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Abstract—Throughout many present studies dealing with multi-modal fusion, decisions are synchronously forced for fixed time

segments across all modalities. Varying success is reported, sometimes performance is worse than unimodal classification. Our goal is

the synergistic exploitation of multimodality whilst implementing a real-time system for affect recognition in a naturalistic setting.

Therefore we present a categorization of possible fusion strategies for affect recognition on continuous time frames of complete

recording sessions and we evaluate multiple implementations from resulting categories. These involve conventional fusion strategies

as well as novel approaches that incorporate the asynchronous nature of observed modalities. Some of the latter algorithms consider

temporal alignments between modalities and observed frames by applying asynchronous neural networks that use memory blocks to

model temporal dependencies. Others use an indirect approach that introduces events as an intermediate layer to accumulate

evidence for the target class through all modalities. Recognition results gained on a naturalistic conversational corpus show a drop in

recognition accuracy when moving from unimodal classification to synchronous multimodal fusion. However, with our proposed

asynchronous and event-based fusion techniques we are able to raise the recognition system’s accuracy by 7.83 percent compared to

video analysis and 13.71 percent in comparison to common fusion strategies.

Index Terms—Affective computing, multimodal recognition, sensor fusion, artificial neural networks, deep learning

 
1 INTRODUCTION

IN unimodal affect classification, features of one social chan-
nel, such as the observed vocal properties, are used to

make assumptions about the current emotional condition of a
user [9]. But since the cues which describe emotional condi-
tions are indeed encodedwithinmultiplemodalities, the clas-
sification process should incorporate as much multimodal
information as possible frommultiple channels [43]. Elaborate
ways of fusing multiple modalities are in use throughout
many affect recognition studies. A number of studies [27],
[34], [40], [41], [42] combine differing modalities and mostly
confirm the assumption that multimodal fusion leads to
more accurate affect recognition systems than a unimodal
approach. Literature offers several surveys, which compare
multiple approaches to fusion of multimodal information for
affect recognition [28], [43]. D’Mello et al. [5] give a very
detailed overview over 30 studies which deal with multi-
modal emotion recognition systems and came up with the

following observations. Only one quarter of studies deal with
natural corpora and spontaneous emotion, three quarters
work on acted data. Used corpora directly influence the suc-
cess of fusion systems: recognition improvements range from
�9 to +27 percent, whereby the positive effect on accuracy is
three times higher on acted emotions. Furthermore, the
impact of a multimodal approach can be roughly predicted
by the performance of the best unimodal classifier. This find-
ing implies that a certain emotion may be visible in one affec-
tive channel, but has a modest effect in additional modalities.
The application of affect recognition in real-world scenarios
requires the used algorithms to perform well on naturalistic
input. This means that more subtle cues than the ones shown
in acted and partially exaggerated affective states have to be
recognized and interpreted. Furthermore, the simultaneous
display of an emotion in all affective channels is at least
unlikely to happen in a naturalistic setting.

There is also evidence from psychological studies that the
temporal dynamics of emotional displays are not necessarily
the same across all modalities. To illustrate this, let us have a
look at a typical behavioral pattern expressing embarrass-
ment. According to Keltner et al. [17], the display of embar-
rassment usually starts with a gaze down followed by a
sequence of smiles, gaze and head shifts. It is the sequence of
coherently integrated modalities that distinguishes embar-
rassment from related affective states, such as amusement or
enjoyment. While the single modalities are correlated to each
other, they seldom start and end exactly at the same point in
time, but follow each other with a small time lag or partially
overlap in time.
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In practice, however, fusion algorithms are often applied
in a synchronous way: The on- and offset of a relevant time-
interval in one modality is used to call fusion techniques for
classification throughout all available modalities, e.g., the
voice activity in the audio channel is used to detect a spoken
word and during this time the facial expression is also con-
sidered. Consequently, the segmentation of an expressive
cue in one modality is forced upon other available channels.
What if no observable effects are happening in other consid-
ered modalities at this point in time, as emotional reactions
are time-shifted between modalities or not present at all?
Meaningful information in additional modalities is
assumed-but it is not guaranteed. A fusion strategy that
expects usable information in all modalities at a certain
point in time will often fail in such situations. Thus, syn-
chronously cutting segments through multi-layered signals
does seem to be undesirable. So how do we solve the prob-
lem of non-aligned cues in multiple signals in order to rec-
ognize natural emotions in a better way?

A first step is to reject the assumption that all relevant
cues happen in all modalities at the same time, which is an
implicit assumption of the synchronous fusion approaches
described so far. We need to apply fusion strategies that
address the asynchronous nature of the recognition prob-
lem. An obvious way to relate temporally unaligned cues
for proper fusion is the use of dynamic classifiers. Song
et al. [34] describe a tripled Hidden Markov Model, which
is able to integrate three streams of data and allows for the
state asynchrony of the sequences while preserving their
natural correlation over time. More elaborate ways of apply-
ing asynchronous fusion to multimodal data streams can be
found in the form of recurrent neural networks with mem-
ory capabilities [3], [14]. They are able to learn a history of
past frames in several modalities and take them into
account for classification. The mentioned fusion mecha-
nisms respect the asynchronicity of multiple modalities;
however, they apply classification directly: Descriptive fea-
tures of observed channels are used to train classifiers to
directly recognize the sought target class.

Event-based fusion approaches offer an indirect way to
tackle affect recognition from several modalities by recogniz-
ing events as indicators for the target class and accumulating
their asynchronous occurrences within the affective channels
over time. In [21], a vector based approach is presented that
calculates the target class probability from asynchronous
indicator events, by relating back recognized visual smiles
and audible laughs to a positive emotional state, instead of
trying to classify it directly from features gained from video
and audio analysis. The fusion approach was evaluated by
recognizing a speaker’s level of enjoyment in a natural con-
versation scenario. Enjoyment is an important affective state
to observe in HCI. Signs of enjoyment, such as laughs and
smiles, play a significant role in human communication. Sys-
tems that take the role of e.g., companions or tutors should be
able to recognize and estimate their presence (or absence) in
real-time (or at least with an acceptable delay) in order to
design an engaging and entertaining interaction [29]. Enjoy-
ment can be defined as an episode of enjoyable emotion.
These episodes are typically accompanied by visual and audi-
tory cues, which makes this classification task a well-suited
proving ground for recognition systems that make use of

multimodal fusion techniques. In [21], we did only compare a
single event-based fusion algorithm to conventional recogni-
tion approaches. This evaluation will now be extended by
looking at other sophisticated asynchronous fusion strategies
in the form of recurrent neural networks as well as the
introduction of novel event-based algorithms that e.g., use
Dynamic Bayesian Networks for event processing. Therefore
we will carry out a systematic categorization of proposed
fusion strategies (Section 2) and an evaluation (Section 5), in
which we compare proposed asynchronous (Section 3.2) and
event-based (Section 3.3) fusion approaches to conventional
affect recognition approaches (Section 3.1) for framewise
enjoyment recognition on naturalistic data (Section 4).

2 CATEGORIZATION OF FUSION SYSTEMS

Meta studies that describe and compare several approaches
for affect recognition often try to categorize the used fusion
algorithms. Shivappa et al. [33] differentiate between fusion
approaches at the signal, feature, model, decision and
semantic level. These are mostly synchronous fusion
approaches and we will cover most of these schematics in
Section 3.1. Glodek et al. [12], [11] describe fusion architec-
tures that apply fusion gradually at different levels, includ-
ing fusion steps from levels of signal recognition to abstract
logical inferences. They therefore describe the three catego-
ries of perception-level fusion, knowledge-based fusion and
application-level fusion. Concerning this classification of
fusion levels, the fusion systems discussed in this article lie
within the perception-level. In addition to these characteris-
tics, the applied recognition schemes may be distinguished
by two major decisions that arise when designing a multi-
modal affect recognition system.

2.1 Synchronous versus Asynchronous
Recognition

Confrontedwith the task of fusingmultiple affective modali-
ties, a vast amount of eligible strategies come into consider-
ation [30]. In this study, we differentiate fusion techniques
by the way they handle temporal alignments between infor-
mation within modalities. Synchronous fusion approaches
share the characteristic of considering multiple modalities
and respective feature sets within the same time slice (Fig. 1).
Zeng et al. [43] cite 18 studies dealing with audio-visual
fusion distinguishing between feature-, decision-, and
model-level fusion. Feature-level fusion is a very straightfor-
ward way to fuse all observed modalities by merging all cal-
culated features into a single and high dimensional feature
set to form one single classification model. The multimodal
feature set contains a greater amount of information than a
single modality. Decision-level fusion sums up combination

Fig. 1. Synchronous fusion approaches are characterized by the consid-
eration of multiple modalities within the same time frame.
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rules for the probabilistic outputs of several classification
models. Instead of using all available features for a single
classifier, the available feature set is divided into subgroups
(e.g., one classifier per modality). Standard decision techni-
ques include class-label combination (e.g., voting or look-up
tables) and algebraic combination rules (e.g., sum rule or
product rule). Feature- and decision-level fusion include the
most standard approaches used in many studies concerning
multimodal fusion experiments. In model-level fusion, such
as Stacked Generalisation [36], the outputs of several classi-
fiers are not fused by predefined combination rules. Instead
their results are used as input for one ormoremeta classifica-
tion models that generate the final decision. Studies, such as
[6], [10], [18], [19], [20], examine rather basic fusion strategies
and sometimes advise which scheme dominates others.

Asynchronous fusion is meant to not force decisions on
synchronised time frames (Fig. 3). Dupont et al. [7] were
among the first to tackle the asynchronous nature of audio
and video streams by modelling temporal topologies with
multi-stream HMMs for continuous speech recognition.
Zeng et al. [42] applied Multi-stream Fused Hidden Markov
Model (MFHMM), where state transitions of different com-
ponent HMMs do not necessarily occur at the same time
across different streams so that the synchrony constraint
among different streams is also relaxed. Coupled Hidden
Markov Models (CHMM) [26] have also been proposed.
Here the probability of the next state of a sequence depends
on the current state of all HMMs and therefore enables an
improved modelling of intrinsic temporal correlations
between multiple modalities. To overcome the computa-
tional complexity of asynchronous Hidden Markov model
(AHMM), W€ollmer et al. [40] suggested a multidimensional
dynamic time warping (DTW) algorithm for hybrid fusion
of asynchronous data, requiring significantly less decoding
time while providing the same data fusion flexibility as the
AHMM. Finally, Recurrent Neural Networks (RNNs) offer
a third alternative for asynchronous fusion, in particular in

the form of Long Short-Term Memory Neural Networks
(LSTM-NNs), which replace the traditional neural network
nodes with memory cells, essentially allowing the network
to learn when to store or relate to bimodal information over
long periods of time. We have successfully applied LSTM-
NNs to combine acoustic and linguistic features to continu-
ously predict the current quadrant in a two-dimensional
emotional space spanned by the dimensions valence and
activation [41]. Likewise, in a similar emotion recognition
task, this approach successfully fuses facial expressions,
shoulder gestures and audio cues [28].

2.2 Expected Gains of Asynchronous Approaches

Fig. 2 shows an exemplary annotation of a full enjoyment epi-
sode aligned with various voiced and visual cues emitted by
the user. For each frame a decision has to be made by the
fusion system. In a synchronised fusion approach each frame
is seen in isolation, i.e., a decision is derived from the multi-
modal information within the frame. However, we can see
that the single cues only partly overlap with the enjoyment
episode. While other frames align with cues from a single
modality (see e.g., frame 09), some of the frames, which are
spanned by the enjoyment episode do actually not overlap
with any observable cues (see e.g., frame 04). Those frames
are likely to be misclassified by a synchronous fusion
approach. Obviously, asynchronous fusion approaches,
which take the temporal asynchronicity of the modalities into
account, should be able to catch the characteristics of the ana-
lysed data more precisely. Indirect recognition approaches
that use event recognition for enjoyment classification are
probably able to overcome frames with sparse cues of enjoy-
ment in current and preceding frames.

2.3 Direct versus Event-Based Recognition

Most approaches to emotion recognition are based on categor-
ical emotion theories [8], which model emotions as distinct
categories, such as joy, anger, surprise, fear or sadness, or
dimensional emotion theories, which characterize emotions
in terms of several continuous dimensions [23], such as plea-
sure, arousal and dominance. Classifiers are usually trained
to map relevant features directly on discrete emotion catego-
ries or on a continuous multidimensional space. Typically the
probabilistic output of modality-specific classifiers is com-
bined by a fusion strategy and an agreeing decision is deter-
mined among the considered modalities. These approaches
may be referred to as direct emotion recognition approaches.

In this paper, we introduce events as an intermediate
layer of representation. Instead of directly recognizing affec-
tive states from relevant features, we search for indicative
events that can be algorithmically interpreted for target

Fig. 3. Asynchronous fusion scheme. Unlike synchronous fusion, which
considers multiple modalities within the same (current) time frame, asyn-
chronous fusion algorithms refer to past time frames with the help of
some kind of memory support. Therefore they are able to catch temporal
shifts of emotional expressions between observed modalities.

Fig. 2. Exemplary annotations of enjoyment, voiced laughs and visual smiles. Dotted lines depict time frames in which decisions have to be made by
the fusion system. Asynchronous and even-based fusion approaches have the opportunity to overcome segments with a sparse distribution of actual
cues of enjoyment.
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class estimation. In the example above, audio features can
be used to classify laugh events and their repeated occur-
rence can be taken as a hint of enjoyment. Similar events
can be defined for all available modalities and found events
can consequently be fed into combination algorithms that
relate these indicator events back to the target class (Fig. 5).

An intermediate layer of representation has also been sug-
gested by Mortillaro et al. [24] for emotion recognition tasks.
They propose to use expressive features for assessing
appraisals, such as subjective pleasantness, which in turn
could be employed for assessing emotional labels. Mortillaro
et al. argue that the introduction of an additional layer could
contribute to a higher level of interpretability of machine
learning results. Even though our events do not correspond
to appraisals, they represent meaningful interpretation units
which lie between expressive features and emotional labels.

2.4 Expected Gains from Event-Based Recognition

The promise of the event-based approach lies in the intro-
duction of an intermediate layer of representation that
reduces the complexity of the emotion recognition task
while enhancing its transparency. For example, Fig. 2 shows
how enjoyment is recognized from a repetitive sequence of
voice laughs and visual smiles. The figure gives an impres-
sion of which events to expect when observing enjoyment.
Even though voice laughs and visual smiles are correlated,
they do not start and end at the same point in time. Also
there are phases of enjoyment where neither a voice laugh
nor a visual smile occurs. The benefit of the event-based
approach is that it allows for a sufficient amount of flexibil-
ity to represent the typical occurrences of voice laughs and
visual smiles in enjoyment. In particular, it does not force us
to code multimodal emotional behaviors on an exact time
line, but instead accumulates evidence from relevant events
as they occur in order to recognize the target class.

3 IMPLEMENTED FUSION STRATEGIES

In the previous section, we have presented a taxonomy of
fusion strategies (see Fig. 4) depending on the treatment of
timing and the levels of processing. We have discussed the
potential benefits of asynchronous over synchronous fusion
approaches and argued in favor of an intermediate layer
between low-level features and high-level affective states.
In this section, concrete implementations of respective algo-
rithms will be presented to investigate the assumptions
made in more detail.

3.1 Synchronous Fusion

Feature-, decision-, and model-level fusion schemes clearly
are among the most reported strategies for combining mul-
tiple modalities for affect recognition [5]. These algorithms
are generally easy to implement and apply, which makes
them an obvious choice for the synchronous fusion app-
roach. As discussed in Section 2.1, feature-level fusion is by
far the most straightforward combination strategy, but nev-
ertheless has often proven to yield good results in compari-
son to unimodal classification and other fusion schemes
[20]. Contrary to feature-level fusion, decision-level fusion
focuses on the usage of several classifiers and combination
of their probabilistic outputs. As a baseline for the compari-
son, we choose the widely used product rule for merging
the output of several classification models: The decision of
ensemble member t for class n is denoted as dt;n 2 f0; 1g,
with t ¼ 1 . . .T and n ¼ 1 . . .N and dt;n ¼ 1 if class vn is
chosen, dt;n ¼ 0 otherwise. Respectively, the support given
to each class n (i.e., the calculated probability for the
observed sample to belong to single classes) by classifier t is
described as st;n 2 ½0; 1�. By multiplying the support given
to each class vn, total support mn for class n is calculated as

mnðxÞ ¼
1

T

YT
t¼1

st;nðxÞ:

The ensemble decision for an observed sample x is chosen
to be the class vn for which support mnðxÞ is largest. Within
the comparison study, we also observe the possibility of

Fig. 5. Event-based fusion scheme. The target class is not directly clas-
sified, but target class indicating events are recognized by accordingly
trained models. The final classification has to be algorithmically derived
from found events.

Fig. 4. We can hierarchically group the appropriate fusion strategies (Section 3) depending on the decisions made for the treatment of the temporal
dynamics and the levels of processing. The first layer depicts the distinction between a synchronous or asynchronous approach (Section 2.1). Sec-
ond, classifiers can be trained for recognizing the intended affective state directly or for recognizing intermediate events in terms of affective cues
that are algorithmically interpreted for target class estimation (Section 2.3).
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model-level fusion, in which the probabilistic outputs of sev-
eral ensemble classifiers are not fused by predefined combi-
nation rules. Instead their results are used as input for one or
more meta classification models, that generate the final
ensemble decision. In detail, we apply the technique of
Stacked Generalisation as proposed by [36]. One meta classi-
fier tries to learn the probability distribution among ensem-
ble classifiers together with the true class that leads to this
combination. When asked to classify an unknown sample x,
the method first collects probability estimates of all ensemble
members that consecutively form the basis for the meta clas-
sifier’s final prediction.

3.2 Direct Asynchronous Fusion

Neural networks were initially designed to simulate the
human brain’s learning processes as machine learning
scheme [31]. They describe a network of nodes (neurons),
linked by weighted connections (synapses). In a multilayer
perceptron [32], multiple hidden layers connect the input
layer to the output layer-the classification result (Fig. 6). The
modifications explained in this section make neural net-
works a very potent choice for asynchronous classification,
and therefore we apply them as a strategy for direct asyn-
chronous fusion within our comparisons (Fig. 3).

Deep neural networks (Deep-NNs), which contain a
large number of parameters, have recently become the gold
standard for a various of applications, such as speech recog-
nition and image classification. We therefore compare
Deep-NN-based methods with our proposed methods. In
particular, deep feedforward neural networks with rectifier
neural units are used to build the recognition model in [25].

In order to better capture the asynchronicity of modali-
ties, Deep-NNs can be enhanced with memory capabilities:
Recurrent neural networks (RNNs) are characterized by
having cyclic connections and receive their input not only
from the input layer, but also from hidden nodes that
remember previous time steps (Fig. 7). Though at this stage,
RNNs are capable of handling temporal alignments, the
range of temporal information that the recurrent network
can access is limited [15]. This problem is caused by the so-
called vanishing gradient problem, which is the phenomenon
of exponentially decaying influence from input to hidden
and output layers.

Long Short-Term Memory neural networks (LSTM-NNs)
are devised to better handle and exploit temporal context
by using memory blocks [14], which consist of several recur-
rently connected subnets: Each memory block contains one
or more recurrently connected memory cells and three gate
units, namely the input, output, and forget gates, which

control the information flow to and inside the memory
block and are designed to solve the vanishing gradient prob-
lem (Fig. 8). LSTM-NNs based models for asynchronous
fusion have shown remarkable success in paralinguistic
tasks [3], [41]. For further comparison with our proposed
methods, we train deep LSTM models for enjoyment recog-
nition. In addition, bi-directional LSTM-NNs (BLSTM-NNs)
are implemented, as these neural networks can access and
utilize past and future context and can therefore be expected
to yield the best recognition results of neural networks con-
sidered in this study.

3.3 Event-Based Fusion

Direct asynchronous fusion approaches theoretically outper-
form synchronous techniques by modelling temporal rela-
tions acrossmodalities. However, they are trained to directly
recognize the target class. This means the system considers
every time slice and decides if it belongs to the sought class
(es), not taking into account whether the observed time
frame contains expressive information at all. Event-based
fusion takes another approach to classification: Separately
trained recognizers look for target class indicating events in
the considered modalities and report their occurrence and
probability to the fusion algorithm. The fusion system accu-
mulates registered events, considers their temporal align-
ments and deduces the target class likelihood from the given
information. Each modality serves as a client which individ-
ually decides when to add information. Signal processing
components can be added or replaced without having to
touch the actual fusion system and missing input from one

Fig. 6. Multilayer perceptron with input layer, several hidden layers and
an output layer containing the classification result.

Fig. 7. Recurrent neural network with input layer, one hidden layer and
an output layer containing the classification result. The hidden layer at
time t has self-connections to the remembered hidden layer of t-1.

Fig. 8. LSTM network with one memory block, including the input, output,
and forget gate.
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of the modalities does not cause the collapse of the whole
fusion process and adds to a very good expandability of the
final affect recognition system.

In Section 3.2 we described the possibilities to model
temporal relations between modalities with artificial neural
networks. Although proven to be capable of handling
asynchronicity, the resulting networks are rather complex
black-boxes. Once trained it is hard to adjust them to new
conditions when applying them within a naturalistic set-
ting to which the learned model parameters may poorly
generalize (although there exist techniques like dropout
[35], which help to alleviate problems such as overfitting
on training data). Event based fusion approaches like the
algorithms described in Sections 3.3.2 and 3.3.3 have a set
of comprehensible parameters (e.g., the decay speed of
events) that can on the one hand be learned and optimized
with training data, but can on the other hand also be tuned
by expert knowledge to quickly react to new conditions in
a real-time scenario.

3.3.1 Dynamic Bayesian Networks

Fig. 9 shows the structure of a Dynamic Bayesian Network
(Dynamic-BN), which is used to collect laugh and smile
events, taggedwith respective confidence values. From these
it calculates enjoyment probability based on current and pre-
ceding observations: Every frame, modalities are checked for
occurring enjoyment indicating laugh and smile events. In
case of positive recognition, confidence values of event rec-
ognizers are used to update the related node within the net-
work. Before this update step, each probability within the
present laugh, smile and enjoyment nodes (t) is shifted one
time slice into the past (t-1). Probability of enjoyment within
the current frame is subsequently calculated from current
observations and probability distributions of past frames.
Initial configuration is learnt from framewise annotations of
the used corpus (Fig. 2) and models general distributions of
frames containing laughs, smiles and enjoyment episodes.

3.3.2 Vector Fusion

The proposed fusion algorithm is based on preceding work
done by [13], which represents emotions by means of plea-
sure and arousal in a two-dimensional emotional space. We
generalize this approach by designing a fusion scheme that
operates in a user-defined vector space. In the simplest

scenario, the vector space is a one-dimensional axis, typi-
cally describing a likelihood between zero and one. Events,
generated from observed signals, are mapped into this
space as vectors. The vectors are provided with several
parameters, as a confidence value is defined for each axis in
the event space. This defines the position of the vector
within the dimensional model. We dynamically calculate it
from the normed probabilities of a recognized cue, resulting
in values that range between zero and one. Every vector is
given a weight parameter, which serves as a quantifier for
its impact on the calculation of the fusion result. It is defined
by the modality the event is recognized in and serves as a
regulation instrument for emphasizing more reliable infor-
mation sources. Finally, the decay speed parameter
describes the average lifespan of cues extracted from the
respective signal. It is also defined for each modality and
determines the time it takes for the event’s influence to
decrease to zero. Events that strongly indicate the target
class can be given longer decay times in order to prolong
their influence on the result.

At each time frame, active event vectors e ¼ 1 . . .E are
decayed by multiplying each vector element with a decay
factor that is calculated based on the defined decay speed,
expired lifetime and the initial norm of the vector:

decaye ¼ norme � ðlifetimee � speedeÞ:
If the resulting norm of the decayed vector stays above

zero, it remains active-otherwise the vector is discarded.
Afterwards a mass centre is calculated over all active event
vectors:

For each dimension d ¼ 1 . . .D of the vector space respec-
tive values of active event vectors e ¼ 1 . . .E (modified by
their weight factor) are summed up

massðd1...DÞ ¼
XE
e¼1

ðeventvectord;e � weighteÞ:

The result is normalized by the sum of weights of all con-
tributing event vectors

massðd1...DÞ ¼ massðd1...DÞ
,XE

e¼1

weighte:

The fusion result itself is a vector which approaches the
calculated mass centre with a predefined speed parameter
(Fig. 10). If this vector rises above a specified threshold, we
classify the frame to contain the target class. If no events
remain active in the vector space, the fusion vector
approaches a neutral state.

3.3.3 Gravity Fusion

The term gravity fusion describes a refinement of the previ-
ously described vector fusion algorithm. As in vector fusion,
recognized events are translated into a vector representation
in an n-dimensional vector space, but instead of relying
mainly on a decreasing vector length, gravity fusion inter-
prets single events as mass points with a fixed position. The
event vectors, calculated as in vector fusion, hereby define the
exact position of these mass points within the vector space.
The temporal dynamic of the fusion model is introduced by a

Fig. 9. Structure of a dynamic Bayesian network for enjoyment estima-
tion. Each frame laugh and smile nodes t are updated with current events
and outdated confidence values are shifted shifted one time slice into the
past t-1 (dotted arrows). Enjoyment estimation is therefore calculated
from current observations and probability distributions of past frames.
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temporal decay of the weight of mass points (Fig. 11). Initial
mass of themass points are defined per event type, position is
determined by classification confidence. Based on the current
weights of all active mass points, a mass centre can be calcu-
lated. The fusion result migrates into the direction of the
found centre ofmass.

4 NATURALISTIC MULTIMODAL DATA

For the comparison study of affect recognition strategies
which we will present in the following sections, we use the
first session of the Belfast Storytelling Database [22]. It fea-
tures naturalistic and non-acted conversational data
between multiple persons. Topics of the conversations are
short stories about personal experiences that induced enjoy-
able emotions within the probands. The described positive
emotion of enjoyment is defined to be indicated by visual
and auditory cues of enjoyment, such as smiles and voiced
laughters. This fact makes the corpus well suited for evalu-
ating the implemented fusion approaches (Section 3),
because it enables the comparison of direct classification to
the recognition and fusion of multimodal indicator events.

The corpus consists of six sessions of groups of three or
four people telling stories to one another in either English or
Spanish. Each session lasts about 120 minutes, resulting in
approximately 75 minutes recording time. The storytelling

task is based on the 16 Enjoyable Emotions Induction Task
[16]. Participants were recruited at least a week ahead of the
recording session, and were instructed to prepare or think of
stories that relate to each of 16 listed positive emotions or
sensory experiences. During the storytelling sessions the par-
ticipants were seated in comfortable chairs around a central
table, and each participant wore a head-mounted micro-
phone to capture high quality audio recordings. Video
signals were recorded using HD webcams. Kinect motion
capture technology was used to capture facial features, gaze
direction and depth information (see Fig. 12). Synchronisa-
tion was achieved using the Social Signal Interpretation
framework(SSI) [38]. Participants took turns at recalling a
story associated with each enjoyable emotion. The list of
enjoyable emotions was randomised for each story telling
session, and all of the participants told stories associated
with the same emotion in each round of stories. The amount
of enjoyment varied depending on which emotion was being
recalled and the nature of the story that was being recounted.
The story-telling events occasionally evolved into an open
discussion, which further facilitated episodes of laughter.

Annotations within the Belfast Storytelling Database [22]
segment the audiovisual data on a number of different lev-
els (Fig. 2). Each story-telling session is segmented to distin-
guish between story-teller and listeners. There are then
laughter segmentations at the two levels visual enjoyment
(smile) and auditory enjoyment (laugh). Smile annotations
are primarily based on the onset and offset of FACS Action
Unit 12 during a laugh episode. Laugh annotation labels the
acoustic components associated with laughter; from the
onset to offset of audible laugh related sounds during a
laugh episode. Persistent accumulations of these enjoyment
indicating cues are annotated as enjoyment episodes.

Given the naturalistic, multi-person Belfast Storytelling
Database [22] and annotations for smiles, laughs and enjoy-
ment episodes (Section 4), we can carry out a practical com-
parison study for the classification methodologies and
fusion systems that have been discussed so far (Section 3).
The first step in in every enjoyment recognition strategy is a
framewise activity check for modalities with a frame size of
400 milliseconds and 600 milliseconds delta size, resulting in

Fig. 11. Example schematic of the gravity fusion algorithm. Three enjoy-
ment indicating events from audio and video modality are successively
mapped into the vector space and resulting vectors (dotted arrows)
describe mass points for each event. Weights of mass points decrease
over time (shrinking dotted circles), the fusion result migrates in the
direction of the centre of mass, which is recalculated every frame.

Fig. 10. Example schematic of the vector fusion algorithm. Three enjoy-
ment indicating events from audio and video modality (black arrows) are
successively mapped into the vector space. Their lengths decrease over
time (dotted lines), therefore the mass centre moves over time with the
decreasing vectors.

Fig. 12. Round-table collocation of participants during storytelling ses-
sions, including positioning of HD webcams, Microsoft KinectTM devices,
HD video cameras and head mounted microphones.
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a calculation window of one second and a decision rate of
2.5 Hz. For the audio modality, signal to noise ratio is calcu-
lated each frame. We look for coherent signal parts in which
the mean of squared input values, multiplied by a Hamming
window, exceed predefined thresholds for intensity and
length. Meaningful activity in the video modality is assured
by the tracking feedback given by the Kinect device. We
check the 100 tracked facial points per frame for valid values
and if at least 50 percent of the 25 frames within the one-
second calculation window implicate complete tracking, the
feedback is positive for this frame. In order to simulate a true
real-time system the evaluation has been carried out for the
full recordings, i.e., no frames were excluded at any time.
Consequently, in case of synchronous fusion a decision had
to be forced even for frames where no signal was detected
(i.e., no face tracked or silence in the audio channel). We
decided to map those frames onto the class with the highest
a priori probability (i.e., no-Enjoyment).

5 COMPARISON STUDY

Every affect recognition system described in this article
uses the same set of features for the audio and video
modality, which are described in detail in Table 1: For
audio analysis we only compute acoustic features related
to the paralinguistic message of speech, i.e., the features
describe ”how” something is said, no information about
content is included. As a feature set for characterizing the
raw audio streams, we use 1,451 statistical prosodic Emo-
Voice features described in [37]. Recognizers for video clas-
sification are trained with 36 features, gained from
statistics over action units provided by the Microsoft Kine-
ctTM: i.e., we take the measured activation values of the six
action units given by KinectTMtracking for each video
frame at 25 fps (upper lip raiser, jaw lowerer, lip stretcher,
brow lowerer, lip corner depressor and outer brow raiser)
and calculate six statistical measurements (mean, energy,
standard deviation, maximum, minimum and range) over

a sliding window of 400 milliseconds with 600 milliseconds
delta size. This way we obtain 36 features (Table 1) as
input for video classification. Input and target features are
standardized to zero mean and unit variance on the train-
ing set. In the following section, we will discuss the results
generated by the various presented approaches to affect
recognition (Section 3). Result tables report unweighted
recognition results (average accuracy across classes), as
classified frames contain less samples of occurring enjoy-
ment as well as audible and visible laughs and smiles.
Evaluation is user-independent, recordings of a single user
are held back as test set, while the remaining samples are
used for training the respective recognition systems, which
leads to a rough total of 18.000 samples for training and
9.000 samples for testing. We begin the practical study
with the analysis of unimodal classification accuracies
which can then be used as a comparison baseline of the
multimodal effect of the implemented fusion schemes.

The evaluated systems can be applied to real-time appli-
cations via the Social Signal Interpretation framework1 (SSI)
[38]. Event based fusion is a native part of the framework,
for asynchronous fusion we integrated the CURRENNT2

library [39], which is originally available as a command line
tool for offline training and evaluation. The neural networks
can be trained and used within SSI as part of an online rec-
ognition system.

5.1 Unimodal Recognition

Table 2 shows recognition results for unimodal and syn-
chronous classification-single channel classification with
models trained directly on enjoyment annotations. We use a
standard Support Vector Machine (SVM) implementation
[4] for direct framewise classification of enjoyment episodes.
Recognition of enjoyment via the audio modality is close to
random (55.31 percent). Expressive audible cues for enjoy-
ment are located within the boundaries of an amused epi-
sode, but do not fit them very well, which leads to noisy
features and poor classification rates (Fig. 2). With an
unweighted 71.74 percent, the video modality yields far bet-
ter capabilities of determining enjoyment frames. Facial
expressions, which express enjoyable emotions, correspond
much better to the overarching annotation, as hints of smiles
are mostly present during enjoyment.

The next possible approach-without applying a multi-
modal fusion strategy-is to consider the temporal flow of

TABLE 1
Overview of Feature Extraction Methods Applied to Modalities Audio and Video in the Comparison Study

Modality Channels short-term feature long-term feature total

Audio Mono Audio, 48 kHz Pitch, Energy, MFCCs, Spectral,
Voice quality

Mean, Median, Maximum, Minimum,
Variance, Median, Lower/Upper
Quartile, Absolute/Quartile Range

1,451

Video Action Units, 25 Hz Upper Lip Raiser, Jaw Lowerer, Lip
Stretcher, Brow Lowerer, Lip Corner
Depressor, Outer Brow Raiser

Mean, Energy, Standard Deviation,
Maximum, Minimum, Range

36

From the mono audio channel and action units captured by Microsoft KinectTMwe extract short-term features and compute statistical long-term features from
these respectively.

TABLE 2
Unimodal and Synchronous Classification Results

Synchronous Recognition

Audio Video

Enjoyment 50.16% 67.18%
: Enjoyment 60.45% 76.29%
Average 55.31% 71.74%

The video modality corresponds better to the progression of
enjoyment episodes than the audio channel.

1. http://openssi.net/
2. https://sourceforge.net/projects/currennt/
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observed frames. We use BLSTM-NNs (Section 3.2) to model
a memory of surrounding frames and therefore incorporate
temporal alignments into the classification (Table 8 shows
network architectures for audio and video). It is obvious that
direct classification of enjoyment episodes is a demanding
task, especially if only using the audio modality. But if
we take the ability to use past frames for decision making
into account, we are able to greatly increase classification
accuracies (Tables 2 and 3). Especially on the audio modality
an impressive improvement of 15.21 percent can be
observed. The problem of audible cues not fitting well the
boundaries of enjoyment episodes is reduced by asynchro-
nous classification.

Table 4 shows the recognition accuracy for laugh and
smile events, that can be used to algorithmically derive long-
term enjoyment episodes on event level.We use SVMclassifi-
cation for the task of event recognition, as these short term
cues should be identifiable within a single frame. 84.05 per-
cent accuracy for audible laughs and 78.98 percent for visual
smiles respectively give an impression of the easing on classi-
fication difficulty if recognizers are trained on the recognition
of short-term events. The high classification accuracy of laugh
frames is of special interest, as the gap between the recogni-
tion of affective hints anddirect affect classification is particu-
larly high in this case (84.05 versus 55.31 and 70.52 percent,
respectively). Consequently, fusion approaches that are
designed to make use of event recognition should be able to
utilize audible information to the fullest.

Lastly, we are able to apply event-based recognition
approaches to one single modality, by relating recognized
events of a single channel back to whole affective episodes
via the presented event driven fusion schemes. Most likely,
better results can be expected when events of multiple
modalities are fed into the fusion process. But the appliance
of the event-driven approach already shows encouraging
results in a unimodal scenario (Table 5). Deriving sought
affective episodes from audible laughswith the vector fusion
approach, we are able to achieve an accuracy of 74.70 percent

for classification of enjoyment frames. As discussed before,
the audio channel can apparently best be employed on the
event level. Taking only smile events from the video channel
into account results in a recognition rate of 75.76 percent.

5.2 Multimodal Recognition

So far, all discussed affect classification approaches have
only made use of direct or event-based information from a
single modality source. From this point on, we will analyse
results that are based on the combined insights gained from
multiple channels. We will first start with synchronous
fusion schemes, the simplest and most common approaches
to multimodal fusion. Asynchronous fusion systems apply
classification models that are suited to better catch temporal
alignments between observed modalities than their syn-
chronous counterparts. The last group of algorithms that
will be discussed are the event-driven fusion approaches,
that rely on the indirect recognition of target class indicating
cues and the modelling of their temporal course during
enjoyment episodes.

5.2.1 Synchronous Fusion

Feature-, decision- andmodel-fusion are obvious approaches
to combine multimodal information from different sources
as these algorithms can be implemented in a straightforward
manner, work on the basis of synchronous combination of
channels, and use direct classification results. Therefore, they
are applied in most studies dealing with multimodal affect
recognition and can serve as a baseline for more elaborate
recognition schemes. In addition to the feature fusion algo-
rithm, several representative fusion schemes for decision and
model level have been testedwith very close average recogni-
tion rates. Presented results are generated with the product
rule (decision level) and stacking (model level)-as described
in Section 3.1- and synchronous SVM classification, in order
to fully exclude the temporal aspect.

Discrepancies between enjoyment classification on the
audio and video modality (Table 2) pass on to these simple
synchronous fusion approaches: Feature-, decision-, and
model-level fusion perform on an intermediate level
between the merged modalities (61.11, 65.86, and 62.17 per-
cent). This is to be expected, as the problematic enjoyment
classification models trained on the vocal modality fully
contribute to the fusion result.

5.2.2 Direct Asynchronous Fusion

The asynchronous fusion algorithms described in Section 3
roughly use a direct feature fusion approach to affect recogni-
tion. But instead of synchronously considering the multiple

TABLE 3
Unimodal, Asynchronous Enjoyment

Classification Results

Asynchronous Recognition

Audio Video

Enjoyment 65.41% 76.31%
: Enjoyment 75.62% 74.89%
Average 70.52% 75.60%

The consideration of the temporal flow of observed frames greatly
increases classification accuracies.

TABLE 4
Results for Recognition of Enjoyment Indicating

Events Laugh and Smile

Indicator Event Recognition

Audio Video

Laugh 76.51% 78.20% Smile
: Laugh 91.60% 79.75% : Smile
Average 84.05% 78.98% Average

Short-termed events are easier to classify than the abstract affective target class.

TABLE 5
Event (Vector) Fusion Algorithm Applied to Unimodal Events

Event-based Recognition

Audio Video

Enjoyment 78.45% 80.13%
: Enjoyment 70.95% 71.39%
Average 74.70% 75.76%

The indirect approach already results in improved enjoyment classification
accuracies, without taking multimodal information into account.
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channels, the inherent logic of the classification schemes is
able to catch asynchronous relationships between modali-
ties. By including multimodal information into the asyn-
chronous classification schemes, the characteristics of an
enjoyment episode can be adequately modelled. Especially
the long short-term memory cells of LSTM and BLSTM
neural networks seem to be able to capture the temporal
dependencies between affective cues across the observed
modalities and result in enjoyment classification rates of
up to 75.76 percent.

We used the same scheme to train deep feedforward neu-
ral networks with rectifier neural units and BLSTM-NNs
unless described otherwise. All neural networkswere trained
using the stochastic gradient descent (SGD) algorithm with a
momentum value of 0.9. We used grid search to tune the
learning rate (1e-1, 1e-2, 1e-3, 1e-4), the number of hidden
layers (1, 2, 3), and the number of hidden nodes (16, 32, 64,
128, 256, 512, 1024) (Table 8). Each hidden layer has the same
number of hidden nodes. In order to determine the needed
parameters, we held out 9 311 training samples for valida-
tion. Hyper-parameters were tuned on the validation set
until the validation error did not improve for at least
10 epochs and we chose the networks that achieved the best
validation error. The validation set was then combined with
the training set and we retrained the network on the com-
bined data. Theway of combining the validation set was cho-
sen because we found that the networks often benefits from
the larger amount of samples. For audio-related features,
principle component analysis (PCA) is further used to reduce
the dimensionality of the merged feature vector so as to
greatly reduce the high computational cost. For PCA, we
retain 95 percent of the variance, resulting in an input dimen-
sion of 403 for all used networks. Besides, when training
BLSTM-NNs, we added Gaussian noise with zero mean and
standard deviation 0.1 to the inputs. Besides, sequences and
fractions were shuffled randomly. In our experiments, we

trained Deep-NNs and BLSTM-NNs using the open-source
software Theano [2] andCURRENNT [39].

5.2.3 Event-Based Fusion

Bringing together the recognition of enjoyment indicating
short-term events and the possibility to temporally relate
these multimodal events, event-driven fusion schemes
achieve good recognition rates with the best performance in
this case shown by the gravity fusion model with 79.51 per-
cent. This is the best result we were able to achieve for
enjoyment recognition during our experiments with the
examined approaches. According to McNemar’s Chi-
Squared Test (p < 0.05), improvements in comparison to
the second best approach (vector fusion) are significant.
Table 9 also shows a well balanced distribution of accura-
cies among classes (78.52 percent for Enjoyment and 80.51
percent for :Enjoyment). The results demonstrate that
event-driven fusion is accurate in classifying whole epi-
sodes of enjoyment and models their boundaries well.

Initial vector lengths (vector fusion) and mass points
(gravity fusion), respectively, are directly derived from
probabilities given by the event recognizers. This derivation
only makes sense if confidence values of given classifiers
are comparable. To prove this assumption, Fig. 13 plots the
confidence values of event recognizers against the correct-
ness of the estimation. Prediction behaviours of modalities
resemble each other clearly.

Optimal configuration of parameters have been empiri-
cally determined by systematically testing a large number
of combinations (Figs. 14 and 15) during the training
phase: The most important parameter for vector fusion is
the decay speed of registered events. Speed of smile events

TABLE 8
Input Dimension After Principal Component Analysis (PCA)
as Well as Optimal Number of Hidden Layers (1, 2, 3), and
Corresponding Number of Hidden Nodes (16, 32, 64, 128,

256, 512, 1024) on Training Data After Grid Search

Applied Neural Networks

Approach Input Dim Hidden Layers Nodes

Audio
BLSTM-NN 392 2 16
Video
BLSTM-NN 36 2 16
Multimodal
Deep-NN 403 3 1,024
LSTM-NN 403 3 64
BLSTM-NN 403 3 128

TABLE 6
Results for Synchronous Framewise Fusion of Direct Enjoyment

Classification Results of the Audio and Video Modality on
Several Fusion Levels

Synchronous Fusion

Feature Decision Model

Enjoyment 63.14% 57.39% 36.14%
: Enjoyment 59.08% 74.32% 88.20%
Average 61.11% 65.86% 62.17%

Poor results of enjoyment classification of the audio channel fully contribute to
the fusion result.

TABLE 7
Asynchronous Fusion Results of the

Direct Recognition Approach

Direct Asynchronous Fusion

Deep-NNs LSTM-NNs BLSTM-NNs

Enjoyment 82.29% 61.99% 67.15%
: Enjoyment 51.27% 86.16% 84.37%
Average 66.78% 74.08% 75.76%

The memory capabilities of respective algorithms enable the capture of temporal
dependencies between observed channels.

TABLE 9
Combination of Event Recognition and the Algorithmic Capture

of Temporal Dependencies Between Modalities Leads to
Best Enjoyment Recognition Results Measured

within the Study at Hand

Event-based Fusion

Dynamic-BN Vector Gravity

Enjoyment 78.45% 70.50% 78.52%
: Enjoyment 71.77% 84.91% 80.51%
Average 75.21% 77.70% 79.51%
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is regulated high as the beginning and ending of enjoy-
ment is often characterized by the presence and absence of
smiles in the face. Consequently, the fusion vector should
rise and fall fast whenever smiles are recognized or not.
The decay speed of laughter events is regulated low.
Laughs are considered a strong indicator of enjoyment and
whenever they occur we expect the enjoyment episode to
last for several frames afterwards.

Best performance for the gravity fusion algorithm is
achieved if laugh events are by default weighted less than
smile events-again due to the fact that smiles better describe
the limits of enjoyment segments.

5.3 Summary of Results

In Table 10 we give a summary of the found results in the
presented study on naturalistic data. Synchronous unimo-
dal classification results achieved with features from the
video modality are used as a baseline-as direct enjoyment
classification on the audio channel yields very low accuracy
(Table 2). A first improvement (3.86 percent) can be
achieved if we switch to asynchronous classification of
enjoyment on the video channel (Table 3). The consideration
of temporal alignments together with good recognition rates
for event recognition (Table 4) leads to an even more accu-
rate classification rate for the event-based approach
(Table 5). By combining smile events found in the video
modality over time with the vector fusion algorithm, the
unimodal result can be raised by 4.02 percent. Note that the
term fusion does completely apply in this case as we use it
mainly for the combination of several modalities.

First insights gained for unimodal classification on the
better suited video channel carry over to multimodal fusion
schemes. We first tested common, synchronous feature-,
decision-, and model-level fusion strategies to combine
information from multiple channels. On average, however,
these algorithms lead to a performance which lies between
the classification rates of the single channels (Table 6).
Because of the low performance of the audio modality, the
average accuracy lies 5.88 percent below the unimodal
baseline. The neural network based asynchronous fusion
systems stick to direct classification, but introduce memory
cells to model the asynchronous dependencies between
modalities (Table 7). These dedicated approaches are able
to better catch the multimodal characteristics of enjoyment
episodes and therefore yield recognition enhancements of
up to 4.02 percent. Event-based fusion schemes combine an
indirect classification approach with algorithms able to
leverage the temporal relations between the recognized
multimodal events (Table 9). This combination leads to an
improvement of recognition accuracy for enjoyment frames
of 7.83 percent with the gravity fusion algorithm over
unimodal classification.

Fig. 13. Frequency of correctly classified frames according to laugh/
smile confidence. Similar prediction behaviour allows to directly combine
confidence values during the fusion process.

Fig. 14. Influence of audio and video event decay speed on vector fusion
performance.

Fig. 15. Influence of audio and video weights on gravity fusion perfor-
mance. Stable performance is observed if audio and video events are
weighted in a ratio of 8 to 10.

TABLE 10
Comparison of Tested Approaches to Affect Recognition,

Differentiated in Relation to the Classification
of Models in Fig. 4

Summary of Results

Approach Algorithm Result Effect

Unimodal
Synchronous Video SVM 71.74% -
Asynchronous Video BLSTM 75.60% + 3.86%
Event-based Video Vector Fusion 75.76% + 4.02%

Multimodal

Synchronous Decision Level 65.86% - 5.88%
Asynchronous BLSTM-NN 75.76% + 4.02%
Event-based Gravity Fusion 79.51% + 7.83%

Results of respective best performing algorithms are shown with the achieved
effect in relation to unimodal, synchronous enjoyment classification on the
video channel.
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6 CONCLUSION

Affect recognition systems apply multimodal fusion
under the reasonable assumption that combination of
information from several modalities improves classifica-
tion accuracy. However, studies over the last years have
shown that the real enhancements of fusion systems com-
pared to unimodal classification are-to say the least-
unstable. If we look at the common synchronous fusion
approaches (Table 6), we in fact observe a severe drop in
accuracy compared to the best synchronous single chan-
nel enjoyment classification. If the analysis had stopped
at this point, one could conclude the failure of multi-
modal fusion in this case. Fortunately there are several
options to enhance the processing of available informa-
tion. On the one hand, we have the option to incorporate
information on the temporal alignment into the classifica-
tion process. Whether we apply asynchronous recognition
at the unimodal or at the fusion level, we observe signifi-
cant improvements over synchronous approaches. On the
other hand, there is an option to lift the classification task
on a higher abstraction level. Instead of classifying enjoy-
ment directly, we look for events of smile and laughs and
relate these short-term indicators back to whole enjoy-
ment episodes. The used algorithms incorporate the tem-
poral dynamics of events and can therefore by classified
into the group of asynchronous approaches.

To investigate the above-mentioned options for improve-
ment, we started from the synchronous classification of
enjoyment episodes from the audio and video modality.
While enjoyment classification on the basis of Kinect facial
features showed an acceptable recognition accuracy of
71.74 percent, the audio modality stayed on a close to ran-
dom level of 55.31 percent. This shortcoming directly influ-
ences the performance of the widely used synchronous
fusion approaches and results in a mediocre recognition
accuracy of 65.86 percent at the decision level. By applying
asynchronous classification techniques via neural networks
with memory capabilities, these results can be raised to
75.60 percent for the video modality and 75.76 percent for
audio-visual fusion systems. Furthermore, the recognition
of short-term events as indicators of the target classes
turned out to be very reliable with 84.05 percent for voiced
laughs and 78.98 percent for visual smiles. Based on this
observation, we combined the asynchronous treatment of
data with the technique of event classification and event-
based fusion. This way, we reached a recognition accuracy
of 79.51 percent, which means an improvement of 7.83 per-
cent compared to the unimodal base system and a 13.71
percent higher accuracy than the badly performing syn-
chronous fusion strategies.

Inclusion of temporal observations as well as indirect
classification via event recognition have proven to enhance
the performance of classification systems and therefore both
techniques can be advised to be applied in future affect rec-
ognition systems. Event-based fusion strategies applying
these techniques also fulfil the requirements demanded by
latest considerations about innovative fusion systems [12]:
they are able to compensate for temporarily unavailable
data, use information of temporal alignments and, are easy
to extend to further modalities and event types.

7 FUTURE WORK

Based on the study at hand, various opportunities for future
enhancements can be considered or are currently being
investigated. The event-based fusion approaches within the
study relied on unimodal event recognition with Support
Vector Machines. As the ability to consider past frames has
proven to give recurrent neural networks a clear edge in rec-
ognition accuracy in comparison to conventional classifiers
(e.g., Tables 2 and 3), it will be an obvious chance for
improvement to use these networks for event recognition.
Background knowledge is needed to identify reasonable
types of indicator events for a target class and the robust
recognition of these is key because errors in event recogni-
tion directly map into the event-based fusion result. The
combination of picking a good selection of indicator events
and the best machine learning techniques to recognize them
is needed to further improve the promising results we have
seen in this study. Deep learning is another advantage of
neural networks, as it skips the problem of feature engineer-
ing for a given recognition problem and therefore bears the
potential to simplify the addition of modalities and indica-
tor events. The more affective cues event-based fusion algo-
rithms can rely on, the broader the emotional spectrum that
can be covered. Using events as meaningful behavioral
units allows us to consider more complex and subtle emo-
tional states. For example, a smile is not always a sign of
enjoyment, but could also indicate embarrassment-in partic-
ular in cases where the gaze is averted from the interlocutor
[17]. By considering gaze aversion as an additional event,
such distinctions could be captured. In this case, the gaze
event should not increase the evidence for enjoyment, but
modify the result of the fusion process. To handle such sit-
uations, the fusion approach needs to take into account that
events are not always used in a redundant manner, but may
also complement or even conflict with each other. A promis-
ing avenue for future research might be to research to what
extent techniques from semantic fusion may be adopted to
exploit semantic relationships between events [1].

Finally, we would like to note that the event-based fusion
approach is not bound to a particular representation of
affective states. However, the results of the experiments
demonstrate the potential of an intermediate layer of repre-
sentation in terms of meaningful events as indicators of
affective states. Events can be either mapped onto emotional
categories (as in Section 3.3.1) or continuous emotional
states in a dimensional space (as in Sections 3.3.2 and 3.3.3).
We are currently increasing the repertoire of events in order
to cover a broader range of emotion categories and a larger
area of the valence-arousal emotion space.
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