Modeling Parallel State Charts for Multithreaded
Multimodal Dialogues

Gregor Mehlmann
Human Centered Multimedia
Augsburg University
Universitatsstrasse 6a
Augsburg, Germany
mehlmann@hcm-lab.de

ABSTRACT

In this paper, we present a modeling approach for the man-
agement of highly interactive, multithreaded and multimodal
dialogues. Our approach enforces the separation of dialogue
content and dialogue structure and is based on a statechart
language enfolding concepts for hierarchy, concurrency, vari-
able scoping and a detailed runtime history. These concepts
facilitate the modeling of interactive dialogues with multiple
virtual characters, autonomous and parallel behaviors, flex-
ible interruption policies, context-sensitive interpretation of
the user’s discourse acts and coherent resumptions of dia-
logues. An interpreter allows the realtime visualization and
modification of the model to allow a rapid prototyping and
easy debugging. Our approach has successfully been used
in applications and research projects as well as evaluated in
field tests with non-expert authors. We present a demon-
strator illustrating our concepts in a social game scenario.

Categories and Subject Descriptors
D.1.7 [Visual Programming)

General Terms
Algorithms, Languages, Theory

Keywords
Dialogue Modeling, Multimodality, Multithreading

1. INTRODUCTION

Virtual characters in interactive applications can enrich
the user’s experience by showing engaging and consistent
behavior. To what extent virtual characters contribute to
measurable benefits is still fiercely discussed [11, 25]. There-
fore, virtual characters need to be carefully crafted in coop-
eration with users, artists and programmers. The creation

This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was
published in:

ICMI’11, November 14-18, 2011, Alicante, Spain.

Copyright 2011 ACM 978-1-4503-0641-6

Birgit Endrass
Human Centered Multimedia
Augsburg University
Universitatsstrasse 6a
Augsburg, Germany
endrass@hcm-lab.de

385

Elisabeth André
Human Centered Multimedia
Augsburg University
Universitatsstrasse 6a
Augsburg, Germany
andre@hcm-lab.de

of interactive virtual characters with a consistent and be-
lievable dialogue behavior poses challenges such as model-
ing personality and emotion [19], creating believable facial
expressions, gestures and body movements [16], expressive
speech synthesis [31] and natural language recognition as
well as dialogue and interaction management [35]. In this
work, we address the tasks of modeling consistent, highly in-
teractive multithreaded and multimodal dialogue behavior
and realizing effective interaction management for dialogue
situations with embodied conversational characters.

During the last years, several approaches for modeling in-
teractive dialogue behavior of virtual characters have been
researched. A variety of systems such as, frame-, plan-, rule-
and finite state-based systems were presented. Most of these
systems required a substantial degree of expert knowledge
and programming skills, thus, being unserviceable for non-
computer experts, such as artists and screenwriters that
wanted to craft interactive applications with virtual char-
acters. Therefore, as a next step, authoring systems were
developed to exploit related expert knowledge in the area of
games, film or theater screenplay.

These systems are created to facilitate the modeling pro-
cess and to allow non-computer experts to model believable
natural behavior for virtual characters. They can be cate-
gorized by their conceptual and methodological approaches.
On the one hand, character-centric approaches aim on cre-
ating autonomous agents for multi-agent systems. These ap-
proaches usually generate parallel behavior of several agents,
however they do not explicitly include support for script-
ing the behavior of multiple agents and their synchroniza-
tion in a simple and intuitive way for an author. Exam-
ples for character-centric systems are Improv [27] or Scream
[28], where an author defines an agents’ initial goals, beliefs
and attitudes. These mental states determine the agents’
behavioral responses to received communicative acts. In
author-centric approaches, on the other hand, a human au-
thor can communicate an artistic vision with the primary
focus of scripting at the plot level. The user can contribute
to the plot within the narrative boundaries defined by the
author. Examples for author-centric systems include the
CSLU toolkit [23], Cyranus [12], Scenejo [33], Deal [1] and
Creactor [13]. Hybrid approaches, as described in [7] or
[8], try to bridge the gap between the author-centric and
character-centric approach by combining the advantages of
both.

So far, none of the mentioned systems supports easily
handled concepts for both, a dialogue and interaction his-



tory and the modeling of concurrent processes for creating
and synchronizing parallel behavior on an intuitive author-
ing level. However, this would facilitate the modeling task
and reduce the complexity of the model. It would allow
to follow a modular and compositional modeling paradigm,
thus increasing clarity and reusability of the model. This
would help to handle typical challenges in the creation of
applications with interactive virtual characters, such as the
modeling of reactive and deliberate behavior, the use of mul-
tiple virtual characters and their synchronization and the
handling of user interaction. In this paper, we face these
challenges by presenting a hybrid approach to contribute on
the user modeling level for the creation of multithreaded
and multimodal interactive virtual character applications in
a rapid-prototyping style.

2. DIALOGUE MANAGEMENT

Central concept of our modeling approach is the sepera-
tion of dialogue content and structure. Multimodal dialogue
content is specified in a set of scenes that are organized in a
scenescript. The narrative structure of an interactive perfor-
mance and the interactive behavior of the virtual characters
is controlled by a sceneflow, which is a statechart variant
specifying the logic according to which scenes are played
back and commands are executed. Sceneflows have concepts
for the hierarchical refinement and the parallel decomposi-
tion of the model as well as an exhaustive runtime history
and multiple interaction policies. Thus, sceneflows adopt
and extend concepts that can be found in similar statechart
variants [10, 37].

Sceneflows and scenescripts are created using a graphical
modeling tool and executed by an interpreter software. This
allows the realtime extension and modification of the model
and the direct observation of the effects without the need for
an intermediate translation step or even the need to pause
the execution of a sceneflow. The realtime visualization of a
sceneflow’s execution and active scenes within the graphical
user interface allows to test, simulate and debug the model.
These features facilitate and accelerate the modeling process
and, thus, allow the creation of interactive virtual character
performances in a rapid-prototyping style.

2.1 Creating Multimodal Dialogue Content

As shown in Fig. 1, a scene resembles the part of a movie
script consisting of the virtual characters’ utterances con-
taining stage directions for controlling gestures, postures,
gaze and facial expressions as well as control commands for
arbitrary actions realizable by the respective character an-
imation engine or by other external modules. Scenescript
content can be created both manually by an author and au-
tomatically by external generation modules. The possibility
to parameterize scenes may be exploited to create scenes in
a hybrid way between fixed authored scene content and vari-
able content (Fig. 1 D), such as retrieved information from
user interactions, sensor input or generated content from
knowledge bases.

A scenescript may provide a number of variations for each
scene that are subsumed in a scenegroup, consisting of the
scenes sharing the same name or signature (Fig. 1 ®,®).
Different blacklisting strategies are used to choose one of the
scenes from a scenegroup for execution. This mechanism
increases dialogue variety and helps to avoid repetitive be-

386

Scene_en: GirlsAskUserAboutWaitress (1)9

Susan: [gaze lookToUser] Hello SUserName. | [anim pointToSelf] am just telling [anim
pointToGabi] Gabi about [gaze lookToHeidi] Heidi. What do you think about Heidi?
Scene_en: GirlsAskUserAboutWaitress {Z)B

Gabi: Hey [gaze lookToUser] SUserName. We are talking about Heidi. You know {anim
pointToHeidi] Heidi, right? What do you think? Do you despise her just [facs smile] as
well as we do?

Susan: [laugh value=3000] [gaze lookToUser] Yes SUserName. [facs smile] Spit it out!

Figure 1: Parameterizable scenes of a scenegroup.

havior of virtual characters, which would certainly impact
the agents’ believability.

2.2 Modeling Dialogue Logic and Context

A sceneflow is a hierarchical and concurrent statechart
that consists of different types of nodes and edges. A sce-
nenode can be linked to one or more scenegroup playback-
or system commands and can be annotated with statements
and expressions from a simple scripting language, such as
type- and variable definitions as well as variable assignments
and function calls to predefined functions of the underlying
implementation language (Fig. 2 @). A supernode extends
the functionality of scenenodes by creating a hierarchical
structure. A supernode may contain scenenodes and supern-
odes that constitute its subautomata. One of these subnodes
has to be declared the startnode of that supernode (Fig. 2
®). The supernode hierarchy can be used for type- and vari-
able scoping. Type definitions and variable definitions are
inherited to all subnodes of a supernode. The supernode
hierarchy and the variable scoping mechanism imply a hier-
archy of local contexts that can be used for context-sensitive
reaction to user interactions, external events or the change
of environmental conditions.

Figure 2: Node statements and supernode hierarchy.

Different branching strategies within the sceneflow, such
as logical and temporal conditions or randomization, as well
as different interaction policies, can be modeled by connect-
ing nodes with different types of edges. An epsilon edge
represents an unconditional transition (Fig. 2 3)). They are
used for the specification of the order in which computation
steps are performed and scenes are played back. A timeout
edge represents a timed or scheduled transition and is labeled
with a timeout value (Fig. 2 @). Timeout edges are used to
regulate the temporal flow of a sceneflow’s execution and to



schedule the playback of scenes and computation steps. A
probabilistic edge represents a transition that is taken with
a certain probability and is labeled with a probability value
(Fig. 5 @). Probabilistic edges are used to create some
degree of randomness and desired non-determinism during
the execution of a sceneflow. A conditional edge represents
a conditional transition and is labeled with a conditional ex-
pression, as shown in Fig. 3. Conditional edges are used to
create a branching structure in the sceneflow which describes
different reactions to changes of environmental conditions,
external events or user interactions.

2.3 Interaction Handling Policies

User interactions as well as other internally or externally
triggered events within the application environment can rise
at any time during the execution of a model. Some of these
events need to be processed as fast as possible to assert cer-
tain realtime requirements. There may, for example, be the
need to contemporarily interrupt a currently running dia-
logue during a scene playback in order to give the user the
impression of presence or impact. However, there can also
exist events that may be processed at some later point in
time allowing currently executed scenes or commands to be
regularly terminated before reacting to the event. These two
different interaction paradigms imply two different interac-
tion handling policies that find their syntactical realization
in two different types of interruptibility or inheritance of
conditional edges:

e Interruptive conditional edges (Fig. 3 @©,®) are inher-
ited with an interruptive policy and are used for han-
dling of events and user interactions requiring a fast
reaction. Whenever an interruptive conditional edge
of a node can be taken, this node and all descendant
nodes may not take any other edges or execute any
further command. These semantics imply, that inter-
ruptive edges that are closer to the root have priority
over interruptive edges farther from the root.

e Non-interruptive conditional edges (Fig. 3 2),@) are
inherited with a non-interruptive policy, which means
that a non-interruptive conditional edge of a certain
node or supernode can be taken after the execution
of the node’s program and after all descendant nodes
have terminated. This policy is implicitly giving higher
priority to any conditional edge of nodes that are far-
ther from the root.

Figure 3: (O,(® Interruptive conditional edges and
®),® simple non-interruptive conditional edges.

387

Fig. 3 shows a supernode hierarchy with different con-
ditional edges. If the condition stop becomes true during
the execution of the two innermost scene playback com-
mands, then the scene within the supernodes with the non-
interruptive conditions (Fig. 3 @,®) will be executed to
its end. However, the scene within the supernodes with the
interruptive conditions (Fig. 3 @,®) will be interrupted as
fast as possible. In the non-interruptive case the execution
of the sceneflow continues with the inner end node (Fig. 3
@) before the outer end node is executed (Fig. 3 2). In the
interruptive case the execution of the sceneflow immediately
continues with the outer end node (Fig. 3 @) because the
outer interruptive edge has priority over the inner interrup-
tive edge (Fig. 3 ®).

2.4 Modeling Multihreaded Dialogue

Sceneflows exploit the modeling principles of modularity
and compositionality in the sense of a hierarchical and par-
allel decomposition. Multiple virtual characters and their
behavior, as well as multiple control processes for event de-
tection or interaction management, can be modeled as con-
current processes in parallel automata. For this purpose,
sceneflows allow two syntactical instruments for the creation
of concurrent processes. By defining multiple startnodes for
a supernode (Fig. 4), each subautomaton which consists of
all nodes reachable by a startnode, is executed by a separate
process. By defining fork edges (Fig. 5 (D), an author can
create multiple concurrent processes without the need for
changing the level of the node hierarchy.

Figure 4: Hierarchical and parallel decomposition.

Following this modular approach, an author is able to sep-
arate the task of modeling the overall behavior of a virtual
character into multiple tasks of modeling individual behav-
ioral aspects, functions and modalities. Behavioral aspects
can be modified in isolation without knowing details of the
other aspects. In addition, previously modeled behavioral
patterns can easily be reused and adopted. Furthermore,
premodeled automata that are controlling the communica-
tion with external devices or interfaces can be added as plu-
gin modules that are executed in a parallel process.

Individual behavioral functions and modalities that con-
tribute to the behavior of a virtual character are usually not
completely independent, but have to be synchronized with
each other. For example, speech is usually highly synchro-
nized with non-verbal behavioral modalities such as gestures
and body postures. When modeling individual behavioral
functions and modalities in seperate parallel automata, the
processes that concurrently execute these automata have to
be synchronized by the author in order to coordinate all be-



Figure 5: @ Concurrent processes with fork edges
and @ randomization with three probability edges.

havioral aspects. This communication is realized by a shared
memory model which allows an asynchronous non-blocking
synchronization of concurrent processes.

Figure 6: Synchronization over configuration states.

Thereby, sceneflows enfold two different syntactic features
for the synchronization of concurrent processes. First, they
allow the synchronization over common shared variables de-
fined in some supernode. The interleaving semantics of
sceneflows prescribe a mutually exclusive access to those
variables to avoid inconsistencies. Second, they enfold a
state query condition (Fig. 6) which represents a more in-
tuitive mechanism for process synchronization. This condi-
tion allows to request weather a certain parallel automaton’s
state is currently executed by the sceneflow interpreter.

2.5 Consistent Resumption of Dialogue

Our concept of an exhaustive runtime history facilitates
modeling reopening strategies and recapitulation phases of
dialogues by falling back on automatically gathered informa-
tion on past states of an interaction. During the execution
of a sceneflow, the system automatically maintains a his-
tory memory to record the runtimes of nodes, the values
of local variables, executed system commands and scenes
that were played back. It additionally records the last exe-
cuted substates of a supernode at the time of its termination
or interruption. The automatical maintainance of this his-
tory memory releases the author of the manual collection of
such runtime data, thus efficiently reducing the modeling ef-
fort while increasing the clarity of the model and providing
the author with rich information about previous interactions
and states of execution.

The scripting language of sceneflows provides a variety of
built-in history expressions and conditions to request the in-
formation deposited in the history memory or to delete it.
The history concept is syntactically represented in form of a
special history node which is an implicit child node of each
supernode. When reexecuting a supernode, the supernode
starts at the history node instead of its default startnodes.
Thus, the history node serves as a starting point for the au-
thor to model reopening strategies or recapitulation phases.

Fig. 7 shows a simple exemplary use of a supernode’s his-
tory node and a history condition. At the first execution of
the supernode Parent, the supernode starts at its startnode

388

Figure 7: History node and condition.

First (Fig. 7 (D). If the supernode Parent is interrupted
or terminated at some time and reexecuted afterwards, it
starts at the history node History. The history memory is
requested (Fig. 7 @) to find out if the supernode had been
interrupted or terminated in the node First or the node
Second. As the snaphot of the visualized execution shows,
depending on the result, the either the node First (Fig. 7
®) is executed or the node Second (Fig. 7 @) is started
over the history node.

3. SOAP: MULTI-PARTY DIALOGUES IN IN-

TERACTIVE STORYTELLING

The development of interactive digital storytelling systems
has been a growing topic of research over the past years.
They have been applied for applications in education and
training [20, 32, 34] as well as in entertainment and art [21,
30, 3]. While some of these systems explore user interaction
by putting the user into the role of an observer that can
change the world as the story progresses, the majority of
them pursues a dialogue-based interaction approach. Such
systems focus on creating a dramatic experience by offering
a selection of dialogue situations in which the user is able to
influence the progress and the outcome of the story through
interactions.

For the development of interactive storytelling applica-
tions it is indispensable to provide authoring software that
can be used by non-experts such as artists and screenwriters
in order to create highly interactive and consistent multi-
party dialogues with the virtual actors. Thereby, there arise
challenges such as the continuous realtime processing and
context-sensitive interpretation of user interactions, an ad-
equate contemporary reactions to the user’s discourse acts
and the resumption and revision of dialogue content after
unexpected interruptions. We address these challenges in
the social game scenario Soap by using the concepts of our
approach presented in Section 2. We realized our ideas of
dialogue-based interactive entertainment in a demonstrator,
which is explained in the following.

3.1 Concept Overview

To this end, we choose a social game located in our Virtual
Beergarden scenario (Fig. 8). In the soap-like story, the
user and the virtual characters are involved in a romantic
conflict. The user, who is represented by an avatar (Fig.
8 @), meets a group of girls (Fig. 8 @) and a group of
guys (Fig. 8 ®) as well as a waitress (Fig. 8 @). The user
can approach the focus groups, listen to their conversations



or contribute to the story. In case the user does not focus
a certain group, the characters show idle dialogue behavior
and talk gibberish. Through dialogue interactions, the user
can advise the characters and, thus, influence the progress
and outcome of the story.

Figure 8: The setting in the virtual beergarden.

Semantic
Dictionary

|
6
Semantic
Parser

Figure 9: Component-based system architecture.

The different components of the system architecture are
embedded in three independent layers: The representation
layer contains knowledge bases and models specifying the
scenario content (Fig. 9 D-(®). The control layer manages
the processing of user input and the computation of system
output (Fig. 9 D-®). Finally, the application layer en-
folds the user interface. Vertically, the components can be
categorized into dialogue and interaction management (Fig.
9 @,®,®), natural language interpretation (Fig. 9 @©,®)
and autonomous behavior control (Fig. 9 @,®),®).

3.2 Dialogue and Interaction Management

The behavior modeling as well as the dialogue and in-
teraction management of the virtual characters is realized
with our modeling tool. An author can specify dialogue-
and behavior content in a scenescript (Fig. 9 ®) and model
the logic of behavior and dialogue with a sceneflow (Fig.
9 @). An interpreter software executes the model and is,
thus, controlling the virtual characters in the game (Fig. 9

®).

389

Figure 10: Part of the sceneflow from Soap.

Fig. 10 shows a part of the modeled sceneflow. Each focus
group, the user avatar and other game objects are modeled
in separate concurrent automata. We also recursively make
use of parallel automata in order to model the behavior of
individual characters and their behavioral aspects. This pro-
cedure reduces the modeling effort and increases the clarity
of the model because it prevents the state explosion of the
model, which could be observed if we modeled the whole
scenario with a simple flat statechart. Furthermore, it al-
lows us to change the behavior of individual focus groups or
characters in isolation.

A major requirement in this application was to allow the
user to change the focus group, or initiate and terminate
a conversation respectively, at any time. Therefore, each
dialogue situation had to be contemporarily interruptible.
To create a coherent storytelling experience, an interrupted
dialogue situation had to be consistently resumed after reen-
tering the target group. For these reasons, a highly interac-
tive dialogue structure was modeled and the runtime history
was used in order to keep track of previous interactions and
the progress of the dialogue. Ongoing dialogues are inter-
rupted whenever the user leaves a focus group and resumed
whenever the user reenters the focus group (Fig. 10 @).
Consistent resumption or reopening of a previous dialogue
is guaranteed by a recursive use of the runtime interaction
history (Fig. 10 ®). Context-sensitive reaction to the user’s
interaction is modeled by branching the dialogue structure
dependent on the current state of the dialogue and the user’s
dialogue act provided by the NLU pipeline (Fig. 10 ).

To factor out the logic for the detection and the processing
of user interactions, we modeled a separate parallel automa-
ton, as shown in Fig. 11. This reduces the effort of modeling
such logics within the automata for the individual dialogue
situations to a minimal amount, again effectively increasing
the clarity of the model.

3.3 Natural Language Interpretation

This component allows the natural language communica-
tion between the user and the focus groups. Our natural
language recognition and interpretation pipeline relies the



Figure 11: User input processing and control.

semantic parser Spin [6] (Fig. 9 ®), allowing text input
to be processed by semantic rules mapping the users ut-
terances into abstract dialogue acts based on the DAMSL
coding scheme [4]. These rules are specified in a set of dic-
tionaries that are created by an operator or the author (Fig.
9 @®). The dialogue acts are processed by the sceneflow inter-
preter according to the rules defined by the sceneflow model
to ensure a contemporary, adequate and context-sensitive
reaction to the user’s utterances.

Fig. 12 exemplifies a set of rules, syntactic and semantic
categories as well as preprocessing steps. The example rule
(Fig. 12 (®) states that if the user’s input contains one of
the words "how”, ”do” or "what” in correlation with the word
”you” and any word belonging to the semantic category loca-
tion, the abstract speech act ask-location is triggered. The
semantic category location (Fig. 12 @) contains the words
”location”; "place”, "beergarden”, "here” and "party”. Thus,
different user utterances (Fig. 12 (®) are parsed into the
same dialogue-act. In addition, word stems (Fig. 12 @)
and other pre-processing steps can be defined (Fig. 12 @)
such as summarizing negations. In addition, we integrated a
spell checker into our language recognition component to be
able to cope with faulty or incomplete text input. In inter-
active entertainment applications this is of special interest,
since typos or incomplete sentences occur rather often.

Figure 12: Knowledge for the semantic parser.

The language recognition engine also allows the dynamic
exchange of dictionaries from the sceneflow model. In that
manner, authors can adapt the dictionary rules to the lo-
cal dialogue context. User interactions could, for example,
be interpreted differently in different contexts. With a set
of dictionaries, these are less complex, clearly arranged and

390

exchangeable. In addition, the parsing of sentences can be
a lot easier in limited domains. Dictionaries that do not
deliver interpretable results in a certain context, can be dy-
namically substituted with more general dictionaries.

3.4 Autonomous Behavior Control

The game component is responsible for the graphical rep-
resentation of our scenario. The scene displayed in the Vir-
tual Beergarden is described by a world model created by
an artist (Fig. 9 ®). Core concept of this component is the
automatic animation selection for autonomous low-level be-
haviors. While high-level behaviors of the virtual characters
such as speech and gestures are specified using the modeling
tool, low-level behaviors such as positioning, agent orien-
tation and proximity or inter-agent gazing can be handled
automatically by the application. They are triggered by the
system automatically, accompanying the behavior specified
by the author, so that the author does not need to take
care of them. If, for example an author specifies that an
agent should move through the scenario and approach an-
other agent, the virtual characters will automatically detect
each other when entering their social distance zones and re-
act by e.g. turning their bodies in a way that they are facing
each other or turning their gaze towards the other characters
face.

As shown in Fig. 9, animations are specified in a nonver-
bal knowledge base, an animation lexzicon (Fig. 9 @). In
the current version of the system, each agent can perform
over 40 different gestures and postures. Following [22], we di-
vide every animation into the following phases: preparation,
stroke and retraction. In the preparation phase, the hands
are brought into the gesture space, the stroke phase carries
the content of the gesture, while in the retraction phase, the
hands are finally brought back into a resting position. These
phases are used as a basis for gesture customization, e.g. to
match the agent’s social or personal background. In partic-
ular, the stroke phase of a gesture can be varied in order to
show different gestural expressivities (see [26]), such as speed
or repetition. In the Virtual Beergarden application the pa-
rameter repetition, can be varied by playing the stroke phase
several times, while it can be played faster or slower to cus-
tomize the speed parameter. A Bayesisian network can be
set for the agents in order to define aspects such as person-
ality or emotional state that influence the manner in which
nonverbal behaviors are executed. This has been exemplified
for the phenomena of culture-related differences in behavior
[29]. In order to create different characters in an interactive
story, the Bayesisian network can easily be replaced, e.g.
to focus on other aspects such as personality or emotional
state. Depending on the values set for a virtual character,
animations are customized accordingly. In that manner, the
author of a story needs to define a character only once, e.g.
as being extroverted. In case the author wants to change
the gestural style for a characters, e.g. because of a different
emotion, this can easily be done at runtime.

4. FIELD TESTS AND DISCUSSION

Success in building different interactive applications with
virtual characters for entertainment [9], education [24, 14]
and commerce [18] permits very promising conclusions with
respect to the suitability of our approach. However, mainly
computer-experts have been involved in the development of
these applications. For this reason, we conducted several



field tests and practical workshops with students of different
age groups and genders to determine in how far the approach
is suited for non-experts [5]. The participating students from
various educational levels brought no specific background
skills or previous knowledge. Nevertheless, they were able
to quickly pick up most of our concepts for modeling interac-
tive narrative with statecharts and writing scenescripts was
promptly and completely understood. This comprehension
was directly transfered into the creation of vivid interactive
scenarios with virtual characters. During the field tests, it
has been noticeable that the students, in contrast to the
computer experts, occasionally had difficulties to apply the
more complex concepts of our approach. While the con-
cept of hierarchical and parallel decomposition was fully un-
derstood, the students mostly used concurrent processes to
model completely independent parallel behaviors while they
rarely utilised the synchronization measures of our language.
Furthermore, the history concept was rarely used, because
the dialogue structure modelled by the students was mostly
linear or a tree-like branching structure. They only occa-
sionally had the idea to model dialogue situations that could
be resumed or reopened after an interruption by using the
history concept of our approach. These observations could
be be explained with the short amount of practice time for
the students. The field tests all had the same schedule. Af-
ter a short introduction (20 mins) into the concepts of the
modeling approach and the handling of the graphical user
interface, the students had some time for brainstorming and
sketching the dialogue (40 mins). Afterwards, they modelled
the sceneflow with minimal assistance (40 mins). We believe
that the more complex modeling concepts of our approach
will also be fully understood by non-experts after more in-
tensive practice. In the future we plan to do more field test
over a longer period of time in order to prove our assump-
tion. This would also allow us to evaluate the quality of the
stories and dialogues modeled by the students.

5. CONCLUSION AND FUTURE WORK

In this paper, we described a modeling approach for multi-
threaded and multimodal dialogues with virtual characters.
Our approach allows an author to model complex dialogue
behavior and interaction management for multiple virtual
characters in a rapid-prototyping style. The statechart lan-
guage provides different interaction handling policies for an
author to handle continuous real-time interaction. An inter-
action history allows an author to model reopening strategies
for dialogues so that they can consistently be resumed and
previous dialogue topics can be revised. Hierarchical and
parallel decomposition allows to model different behavioral
aspects, functions and modalities in isolation. This mod-
ular approach reduces the complexity of the model while
improving extensibility and reusability. Dialogue content
can be authored manually or generated automatically. Au-
tonomous behavior can be specified without the need for
an author to explicitly model it. We realized our ideas of
dialogue-based interactive entertainment in a demonstrator
application.

Our future work refers on the one hand to technical im-
provements of the modeling tool based on the user feedback
we received so far and refinements of our modeling approach,
on the other hand to additional user studies that explore
further issues, such as the quality of the scenarios generated
with our approach. For the future we plan to integrate our

391

system with other components, as for example emotion sim-
ulation and emotional speech synthesis, nonverbal behavior
generation as well as speech recognition. This implies the use
of standard languages such as FML, BML and EmotionML
[36, 15, 17]. Furthermore, we want to integrate a dialogue
domain knowledge component to the authoring framework,
which allows authors to easily define domain knowledge and
rules that can map utterances to abstract dialogue acts de-
pendent on the dialogue domain. This implies the use of an
ISO standard for dialogue act annotation [2]. Feedback from
users in different field tests and projects has shown that one
strength of the presented modeling approach is the reusabil-
ity of already modeled behavioral patterns in the form of
sub-models, because this can drastically reduce the modeling
effort and complexity. We plan to factor a library of reactive
behavior patterns that can be reused for an easy creation of
different behavioral aspects for multiple virtual characters.
Therefore, one of our main purposes is to identify abstract
universal behavioral patterns that appear in multi-party dia-
logues with multiple virtual characters. We want to provide
the author with a library of predefined and parameterizable
statechart models, implementing behavioral patterns that
can be reused in several projects and can easily be adjusted
to the respective context.

Regarding the experiences with the presented approach
in many applications and the feedback from several field
tests, we conclude that our approach is suitable for modeling
complex multithreaded and multimodal dialogue behavior
and interaction management for multiple virtual characters
in a rapid-prototyping style and that our modeling tool can
be used as an educational device.

6. ACKNOWLEDGMENTS

The work described in this paper was supported by the
European Commission within the 7th Framework Programme
in the project IRIS (project no. 231824).

7. REFERENCES

[1] J. Brusk, T. Lager, A. Hjalmarsson, and P. Wik. Deal:
Dialogue management in scxml for believable game
characters. In ACM Future Play, pages 137-144.
ACM, 2007.

H. Bunt, J. Alexandersson, J. Carletta, J.-W. Choe,
A. C. Fang, K. Hasida, K. Lee, V. Petukhova,

A. Popescu-Belis, L. Romary, C. Soria, and D. R.
Traum. Towards an ISO standard for dialogue act
annotation. In 7th International Conference on
Language Resources and Evaluation (LREC), Valletta,
Malta, May 19-21, 2010 2010.

M. Cavazza, F. Charles, and S.-J. Mead. Agents’
Interaction in Virtual Storytelling. In IVA 2001, pages
156-170, 2001.

M. Core and J. Allen. Coding Dialogs with the
DAMSL Annotation Scheme. In Working Notes of
AAAI Fall Symposium on Communicative Action in
Humans and Machines, 1997.

B. Endrass, M. Wissner, G. Mehlmann, R. Buehling,
M. Haering, and E. André. Teenage Girls as Authors
for Digital Storytelling - A Practical Experience
Report. In Workshop on Education in Interactive
Digital Storytelling on ICIDS, 2010.

2l



(6]

9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

R. Engel. Robust and efficient semantic parsing of
freeword order languages in spoken dialogue systems.
In Interspeech 2005, 2005.

S. Gandhe, N. Whitman, D. Traum, and R. Artstein.
An integrated authoring tool for tactical questioning
dialogue systems, 2008.

P. Gebhard, M. Kipp, M. Klesen, and T. Rist.
Authoring scenes for adaptive, interactive
performances. In AAMAS 2003, pages 725-732. ACM,
2003.

P. Gebhard, M. Schroder, M. Charfuelan, C. Endres,
M. Kipp, S. Pammi, M. Rumpler, and O. Tiirk.
IDEAS4Games: Building Expressive Virtual
Characters for Computer Games. In VA 2008, pages
426-440, 2008.

D. Harel. Statecharts: A visual formalism for complex
systems. In Science of Computer Programming,
volume 8, pages 231-274. Elsevier, 1987.

S. Heidig and G. Clarebout. Do pedagogical agents
make a difference to student motivation and learning?
A review of empirical research. Educational Research
Review, 2010.

I. Turgel. Cyranus : An authoring tool for interactive
edutainment applications. In Technologies for
E-Learning and Digital Entertainment, Hangzhou,
China, April 16-19 2006. Springer, Berlin.

I. A. Turgel, R. E. da Silva, P. R. Ribeiro, A. B.
Soares, and M. F. dos Santos. CREACTOR - An
Authoring Framework for Virtual Actors. In IVA
2009, pages 562-563. Springer, 2009.

M. Kipp and P. Gebhard. IGaze: Studying reactive
gaze behavior in semi-immersive human-avatar
interactions. In IVA 2008, pages 191-199, 2008.

M. Kipp, A. Heloir, P. Gebhard, and M. Schroder.
Realizing multimodal behavior: Closing the gap
between behavior planning and embodied agent
presentation. In IVA 2010. Springer, 2010.

M. Kipp, M. Neff, K. H. Kipp, and I. Albrecht.
Toward natural gesture synthesis: Evaluating gesture
units in a data-driven approach. In IVA 2007, LNAI
4722, pages 15-28, 2007.

S. Kopp, B. Krenn, S. Marsella, A.-N. Marshall,

C. Pelachaud, H. Pirker, K.-R. Thoérisson, and

H. Vilhjalmsson. Towards a common framework for
multimodal generation: The behavior markup
language. In IVA 2006, 2006.

A. Kréner, P. Gebhard, L. Spassova, G. Kahl, and
M. Schmitz. Informing customers by means of digital
product memories. In 1st international Workshop on
Digital Object Memories, 2009.

S. Marsella and J. Gratch. Ema: A computational
model of appraisal dynamics. In Agent Construction
and Emotions, 2006.

S. Marsella, W.-L. Johnson, and C.-M. Labore.

Interactive pedagogical drama for health interventions.

In Artificial Intelligence in Education, pages 341—-348.
IOS Press, 2003.

M. Mateas and A. Stern. Facade: An experiment in
building a fully-realized interactive drama. In Game
Developer’s Conference: Game Design Track, 2003.

392

(22]

23]

24]

(25]

[26]

27]

(28]

29]

(30]

31]

32]

33]

(34]

35]

(36]

37]

D. McNeill. Hand and Mind: What Gestures Reveal
about Thought. University of Chicago Press, 1992.

M. F. Mctear. Using the cslu toolkit for practicals in
spoken dialogue technology. In University College
London, pages 1-7, 1999.

G. Mehlmann, M. Héaring, R. Biihling, M. Wissner,
and E. André. Multiple agent roles in an adaptive
virtual classroom environment. In J. Albeck,

N. Badler, T. Bickmore, C. Pelachaud, and

A. Safonova, editors, IVA 2010, pages 250-256.
Springer, 2010.

J. Miksatko, K.-H. Kipp, and M. Kipp. The persona
zero-effect: Evaluating virtual character benefits ona
learning task. In VA 2010. Springer, 2010.

C. Pelachaud. Multimodal expressive embodied
conversational agents. In ACM international
conference on Multimedia, pages 683-689, 2005.

K. Perlin and A. Goldberg. Improv: A system for
scripting interactive actors in virtual worlds. In
Computer Graphics (SIGGRAPH), pages 205-216.
ACM, 1996.

H. Prendinger, S. Saeyor, and M. Ishizuk. MPML and
SCREAM: Scripting the Bodies and Minds of Life-like
Characters. In Life-like Characters — Tools, Affective
Functions, and Applications, pages 213-242. Springer,
2004.

M. Rehm, N. Bee, B. Endrass, M. Wissner, and

E. André. Too close for comfort? Adapting to the
user’s cultural background. In Workshop on
Human-Centered Multimedia, 2007.

M. Riedl, C.-J. Saretto, and R.-M. Young. Managing
interaction between users and agents in a multi-agent
storytelling environment. In AAMAS 2003, pages
741-748. ACM, 2003.

M. Schroder. Emotions in the Human Voice, Culture
and Perception, volume 3, chapter Approaches to
emotional expressivity in synthetic speech, pages
307-321. Pural, 2008.

M. Si, S. Marsella, and D. Pynadath. Thespian: An
architecture for interactive pedagogical drama. In
AIED 2005, 2005.

U. Spierling, S.-A. Weiss, and W. Mueller. Towards
accessible authoring tools for interactive storytelling.
In Technologies for Interactive Digital Storytelling and
Entertainment. Springer, 2006.

W. Swartout, J. Gratch, R. Hill, E. Hovy, S. Marsella,
J. Rickel, and D. Traum. Toward virtual humans. Al
Magazine, 27(2):96-108, 2006.

D. Traum, A. Leuski, A. Roque, S. Gandhe,

D. DeVault, J. Gerten, S. Robinson, and

B. Martinovski. Natural language dialogue
architectures for tactical questioning characters. In
Army Science Conference, 2008.

H. Vilhjalmsson, N. Cantelmo, J. Cassell, N.-E.
Chafai, M. Kipp, S. Kopp, M. Mancini, S. Marsella,
A.-N. Marshall, C. Pelachaud, Z. Ruttkay, K.-R.
Thorisson, H. van Welbergen, and R.-J. van der Werf.
The behavior markup language: Recent developments
and challenges. In IVA 2007, 2007.

M. von der Beeck. A comparison of statecharts
variants. In ProCoS 199/, pages 128—148. Springer,
1994.





