTINUE_ST2
final byte ST2

final byte ST3

final byte REQ

final byte VAL

final byte ACK

final byte GNS

final byte GSI

final byte ARCHIVE
final byte DELLOG

final byte BAL

final byte IDLE

final byte EPSF2

final byte EPST2

final byte EPST3

final byte EPR

final byte EPV

final byte EPA

final byte EPCST1

final byte EPCST?2

final byte INIT1

final byte INIT2

final byte INIT3

final byte INIT4

final byte index_fromname
final byte index_toname
final byte index_fromseqno
final byte index_toseqno
final byte index_amount
fields

balance;
name;
seqNo;
state;

and exception log

signatures

currentPD ;
exlog;
exlogCounter;

mypubkey ;
myprivkey;

32

© 00O T Wi+

O © ©
W N =

94;

private byte][] mypubexp ;

private RSAPublicKey myrsapub;
private RSAPrivateKey myrsapriv;
private RSAPublicKey otherrsapub;
private byte][] othermodulus;
private byte][] mysignature;
private RSAPublicKey bankkey ;
private Signature sign;

// constant public bank key

private static final byte[] bankmodulus = new byte[] {
(byte) 0x83, (byte) 0xD5, (byte) 0xA8, (byte) O0xET7,
(byte) 0x87, (byte) 0x28, (byte) 0xF6, (byte) O0xFD,
(byte) 0x56, (byte) 0x09, (byte) 0x22, (byte) 0x43,
(byte) 0x15, (byte) 0xAl, (byte) 0xCO, (byte) 0x40,
(byte) 0x54, (byte) 0xBD, (byte) 0x9A, (byte) 0x3B,
(byte) 0xD7, (byte) 0x9A, (byte) OxAA, (byte) OxFT7,
(byte) 0x9B, (byte) 0x8B, (byte) 0xF4, (byte) O0xAl,
(byte) OxFC, (byte) 0x96, (byte) OxEF, (byte) 0xC8,
(byte) 0xB7, (byte) OxFF, (byte) 0x0C, (byte) OxET,
(byte) 0x98, (byte) 0xF5, (byte) 0xDA, (byte) 0x7C,
(byte) 0x19, (byte) 0x21, (byte) 0xD9, (byte) 0x13,
(byte) 0x4A, (byte) 0x6D, (byte) 0x03, (byte) 0x05,
(byte) 0x35, (byte) O0xDF, (byte) 0x86, (byte) 0x41,
(byte) O0x8E, (byte) 0x50, (byte) 0x14, (byte) OxFF,
(byte) 0x15, (byte) 0xE2, (byte) O0xFC, (byte) 0xDD,
(byte) 0x25, (byte) 0x2D, (byte) OxFA, (byte) 0x75,
(byte) 0x64, (byte) 0xAO0, (byte) 0x44, (byte) 0x5A,
(byte) OxBE, (byte) 0x12, (byte) 0x58, (byte) 0x5D,
(byte) 0xC3, (byte) 0xD3, (byte) 0x5E, (byte) O0x0E,
(byte) 0xD5, (byte) 0x88, (byte) 0x08, (byte) 0x28,
(byte) 0xAl, (byte) 0x45, (byte) 0x59, (byte) 0x93,
(byte) 0xC8, (byte) 0x50, (byte) 0x3F, (byte) 0x0C,
(byte) O0xE8, (byte) 0x86, (byte) 0x97, (byte) 0x52,
(byte) 0x76, (byte) 0x9F, (byte) 0x34, (byte) O0xDF,
(byte) 0x71, (byte) O0xEB, (byte) 0x8B, (byte) 0x5C,
(byte) 0x64, (byte) 0x1E, (byte) 0x00, (byte) O0xAD,
(byte) 0xA4, (byte) OxFF, (byte) 0x67, (byte) O0xBA,
(byte) 0x31, (byte) 0x31, (byte) O0xEC, (byte) 0x46,
(byte) 0xE7, (byte) 0xC5, (byte) 0xB7, (byte) 0x22,
(byte) 0xC4, (byte) 0x10, (byte) 0x9D, (byte) 0xB9,
(byte) OxFC, (byte) 0x5D, (byte) 0x6F, (byte) 0x56,
) ()

(byte) 0x1F, (byte) 0xD7, (byte) 0x26,
// one temporary array for signature checks and
// temporary data storage
private byte][] temp ;

public Purse() {

currentPD = new byte[(short) 8 /x nameto */
+ (short) 8 /+ namefrom x/+ (short) 2 /x seqnoto */
+ (short) 2 /+ seqnofrom x/+ (short) 2 /+x amount x/

I

temp = new byte[1024];

// support 5 exception loggings

exlog = new byte[(short) (5 % currentPD.length)];

exlogCounter = 0;

// init my fized fields

balance = (short) 200;

seqNo = (short) 1;

33

name = new byte[(short) 8];
mypubexp = new byte[] { 1, 0, 1 };
mypubkey = new byte[(short) 128];
myprivkey = new byte[(short) 128];
mysignature = new byte[(short) 128];
othermodulus = new byte[128];
state = IDLE;
sign = Signature.getInstance (
Signature . ALG_RSA_SHA PKCS1, true);
myrsapub = (RSAPublicKey) KeyBuilder.buildKey (
KeyBuilder . TYPE_RSA_PUBLIC,
KeyBuilder . LENGTH_RSA_1024, true);
myrsapriv = (RSAPrivateKey) KeyBuilder.buildKey (
KeyBuilder . TYPE_RSA PRIVATE,
KeyBuilder . LENGTH_RSA_1024, true);
otherrsapub = (RSAPublicKey) KeyBuilder.buildKey (
KeyBuilder . TYPE_RSA_PUBLIC,
KeyBuilder . LENGTH_RSA_1024, true);
otherrsapub.setExponent (new byte[] { (byte) 0x01,
(byte) 0x00, (byte) 0x01 }, (short) 0, (short) 3);
// initialize bank public key
bankkey = (RSAPublicKey) KeyBuilder.buildKey (
KeyBuilder . TYPE_RSA_PUBLIC,
KeyBuilder . LENGTH_RSA_1024, true);
bankkey.setExponent (new byte[] { (byte) 0x01,
(byte) 0x00, (byte) 0x01 }, (short) 0, (short) 3);
bankkey.setModulus (bankmodulus, (short) 0,
(short) bankmodulus.length);
register ();

}

public static void install (byte[] b, short i, byte b0) {
new Purse ();
}

public boolean select () {
return true;

/) sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o K K K K K K K R KRR R K
// main case distinction , basically calls checkstate and
// corresponding protocol step function
/) sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok o o K K K K K K R R R KRR R K
public void process (APDU argO) throws ISOException {
JCSystem . beginTransaction ();
byte[] buffer = arg0.getBuffer ();

if (buffer [[SO7816.OFFSET_INS] = ISO7816.INS_SELECT)
return;
else if (buffer [ISO7816.0OFFSET_INS] = BAL

&& state =— IDLE)
getBalance (arg0);
else if (buffer [ISO7816.0OFFSET_INS] = INIT1
&& state = IDLE && checkLengthName (arg0))
setName (arg0);
else if (buffer [ISO7816.0OFFSET_INS] = INIT2
&& state = INIT2 && checkLength(arg0))
setPubKey (arg0);
else if (buffer [ISO7816.OFFSET_INS] = INIT3

34

&& state = INIT3 && checkLength(arg0))
setPrivKey (arg0);
else if (buffer [ISO7816.0OFFSET_INS] — INIT4
&& state = INIT4 && checkLength (arg0))
setSignature (arg0);
else if (buffer [[SO7816.OFFSET_INS] = GNS
&& state = IDLE)
getNameSeqNo (arg0);
else if (buffer [ISO7816.0FFSET.INS] = GSI
&& state = IDLE)
getSig (argl);
else if (buffer [ISO7816.0FFSET_INS] — SF1
&& state = IDLE && checkStartFT (arg0))
startFroml (arg0);
else if (buffer [ISO7816.0OFFSET_INS] — SF2
&& state = EPSF2 && checkSF2 (arg0))
startFrom2 (arg0);
else if (buffer [[SO7816.OFFSETINS] = STI
&& state = IDLE && checkStartFT (arg0))
startTol (arg0);
else if (buffer [ISO7816.0OFFSET_INS] =— CONTINUE_ST1
&& state = EPCST1)
continueST1 (arg0);
else if (buffer [ISO7816.0OFFSET_INS] — ST2
&& state = EPST2 && checkST2 (arg0))
startTo2 (arg0);
else if (buffer [ISO7816.0FFSET_INS] =— CONTINUE_ST2
&& state = EPCST2)
continueST2 (arg0);
else if (buffer [ISO7816.OFFSET.INS] =— ST3
&& state = EPST3 && checkST3 (arg0))
startTo3 (arg0);

else if (buffer [ISO7816.OFFSETINS] = REQ
&& state = EPR && checkStep (argd, REQ))
req(arg0);
else if (buffer [[SO7816.OFFSET_INS] = VAL
&& state = EPV && checkStep (argd, VAL))
val (arg0);
else if (buffer [ISO7816.0FFSET.INS] =— ACK
&& state = EPA && checkStep (argld, ACK))
ack (arg0);
else if (buffer [ISO7816.0OFFSET_INS] — ARCHIVE

&& state = IDLE)
archive (arg0);
else if (buffer [ISO7816.0FFSET_INS] =— DELLOG
&& state = IDLE && checkDelLog(arg0))
delLog(arg0);
else {
abort ();
JCSystem . commitTransaction ();
ISOException. throwlIt (ISO7816 .SW_DATA INVALID);
}

JCSystem . commitTransaction ();

}

/)RR KK KK SR o KKK SR K R KK KK SR R R K KK SR K ok K KK K
// protocol steps from here
/) sk ok sk kot ok kR sk ok sk sk ok ok Kk sk ok sk sk ok ok kK K sk ok sk ok ok K KKk ok ok oK

35

// input: Ack((name_To, name_from, SeqNo_From, SeqNo_To,
// Amount), Sig[To](Ack,name-To, name_from, SeqNo_From,
// SeqNo_To, Amount))
// output: ok
private void ack(APDU arg0) {

state = IDLE;
}

// input: Val((name-To, mname_from, SeqNo_From, SeqNo_To,
// Amount), Sig[From](Val,name_-To, name_from,
// SeqNo_From, SeqNo_-To, Amount))
// output: Ack((name-To, mname_from, SeqNo_From,
// SeqNo_To, Amount), Sig[To](Ack,name_To, name_from,
// SeqNo_From, SeqNo_-To, Amount))
private void val (APDU arg0) {
byte[] buffer = arg0.getBuffer ();
// increase balance of to purse
balance = (short) ((short) balance 4+ Util.getShort(
currentPD, index_amount));
// send ack message
// copy currentPD to buffer
Util.arrayCopy (currentPD, (short) 0, buffer,
ISO7816 .OFFSET_CDATA, (short) currentPD.length);
// create signature and copy signature to buffer
temp [0] = ACK;
sign.init (myrsapriv, Signature.MODESIGN);
sign
.sign (
temp,
(short) 0
(short) (
buffer ,
(short) ((short) ISO7816.0OFFSET_CDATA + (short) currentPD.length));
buffer [0] = (byte) 0x90; // CLA
buffer [1] = ACK; // INS
buffer [2] = (byte) 0; // PI
buffer [3] = (byte) 0; // P2
buffer [4] = (byte) 150; // length of data:
// currentPD.length +
// signature.length
arg0.setOutgoingAndSend ((short) ISO7816.0OFFSET_CLA,
(short) 155);
state = IDLE;

(short) currentPD.length + (short) 1),

}

// input: Req((name_To, name_from, SeqNo_From, SeqNo_To,
// Amount), Sig[To](Req,name-To, name_from, SeqNo_-To,
// SeqNo_From, Amount))
// output: Val((name_To, name_from, SeqNo_From,
// SeqNo_-To, Amount), Sig[From](Val,name-To, name_from,
// SeqNo_To, SeqNo_From, Amount))
private void req(APDU arg0) {

byte[] buffer = arg0.getBuffer ();

// decrement balance of from purse

balance = (short) ((short) balance — Util.getShort(

currentPD , index_amount));
// send wval message
// copy currentPD to buffer

36

temp [0] = VAL;
Util.arrayCopy (currentPD, (short) 0, buffer,

ISO7816 .OFFSET_CDATA,

sign.ini

sign
.sign (
temp,
(short) 0,
(short) ((short) currentPD.length + (short) 1),
buffer ,
(short) ((short) ISO7816.0OFFSET_CDATA + (short) currentPD
buffer [0] = (byte) 0x90; // CLA
buffer [1] = VAL; // INS
buffer [2] = (byte) 0; // PI
buffer [3] = (byte) 0; // P2
buffer [4] = (byte) 150; // length of data:

t (myrsapriv, Signature.MODESIGN);

// currentPD.length +
// signature.length

buffer [1

arg0.setOutgoingAndSend ((short) ISO7816.0OFFSET_CLA,

55] = (byte) 155; // le (= length of ack)

(short) (156));
state = EPA;

}

// input: ST3(Sig[From](Pubkey_From, Name_From,

// SeqNo_From,
// Name_From))

Amount, Sig[Bank](Pubkey_From,
)

// output: Req((name_To, name_from, SeqNo_From,
// SeqNo_-To, Amount), Sig[To](Req,name-To, name_from,

// SeqNo_From, SeqNo_-To, Amount))
private void startTo3 (APDU arg0) {
byte[] buffer = arg0.getBuffer ();

// copy paydetails of to purse to output buffer
Util.arrayCopy (currentPD, (short) 0, buffer,
ISO7816 .OFFSET_CDATA, (short) currentPD.length);

// copy REQ, paydetails to temp
temp [0] = REQ;

Util.arrayCopy (currentPD, (short) 0, temp,

(short) currentPD.length);

(short)

(short) currentPD.length);

1 ’

// sign REQ, paydetails and copy signature to output

// buffer
sign.init (myrsapriv, Signature.MODESIGN);
sign
.sign (

temp,

(short) 0,

(short) 23,

buffer ,

(short) ((short) ISO7816.0OFFSET CDATA + (short)
buffer [0] = (byte) 0x90; // CLA
buffer [1] = REQ; // INS
buffer [2] = (byte) 0; // PI
buffer [3] = (byte) 0; // P2

buffer [4] = (byte) 150; // length of data:

// currentPD.length +
// signature.length

buffer [155] = (byte) 156; // le: wval + apdu buffer

arg0

37

.length));

.setOutgoingAndSend (ISO7816 .OFFSET_CLA, (short) 156);
state = EPV;

}

// input: ST2(Sig[Bank](Pubkey_From, Name_From))
// output: ok
private void startTo2 (APDU arg0) {
byte[] buffer = arg0.getBuffer ();
// copy signature to temp array (—> temp =
// [pubkeyFrom , nameFrom, seqNo_From, Amount,
// Stg[bank](pubkeyFrom, nameFrom)])
Util.arrayCopy (buffer , ISO7816 .OFFSET_CDATA, temp,
(short) ((short) 128 + (short) 8 + (short) 5),
(short) 128);
state = EPST3;

}

// input: ST1(Pubkey_From, Name_From, SeqNo_From,
// Amount)

// output: ok

private void startTol (APDU arg0) {

byte[] buffer = arg0.getBuffer ();

temp [0] = ST3;

// copy other public key

Util.arrayCopy (buffer , ISO7816.0OFFSET_CDATA,
othermodulus, (short) 0, (short) 128);

otherrsapub.setModulus(othermodulus, (short) 0,
(short) 128);

Util.arrayCopy (buffer , ISO7816.0FFSET.CDATA, temp,
(short) 1, (short) 128);

// copy other name to currentPD

Util.arrayCopy (buffer ,

(short) (ISO7816.OFFSET.CDATA + (short) 128),
currentPD , index_fromname, (short) 8);

Util.arrayCopy (buffer ,

(short) (ISO7816.0FFSET.CDATA + (short) 128), temp,
(short) 129, (short) 8);

// copy other seqno

Util.arrayCopy (buffer ,

(short) (ISOT7816.0FFSET_.CDATA + (short) 136),
currentPD , index_fromseqno, (short) 2);

Util.arrayCopy (buffer ,

(short) (ISO7816.0OFFSET_ CDATA + (short) 136), temp,
(short) ((short) 129 + (short) 8), (short) 2);

// copy amount

Util.arrayCopy (buffer , (short) (ISO7816.0OFFSET_.CDATA
+ (short) 128 + (short) 8 + (short) 2), currentPD,
index_amount, (short) 2);

Util.arrayCopy (buffer , (short) (ISO7816.0OFFSET_.CDATA
+ (short) 128 + (short) 8 + (short) 2), temp,
(short) ((short) 129 + (short) 8 + (short) 2),
(short) 2);

// set own seqno

Util.setShort (currentPD, index_toseqno, seqNo);

// set own name

Util.arrayCopy (name, (short) 0, currentPD,
index_toname, (short) 8);

seqNo 4+= 1;

38

}

state = EPST2;

// input: CONTINUE.STI
// output: ST2(Sig[Bank](Pubkey_-From, Name_From))
private void continueST1(APDU arg0) {

}

byte[] buffer = arg0.getBuffer ();

buffer [0] = (byte) 0x90; // CLA

buffer [1] = ST2; // INS
[
[

buffer [2] = (byte) 0; // PI
buffer [3] = (byte) 0; // P2
buffer [4] = (byte) mysignature.length; // length of

// data

Util.arrayCopy (mysignature, (short) 0, buffer,

ISO7816 .OFFSET_CDATA, (short) mysignature.length);
arg0.setOutgoingAndSend (ISO7816.OFFSET_CLA,

(short) ((short) 5 + (short) mysignature.length));
state = EPCST2;

// input: CONTINUE.ST2

// output: ST3(Sig[From](Pubkey_-From, Name_From,
// SeqNo_From, Amount, Sig[Bank](Pubkey_-From,

// Name_From)))

private void continueST2(APDU arg0) {

byte[] buffer = arg0.getBuffer ();

buffer [0] = (byte) 0x90; // CLA

buffer [1] = ST3; // INS

buffer [2] = (byte) 0; // P1

buffer [3] = (byte) 0; // P2

buffer [4] = (byte) 128; // length of data

buffer [5 + 128] = (byte) 156; // le: req + apdu

// header

// copy ST3, my pubkey, name, SeqNo, Amount to temp

temp [0] = ST3;

Util.arrayCopy (mypubkey, (short) 0, temp, (short) 1,
(short) 128);

Util.arrayCopy (name, (short) 0, temp,
(short) ((short) 128 + (short) 1), (short) 8);

Util.arrayCopy (currentPD , index_fromseqno, temp,
(short) 137, (short) 2);

Util.arrayCopy (currentPD , index_amount, temp,
(short) 139, (short) 2);

// copy Signature of From Purse to temp

Util.arrayCopy (mysignature, (short) 0, temp,
(short) 141, (short) 128);

// sign data of temp array

sign.init (myrsapriv, Signature.MODESIGN);

sign.sign (temp, (short) 0, (short) 269, buffer,
ISO7816 .OFFSET_CDATA) ;

// send signature

arg0.setOutgoingAndSend (ISO7816 . OFFSET_CLA,
(short) ((short) 6 + (short) 128));

Util.arrayCopy (mypubexp, (short) 0, temp, (short) 0,
(short) 3);

state = EPR;

39

// input: SF2(Sig[Bank](Pubkey-To + name_To)

// output: ST1(Pubkey_-From, Name_From, SeqNo_From,

// Amount)

private void startFrom2 (APDU arg0) {
byte[] buffer = arg0.getBuffer ();
// build apdu for TO purse
buffer [0] = (byte) 0x90;
buffer [1] = ST1;
buffer [2] = (byte) 0x00;
buffer [3] = (byte) 0x00;

buffer [4] = (byte) ((short) 128 + (short) 8 + (short) 2 + (short)

// copy own public key

Util.arrayCopy (mypubkey, (short) 0, buffer ,
ISO7816 .OFFSET.CDATA, (short) 128);

// copy own name

Util.arrayCopy (name, (short) 0, buffer,
(short) (ISO7816.0FFSET_CDATA + (short)
(short) 8);

// copy own seq no

Util.arrayCopy (currentPD, index_fromseqno ,
(short) (ISO7816.0FFSET.CDATA + (short)
(short) 2);

// copy amount

128),

buffer ,
136),

Util.arrayCopy (currentPD, index_amount, buffer

(short) (ISOT7816.0FFSET CDATA + (short)

128

+ (short) 8 + (short) 2), (short) 2);

arg0.setOutgoingAndSend ((short) ISO7816.0FFSET_CLA,

(short) 145);
state = EPCST1;

}

// input: SFI1(Pubkey-To, SeqNo-To, Name-To, Amount)

// output: ok
private void startFroml (APDU arg0) {

byte[] buffer = arg0.getBuffer ();
// copy other public key

Util.arrayCopy (buffer , ISO7816.0OFFSET_CDATA,

othermodulus, (short) 0, (short) 128);

otherrsapub.setModulus (othermodulus, (short) 0,

(short) 128);
// copy other name to currentPD
Util.arrayCopy (buffer ,
(short) (ISOT7816.0FFSET_CDATA + (short)
currentPD , index_toname, (short) 8);
// copy other seq mno to currentPD
Util.arrayCopy (buffer ,
(short) (ISO7816.0FFSET_CDATA + (short)
currentPD, index_toseqno, (short) 2);
// copy amount to currentPD
Util.arrayCopy (buffer ,
(short) (ISOT7816.0FFSET.CDATA + (short)
currentPD , index_amount, (short) 2);
// set own seqno

128),

136),

138),

Util.setShort (currentPD , index_fromseqno, seqNo);

// set own name

Util.arrayCopy (name, (short) 0, currentPD,
index_fromname, (short) 8);

seqNo += (short) 1;

40

state = EPSF2;

}

// archive logfile
// output: exlog, mame, Sig[privkeyPurse](exlog, name)
private void archive (APDU arg0) {
byte[] buffer = arg0.getBuffer ();
// copy exlog, name to temp
Util.arrayCopy (exlog, (short) 0, temp, (short) O,
(short) 110);
Util.arrayCopy (name, (short) 0, temp, (short) 110,
(short) 8);
Util.arrayCopy (temp, (short) 0, buffer,
1SO7816 .OFFSET.CDATA, (short) 118);
sign.init (myrsapriv, Signature.MODESIGN);
sign.sign (temp, (short) 0, (short) 118, buffer,
(short) (ISO7816.0FFSET-CDATA + (short) 118));
arg0.setOutgoingAndSend (ISO7816 . OFFSET_CDATA,
(short) 246);

}

// delete logfile
private void delLog (APDU arg0) {
for (short i = 0; i < (short) exlog.length; i++) {
exlog[i] = 0;

exlogCounter = 0;

}

// abort, i.e. set state to IDLE and write logfile if
// mecessary
private void abort () {

logifneeded ();

state = IDLE;

}

// log if purse is in state EPA or EPV
private void logifneeded () {
if (state = EPA || state =— EPV) {
// add current paydetails to exLog
Util.arrayCopy (currentPD, (short) 0, exlog,
(short) exlogCounter, (short) currentPD.length);
exlogCounter += (short) currentPD.length;
}
}

// check if input has length of 128 bytes
private boolean checkLength (APDU arg0) {

return (arg0.setIncomingAndReceive() = (short) 128);
}

// check if input has length of 8 bytes
private boolean checkLengthName (APDU arg0)

return (arg0.setIncomingAndReceive () = (short) 0x08);
}

-~

// check if input, i.e startFrom2 message, has length of
// 128 bytes and signature ok (purse is authentic)

41

private boolean checkSF2(APDU arg0) {
if (!(arg0.setIncomingAndReceive() = 128)) {
return false;
}
byte[] buffer = arg0.getBuffer ();
// copy pubkeyTo, nameTo to temp
Util.arrayCopy (othermodulus, (short) 0, temp,
(short) 0, (short) 128);
Util.arrayCopy (currentPD, index_toname, temp,
(short) 128, (short) 8);
// wverify Sig[bank](pubkeyTo, nameTo)
sign.init (bankkey, Signature.MODE_VERIFY);
if (!sign.verify (temp, (short) 0, (short) 136, buffer,
ISO7816 .OFFSET_CDATA, (short) 128)) {
return false;

}

return true;

}

// check if input, i.e startTo2 message, has length of
// 128 bytes and signature ok (purse is authentic)
private boolean checkST2(APDU arg0) {
if (!(arg0.setIncomingAndReceive() == 128)) {
return false;
}
byte[] buffer = arg0.getBuffer ();
sign.init (bankkey, Signature.MODE_VERIFY);
if (!sign.verify (temp, (short) 1, (short) 136, buffer,
1SO7816 .OFFSET.CDATA, (short) 128)) {
return false;

}

return true;

}

// check if input, i.e startTo8 message, has length of
// 128 bytes and signature ok
// temp = [pubkeyFrom, nameFrom, seqNo_From, Amount,
// Sig[bank](pubkeyFrom , mameFrom)])
private boolean checkST3(APDU arg0) {
if (arg0.setIncomingAndReceive() != 128) {
return false;
}
byte[] buffer = arg0.getBuffer ();
sign.init (otherrsapub, Signature .MODEVERIFY);
if (!sign.verify (temp, (short) 0, (short) 269, buffer,
ISO7816 .OFFSET.CDATA, (short) 128)) {
return false;

}

return true;

}

// check if startTo / startFrom input is ok: nameTo !=
// nameFrom, amount > 07, amount < balance?, seqNo <
// 827672 and exLogCounter < exlog.length
private boolean checkStartFT (APDU arg0) {
// exLog has max. number of entries
if (exlogCounter =— exlog.length) {
return false;

42

}

// check input length
if (arg0.setIncomingAndReceive() != (short) 140) {
return false;

byte[] buffer = arg0.getBuffer ();
// check nameTo!=nameFrom

if (Util
.arrayCompare (
buffer ,
(short) ((short) ISO7816.0OFFSET_CDATA + (short) 128),
name, (short) 0, (short) 8) = 0) {

return false;

// check amount
if (1(Util
.getShort (
buffer ,
(short) ((short) ISO7816.0OFFSET_CDATA + (short) 138)) > (short) 0)) {
return false;

}
// if ToPurse: amount + balance < 32767 ?
if (buffer [ISO7816.0FFSETINS] = ST1
&& (short) ((short) Util
.getShort (
buffer ,

(short) ((short) ISO7816.0OFFSET CDATA + (short) 138))
+ (short) balance) <= (short) 0) {
return false;

}
// if FromPurse: amount < balance ?
if (buffer [ISO7816.0FFSET_INS] — SF1
&& Util
.getShort (

buffer ,
(short) ((short) ISO7816.0OFFSET CDATA + (short) 138)) > balance) {
return false;
}
// check seqNo
if (seqNo = (short) 32767) {
return false;

}

return true;

}

// check if input data has correct length, paydetails ok
// and Signature ok
private boolean checkStep (APDU arg0, byte ins) {
if (!(arg0.setIncomingAndReceive() = 150)) {
return false;

byte[] buffer = arg0.getBuffer ();
// compare received paydetails with current

// paydetails
if (!(Util.arrayCompare(buffer , ISO7816.0FFSET_CDATA,

currentPD, (short) 0, (short) 22) = 0)) {
return false;

}

43

// copy INS, currentPD to temp
temp [0] = ins;
Util.arrayCopy (currentPD, (short) 0, temp, (short) 1,
(short) 22);
// verify signature Sig[otherpurse](INS, currentPD)
sign.init (otherrsapub, Signature .MODE_VERIFY);
if (!sign
.verify (
temp,
(short) 0,
(short) 23,
buffer ,
(short) ((short) ISO7816.0OFFSET CDATA + (short)
(short) 128)) {
return false;

}

return true;

}

// check if input has length of 128 bytes and signature
// ok
private boolean checkDelLog (APDU arg0) {
if (!(arg0.setIncomingAndReceive() == (short) 128)) {
return false;
}
byte[] buffer = arg0.getBuffer ();
sign.init (bankkey, Signature.MODE_VERIFY);
if (sign.verify (exlog, (short) 0, (short) 110, buffer,
1SO7816 .OFFSET.CDATA, (short) 128)) {
return false;

}

return true;

/) o ok ok K ok K o K R Kk o ok o K Kk ok K ok
// query messages from here
/)RR R KK KK K R O KKK K R K KKK K R K KKK K R K K
// input: getsig
// output: Sig[Bank](PubKey_-To, Name_To)
private void getSig(APDU arg0) {
byte[] buffer = arg0.getBuffer ();
Util.arrayCopy (mysignature, (short) 0, buffer
ISO7816 .OFFSET_CDATA, (short) mysignature.length);
arg0.setOutgoingAndSend (ISO7816 .OFFSET_CDATA,
(short) mysignature.length);

}

// input: getNameSeqNo
// output: (Pubkey_-To, Name.To, SeqNo_To)
private void getNameSeqNo(APDU arg0) {
byte[] buffer = arg0.getBuffer ();
// copy my pub key
Util.arrayCopy (mypubkey, (short) 0, buffer ,
ISO7816 .OFFSET_ CDATA, (short) mypubkey.length);
// copy my mame
Util.arrayCopy (name, (short) 0, buffer,
(short) (ISO7816.0FFSET_CDATA + mypubkey.length),
(short) name.length);

44

22),

// copy my seq mo
Util.setShort (buffer , (short) (ISO7816.0OFFSET_-CDATA
+ mypubkey.length + name.length), seqNo);
arg0
.setOutgoingAndSend (
ISO7816 .OFFSET_CDATA,
(short) (mypubkey.length + name.length + (short) 2));

}

// input: getBalance
// output: Balance
private void getBalance (APDU arg0) {
byte[] buffer = arg0.getBuffer ();
Util.setShort (buffer , (short) (ISO7816.0OFFSET-CDATA),
balance);
arg0
.setOutgoingAndSend (ISO7816 .OFFSET_CDATA, (short) 2);
}

/)R KKK SR SR KK K R O KK K K S K KK
// initialization steps from here
/) ok ok ok ok ok ok ok ok K R R KRR KRR K
// input: setName (name)
// output: ok
private void setName(APDU arg0) {
byte[] buffer = arg0.getBuffer ();
Util.arrayCopy (buffer , ISO7816 .OFFSET_CDATA, name,
(short) 0, (short) name.length);
state = INIT2;

}

// input: setPubKey(PubKey_-Purse)

// output: ok

private void setPubKey (APDU arg0) {
byte[] buffer = arg0.getBuffer ();
Util.arrayCopy (buffer , ISO7816 .OFFSET_CDATA, mypubkey,

(short) 0, (short) mypubkey.length);

myrsapub.setExponent (mypubexp, (short) 0, (short) 3);
myrsapub.setModulus (mypubkey, (short) 0, (short) 128);
state = INIT3;

}

// input: setPrivKey(PrivKey_Purse)
// output: ok
private void setPrivKey (APDU arg0) {
byte[] buffer = arg0.getBuffer ();
Util.arrayCopy (buffer , ISO7816.0FFSET.CDATA, myprivkey,
(short) 0, (short) myprivkey.length);
myrsapriv
.setExponent (myprivkey, (short) 0, (short) 128);
myrsapriv.setModulus (mypubkey, (short) 0, (short) 128);
state = INIT4;

}

// input: setSignature (Sig[Bank](Pubkey_Purse,
// Name_Purse))

// output: ok
private void setSignature (APDU arg0) {

45

byte[] buffer = arg0.getBuffer ();

Util.arrayCopy (buffer , ISO7816.0OFFSET_-CDATA,
mysignature, (short) 0, (short) mysignature.length);

state = IDLE;

46

Appendix C

Source Code: Symmetric
cryptography using Documents

Please note: This is only the implementation of the Purse itself. The transformation classes for
encoding of Document instances to APDUs and vice versa are not contained here. They can be
downloaded from our website [KIVa).

S
*

Copyright (C) 2006 Holger Grandy, Department of Software
Engineering, University of Augsburg, Germany This program
is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version
2 of the License, or (at your option) any later wversion.
This program is distributed in the hope that it will be
useful , but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License
for more details. You should have received a copy of the
GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110—1301, USA

/

Mondex FElectronic Purse Implementation using symmetric
cryptography and pre shared keys Author: Holger Grandy,
Department of Software Engineering, University of
Augsburg, Germany This is an example implemenation for
the Mondex electronic purse scenario. This implementation
is a case study for research and for academic purposes
only. It has nothing to do with the real implementation
of Mondex FElectronic Purses owned by Mastercard
International. There is absolutely mno relationship
between the authors of this source code and National
Westminster Bank, Mastercard International or any other
institution involved in the Mondex Smart Cards. The
underlying specification for this implementation can be
found at

http ://www. informatik . uni—augsburg.de/swt/projects /mondex. html
in Project ”"Mondex Specification wusing the Prosecco
Approach”

* K X X X X X K X X ¥ X X ¥

*

NS
*

¥ OK K K X X X X K X X X X X X X X

*/

package mondexOnCard;

47

import javacard.framework . x;

public class Purse implements TransformApplication {
// private static Purse theinstance;
// private static SimpleComm initcomm
// private static Document initdata;
// CONSTANTS
private static final byte STATEIDLE =
private static final byte STATEEPR =
private static final byte STATEEPV =
private static final byte STATEEPA =
// INSBYTES
private static final byte INS.SSTART FROM =
private static final byte INS.START.TO =
private static final byte INS_REQ =
private static final byte INS_VAL =
private static final byte INS_ACK =
private static final byte INS_.GET_BAL =
private static final byte INSSGET_DATA =
private static final byte INS.GET.STATE =
// FIELDS OF PURSE

\
W N =

0~ O UL W

private byte][] name ;
private short sequenceNo;
private short balance;
private byte state;
private short exLogCounter;
private Doclist [] exLog;
// MESSAGES
private Doclist pd;
private Doclist reqvalack_msg;
private Doclist startto_msg ;
private Doclist getdata_msg;
private EncDoc enc_msg;
private IntDoc balstate_msg;
// COMMUNICATION
private SimpleComm comm ;
// KEY
private SessionKey key ;
Vax:

x constructor, init fields and messages

*

/

public Purse(SimpleComm initcomm , Document initdata) {
// check initdata :
// document must be of type:
// doclist (intdocl ,intdoc2,intdoc8)
// intdocl must have 8 digits (thename)
// intdoc2 must have 2 digits (initbal)
// intdoc3 must have 2 digits (loglen)
Document thename = initdata.getPart((short) 1);
Document initbal = initdata.getPart ((short) 2);
Document loglen = initdata.getPart((short) 3);

if (!(thename != null && thename.is_intdoc ()
&& thename.getValue ().length = 8
&& initbal != null && initbal.is_intdoc ()
&& initbal.getValue().length = 2 && loglen != null
&& loglen.is_intdoc () && loglen.getValue ().length = 2))

48

return;
short theloglen = Util.getShort(loglen.getValue(),

(short) 0);
short thebalance = Util.getShort(initbal.getValue(),
(short) 0);
if (theloglen <= 0 || thebalance <= 0)
return;

// init all fields

initExLog (theloglen);

initPaydetails ();

initSimpleFields ();

initSessionKey ();

initOutMessages ();

// save name, balance and comminterface

Util.arrayCopy (thename.getValue(), (short) 0, name,
(short) 0, (short) 8);

balance = thebalance;

comm = initcomm ;

}
Vil

x init fields for exlog

*

* @param len

* length of ezlog

*/

private void initExLog(short len) {
exLog = new Doclist [len];
exLogCounter = (short) O0;

}
Vax:

x init paydetailsfield
*/
private void initPaydetails () {
pd = new Doclist (new Document[] {
new IntDoc(new byte[8]), new IntDoc(new byte[2]),
new IntDoc(new byte[8]), new IntDoc(new byte[2]),
new IntDoc(new byte[2]) });

}
VAT

x init simple fields (shorts, bytes)
*/
private void initSimpleFields () {
sequenceNo = (short) O0;
state = STATE_IDLE;
name = new byte [8];

}
VAT

* init sessionkey
*/
private void initSessionKey () {
key = new SessionKey (new byte[] { 1
8, 9,0, 1,2,3,4,5,6, 7,8

49

VAT

* init al

*/

[messages used for communication

private void initOutMessages () {
startto_msg = new Doclist (new Document [] {
new IntDoc(new byte[2]),

new Doclist (new Document |

reqv

{

)
new IntDoc(new byte[2]),
new IntDoc(new byte[2])

alack_msg = new Doclist (new

]
new IntDoc(new byte[8]
]
]

) 1)

}
Document [|] {

new IntDoc(new byte[2]),

new Doclist (new Document |

IntDoc (new
IntDoc (new
IntDoc (new
IntDoc (new
IntDoc (new

new
new
new
new
new

—~ e~~~
-
<
-+
o
S

byte[2]) }) });

balstate_msg = new IntDoc(new byte[2]);

getd

ata.msg = new Doclist (new Document [

{

]
new IntDoc(new byte[8]), new IntDoc(new byte[2])

enc_msg = new EncDoc(new byte[56]);

D

KK K K K K K K X K X X X
*

@param
@param
@param
@param

@param

*/

private void mkpd(byte []
short nextSeqNoFromPurse, byte][]

Set paydetails

fromPurse

fromPurse involved
nextSeqNoFromPurse

seqno of fromPurse
toPurse

toPurse involved
nextSeqNoToPurse

seqno of toPurse
value

value to transfer

in transfer

in transfer

fromPurse ,
toPurse ,

short nextSeqNoToPurse, short value) {

byte
byte
byte
byte
byte
Util

Util
Util

Util
Util
}

Var:

* return

*/

});

[] thevall = pd.getPart ((short) 1).getValue();

[] theval2 = pd.getPart ((short) 2).getValue();

[] theval3 = pd.getPart ((short) 3).getValue();

[] thevald = pd.getPart ((short) 4).getValue();

[] theval5 = pd.getPart ((short) 5).getValue();
.arrayCopy (fromPurse, (short) 0, thevall ,

(short) 0, (short) 8);

.setShort (theval2, (short) 0, nextSeqNoFromPurse);
.arrayCopy (toPurse, (short) 0, theval3, (short) O,
(short) 8);

.setShort (thevald , (short) 0, nextSeqNoToPurse);
.setShort (theval5, (short) 0, value);

nexrt seq no

a0

private short nextSeqNo() {
if (sequenceNo < 32767)
return sequenceNo++;
else return —1;

}
VAT

x chech structure of indoc
*
* @param indoc
* document to check
* @return document or mnull
*/
private Document checkIndoc(Document indoc) {
if (indoc = null)
return null;
// decrypt if mecessary
if (indoc.is_encdoc()) {
indoc = Crypto.getCrypto ().decrypt (key, indoc);
// check assures, that indoc is a correct req, wval,
// ack or startto message
// (follows from abstract invariant)
if (indoc != null)
return indoc;
return null;
} else if (indoc.is_intdoc()) {
byte[] theval = indoc.getValue ();
if (theval != null && theval.length = 2) {
short insb = Util.getShort (theval, (short) 0);
if (insb >= 0) {
byte b = (byte) insb;
if (b = INS_.GET_BAL || b = INS_.GET_DATA
|| b = INS.GET_STATE) {
return indoc;

}
}
}
} else if (indoc.is_doclist ()) {
Document [] docs = ((Doclist) indoc).getDocs();
if (docs.length = 2) {
Document partl = indoc.getPart ((short) 1)
Document part2 = indoc.getPart ((short) 2);
if (partl.is_intdoc () && part2.is_doclist ()) {

byte[] partlvalue = partl.getValue();
Document [] part2docs = ((Doclist) part2)

)

.getDocs ();
if (partlvalue.length =— 2 && partlvalue [0] = 0
&& partlvalue [1] = INS.START FROM) {

if (part2docs.length = 3
&& part2docs [0].is_intdoc ()
&& part2docs [1].is_intdoc ()
&& part2docs [2].is_intdoc ())
return indoc;

}
}

return null;

ol

}

Var:
x copy local paydetails in d
*/
private void copyLocalPds() {
byte[] pdlvalue = pd.getPart ((short) 1).getValue();
byte[] pd2value = pd.getPart ((short) 2).getValue();
byte[] pd3value = pd.getPart ((short) 3).getValue();
byte[] pd4value = pd.getPart ((short) 4).getValue ();
byte[] pd5value = pd.getPart ((short) 5).getValue();
Document outmsg_pds = reqvalack_msg.getDocs ()[(short)
byte[] outlvalue = outmsg_pds.getPart ((short) 1)
.getValue ();
byte[] out2value = outmsg_pds.getPart ((short) 2)
.getValue ();
byte[] out3value = outmsg_pds.getPart ((short) 3)
.getValue ();
byte[] outd4value = outmsg_pds.getPart ((short) 4)
.getValue ();
byte[] outbSvalue = outmsg_pds.getPart ((short) 5)
.getValue ();
Util.arrayCopy (pdlvalue, (short) 0, outlvalue,
(short) 0, (short) 8);
Util.arrayCopy (pd2value, (short) 0, out2value,
(short) 0, (short) 2);
Util.arrayCopy (pd3value, (short) 0, out3value,
(short) 0, (short) 8);
Util.arrayCopy (pd4value, (short) 0, outdvalue,
(short) 0, (short) 2);
Util.arrayCopy (pd5value, (short) 0, out5value,
(short) 0, (short) 2);
}
Vax:
x set the pd in the outmsg and set insbyte
*
x @param ins
* set the insbyte of outmsg to this byte
x Qreturn outmsg
*/
private Document generate_ReqValAck_msg(byte ins) {
// copy pds in outmessage
copyLocalPds ();
// set instructionbyte
byte[] theval = reqvalack_msg.getPart ((short) 1)

.getValue ();
theval [0] = (byte) O0;
theval [1] ins;

// encrypt
enc_msg.setEncrypted (key ,
return enc_msg;

}
VAx:

reqvalack_msg);

x Generates encrypted startto—message

*
x @param ins

92

* set the insbyte of outmsg to this byte
x @return outmsg
*/
private Document generate_Startto_msg () {
// get information of paydetails
byte[] fromname = pd.getPart((short) 1).getValue();// name

// from
byte[] fromseqno = pd.getPart ((short) 2).getValue();// seqno

// from

byte[] thevalue = pd.getPart ((short) 5).getValue();// value

Document startto = startto_-msg.getPart ((short) 2);

byte[] starttolvalue = startto.getPart((short) 1)
.getValue ();

byte[] startto2value = startto.getPart ((short) 2)
.getValue ();

byte[] startto3value = startto.getPart((short) 3)
.getValue ();

// copy from paydetails to startto_msg

Util.arrayCopy (fromname, (short) 0, starttolvalue,
(short) 0, (short) 8);

Util.arrayCopy (thevalue, (short) 0, startto2value,
(short) 0, (short) 2);

Util.arrayCopy (fromseqno, (short) 0, startto3value,
(short) 0, (short) 2);

// set instructionbyte

byte[] theval = startto_msg.getPart((short) 1)
.getValue ();

theval [0] = (byte) O0;

theval [1] = (byte) 2; // startto instruction

// encrypt

enc_msg.setEncrypted (key, startto_msg);

return enc_msg;

}

Vax:

x get the insbyte from a well formed document, insbyte
x 15 returned only if insstruction is possible in

* current state

*

* @param d

* well formed document

x Qreturn insbyte

*/

private byte getInsByte (Document d) {
byte ins = 0;
if (d = null)
return ins;
if (d.is_doclist ())
ins = d.getPart ((short) 1).getValue()[1];
else ins = d.getValue ()[1];
if (((ins = INSSTART.FROM || ins = INS.START.TO) && state = STATE.IDLE)
|| (ins == INS_REQ && state = STATEEPR)
|| (ins = INS_VAL && state =— STATEEPV)
|| (ins = INS_ACK && state = STATEEPA))
return ins;
else if (ins = INS_.GET_BAL || ins = INS.GET_DATA
|| ins = INS_.GET_STATE)
return ins;

93

else return (byte) O0;

}

VAT

* check is name equals msgna

*

* @param msgna

* input

x Qreturn true if names are equal

*
/
private Document checkName(Document dmsgna) {
if (!(dmsgna.is_intdoc()))
return null;
byte[] theval = dmsgna.getValue ();
// check assures that msgna is authentic, because an
// authentic pursename must have 8 digits
// and must be positive.
if (theval.length != 8)
return null;
if (theval[0] < 0)
return null;
if (!Document.comparison.equals(theval , name))
return dmsgna;
else return null;

N

*
check if balance—value<0

*
*
*
x @param wvalue
* the wvalue
* @return the wvalue or —I1
*/
private short checkBalanceMinus(Document dvalue) {
if (!(dvalue.is_intdoc()))
return —1;
byte[] theval = dvalue.getValue ();
if (!(theval.length = (short) 2))
return —1;
short value_short = Util.getShort(theval, (short) 0);
if (balance < value_short || value_short < 0)
return —1;

else return value_short;

N,

*
check if balance+value <32767

the value
@return the value or —1
*/
private short checkBalancePlus(Document dvalue) {
if (!(dvalue.is_intdoc ()))
return —1;
byte[] theval = dvalue.getValue ();
if (!(theval.length — (short) 2))
return —1;

*
*
*
x @param wvalue
*
*

o4

short value_short = Util.getShort(theval, (short) 0);
if (value_short < 0
|| (short) (balance + value_short) < (short) 0)
return —1;
else return value_short;

}

Vix:

x check is seqno of other purse is intdoc and >0
*

x @param seqno

* seqno of other purse

x Qreturn seqno or —1

*
/
private short checkSeqNoOtherPurse(Document seqnoother) {
if (!(seqnoother.is_intdoc ()))
return —1;
byte[] theseqno = seqnoother.getValue ();
if (!(theseqno.length = (short) 2))
return —1;
short seqno_s = Util.getShort (theseqno, (short) 0);
if (seqno_s < 0)
return —1;
else return seqno._s;

}
//

/) sk sk sk ok ok sk sk ok sk stk ok KR R ok oK stk R R R R SR oKk R R K R sk ok ok SRR R R sk sk ok R R R R sk kK K R K K KRk K

//

// functions from paper ”the mondex challange”

/)RR o K KKK R R K K KKK SR K KKK SR R S KKK R R R KK KK SR K ok K KKK S K S KK KKK oKk K
Vix:

x check which function to call

*
* @param indoc
* received document (with 7ins’—byte in
* first document —> intdoc)
* @return Document or null
*/
public void step () {
Document outdoc = null;
Document indoc = null;
// check if there is a document in the inbozx
if (comm.available ())
indoc = comm. receive ();
else return;
// mothing received
if (indoc = null)
return;
// mo memory available
if (exLogCounter = exLog.length)
return;
indoc = checkIndoc (indoc);
switch (getInsByte(indoc)) {
case INS.START FROM:
outdoc = startFrom (indoc.getPart ((short) 2));

%)

break;
case INS_START_TO:
outdoc = startTo(indoc.getPart ((short) 2));
break;
case INS_REQ:
outdoc = req(indoc.getPart ((short) 2));
break;
case INS_VAL:
outdoc = val(indoc.getPart ((short) 2));
break;
case INS_ACK:
ack (indoc.getPart ((short) 2));
break;
case INS_GET_BAL:
outdoc = getBalance ();
break;
case INS.GET_DATA:
outdoc = getData ();
break;
case INS_.GET_STATE:
outdoc = getState ();
break;
default:
abort ();
break;
}
// send doc if outdoc is set
if (outdoc != null)
comm . send (outdoc);

}
Vax:

x abort method change mnext sequenceno, set state to
x idle and log (if needed) dynamic memory allocation!
*
/
private void abort () {
if (state = STATEEPA || state =— STATEEPV) {
// save pds
Document [] docs = pd.getDocs ();
byte[] oldfromname = docs[0].getValue();

byte[] oldfromseqno = docs[1].getValue();
byte[] oldtoname = docs[2].getValue();
byte[] oldtoseqno = docs[3].getValue();
byte[] oldvalue = docs[4].getValue();

[

byte[] fromseqno = new byte[2];

Util.arrayCopy (oldfromseqno, (short) 0, fromseqno,
(short) 0, (short) 2);

IntDoc fromseqnoi = new IntDoc (fromseqno);

byte[] toseqno = new byte[2];

Util.arrayCopy (oldtoseqno, (short) 0, toseqno,
(short) 0, (short) 2);

IntDoc toseqnoi = new IntDoc(toseqno);

byte[] thevalue = new byte[2];

Util.arrayCopy (oldvalue , (short) 0, thevalue,
(short) 0, (short) 2);

IntDoc valuei = new IntDoc(thevalue);

byte[] fromname = new byte[8];

Util.arrayCopy (oldfromname, (short) 0, fromname,

o6

(short) 0, (short) 8);
IntDoc fromnamei = new IntDoc (fromname);
byte[] toname = new byte[8];
Util.arrayCopy (oldtoname, (short) 0, toname,
(short) 0, (short) 8);

IntDoc tonamei = new IntDoc(toname);
exLog[exLogCounter++] = new Doclist (
new Document [] { fromnamei, fromseqnoi, tonamei,

toseqnoi, valuei });

}
// mextSeqNo ();
state = STATE_IDLE;

}
/

*
startfrom method check received document and save
paydetails. Move to state EPR

*
*
*
*
* @param indoc

* received document

* @return null

*/

private Document startFrom (Document indoc) {
// get indocs

Document dmsgna = checkName (indoc.getPart ((short) 1));

if (dmsgna = null)
return null;
short value_short = checkBalanceMinus (indoc
.getPart ((short) 2));
if (value_short = —1)

return null;
short nextSeqNoToPurse = checkSeqNoOtherPurse(indoc
.getPart ((short) 3));
if (nextSeqNoToPurse = —1)
return null;
short seqno = nextSeqNo ();
if (seqno < 0)
return null;
// paydetails, state
mkpd (name, seqno, dmsgna.getValue (), nextSeqNoToPurse,
value_short);
state = STATEEPR;
// generate starttomsg
return generate_Startto_msg();

N,

*
startto method check received document and save
paydetails. Generate a reqg—message and move to state
EPV

*

*

*

*

*

x @param indoc

* received document

* @return req message

*/

private Document startTo(Document indoc) {
// get indocs

Document msgna = checkName (indoc.getPart ((short) 1));

o7

if (msgna = null)
return null;

short value_short = checkBalancePlus(indoc
.getPart ((short) 2));
if (value_short = -1)

return null;
short nextSeqNoFromPurse = checkSeqNoOtherPurse(indoc
.getPart ((short) 3));
if (nextSeqNoFromPurse =—
return null;
short seqno = nextSeqNo ();
if (sequno < 0)
return null;
// paydetails, state and outmsg
mkpd (msgna. getValue (), nextSeqNoFromPurse, name, seqno,
value_short);
state = STATEEPV,
Document d = generate_ReqValAck_msg (INS_LREQ);
return d;

~1)

}
Vix:

* req method check received document and generate a
x val—message. Change balance and move to state EPA

*
x @param indoc
* received document
x Qreturn val message
*/
private Document req(Document indoc) {

if (!pd.equals(indoc))

return null;
balance = (short) (balance — Util.getShort(pd.getPart(
(short) 5).getValue(), (short) 0));
state = STATEEPA;
return generate_ReqValAck_msg (INS_-VAL);

}
/

*
val method check received document and change
balance. Move to state IDLE.

*

*

*

*

* @param indoc

* recetved document

x @return ack message

*/

private Document val(Document indoc) {

if (!pd.equals(indoc))

return null;

balance = (short) (balance + Util.getShort(pd. getPart (
(short) 5).getValue(), (short) 0));

state = STATE_IDLE;

return generate_ReqValAck_msg (INS_ACK);

}
Var:

* ack method
*

98

* @param indoc
* received document
x Qreturn null
*/
private void ack(Document indoc) {
if (!pd.equals(indoc))
return;

state = STATE_IDLE;
}

Vax:
x return the actual state of the purse
*
x @return state
*/
private Document getState () {
byte[] theval = balstate_msg.getValue();
theval [0] = 0;
theval [1] = state;
return balstate_msg;

}
Vax:

x return the seq no and the name of the purse used in

* the mezxt transaction

*

* @return seqno

*/

private Document getData () {
Document [] thedocs = getdata_msg.getDocs();
byte[] nameval = thedocs [0]. getValue ();
byte[] seqnoval = thedocs[1].getValue();
Util.arrayCopy (name, (short) 0, nameval, (short) 0,

(short) 8);

Util.setShort (seqnoval , (short) 0, sequenceNo);
return getdata_msg;

}
VAT

x return the current balance of the purse
*
* @return bal
*/
private Document getBalance() {
Util.setShort (balstate_msg.getValue(), (short) 0,
balance);
return balstate_msg;

99

Bibliography

[B6r03]

[BRO5]

[BS03]

[Car94]

[GHRS06]

[GSRO6a]

[GSROG]

[Gur95]

[HGRS05]

[HSGROG6]

[KIVa]

[KIVD)
IMCI]

E. Bérger. The ASM Refinement Method. Formal Aspects of Computing, 15 (1-2):237—
257, November 2003.

E. Borger and D. Rosenzweig. The WAM-—definition and compiler correctness. In
C. Beierle and L. Pliimer, editors, Logic Programming: Formal Methods and Practical
Applications, Studies in Computer Science and Artificial Intelligence 11, pages 20-90.
North-Holland, Amsterdam, 1995.

Egon Boérger and Robert F. Stérk. Abstract State Machines—A Method for High-Level
System Design and Analysis. Springer-Verlag, 2003.

Ulf Carlsen. Generating formal cryptographic protocol specifications. In IEEE Sym-
posium on Research in Security and Privacy, pages 137-146. IEEE Computer Society,
1994.

Holger Grandy, Dominik Haneberg, Wolfgang Reif, and Kurt Stenzel. Developing
Provably Secure M-Commerce Applications. In Glinter Miiller, editor, Emerging Trends
in Information and Communication Security, volume 3995 of LNCS, pages 115-129.
Springer, 2006.

Holger Grandy, Kurt Stenzel, and Wolfgang Reif. A refinement method for java pro-
grams. Technical Report 2006-29, University of Augsburg, December 2006. URL:
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/.

Holger Grandy, Kurt Stenzel, and Wolfgang Reif. Refinement of Security Protocol Data
Types to Java. In PASSWORD Workshop 2006 at ECOOP 2006, Nantes, France, 2006.
URL: http://research.ihost.com/password/.

Yuri Gurevich. Evolving algebras 1993: Lipari guide. In E. Borger, editor, Specification
and Validation Methods, pages 9 — 36. Oxford Univ. Press, 1995.

D. Haneberg, H. Grandy, W. Reif, and G. Schellhorn. Verifying Security Protocols:
An ASM Approach. In D. Beauquier, E. Borger, and A. Slissenko, editors, 12th Int.
Workshop on Abstract State Machines, ASM 05. University Paris 12 — Val de Marne,
Créteil, France, March 2005.

Dominik Haneberg, Gerhard Schellhorn, Holger Grandy, and Wolfgang Reif. Ver-
ification of Mondex Electronic Purses with KIV: From Transactions to a Security
Protocol. Technical Report 2006-32, University of Augsburg, December 2006. URL:
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/.

Web presentation of the mondex case study in KIV. URL: http://www.informatik.
uni-augsburg.de/swt/projects/mondex.html.

KIV homepage. http://www.informatik.uni-augsburg.de/swt/kiv.

MasterCard International Inc. Mondex. URL: http://www.mondex. com.

60

[Pau9g]

[SchO01]

[Sch05)

[SCWO00]

[SGH06]

[SGH*07]

[SGHROG]

[SGROG6]

[Spi92]

[Ste04]

[Ste05]

[Woo06]

L. C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols. J.
Computer Security, 6, 1998.

G. Schellhorn. Verification of ASM Refinements Using Generalized Forward Simulation.
Journal of Universal Computer Science (J.UCS), 7(11):952-979, 2001. URL: http:
//www.jucs.org.

G. Schellhorn. ASM Refinement and Generalizations of Forward Simulation in Data
Refinement: A Comparison. Journal of Theoretical Computer Science, vol. 336, no.
2-3:403-435, May 2005.

S. Stepney, D. Cooper, and J. Woodcock. AN ELECTRONIC PURSE Specification,
Refinement, and Proof. Technical monograph PRG-126, Oxford University Computing
Laboratory, July 2000. URL: http://www-users.cs.york.ac.uk/ susan/bib/ss/z/
monog.htm.

Gerhard Schellhorn, Holger Grandy, Dominik Haneberg, Nina Mobius, and Wolf-
gang Reif. A systematic verification Approach for Mondex Electronic Purses us-
ing ASMs. Technical Report 2006-27, Universitit Augsburg, 2006. URL: http:
//www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/.

Gerhard Schellhorn, Holger Grandy, Dominik Haneberg, Nina Mobius, and Wolfgang
Reif. A Systematic Verification Approach for Mondex Electronic Purses using ASMs.
In U. Glasser J.-R. Abrial, editor, Proceedings of the Dagstuhl Seminar on Rigorous
Methods for Software Construction and Analysis, LNCS. Springer, 2007. (submitted).

Gerhard Schellhorn, Holger Grandy, Dominik Haneberg, and Wolfgang Reif. The Mon-
dex Challenge: Machine Checked Proofs for an Electronic Purse. In J. Misra, T. Nip-
kow, and E. Sekerinski, editors, Formal Methods 2006, Proceedings, volume 4085 of
LNCS, pages 16-31. Springer, 2006.

Kurt Stenzel, Holger Grandy, and Wolfgang Reif. Reasoning about Pointer Structures
in Java. Technical Report 2006-30, University of Augsburg, December 2006. URL:
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/.

J. Michael Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

Kurt Stenzel. A formally verified calculus for full Java Card. In C. Rattray, S. Maharaj,
and C. Shankland, editors, Algebraic Methodology and Software Technology (AMAST)
2004, Proceedings, Stirling Scotland, July 2004. Springer LNCS 3116.

Kurt Stenzel. Verification of Java Card Programs. PhD thesis, Universitdt Augs-
burg, Fakultdt fir Angewandte Informatik, URL: http://www.opus-bayern.de/
uni-augsburg/volltexte/2005/122/, 2005.

Jim Woodcock. First steps in the verified software grand challenge. IEEE Computer,
39(10):57—-64, 2006.

61

