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Abstract—The study at hand aims at the development of a multimodal, ensemble-based system for emotion recognition. Special

attention is given to a problem often neglected: missing data in one or more modalities. In offline evaluation the issue can be easily

solved by excluding those parts of the corpus where one or more channels are corrupted or not suitable for evaluation. In real

applications, however, we cannot neglect the challenge of missing data and have to find adequate ways to handle it. To address this,

we do not expect examined data to be completely available at all time in our experiments. The presented system solves the problem at

the multimodal fusion stage, so various ensemble techniques—covering established ones as well as rather novel emotion specific

approaches—will be explained and enriched with strategies on how to compensate for temporarily unavailable modalities. We will

compare and discuss advantages and drawbacks of fusion categories and extensive evaluation of mentioned techniques is carried out

on the CALLAS Expressivity Corpus, featuring facial, vocal, and gestural modalities.

Index Terms—Ensemble based systems, decision-level fusion, multimodal emotion recognition, missing data.

 

1 INTRODUCTION

EMOTIONAL sensitivity in machines is believed to be a key
element toward more human-like computer interaction.

Due to the complex nature of human emotions, automatic
emotion recognition still remains a challenging task after
many years. One difficulty a machine has to face is the fact
that humans rarely express their emotions exclusively, but
use several channels such as speech and mimics. Studies
that have focused on the fusion of multiple channels,
however, often start from too optimistic assumptions, e.g.,
that all data from the different modalities is available at all
times. As long as a system is only evaluated on offline data
this assumption can be easily ensured by examining given
samples beforehand and excluding parts where one or more
channels are corrupted or are not suitable for evaluation. In
real, application-oriented online systems, however, we
cannot neglect the issue of missing data and have to find
adequate ways to handle it so that robustness of recognition
performance can be guaranteed.

Generally, we can identify various causes for missing

data: A sensor device can fail so that an according signal is no

longer available. Even if a sensor device is running properly,

there is the possibility of desired information within a signal

being no longer accessible, e.g., a tracked object disappears

from the view of a camera. We can also think of a situation in

which the desired information theoretically is at hand but is

practically corrupted to some extent, e.g., a speech signal that

is overlaid by noise. Finally, not only technical problems can

be responsible for one or more modalities becoming useless.
If a subject simply does not generate observable material, no
meaningful data can be recorded, e.g., the gesture modality
will not contribute relevant information while monitoring a
momentarily motionless user. A system capable of handling
missing data must therefore dynamically decide which
channels are available and to what extent the present signals
can be trusted. For the case where data are partly missing, a
couple of treatments have been suggested in literature:
Multiple imputation predicts missing values using existing
values from previous samples [23]. In data marginalization,
unreliable features are marginalized to reduce their effect
during the decision process [11]. However, the consequences
of imperfect data on the performance of fusion algorithms
have not been systematically explored.

The realization of handling missing data within our
aspired multimodal system is engineered within the fusion
of available modalities. We explore various standard fusion
schemes that are, among others, comprehensively described
in [24], as well as being more sophisticated and emotion
specific fusion techniques. All presented strategies are
enriched with strategies on how to treat unavailable
modalities.

For final evaluation, every online system can be pre-
trained with data gathered from multiple subjects and,
afterward, classification tasks are carried out on a user not
known during the training phase. An alternative to this
user-independent approach is training the system with data
recorded from the subject who is going to use the system
afterward. This approach presumably adapts the system
strongly to a single subject and therefore better classifica-
tion results on this person can be expected, at the cost of
universality. Both methods have their advantages and
should be compared in terms of recognition accuracy.

The reported processing and classification methods, as
well as all fusion-based approaches used in our experi-
ments, have been developed with Smart Sensor Integration
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(SSI) [33], a framework for multimodal signal processing
developed at our lab aiming to support the building of
online recognition systems. SSI supports the design and
evaluation of machine learning pipelines by offering
tailored tools for signal processing, feature extraction, and
pattern recognition, as well as tools to apply them offline
(training phase) and online (real-time recognition).

2 RELATED WORK

Recently, many studies in multimodal affect recognition
have been done by exploiting a synergistic combination of
different modalities. Most of the previous works focus on
fusion of audiovisual information for automatic emotion
recognition, e.g., combining speech with facial expression.
De Silva et al. [28] and Chen et al. [10] proposed a rule-
based decision level fusion method for a combined analysis
of speech and facial expressions. Huang et al. [18] used
boosting techniques to automatically determine adaptive
weights for audio and visual features. In the work of Busso
et al. [5], an emotion-specific comparison of feature-level
and decision-level fusion has been reported by using an
audiovisual database containing four emotions, sadness,
anger, happiness, and neutral state, deliberately posed by
an actress. They observed for their corpus that feature-level
fusion was most suitable for differentiating anger and
neutral state, while decision-level fusion performed better
for happiness and sadness. They concluded that the best
fusion method depends on the application. Interestingly, in
addition to speech and facial expression, the thermal
distribution of infrared images is also integrated into a
multimodal recognition system [34] by considering the fact
that infrared images are hardly affected by lighting
conditions, which is one of the main problems in facial
image analysis.

Humans use several modalities jointly in a complemen-
tary manner [10]. For decision-level fusion, however,
multiple unimodal classifiers are trained for each modality
separately and those decisions are fused by using specific
weighting rules. This means that such a kind of fusion
method is necessarily based on the assumption of condi-
tional independence between modalities. To address this
problem, a number of model level fusion methods have
been proposed, originally in the research field of speaker
identification, that are capable of exploiting cross-correla-
tions between modalities. Song et al. [29], for example,
proposed tripled HMM that models correlations between
the upper face, lower face, and prosodic dynamic behaviors.
By relaxing the general requirement of synchronized
segmentation for audiovisual streams, Zeng et al. [35]
proposed a multistream fused HMM which provides the
possibility of optimal combination among multiple streams
from audio and visual channels. For the estimation of
correlation levels between the streams, they used the
maximum entropy and the maximum mutual information
criterion. Sebe et al. [27] suggest the use of dynamic
Bayesian Networks to model the interdependencies be-
tween audio and video data and handle imperfect data by
probabilistic inference. Finally, various types of multimodal
correlation models are based on extended artificial neural
networks, e.g., [14], [6].

Although there are many studies in psychology support-
ing combined face and body approaches as being the most
informative for the analysis of human expressive behavior
[1], there are surprisingly very few efforts reported on
automatic emotion recognition by combining body gesture
with other modalities such as facial expression and speech.
For example, bimodal fusion methods at different levels for
emotion recognition are presented by Balomenos et al. [2]
and Gunes and Piccardi [15], using facial expression and
body gesture. Kaliouby and Robinson [12] proposed a
vision-based computational model to infer acted mental
states from head movements and facial expressions.
Castellano et al. [9] presented a multimodal approach for
the recognition of eight emotions that integrates informa-
tion from facial expressions, body gestures, and speech.
They showed a recognition improvement of more than
10 percent compared to the most successful unimodal
system and the superiority of feature-level fusion to
decision-level fusion. All these approaches are based on
visual analysis of expressive gestures and dealt with
mapping different gesture shapes to relevant emotions. In
our experiment, however, we use three-axis accelerometer
instead of visual information in order to extract nonpropor-
tional movement properties, such as relative amplitude,
speed, and movement fluidity, under the assumption that
distinct emotions are closely associated with different
qualities of body movement rather than gesture shapes.

All the studies reviewed above have shown that the
performance of automatic emotion recognition systems can
be improved by employing multimodal fusion. Some of
them highlight the benefits of fusion mechanisms in
situations with noisy features or missing values of features,
for example, see [27]. Nevertheless, surprisingly few fusion
approaches explicitly address the problem of nonavailable
information. Most of them are based on the assumption that
all data are available at all times. This precondition is not
realistic in practical environments. In order to guarantee
consistent classification, ways of handling missing sensory
input have to be thought of.

3 THE CALLAS EXPRESSIVITY CORPUS

For training and evaluation of classification systems the
choice of an adequate corpus is substantial. Only significant
empirical data enable meaningful statements about the
performance of investigated recognition techniques. The
CALLAS Expressivity Corpus [8] constitutes all desired
demands for our aims. It was constructed within the
European Integrated Project CALLAS and contains affective
behavior, incorporating vocal utterances, facial expressions,
and gesture expressivity in three primary emotion classes.
The gesture stream is not available for all observations
made, so applicable ways of handling missing data must be
incorporated into experiments on this corpus.

3.1 Data Generation

As the present corpus was originally designed for
examination of cultural differences between emotion
expressions of persons from different European countries,
it was initially made with subjects from Greece, Italy, and
Germany. This work is based solely on data collected from
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German participants, as we do not aim at dealing with
cultural differences in detail. The German subcorpus
contains 21 people (10 female and 11 male) and almost
5 h of recorded interaction,1 which is sufficient for our
investigations.

During the experiment, participants were asked to per-
form expressive sentences through voice, face, and body
language. During a session, 120 emotion-inducing sentences
were successively displayed to the participants. The sen-
tences, which were inspired by the Velten mood induction
technique [31], can be divided according to their semantic
content in three broad categories, namely, positive, negative,
and neutral. After he or she had read a sentence silently, the
projection was blanked out and the sentence got expressed in
their own words and with whatever gesture or voice they felt
to be fitting. It should be noted that recorded people had no
acting background and it was left to their discretion to what
extent they expressed the emotions. This, of course, leads to a
broader diversity among observed expressions than it would
under a more restrictive setup. However, it comes closer to
what a system must expect under a realistic setting. When, in
some situations, subjects were not using gestures to accom-
pany their speech at all, this just reflects what happens in real
life, and hence renders a situation an emotion recognition
system must deal with. For our experiments, no samples were
removed from the data set.

While users were performing the sentences, their actions
were captured with two cameras, one focused on the
proband’s face and the other on the whole body. In the
following progress, we only analyze videos captured from
the face and refer to it as the facial modality. Voice was
captured from a microphone hanging above the user’s
head. Gestures were tracked in three different modes: either
free handed by the body-camera, a Humanware data-glove
on one hand, or two Nintendo Wii remote controls, one in
each of the user’s hands. For the purpose of the study at
hand, we only use data gathered by the Wii controller for
movement and acceleration tracking.

3.2 Modeling Emotions

In order to deal with multimodal emotion recognition, a
concept of discrete emotion modeling has to be chosen. The
term emotion itself is a very abstract concept, describing a
vast amount of human feelings. These feelings are too
numerous to use them directly for recognition tasks, so they
have to be integrated into quantifiable categories of
emotions. A discrete emotion model is necessary to define
target emotions so that the recognition system is able to

understand the problem to be solved. Moreover, the emotion
model supports a convergent labelling process. Such
procedures narrow the amount of identifiable feelings and
group the wide field of possible individual emotions into a
small amount of discrete emotion-classes. One possibility is
to have all recorded emotional experiences labeled by
external specialists and subsumed under predefined expres-
sions like love, hate, sadness, surprise, etc. However, this
approach could be restricting, as many blended feelings and
emotions cannot adequately be described by the chosen
categories. Selection of some particular expressions cannot
be expected to cover a broad range of emotional states and
could suffer from randomness. Another way of categorizing
emotions is to attach the stimuli experienced to continuous
scales. Lang [21] proposes arousal and valence as measure-
ments (see Fig. 1). These scales describe multiple aspects of
an emotion, the combination of stimuli’s alignments on these
scales defines single emotions. More precisely, the valence
scale describes the pleasantness of a given emotion. A
positive valence value indicates an enjoyable emotion such
as joy or pleasure. Negative values are associated with
unpleasant emotions like sadness and fear. This designation
is complemented by the arousal scale, which measures the
agitation level of an emotion. Combination of the two scales
forms four emotion-quadrants, representing a four-class
classification problem to be dealt with by a emotion
recognition system.

3.3 Segmentation and Annotation

As explained earlier, users were asked to utter expressive
sentences and accompany them with whatever gesture or
voice they felt to be fitting. As a natural consequence of this
experimental design the voice channel became the dominant
modality, which usually triggered on and offset of a
performance. Only in a very few cases were mimics or
gestures observed before or after an utterance. Conse-
quently, we decided to segment the streams according to
the speech signal and used the beginning and ending of each
utterance of a sentence as borders. In this way, we ended up
with 2,513 segments,2 each containing according snapshots
of available audio, video, and acceleration streams. On
average, these segments have a length of 2.9 a with a
standard deviation of 0.9 a. Fig. 2 shows a histogram of the
distribution.

When annotating a multimodal corpus, we must decide
which of the available modalities should serve as the source
throughout the labeling process. In the case of the corpus at
hand, judgments could be based either exclusively on the
audio or video channel or by presenting both modalities
simultaneously. We did decide in favor of the audio
channel as it is—in consequence of the chosen segmentation
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Fig. 1. Arousal valence-based emotion model.

1. Since user sessions were continuously captured, this includes
intermediate parts where users were reading sentences or changing devices.

2. Seven segments were skipped either because subjects refused to
perform or due to technical problems.

Fig. 2. Histogram of segment lengths.

                                                                                                                                              



procedure—the only channel that is always available
throughout the whole corpus. Labels assigned to the speech
chunks are then consequently applied to the other
modalities. In doing so, we actually neglect a problem that
often comes across in social communication, namely, the
problem of blended and masked emotions, which leads to
ambiguous expressions across modalities. For instance, if
we consider a situation where we are forced to talk with
calm voice while at the same time we use mimics to express
our anger about something. However, since such a situation
is unlikely to occur in the present corpus, we assume that
emotions are more or less homogeneously expressed across
the three modalities.

Though the used mood inducing sentences are more
categorized along the valence axis (positive, neutral, and
negative), it becomes obvious that an arousal categorization
is also needed. Especially when looking at negative
sentences, there are samples tending to a depressed and
sad mood (negative-low), while others are expressed in an
aroused and angry way (negative-high). Nearly all neutral
and part of the positive observations share a calm and
optimistic subtone (positive-low) in contrast to fewer positive
examples bearing clear hints of joy and laughter (positive-
high). Based on these impressions, we refrained from
including neutral moods as their own class and label calm
and nonnegative emotions as positive-low. For annotating
recorded samples, three experts were asked to indepen-
dently label the observations made in terms of high or low
arousal as well as positive or negative valence. The term
experts is used to denote that the raters have some sort of
knowledge about emotions and their recognition that goes
beyond everyday experience. During the annotation phase,
audio segments were replayed in chronological order to
each expert independently. Raters could loop an utterance
as often as needed and even jump forth and back in order to
repeat older segments and reassign labels.

Final combination of differing annotations is done via
majority decision; as three assessments are given to each
orientation of valence or arousal, respectively, decisions are
definite. For instance, if the first rater assigns label low and
positive, the second low and negative, and the third high and
negative, the segment is finally labeled as low and negative.
Applying the described voting, we end up with 1,145
samples labeled as positive-low, 527 as positive-high, 608 as
negative-low, and 233 as negative-high.

To report inter-rater reliability, we calculate the kappa
value according to Fleiss [13]. Fleiss’s Kappa value is a
common way to measure the agreement over multiple raters.
It is expressed as a number between 0 and 1, where 1 indicates
a perfect agreement. Applied to the decision of our raters, we
get for valence a kappa value of 0.84, which indicates an
almost perfect agreement. For arousal, on the other side, we
measure a notably lower value of 0.38, which implies a fair
agreement. This drift obviously follows from the fact that
expressed sentences were selected to be either negative,
neutral, or positive. Thus, it should be easier for the raters to
agree on the valence of an utterance than its level of arousal.
The kappa value for all four classes amounts to 0.52, which
expresses a moderate agreement. The obvious disagreement
of the raters regarding the labels that were assigned to the

samples makes it already clear that we must not reckon
100 percent accuracy in classification.

4 METHODOLOGY

In this section, we introduce feature extraction methods for
available modalities and describe the classification scheme
and feature-selection strategies we applied to the CALLAS
corpus. As we mainly focus on building online recognition
systems, we solely rely on methods that can be computed
within a feasible amount of time. In particular, feature
extraction and classification should be applicable in (near)
real-time and must not require manual tuning at runtime.

4.1 Classification Model

Naive Bayes (NB) is a simple but efficient classification
scheme. It is based on the Bayes Theorem, which states

P ðEijf1; . . . ; fnÞ ¼
P ðEiÞ

Qn
j¼1 P ðfjjEiÞ

P ðf1; . . . ; fnÞ
:

In other words, this means that the probability of the
emotion Ei given an observed feature vector ðf1; . . . ; fnÞ of
dimension n depends on the a priori probability P ðEiÞ of
the emotion, multiplied by the product of the probability of
each feature fi given the emotion, divided by the a priori
probability of the feature vector. As a classification result,
the emotion Ei from a set of N emotions E1; . . . ; EN that
maximizes the equation is chosen. This is simplified (and
hence the name Naive Bayes) as the Bayes Theorem assumes
the features to be independent of each other. Parameters for
the probability distributions P ðEiÞ and P ðfjjEiÞ are gained
from the annotated training material.

Some of the fusion algorithms tested in this paper
combine results from no less than 12 internal classification
models. To run experiments in a reasonable amount of time,
it was more important for us to rely on a fast classification
scheme than one that gives highest classification rates.
Hence, we have chosen Naive Bayes as it is extremely fast in
training and testing, even for high-dimensional feature
vectors and large training databases. Using a more
sophisticated, but at the same time much slower classifier,
such as Support Vector Machine (SVM), would certainly
improve recognition accuracies. However, since the main
focus of this study is the comparison of fusion strategies, the
underlying classification model is of less importance.

4.2 Feature Extraction

The extraction of descriptive features brings the raw signals
into the compact form required by the classifier. Often
features are computed after a preprocessing phase during
which additional properties of the signals are carved out and
unwanted aspects are suppressed. Depending on whether
the features are extracted on a small running window of fixed
size or for longer chunks of variable length, we denote them
as short or long-term features. While, in offline analysis, the
whole signal is available from the beginning and processing
can fall back on global statistics, such as global mean and
standard-deviation, or perform zero-phase filtering by
processing the input data in both the forward and reverse
directions, such treatments are not possible in online
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processing. In our experiments, signals are processed in
small blocks with a fixed window size.3 This implies that only
the information of the current and previously seen blocks are
available to our algorithms. Table 1 offers a summary of the
applied processing methods. A detailed description is given
in the following paragraphs.

4.2.1 Speech Features

The CALLAS corpus includes mono audio recordings from
a single USB microphone (Samson C01U) placed near the
subject’s head. The audio stream was captured at a sample
rate of 16 kHz and quantized by 16 bit PCM. Recording
quality and noise level were similar among all sessions.

The list of proposed features suitable for emotion
recognition from speech is long. A cooperation of different
sites under the name CEICES (Combining Efforts for
Improving Automatic Classification of Emotional user
States) has carried out experiments based on a pool of more
than 4,000 features, including acoustic and linguistic feature
types [3]. Results for the individual groups, as well as a
combined set, have led to the following assumptions: Among
acoustic features, duration and energy seem to be most
relevant, while voice quality showed less impact. Yet, no
single group outperformed the pool of all acoustic features.

In our experiments, we restricted the set of features to
those that can be extracted in real time and in a fully
automatic manner. For example, no features have been
included that require information on the spoken words or
grammatical context, as such information is difficult to get
without manual annotation. Hence, we only compute
acoustic features related to the paralinguistic message of
speech, i.e., we analyze “how” something is said. In our
previous studies [32], MFCC and spectral features turned
out to be good candidates. In addition, we also compute
features from pitch, energy, duration, voicing, and voice
quality, and use feature selection to reduce the full set of
1,316 features to the most relevant ones. In a previous
study, the feature set was evaluated on the Berlin Database
of Emotional Speech [4] that is commonly used in offline
research (7 emotion classes, 10 professional actors) and

achieved an average recognition accuracy of 80 percent. On
the FAU Aibo Emotion Corpus [30], as part of the
INTERSPEECH Emotion Challenge 2009 [25], we were able
to slightly exceed the baseline given by the organizers for a
five class problem (anger, emphatic, neutral, positive, and
rest) [32]. Both corpora have been intensively studied in the
past by many researchers working on emotion recognition
from speech and serve as a kind of benchmark in this area.

4.2.2 Facial Features

As mentioned earlier, we use only video recordings of the
subject’s face. The according camera was placed in a
distance of about 2 m and captured frames include a
close-up of shoulder and head. The resolution of the video is
720� 576 pixels at 25 fps. Videos are stored in uncom-
pressed 24-bit RGB format. Video processing is provided by
SHORE, a library for facial emotion detection developed by
Fraunhofer IIS4 [20]. In the first place, SHORE offers a robust
tracking of in-plane rotated faces up to 60 degrees. For each
face that is found, SHORE reports the bounding box of the
face, as well as position of the left/right eye and the nose tip.
These features measure head movement. In addition, the left
and right corners of the mouth and its degree of opening is
reported. Most importantly, SHORE also calculates scores
for four facial expressions, namely, happy, angry, sad, and
surprised. These scores are also extracted for each frame and
used in addition to the geometric features. In total, for each
segment, a series of 24 short-term features is derived by
joining features extracted for each frame in the clip. Finally,
we extract 11 long-term measurements, leading to an overall
feature set with 264 entries.

4.2.3 Gestural Features

The acceleration sensors included in the Wii remote control
include a three-axis linear accelerometer, which measures
the force exerted by a set of small proof masses inside of it
with respect to its enclosure. To categorize gestural style,
we can rely on expressivity parameters, e.g., how fast a
gesture is done, how much space one uses to perform a
gesture, etc. In a previous study, we tested the feasibility of
this approach on a training set containing 1,260 samples by
7 subjects [26]. Using a 10-fold cross-validation of a Nearest
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TABLE 1
Overview of Preprocessing Steps and Feature Extraction Methods Applied in Our Experiments

3. At each processing step, a small portion of the signal equal to the
window size is processed. Afterward, the window is moved by a certain
number of samples, which is defined by the frame shift. 4. http://www.iis.fraunhofer.de/en/bf/bv/ks/gpe/demo/.

                                                                                                                                              



Neighbor classifier, we obtained recognition results of at
least 94 percent for power, speed, and spatial extent.

The features we extract from the acceleration signal go
back to a set of expressivity parameters originally defined by
Hartman et al. for expressive gesture synthesis for embodied
Conversational Agents [17]. Caridakis et al. have applied
similar features to measure gesture expressivity in hand
tracking from video images [7]. They propose a set of six
expressivity parameters, namely, overall activation, spatial
extent, temporal, fluidity, power/energy, and repetitivity.
Overall activation, e.g., is considered as the overall quantity
of movement, while fluidity differentiates smooth/graceful
from sudden/jerky gestures.

Since we do not have direct access to the 2D position in
space, but instead measure the second derivation, i.e.,
acceleration, we apply a couple of changes to their algorithm.
First, we eliminate the influence of gravity by removing the
linear trend from each of the three acceleration axes. Next, we
build the first derivative and use cumulative trapezoidal
numerical integration to deduce velocity and position. This is
done for each axis separately. Finally, we calculate the power
from each signal, as well as fluidity from position. We also
extract another seven statistical features from the accelera-
tion signal and add the length of the gesture. Overall, we
obtain 75 features from the three acceleration axes.

4.3 Feature Selection

Especially on small corpora, a large number of features can
lead to a problem known as the “curse of dimensionality.”
This term was introduced by Richard Bellman in 1961 as
mathematical problem, and in machine learning it describes
the exponentially rising need for numbers of samples for a
sufficient description of a high-dimensional feature space.
In short, this means that the more features that are given to
a classification model, the more samples that are needed to
train it. In most cases, however, not all of the features add
useful information to the classification problem, while some
may carry redundant information. This fact is related to the
challenge of finding that subset of features which tweaks
the best recognition performance.

To select a set of the most relevant features in a feasible
amount of time, we apply a combination of two selection
approaches. First, we select the best 150 features according to
correlation-based feature subset selection (CFS, [16]). CFS
aims at finding a subset of features where the correlation of
each feature with the class is maximized while the correlation
of the features among each other is low. This strategy is
especially beneficial for the Naive Bayes classifier, which
performs badly when features are highly correlated since it
assumes features to be independent for simplification
reasons.

Afterward, sequential forward selection (SFS) is applied
on this subset and stopped after 100 iterations (i.e., after
100 features have been selected). SFS is a simple, but
popular selection method. Like other wrapper approaches,
it uses a classifier to measure the performance gain of
different feature subsets. SFS starts from an empty subset
and adds, at each step, the feature that brings the highest
performance gain. In order to avoid overfitting, cross-
validation should be used to evaluate the feature sets.
Finally, the subset which by then gives the best perfor-
mance is selected.

4.4 Recognizing Missing Data

As described earlier, the CALLAS corpus is well-suited for
exploring the problem of missing data. The gesture
modality is partially missing or no movements of hands
were executed during a sample. The facial modality is
missing at points in time when SHORE lost track of a
recorded person and therefore no meaningful facial features
could be extracted. As the recordings of samples start and
end concurrently with a mood inducing sentence, the vocal
modality is the only source that is always available.
Handling of missing data is modeled within the multimodal
fusion process. Recognition of missing data has to be
executed beforehand. Therefore, we keep track of the time
when SHORE loses the bounding box around an observed
face—this happening marks recorded data as missing until
the face is recognized again. We furthermore introduce a
threshold for minimum energy within a signal recorded
from the Wii controller and, whenever energy falls below
this mark, we assume that no gesture was performed at all
during the recorded phrase.

5 MULTISENSOR DATA FUSION

The examined CALLAS data set consists of up to three
modalities—video, speech, and gesture data. As a special
challenge, channels are not always accessible, so dedicated
ways of fusing all available data channels have to be thought
of. In order to discuss preconditions and advantages of
decision-level fusion in a multisensor environment, we begin
with a description of differences between the possible levels
on which fusion can be executed and follow up with precise
reviews on possible decision level fusion methods and
inherited strategies meant to deal with missing data.

5.1 Feature-Level Fusion

Feature-level fusion is a common and straightforward way
to fuse all recorded observation channels. All desired
features are merged into a single high-dimensional feature
set. One single classifier is then trained for the task of
classification. As the fused data contain a larger amount of
information than single modalities, an increase in classifica-
tion accuracy can theoretically be expected. In practice,
these classifiers yield reliable classification results. But this
very accessible approach to data fusion comes along with a
couple of major problems: The first drawback is the
eventually occurring curse of dimensionality on small data
sets (see Section 4.3). If the available data are not ample, the
classification results become nonmeaningful. As the second,
it has to be mentioned that a growing feature vector may
stress computational resources for training and evaluation
of the classification model. In some examinations, these
obstacles may be not of interest due to a fair availability of
time and resources; other ones may refuse the feature level
approach solely because of these reasons and consider
decision level approaches to data fusion instead.

A very crucial shortcoming of the feature fusion approach
can be observed in particular on the CALLAS data set. The
single classifier trained on the whole feature set is, by default,
not capable of handling the problem of missing data.
Furthermore, the feature level fusion approach does not give
the opportunity to employ any strategies like elaborating the
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fusion strategy for affective tasks. The behavior of feature-
level fusion is strictly determined by the selected feature-set
and underlying classification model.

5.2 Decision-Level Fusion

Contrary to feature-level fusion and its reliance on a single
classifier that deals with a high-dimensional feature vector,
decision-level fusion focuses on the usage of small
classifiers and their combination. Instead, the available
feature set is divided into subgroups and the partitions are
used to form several small classification models (of course,
these classifiers can also be generated by subsampling
training data or the usage of different classification models).
The assembly of these classifiers is called an ensemble.
Outcomes of these slim classifier models are taken into
account for the final decision making process. The term
decision-level fusion sums up a variety of methods
designed in order to merge the decisions of ensemble
members into one single ensemble decision.

5.2.1 Ensemble-Based System

Classification models used in creating the underlying
ensemble for all discussed decision-making algorithms
stem from multimodal emotion observations using facial,
vocal, and gesture recordings. Our implemented system
forms an ensemble by providing features from each listed
channel with a classification model. They must neither
provide perfect performance on some given problem nor do
their outputs need to resemble each other. It is preferable
that the chosen classifiers make mistakes, at best on
different instances. A base idea of ensemble-based systems
is to reduce the total error rate of classification by
strategically combining the members of the ensemble and
their errors. Therefore, the single classifiers need to be
diverse from one another.

5.2.2 Benefits of Decision-Level Fusion

Ensemble-based systems and corresponding decision-level
fusion offer some significant advantages over the use of a
single classifier. A few important ones should be listed here.

Training efficiency. In many applications, a vast amount
of data is gathered and computational efficiency can greatly
suffer from training and evaluation of a single classifier
with huge data sets. Partitioning of data, training of
independent classifiers with different subsets, and combi-
nation for a final decision often proves to be more practical,
time-saving, and yields at least competitive results in most
cases.5 Given the contrary case where too little data are
available, various resampling techniques can be used to
form overlapping subsamples of the data set. Each of the
resulting subsets can be applied for training of classifiers
which then are capable of decision making via combination.

Divide and conquer. Another classification problem can
arise if the underlying data set and the corresponding feature
distribution is too complex for a sole classifier to learn.
Classification accuracy seriously suffers if the needed
decision boundary cannot be found by the used classification

model. This undesirable phenomenon can be counteracted
by an appropriate set of classifiers. Using a divide-and-
conquer approach, the feature space is divided into several
(perhaps overlapping) distributions that are easier to learn.
Each of these partitions is then handled by one classifier.
Adapted combination of the gained classifiers and their
simplified decision boundaries adequately simulates the
original, complex boundary.

Field performance. The training and testing of classifi-
cation models typically takes place on data gained from
some kind of laboratory environment. Statements about
generalized classification performance experienced in field
testing—whenever previously unknown samples appear—
are difficult to estimate. The risk of performing below
average in the field is much higher for a single classifier
than for an assemblage of classifier models. Some by-
chance poorly trained classifiers within a set are much less
of a menace than a single classifier performing poorly.

Concerned with systems for multisensor data fusion and
real-time applications, these can be implemented in such a
way that they resist the breakdown of one or more attached
sensors. If the classifiers involved in decision making each
represent the observations of an associated sensory device,
the absence of a single contribution to the final decision is
unlikely to result in a drastic quality fall-off for overall
classification accuracy, especially if the sensory malfunction
is recognized and the corresponding classifier’s (most likely
counter-productive) contribution is rated accordingly.

5.2.3 Decision Level Fusion Techniques

Having established an ensemble-based system, the diverse
decisions of its members have to be merged into a single
ensemble decision. For this purpose, we can choose from
various established fusion strategies. Among the strategies,
we find all forms of algebraic combinations of the
classifiers continuous outputs, ranking methods, as well
as varying voting schemes and other ways of class label
combination. One feature of some discussed methods is the
appliance of weights to the ensemble members. Based on
prior knowledge—like, for example, gained by evaluation
of training performance—single classifiers can be asso-
ciated with a certain weight. This way, their importance
within the ensemble is reflected. Note the immense
importance of not taking any knowledge of data to be
classified into account for the calculation of mentioned
weights. Otherwise, unrealistic prior knowledge is hy-
pothesized and regarded experimental results can no
longer be rated as significant. We apply described fusion
schemes to modalities given by the CALLAS corpus. As
our system handles temporarily6 missing modalities in the
fusion step, all described fusion methods are enriched with
strategies on how to handle missing data streams.

For the explanation of reviewed algorithms the following
annotations are used: The decision of ensemble member t
for class n is denoted as dt;n 2 f0; 1g, with t ¼ 1::T and n ¼
1::N and dt;n ¼ 1 if class !n is chosen, dt;n ¼ 0, otherwise.
Respectively, the support given to each class n (i.e., the
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5. Several smaller classifiers may not save training time when using a
classification model of linear time complexity (e.g., Naive Bayes—OðnÞ) as
the training will consume as much time as for an overarching classifier. But
as time complexity rises (e.g., Support Vector Machines classification
scheme (SVM)—Oðn2Þ or worse), this behavior changes in favor of small
classifiers, using only a section of the original, high-dimensional feature
vector or training data.

6. Temporarily means that we adjust the fusion scheme per input sample
(not, as in most fusion approaches, for the whole corpus), i.e., for each
modality and each sample we decide whether to include the information to
the fusion process or not. At the moment, this decision is exclusive. If we
had some way of estimating the degree of corruption within the sample’s
modality, we could simply assign proper weights instead.

                                                                                                                                              



calculated probability for the observed sample to belong to
single classes) by classifier t is described as st;n 2 ½1::0�.

Weighted Majority Voting. Majority Voting simply
sums up decisions of T classifiers. The ensemble decision
for an observed sample x is chosen to be the class !n, which
received the most votes (decisions) vn. A definite decision is
only guaranteed if an odd number of ensemble members
handle a two-class problem. In Weighted Majority Voting
each vote is associated with the precalculated weight of the
ensemble member. The ensemble decision for an observed
sample x is chosen to be the class !n which received the
most weighted votes vn. Ties are not likely to happen this
way, which makes the weighted variant more suited for
practical application:

vnðxÞ ¼
XT

t¼1

wtdt;nðxÞ:

Handling missing data. Ensemble member t containing
training data from modalities not featured in an observed
sample is not included in the poll.

Weighted Average. In contrast to Weighted Majority
Voting, the Weighted Average strategy applies weights not
to class labels, but to continuous outputs of ensemble
members. By summing up the weighted support given to
each class !n, total weighted support �n for class n is
calculated as

�nðxÞ ¼
XT

t¼1

wtst;nðxÞ:

The ensemble decision for an observed sample x is chosen
to be the class !n for which support �nðxÞ is largest.

Handling missing data. Ensemble member t, containing
training data from modalities not featured in an observed
sample, is weighted with a value of zero.

Maximum Rule, Minimum Rule, Median Rule. These
strategies choose the maximum, minimum, or median
support generated by T ensemble members. The ensemble
decision for an observed sample x is chosen to be the class !n
for which support �nðxÞ is largest.

Handling missing data. Ensemble member t, containing
training data from modalities not featured in an observed
sample, gives support st of value zero to each of the n classes.

Sum Rule, Mean Rule. The Sum Rule simply sums up
the support given to each class !n in order to generate total
support �n for each class. The ensemble decision for an
observed sample x is chosen to be the class !n for which
support �nðxÞ is largest.

By averaging the support (1
T serves as normalization

factor) given to each class !n, the Mean Rule calculates total
support �n for class n as

�nðxÞ ¼
1

T

XT

t¼1

st;nðxÞ:

Handling missing data. Ensemble member t, containing
training data from modalities not featured in an observed
sample, gives support st of value zero to each of the n classes.

Product Rule. By multiplying the support given to each
class !n, total support �n for class n is calculated as

�nðxÞ ¼
1

T

YT

t¼1

st;nðxÞ:

Note that this fusion strategy reacts very sensitively to
pessimistic ensemble members as a support of value zero
virtually nullifies the chance of a class becoming the final
decision.

Handling missing data. Ensemble member t, containing
training data from modalities not featured in an observed
sample, gives support st of value 1 to each of the n classes.

Cascading Specialists. The Cascading Specialists meth-
od [22] does not focus on merging outputs from all
ensemble members, but on selecting experts for each class
and bringing them in a reasonable order (see Fig. 3). Based
on evaluation of training data, experts for every class of the
classification problem are chosen. Next, classes are rank
ordered, from worst classified class across the ensemble’s
members to the best one. Given these preparations,
classification works as follows: First, class in the sequence
is chosen and the corresponding specialist is asked to
classify the sample. If the output matches the currently
observed class, this classification is chosen as ensemble
decision. If not, the sample is passed on to the next weaker
class and corresponding expert while repeating the strat-
egy. Whenever the case occurs that none of the experts
classifies its connected class, the classifier with the best
overall performance on the training data is selected as the
final instance and is asked to label the sample. This strategy
aims at a flattening effect among class accuracies that will,
at best, improve overall classification performance.

Handling missing data. The concept of choosing experts for
certain classes has to be broadened so that an expert unable to
handle the given sample (because of missing data) can be
adequately replaced. Instead of selecting one single ensem-
ble member for expert and final classification tasks, ordered
lists containing all classifiers—ranked by their qualification
for the given task—replace sole classifiers. If, in the
classification step, missing data are detected and the most
qualified ensemble member is trained with data of that type,
we move down in the prepared list to find the next best
classifier that is able to handle the observed sample.

Arousal-valence combination. The generic approach to
classification in a multiclass environment is to train
classifiers and corresponding ensembles to categorize
among the available classes, but the structure, the chosen
emotion model—consisting of two scales for valence and
arousal—more emotion-adapted techniques for finding an
ensemble decision can be applied [19]: Two ensembles are
trained to recognize the observed emotion’s axial align-
ment. Resulting outputs are logically combined for final
decision, as decisions on valence and arousal orientations
explicitly describe one of specified classes. Because of the
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Fig. 3. Cascading specialists scheme.

                                                                                                                                              



mapping to orientation in the emotion model, this strategy

cannot be generalized for common classification problems.
Handling missing data. In our implementation, Weighted

Majority Voting is used to generate the ensembles’ decisions

on axial alignments. Therefore, the handling of missing data

described for the respective fusion scheme is adopted.
Arousal-valence cross-axis combination. The concept of

a cross-axis again is exclusive to the chosen emotion model

and is meant to provide supplementary information to the

arousal and valence ensembles. This axis cannot be directly

deduced from emotion theory, but, from a mathematical

point of view, it is a reasonable partition of the given 2D

space. Just like the arousal and valence axes, the cross-axis

divides the emotion model into two separate parts, each

containing two emotion-quadrants. These parts contain the

respective, complementary quadrants and therefore split

the model in a diagonal way. According to arousal and

valence, a proper ensemble for cross-axis is constructed. A

stepwise algorithm is used for combination of the sources

of information7:
In Step 1, each ensemble distributes its votes among the two

quadrants that fit the recognized alignments in the emotion

model (see Fig. 4). This step results in one of two possible

outcomes:
If the ensembles agree on one emotion-quadrant, it

receives three votes and can already be chosen as the final

decision; otherwise, a voting tie occurs. No final decision

can be chosen; instead the draw has to be dissolved and the

algorithm moves on to Step 2. A direct classification

ensemble designates exactly one vote to the class it predicts.

Two situations can arise through this supplemental vote: If

the ensemble chooses an emotion-quadrant that already

holds two votes, the tie is resolved and the corresponding

emotion is determined to be the final decision. Otherwise,

the ensemble chooses the emotion-quadrant that has not yet

received any votes, the tie is not resolved, and Step 3 to be

executed: The emotion-class that was originally determined

by arousal and valence ensembles is chosen as the final

decision. In practice, this case rarely occurs, but it is

definitely needed to guarantee that no sample passes the

decision process unclassified.
Handling missing data. Again, Weighted Majority Voting

and respective handling of missing data is used in all

ensemble decisions.

6 EXPERIMENTS

The experiments presented are done on the described
CALLAS Expressivity corpus. Missing data are included in
the facial and gestural modality—the vocal modality is
always accessible—as samples represent one spoken sen-
tence. In detail, audio signals are constantly present in all
2,513 samples, facial features can successfully be extracted
throughout 2,251 observations (90 percent), and significant
gestures are available for 569 samples (24 percent). In
consequence of the experimental design, the samples are
more or less equally distributed among the 21 subjects;
however, if we calculate the relative portion of samples per
emotion, we find a high variety between the users. In
general, female users recorded in this experiment seem to
perform more expressively than their male counterparts.

6.1 Evaluation Method

Choosing an adequate evaluation method is crucial for
meaningful experiments. Among others, possibilities in-
volve random drawing of samples for testing, percentaged
subset drawing, k-fold splits, or the leave-one-out strategy.
As this work focuses strongly on the practical adaptability
of presented methods and a good field performance under
life-like or even disadvantageous circumstances, the chosen
evaluation method should reflect this intention. We agreed
on a very realistic, user-independent approach for evalua-
tion of our experiments (Leave-One-Speaker-Out). As the
employed corpus contains 10 female and 11 male partici-
pants, we consecutively draw samples belonging to one
single subject out of the set. The remaining samples are
used for training of classification models, which then are
tested against the isolated samples. Another important
decision concerns the way recognition rates are presented.
In consequence of the dominant presence of positive-low and
a general imbalance in class-distribution, we base our
studies on the classwise recognition rate (sometimes
referred to as unweighted average recall), which is the
mean of the recognition rates observed for each class.

6.2 Discussion

Results shown in Table 2 are split into three parts: First, single
channel performance is shown for each modality. Whenever
missing data are found, the respective sample is not included
for evaluation, so these results stem from different quantities
of samples. Vocal modality clearly outperforms facial and
gestural cues and establishes the most balanced accuracies
among observed classes, though positive emotions are
recognized better than negative ones. The facial modality
recognizes the positive-high emotion very well—presumably
because it is well suited for detection of smiles and move-
ments of the face associated with laughter—but lacks on
other classes. Gestures are most often correctly classified
during positive-low phases, the most calmly expressed class of
observed emotional states with nearly no movement at all.
Negative-low emotions were often expressed with despairing
gestures that could be partially separated from gestures with
high arousal. These expressive movements were obviously
often misinterpreted among each other, leading to very low
accuracies on classes with highly aroused emotions.
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7. An additional ensemble for direct classification—as established for
generic approaches—is needed for Step 2 of the combination strategy.

Fig. 4. Possible vote distributions after Step 1 after arousal-valence
combination.

                                                                                                                                              



The second part of Table 2 shows the results of generic
fusion approaches that can be applied to any given classifica-
tion problem. Theoretically, all decision level fusion strate-
gies aim at exploiting mentioned differences in single
channels in order to enhance combined performance.
Practically, performances of facial and gestural modalities
are too inferior to the audio channel to result in greater gains
in overall recognition rates. If one compares the vocal
modality to the fusion schemes, most approaches perform
better on the positive-high class. This behavior can be
explained by the very good result of the facial modality in
this area and the resulting influence on the ensemble.
Unfortunately, bad results for the remaining classes do effect
overall performance in a contrary way and these gains are lost
again in other categories. This can be well observed when
looking at the Product and Sum Rule—the “standard” fusion
schemes for merging classifier outputs—as recognition
results stabilize around vocal performance, with a better
trend on the second class. The same estimations hold for other
merging strategies like Mean or Weighted Average Rule. The
behavior of approaches that choose exactly one support value
among ensemble members for each class (Max, Median, and
Min Rule) is harder to predict, but all of them resemble the
just-mentioned characteristics and their overall perfor-
mances range from worst to best results within the generic
fusion category. Weighted Majority Voting’s inherent
weighting method causes a strong reliance on the dominant
modality, resulting in almost the same accuracies across all
classes as the audio channel. The Cascading Specialists
strategy generates acceptable results on negative clas-
ses—that are all in all more weakly categorized throughout
the ensemble— but loses too much accuracy on the positive-
low class in order to improve average accuracy. However, no
strategy generates drastically worse results than the best
modality— actually, they perform well compared to the
remaining modalities.

So, in order to perceptibly enhance recognition rates
compared to single channel classification on the dominant
modality, we have to exploit deeper knowledge about the
classification problem at hand with emotion-adapted fusion
strategies that employ more than a single generic ensemble.
The combination of arousal and valence ensembles shows
different characteristics than the generic approaches: The
dominance of the positive-high class is gone and negative
classes are well recognized. Overall, these changes result in
slightly superior accuracy than the best single channel. For
further improvements, we incorporate more available in-
formation from the 2D emotion model into combination
strategies, leading to the additional cross-axis ensemble. This
fusion scheme exceeds the best modality on every observed
class and therefore enhances average accuracy remarkably,
however, at the expense of a rising ensemble count.

Of course, the observed results cannot be claimed to be
universal as they are highly corpus-dependent. Unfortu-
nately, by the time this paper was written, there was—at
least to our best knowledge—no publicly available emotion
corpus, which could suit our needs in terms of modalities,
naturalness and presence of missing data. Such a corpus
could serve as a benchmark to compare presented methods
with results achieved by other institutions and to prove
generality. However, observations are in line with an earlier
study based on a smaller emotional corpus, where emotion-
specific fusion approaches clearly outperformed generic
ones [19].

6.3 Single-Channel Classification

To learn more about the contribution of the single modalities
to the overall performance, Fig. 5 shows classwise recognition
rates for each channel and user (dashed lines). User names are
encoded in the form de-[f,m]-id, where f denotes a
female and m a male user. The line charts reveal high
variability in all three modalities. The most extreme differ-
ence occurs in the gesture channel ranging from 19 percent
(de-f-17) to 68 percent (de-m-21). For audio and video, the
differences are slightly more stable, but still within a range of
21 percent and 31 percent, respectively. The results give no
hints for a general preference of female and male users for a
certain channel. In fact, it appears to be rather randomly
distributed as to which are the strong channels of the single
users. There are also no indications of a correlation between
the channels, i.e., a low/high performance in one channel
does not necessarily indicate a low/high performance in the
other channels.
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Fig. 5. Recognition performance per user of single-channel classification
and the fusion approach (user-independent).

TABLE 2
Results Achieved for Single Modalities in Comparison with

Decision-Level Fusion and Emotion-Adapted Fusion

                                                                                                                                              



Fig. 5 additionally reveals that the fusion approach (red
line) improves the results achieved by the best single
channel for 15 out of 21 subjects. For the remaining subjects
(de-f-13, de-m-01, de-m-03, de-m-06, de-m-20, de-m-21),
decision-level fusion evens results, while it still outperforms
the other two channels. Nevertheless, as fusion strategies
consider all modalities, there is always a chance that a
failure in one channel affects good performance of other
ones. This is the tradeoff for balancing weak modalities and
corrupted data. After all, ensemble-based strategies always
guarantee results that are—if not superior—at least in line
with the dominating modality. This characteristic is espe-
cially desirable, when the most trustworthy modality for a
user is not known in advance.

6.4 Single-User Dependent Classification

The reasons for relying on user independent evaluation were
already explained in Section 6.1. It may be still be worthwhile
to draw a comparison to single-user dependent classifica-
tion. We surely would expect better classification perfor-
mance from a system trained and tested with samples of the
same user. In order to prove this assumption, we select all
samples of each user and investigate recognition rates for
each user independently by five-fold cross-evaluation.
Results are visualized in Fig. 6.

Some remarkable facts have to be mentioned: First, one
can observe a high variability in overall performance,
ranging from 31 percent to 70 percent in single-user
dependent classification, whereas results in user-indepen-
dent classification are a bit more stable ranging from
46 percent to 66 percent. Obviously, the results of single-
user dependent classification are not necessarily superior to
the user-independent approach chosen for our evaluations.
In fact, for a noticeable amount of users (e.g., de-f-09 and
de-m-03) overall classification rates prove to be significantly
lower.8 Finally, we observe a common trend in user-
independent and single-user-dependent evaluation, i.e.,
high performance in the single-user-dependent classifica-
tion implies high performance in the user-independent case
and the other way round.

The observations made suggest that the success of single-
user-dependent as well as user-independent emotion
recognition always strongly correlates with the expressivity
of investigated subjects. Unfortunately, we have to reckon
with a high variety in expressivity among users. Further,

results suggest that a system trained on a considerable large
database of prerecorded users can yield similar results as a
system trained on a limited set of personalized samples
collected from the user.

7 CONCLUSION

In this work, we report results of decision level fusion
experiments carried out on the CALLAS Expressivity
corpus, performing emotion recognition from three differ-
ent modalities, namely, voice, face, and gesture. Classifica-
tion accuracies of single modalities range from 42 percent to
51 percent while appropriately recognizing and dealing
with missing data in observed channels. By means of
ensemble techniques, results were raised up to 55 percent,
including various generic fusion schemes as well as
emotion adapted approaches like the combination of
arousal, valence, and cross-axis. We see that generic
approaches adapt to the most dominant modality in the
ensemble while adopting some characteristics of other
ensemble members—like the good performance on posi-
tive-high from the video channel. Exploiting the structure of
the underlying emotion model leads to more elaborate
fusion strategies—including the usage of more than one
ensemble—that are tailored for affective emotion recogni-
tion. These fusion schemes do not share the aforementioned
characteristics and are able to outperform single modalities
and generic approaches by a significant rate, though
bearing a higher complexity due to the generation of
specialized ensembles.

Comparing recognition results of the single subjects we
found a high variability within a range of more than
30 percent. This correlates with a high variety in expressiv-
ity among users. This variability also appears when
observing results for the single channels. In fact, we could
not identify a general trend that would suggest one channel
to be more important than another. Though the vocal
modality looks more stable overall, the facial channel is
more suited to certain users. Even the gesture channel, as
the weakest of the three channels, outperformed the others
for some users. The uncertainty about the channel a user
picks to express his or her emotion, however, is a strong
argument for the benefit of fusion in our experiment as it
reduces the risk of trusting a weak modality.

As another interesting outcome, we found that the
results obtained for user-independent classification also
yielded similar and sometimes even better results than
single-user dependent classification. Hence, an emotion
recognition system trained with data of a large number of
subjects must not necessarily achieve worse results than a
personalized system trained with a small number of
training samples from the user. Ideally, the system would
start with a pretrained model, which is, over time, adapted
to the user. However, we also observed that a low
performance in the single-user dependent classification
implies low performance in the user independent case, i.e.,
the success of an emotion recognition system always
depends to a large part on the expressivity of the user.

For future work, we also aim at improving the segmenta-
tion techniques applied to the CALLAS corpus. So far, the
recorded modalities have been segmented in a very
straightforward way. Based on the user’s speech, the
beginning and ending of a recorded sample coincide with
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Fig. 6. Recognition rates for single-user-dependent classification (blue
line) and for user-independent classification (red line).

8. Note that the amount of training samples available for user-
independent classification is about 20 times higher compared to single-
user dependent evaluation.

                                                                                                                                              



the boundaries of the spoken stimuli sentence. Facial and
gestural signals are simply observed and segmented over the
according time span. This strategy suffers from two major
problems: The hopefully expressed emotion could occur
within a much shorter period somewhere within the spoken
sentence and therefore information before and afterward is
not of great meaning for recognition. Furthermore, signifi-
cant hints from different modalities are not guaranteed to
emerge at exactly the same time interval. Classification
accuracy could be expected to improve if modalities were
segmented individually and the succession and correspond-
ing delays between occurrences of emotional hints in
different signals could be investigated more closely. How-
ever, this approach gives room for a whole new set of
hypotheses and experiments.
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