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Abstract

In industrial production processes, materials and different forms of energy are provided, converted, stored and
transported. Environmental impacts can be identified at any stage of the energy and material flow process. Due to the fact
that production units and processes are interconnected with energy and material flows, it is of special interest to develop
production control mechanisms, which control the energy and material streams so that available resources are utilised
most efficiently and reduce emissions and by-products caused by the production process.

Methodical production control strategies can be based on optimal algorithms, production rules or methods of machine
learning. Due to the complexity of real production systems, it is advisable to use heuristic approaches.

In order to analyse the behaviour of different control strategies, the developed systems are verified by an exemplary
production system from the textile industry, consisting of a dye house, a hydro-power, a boiler house, and a flue gas
neutralisation facility.

A verification of the developed systems shows that Fuzzy Expert Systems, Neural Networks, and Neuro-Fuzzy
approaches can be applied for the controlling of energy and material flows, taking into account economic and emission
orientated goals. The selection of a certain approach mainly depends on the structure of the available production
knowledge.
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1. Conception of emission orientated production harmonising of energy and material streams, the
control strategies following criteria have to be considered:
@ simultaneous consideration of emission orientated
Concerning the development of emission orien- and economic goals (e.g. increase of the efficiency
tated production control strategies for the of a disposal unit, reduction of waiting times),

® process and production engineering restrictions,
@ a sufficient modelling of the dynamic behaviour
* Corresponding author. of the production system,
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@ structure of available production knowledge (e.g.
fuzzy knowledge, implicit knowledge).

This requires the development and application

of related heuristic approaches or methods of

machine learning such as:

® Fuzzy Expert Systems,

® Neural Networks or

® Neuro-Fuzzy approaches.

Hitherto applied methods in the field of production

planning and controlling (e.g. linear programming,

dynamic programming) are insufficient with respect

to an adequate controlling of energy and material

streams of interconnected production systems. This

is especially true with respect to an'adequate mod-

elling of the complexity of real production pro-

cesses, available process and production knowledge

and system dynamics.

2. Analysis of the production system under
investigation

To analyse the behaviour of different production
control mechanisms, e.g. based on Fuzzy Expert
Systems, Neural Networks and Neuro-Fuzzy ap-
proaches, the described methods are verified by an
exemplary production system from the textile in-
dustry (Fig. 1). The production system under in-
vestigation consists of a dye house, a boiler house,
a hydro-power plant and a flue gas neutralisation
facility. The dye house covers two stages of produc-

tion, the dyeing process and the drying of the dyed
yarns. The two stages of production require
steam/hot water and electric power, which are sup-
plied by the preceding power plants. The flue gas of
the boiler house is used to neutralise the mainly
alkaline waste water of the dye house at the flue gas
neutralisation facility. The storage of steam/hot
water as well as the capacity of the waste water
reservoir are limited. The capacity of all preceding
and succeeding production units is variable. Vari-
ations can be caused by external factors (e.g. smog,
variations of the water level of the inlet of the
hydro-power plant).

For the investigation of different production
scenarios (e.g. different operating modi of the
power plants, smog events, machinery distur-
bances) the production system is modelled with
a simulation tool (SLAM). The physical structure
of the production system (e.g. aggregates, potential
energy and material flows between the aggregates),
available resources and system functions (e.g.
queues, the allocation of aggregates) are modelled
graphically [3]. Process and job specific data (e.g.
process parameters, recipe formulations, energy de-
mand functions) are modelled in a C-database. Cer-
tain production rules {e.g. for the resetting of the
equipment) and interfaces to intelligent systems
(e.g. Fuzzy Expert Systems and Neural Networks)
are programmed in FORTRAN and C.

A system analysis of the investigated production
system shows that
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Fig. 1. Structure of an interconnected production system.



@ emission orientated goals, such as an increase in
the efficiency of the flue gas neutralisation facility,
reduction of CO, emissions, reduction of supple-
mentary chemicals (HCl, H,SO,) for the neu-
tralisation process in cases of a waste water excess
and a reduction of waste heat losses as well as

@ cconomical goals, such as an increase of the
utilisation of the equipment, a shortage of the
average waiting time

correlate with the harmonising of energy and ma-

terial flows, which can be influenced by the selec-

tion of certain dyeing processes and an adequate
allocation of dye batches and dye vats.

Principally the scheduling and technology selec-
tion problem can be implemented
@ in a successive way by an iterative algorithm (job

by job) or

® by an over-all optimisation process {generating
a complete schedule).

In view of our mentioned goals, owing to the
complexity of real production systems [5] and the
structure of the available production knowledge
(single priority rules, experience on the influence of
the scheduling of single jobs in special production
situations), it seems to be more promising to apply
successive algorithms in comparison to an over-all
optimisation procedure. This is comparable to the
way human operators perform this task, takes care
of the structure of the available production know-
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ledge and gives a more interpretable result which
increases the acceptance of the operators. Further-
more this procedure gives a better basis to react on
an unforeseen or short-time variation of relevant
production parameters, like disturbances of single
aggregates or e.g. a smog event.

3. Emission orientated production control strategies
based on Fuzzy Expert Systems

Owing to the structure of the decision problem
(number of serial and parallel production pro-
cesses, multicriteria goal function, dynamic behav-
iour of the energy and material flows, fuzziness
of the production knowledge) Fuzzy Expert
Systems are implemented to perform the planning
decisions described. In any planning situation the
corresponding Fuzzy Expert System is evoked and
calculates a priority number for every potential
combination of a dye batch and applicable dyeing
process. This number is relatively high if the energy
demand (steam/hot water, electric power) and the
characteristics of the waste water implied by a cer-
tain job correlate with the current state of the
system (pH-value in waste water reservoir, energy
supply). Fig. 2 shows a typical structure of a Fuzzy
Expert Controller with rule blocks for the har-
monisation of the demand and supply of energy,
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Fig. 2. Structure of a Fuzzy Expert System for controlling energy and material flows.
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and material streams (e.g. NaOH, CH;O0H, CO,,
SQO,) for the neutralisation process. The rule blocks
consist of 27-81 individual rules 5, 6].

The development of Fuzzy Expert Systems
requires the definition of membership functions,
selection of aggregation operators, assignment of
a degree of sensibleness for each rule and the
selection of a defuzzification method [7]. Fig. 3
shows exemplary membership functions and
rules of a Fuzzy Expert Controller. An investiga-
tion of different membership functions, aggrega-
tion operators, controller architectures and strat-
egies for the assignment of the degrees of
sensibleness shows that the most critical point
seems to be the assignment of a degree of sensible-
ness for each rule (Fig. 4). This determines the influ-
ence of individual rules and represents the inference
structure of the Fuzzy Expert Controller. To adjust
the degrees of sensibleness, it is important to have
a consistent theory regarding a proper model of the
controlling task. The system represented by bar 10
in Fig. 4 is, for example, based on the idea that the
pH-value of the waste water reservoir is the key
parameter for controlling the material flows for the
neutralisation process. The adjustment of the de-
grees of sensibleness of the system represented by

bar 9 is more orientated to the flue gas volumetric
rate.

In contrast to the efficiency of the neutralisation
facility, it has up to now not been possible to set up
a Fuzzy Expert System which fulfils the economic
goals. Therefore, it is important to notice that the
dependencies of the parameters and the corres-
ponding inference structure concerning the
achievement of the mentioned economic goals,
which are correlated in a certain way with the
harmonising of energy demand and supply, are
much more complicated compared to the emission
orientated goals.

4. Emission orientated production control strategies
based on Neural Networks

If it is not possible to construct a consistent
model, ie. to formulate explicit rules, implicit
knowledge can be used. Implicit planning know-
ledge is e.g. included in representative production
examples. One way to operationalise implicit
knowledge is to use Neural Networks. The con-
struction of production control strategies based on
Neural Networks requires the formulation of the
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Fig. 4 A comparison of different Fuzzy Expert Systems for the controlling of material and energy flows.

controlling task in a manner which can be pro-
cessed by an adequate network architecture,
acquisition of representative training examples,
selection, teaching and testing of adequate network
architectures.

The described scheduling and technology selec-
tion problem can be formulated as a forecasting
problem. At any time, when a job has to be sched-
uled, the corresponding Neural Networks are
evoked. For every possible combination of a dye
batch and an applicable dyeing process, the ex-
pected processing and waiting time and the ex-
pected variation of the pH-value of the waste water
reservoir are predicted [5, 6].

The acquisition of representative production
examples is based on the analysis of different simu-
lation scenarios. Two-hundred scenarios (different
operating modi of the power plants, disturbances of
preceding and succeeding production units) are
chosen at random from a set of 6912 possible scen-
arios. For each scenario 8-12 break points, repre-
senting certain states (pH-value of the waste water
reservoir, flue gas volumetric rate, available power
of the power plants), are chosen at random. At
these break points, different planning alternatives

are scheduled. The most critical point in this
context is the selection of evaluation parameters
and the determination of the time, when the influ-
ence of the different alternatives should be evalu-
ated. If for example the chosen evaluation time for
the single alternatives is too late, the influence of
a certain decision could be covered by succeeding
decisions.

Due to the requirements of the forecasting prob-
lem, a back-propagation network with three layers
is selected (Fig.5). The input function is the
weighted summation, the transfer function is the
sigmoid function or the tangens hyperbolicus, the
output function is the direct output [4]. Fig. 6
shows the effect of different transfer functions in the
hidden layer.

As a y*-test shows, it is possible to control the
mentioned economic goals using Neural Networks.
On the other hand, it was up to now not possible to
control the efficiency of the flue gas neutralisation
facility as successfully as with Fuzzy Expert sys-
tems. This implies that in these cases, where a con-
sistent theory can be constructed, it is advisable to
use rule based systems sueh as Fuzzy Expert Sys-
tems. If, however, this is not possible due to the
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Fig. 6. A comparison of different transfer function in the hidden layer of networks for the controlling of energy and material streams.

complexity of the controlling task, Neural Net-
works should be applied.

5. Emission orientated production control strategies
based on Neuro-Fuzzy approaches

In order to combine the advantages of Fuzzy
Expert Systems dealing with explicit knowledge

and Neural Networks dealing with implicit know-
ledge, a Neuro-Fuzzy approach is developed to
control energy and material flows. In principle, the
rule structure of the Fuzzy Expert Controller
(FEC) is applied (Fig. 7). The assignment of the
degrees of sensibleness for certain rule blocks is
achieved by machine learning algorithms. Under
certain conditions (e.g. application of “boolean-
like” functions as aggregation operators in FEC
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and “Sigma-Pi-Units” in Neural Networks), Fuzzy Tables 1 and 2 show the interpretation of the
Expert Systems can be interpreted as back-propa- Neuro-Fuzzy System as a Fuzzy Expert Controller,
gation networks and vice versa [, 6, 2]. Fig. 8 and respectively, as a Neural Network. The architecture
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of the Neuro-Fuzzy System has to be harmonised
with the structure of the available production
knowledge. If it is sufficient to adapt the degrees of
sensibleness of certain rules, and it is admissible to
operationalise the corresponding composition

Table |

Interpretation of the Neuro Fuzzy Systems as Fuzzy Expert Controller and as Neural Network

Interpretation as Neural Network

Interpretation as fuzzy Expert Controller

Input layer
Input parameter

Transfer function

1. Hidden layer
Input function
Transfer function

2. Hidden layer
Input function
Transfer function

3. Hidden layer
Input function
Transfer function

4. Hidden layer
Input function
Transfer function

Output layer
Input function
Transfer function

Values of the input
variables
Sigmoid function

Minimum function
Identical mapping

Maximum function

Identical mapping

Minimum function
Identical mapping

Maximum function

Identical mapping

Average operator
Identical mapping

Input interface
Input parameter Values of the input
variables
Membership functions of the Sigmoid functions

terms of the input variables

Rulde blocks (1. level) conditions

Aggregation operator Minimum operator

Rule blocks (1. level) conclusions

Composition operator Max./prod.-inference

Rule blocks (2. level) conditions

Aggregation operator Minimum operator

Rule blocks (2. level) conclusions

Composition operator Max./prod.-inference

Output Interfaces

Defuzzyfication method Centre of moment

Table 2

Interpretation of the weights of Neuro-Fuzzy System

Input level

Output level

Input layer

1. Hidden layer

2. Hidden layer

3. Hidden layer

4. Hidden layer

1. Hidden layer

2. Hidden layer

3. Hidden layer

4. Hidden layer

Qutput layer

Weight Interpretation as Fuzzy
characterisation Expert Controller
Fix Minimum operator

(aggregation operator)
Variable Degrees of sensibleness

(L. level of the composition operators)
Fix Minimum operator

(aggregation operator)
Variable Degrees of sensibleness

(1. level of the compostion operators)
Fix Maxima of the membership functions

of the output variables (COM-method)

operators by the concept of a semantic “or”, it is
recommendable to use a combination of back-
propagation networks and methods of “competi-
tive learning”. This approach avoids a calculation
of derivations and is efficient with respect to the
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mentioned conditions. If these conditions are not
fulfilled, back-propagation networks with “Sigma-
Pi” activation functions should be used.

The adjustment of the system covers two steps.
In a first step the degrees of sensibleness are set
from the production examples (Fig.9, bar 3). In
a second step the interpretable weights (degrees of
sensibleness) of these rule blocks, for which a con-
sistent theory exists (e.g. the controlling of the flue
gas neutralisation facility), are adjusted manually
(Fig. 9, bar 4). This procedure combines the capa-
bilities of machine learning, evaluating implicit
knowledge, and the human capabilities for con-
structing a consistent theory of a closed problem
with respect to the advantages of Fuzzy Expert
Systems and Neural Networks. This is of special
interest in fields of ambiguous knowledge, such as
the controlling of energy and material flows, taking
into consideration emission orientated and eco-
nomic goals.

6. Conclusions
Analysing the developed production control

strategies the following conclusions can be
drawn:

® In principle, Fuzzy Expert Systems, Neural Net-
works and Neuro-Fuzzy Systems can be applied
for the controlling of energy and material flows,
taking into account economic and emission
orientated goals.

® The selection of a certain approach mainly
depends on the structure of the available
production knowledge.

® In principle, the investigated methods can be
applied in manufacturing, chemical engineering
and biological process engineering.

® Due to the lack of analytical models, the in-
homogeneity of input and output streams and
the structure of the controlling tasks, applica-
tions in the fields of chemical engineering and
especially biological process engineering
(e.g. controlling of waste incineration, control-
ling of waste water treatment) seem to be most
promising.
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