
MoPeDT - Features and Evaluation of a User-Centred
Prototyping Tool

Karin Leichtenstern, Elisabeth André
Multimedia Concepts and Applications, Universitätsstr. 6a, 86159 Augsburg

{leichtenstern, andre}@informatik.uni-augsburg.de

ABSTRACT
User-Centred Prototyping (UCP) tools are expected to sup-
port interface developers in order to more efficiently, effec-
tively and satisfactorily design, evaluate and analyse user-
friendly products by an all-in-one tool solution. We devel-
oped such a UCP tool called MoPeDT that supports the user-
centred development of interactive evolutionary prototypes
for mobile phones in the context of the Internet of Things. In
this paper we address our tool features for the design, eval-
uation and analysis phase that mostly base on meaningful
features from related tools. Additionally, we cover potential
enhancements to former UCP tools in order to support in-
terface developers with a wide-ranging playground to inves-
tigate the user’s behaviour and preferences. The paper also
describes MoPeDT’s evaluation with 20 students over one
month that investigated the interface developer’s efficiency,
effectiveness and satisfaction when applying our UCP tool.
As an outcome of this study we describe potential benefits
and problems that might be of interest to other developers of
UCP tools.

Author Keywords
User-centred Prototyping Tool, Evolutionary Prototypes, Per-
vasive Interface, Internet of Things, Mobile Phones

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Prototyping, User-Centred Design

General Terms
Human Factors

INTRODUCTION
A product’s usability is an important quality criterion that
can determine about its success or failure. The user-centred
design process is a widely established usability engineering
process that can be used in order to obtain a good design
[18, 24]. A characteristic feature of this process is the itera-
tive prototyping that includes several iterations of designing

This is the author's version of the work. It is posted here for your personal 
use. Not for redistribution. The definitive Version of Record was 
published in:
EICS’10, June 19–23, 2010, Berlin, Germany.
Copyright 2010 ACM 978-1-4503-0083-4

interface prototypes along with continuous evaluations and
analyses of these prototypes with end-users. The iterations
with the involvement of the end-users are required to build
the interface as user-friendly as possible. The application
of this user-centred design process, however, adds new lay-
ers of complexity to the development task since the process
requires combined knowledge about software and usability
engineering. For instance, the developers of pervasive inter-
faces for mobile phones require knowledge about network
programming and knowledge about how to address differ-
ent built-in hardware, such as the microphone, camera, GPS
interface and NFC reader. Additionally, interface develop-
ers need to know how to deal with limited input and output
functionalities (e.g. small displays). Finally, they also re-
quire knowledge about approved interface guidelines as well
as experiences in the conduction and analysis of user stud-
ies in order to get meaningful results. A lack of these ex-
periences and skills can decrease the interface’s quality and
increase the required development time [27] as well as de-
crease the interface developer’s motivation. Consequently,
Myers [27] claims the development and application of tools
or toolkits for interface development processes, such as the
user-centred design process in order to save time and money.
He describes two main requirements for a tool that appropri-
ately supports in an interface development process. Firstly,
the tool needs to improve the result of the process: (1) the
quality of the resulted interfaces and thus the effectiveness of
the interface developers. Secondly, the tool should also en-
hance the process itself: (2) the ease of use and efficiency to
run through the process. Consequently, the interface devel-
oper’s efficiency and satisfaction should be increased when
applying the tool for a process. We assume that the so-
called user-centred prototyping (UCP) tools can potentially
meet Myers’ requirements for the user-centred design pro-
cess. They map the iterative cycle of the user-centred de-
sign process: a tool-supported design, evaluation and analy-
sis of interface prototypes. We developed such a UCP tool
called MoPeDT (Pervasive Interface Development Toolkit
for Mobile Phones) to support interface developers of per-
vasive interfaces for mobile phones. The main motivation
of MoPeDT’s development was the knowledge acquisition
of practical experience in order to address insufficiently re-
searched questions for developers of UCP tools to finally an-
swer the following questions: What are extensions to avail-
able UCP tools? What are features of MoPeDT that might
provide an insight to useful UCP tool features? Which find-
ings emerge when applying an all-in-one solution, such as
MoPeDT for all three phases of the user-centred design pro-

93



cess that also point to general benefits and problems of UCP
tools? The remaining paper is now structured as followed.
After describing UCP tools and tool features of MoPeDT,
the main part describes a user study that we conducted with
MoPeDT.

USER-CENTRED PROTOTYPING TOOLS
The ISO norm 13407 abstractly describes the user-centred
design process. This norm contains a cycle of designing,
evaluating and analysing prototypical solutions of a prod-
uct until they meet the specified user’s requirements [18,
24]. This cycle is the basis of the user-centred prototyping
tools’ definition [9, 20]. (1) An all-in-one UCP tool sup-
ports interface developers in the tool-based design, evalua-
tion and analysis of interface prototypes. Characteristically,
UCP tools have a strong link between the design, evalua-
tion and analysis component, e.g. the evaluation component
supports the conduction of user studies with prototypes that
were generated during the tool-based design and thus pro-
vide logging mechanism for the user studies. The analysis
component assists designers with the interpretation of syn-
chronously captured data via the evaluation component. (2)
A further feature of UCP tools is the generation of evolution-
ary prototypes. In terms of interface design, a prototype rep-
resents a partially simulation of an interface with respect to
its final appearance and behaviour [17]. Evolutionary proto-
types are characteristically prototypes that are built in rapid
iterative development cycles in order to experimentally find
and validate the user’s requirements. In each cycle, evolu-
tionary prototypes are modified and tested with experts and
end-users until they meet all requirements of the end-users
[6, 7]. A UCP tool should generate evolutionary prototypes
that provide several implemented functionalities of the fi-
nal product and directly run on the respective interaction de-
vices, e.g. mobile phones. These prototypes rather enable
realistic user studies and prevent the user’s misled under-
standing of the interface in user studies [16] than mock-ups
of an interface that simulate several functionalities. (3) A
last important aspect of UCP tools is the support to conduct
remote usability studies. A remote usability study character-
istically means a spatial separation of the subjects and eval-
uators [1] during a user study in a laboratory or in a field
setting (in-situ, i.e. at home or at the office). Typically, in
a remote usability study the user interactions (e.g. mouse
clicks) are logged while the user is audio-visually captured.
Moreover, screen shots or records are saved from the inter-
face (e.g. [10]).

Tools that support all three process steps of the user-centred
design in single software, the dynamic generation of inter-
active evolutionary prototypes and the conduction of usabil-
ity studies are d.tools [9], SUEDE [20] and MoPeDT [21].
Klemmer and colleagues developed SUEDE that assists in
the iterative development of speech interfaces whereas Hart-
mann and colleagues implemented d.tools that supports the
design, evaluation and analysis of physical computing appli-
cations. SUEDE is used to design dialogue examples, eval-
uate the examples in a Wizard of Oz setting and later on
analyse the evaluation, such as the user’s used dialogue path
during the tests. D.tools can be primarily applied to develop,

test and analyse new information appliances in a laboratory,
such as new media players or cameras and their buttons and
sliders. User studies conducted with both tools point to ben-
efits when supporting interface developers in all three steps
of the iterative prototyping. When applying their UCP tools
in the design, evaluation and analysis of prototypes, the in-
terface developer’s efficiency, effectiveness and satisfaction,
however, have not been comprehensively investigated as we
do with our tool called MoPeDT (Pervasive Development
Toolkit for Mobile Phones) in order to reveal potential ben-
efits and problems of UCP tools that support an all-in-one
solution for the user-centred prototyping.

MoPeDT offers a wide-ranging playground to conduct dif-
ferent user studies in pervasive environments. Interface de-
velopers can user-centred develop pervasive interfaces for
mobile phones, e.g. a pervasive shopping assistant or a per-
vasive game [22], remotely evaluate the interfaces in the per-
vasive environment and later on analyse the results. MoPeDT
is the only known tool that supports interface developers dur-
ing the user-centred development of interactive evolutionary
prototypes for mobile phones in order to cope with the pre-
viously mentioned challenges, such as the comprehensively
required programming and interface skills. Using MoPeDT,
applications for mobile phones can be generated that sup-
port different pervasive interaction techniques [21] for the
interaction with physical objects, e.g. products in a shop-
ping store or objects of art in a museum. For instance, the
mobile phone and its built-in NFC1 reader can be applied to
select a product via an RFID tag that is attached to it.

Figure 1. MoPeDT’s Plug-and-Play Architecture

After having selected a physical object based on one of the
supported interaction techniques, different services and their
content are loaded and displayed on the mobile phone, such
as a detailed description of the selected object or information
about the object’s origin. The idea to interact with physical
objects and provide services to these objects is called the In-
ternet of Things [25, 14]. In the context of the Internet of
Things another example of an outdoor application is trea-
sure hunt. Generating treasure hunt with MoPeDT, one or
more mobile interaction techniques can be utilized that make
use of input via the mobile phone’s keyboard, NFC reader,
GPS module (location), microphone (keyword-based speech
1http://www.nfc-forum.org/

94



recognition), camera (images recognition) or accelerometer
(gesture recognition). During the game, the current location
of the user can be detected. By this means, the number of
the available physical objects can be automatically reduced.
Now, at the current location a user can select a physical ob-
ject via using one of the interaction techniques: by speaking
its name, capturing a picture of it, performing a correspond-
ing gesture, touching it with the mobile phone or selecting
its GUI representation via the phone’s keyboard. Then ser-
vices and content of the selected object can be loaded, such
as information about the next location or a quiz.

In order to support interface developers to user-centred de-
velop and evaluate such prototypes in the term of the Internet
of Things, MoPeDT employs a plug-and-play architecture
and their software modules (see Fig. 1). The architecture
contains physical objects, mobile clients, a server, a database
as well as sensors, actuators and evaluators.

The idea is that end-users employ a generated evolution-
ary prototype on their mobile phones that utilize the soft-
ware module for mobile clients. This module provides dif-
ferent functionalities, such as a network communication to
the server or a support of the different mobile interaction
techniques. By using the database, the server can answer all
requests of these mobile clients about the physical objects,
such as a list of all their supported services. Sensors (e.g. a
temperature sensor) are also plugged in to the server in order
to provide knowledge about the user’s environmental context
in user studies. These sensors can also be used as a further
input channel for the mobile clients. By this mean, a partic-
ular context of a sensor (e.g. TEMPERATURE.HOT) might
cause an adaptation of the mobile phone’s appearance. A
further architecture’s component called evaluator is applied
whenever tool-supported local or remote user studies have
to be conducted. Several of these evaluators can connect to
the server and register the interest in other connected compo-
nents: mobile clients and sensors. Then, the evaluators can
synchronously log all contexts of the selected mobile clients
and sensors for later on analyses. Having all these contexts
and user interactions synchronously captured together with
videos, interface developers can shed light in the user’s be-
haviour or preference in different contextual situations. The
last plug-and-play component of the architecture is the ac-
tuator that can be used as an additional output channel for
multimedia content. For instance, as described in our previ-
ous work [22], our architecture can be applied to generate a
pervasive game that not only contains multiple users apply-
ing different mobile devices with different interaction tech-
niques but also includes a public display presenting video
content. After having generated the application based on our
architecture, MoPeDT supports in the conduction of a user
study and its analysis, such as to answer the question which
multi-user setting of a pervasive game best supports collabo-
ration [22]. Concluding, our plug-and-play architecture pro-
vides a meaningful basis for MoPeDT since its application
easily enables the tool-supported generation and evaluation
of prototypes for mobile phones considering a pervasive en-
vironment.

Consequently, MoPeDT can be applied in a completely dif-
ferent application domain compared to d.tools and SUEDE
- the Internet of Things with mobile phones as pervasive in-
teraction devices. Also, d.tools and SUEDE rather focus on
local stand-alone applications for specific devices with static
content. The content of their prototypes are known during
the development time. This aspect simplifies the specifica-
tion because the content (e.g. text or images) can directly
be assigned to an interface element. In addition to their
approach, we require network connections and the just de-
scribed client-server architecture due to the fact that the con-
tent of MoPeDT’s prototypes is often dynamically loaded
and displayed at the runtime. As a consequence for the de-
sign component, the UCP tool requires a scripting language
to enable static and dynamic specifications of content. A
further important aspect is the fact that d.tools and SUEDE
mainly apply their evaluation component in order to opti-
mize their speech and physical interfaces during the evalua-
tion phase but we are also interested in the investigation of
the user’s behaviour and preferences during using the inter-
face. For instance, we are currently using MoPeDT for the
investigation of user trust in different pervasive interaction
techniques in the context of the Internet of Things. For the
objectives of d.tools and SUEDE’s users, laboratory settings
are often adequate but in order to shed light on the user’s
behaviour and preferences, the user’s environment and the
user’s contextual information additionally need to be con-
sidered. Consequently, with MoPeDT, we do not only sup-
port typical user tests in laboratory settings but also remote
usability studies in-situ (e.g. at home or a museum) due to
the plug-and-play architecture. However, there are also lim-
itations when using MoPeDT mainly caused by two aspects.
Firstly, interface developers only can develop interfaces in
the context of the Internet of Things with mobile phones
as interaction devices. Secondly, in contrast to SUEDE and
d.tools, we use screen templates for the specification of the
application that can potentially improve the usability of the
interface but also can cause a limitation of the interface de-
velopers in their sphere of action.

The other related tools do not provide the whole pipeline of
the user-centred prototyping (design - evaluation - analysis)
and rarely the other two requirements of UCP tools: the gen-
eration of evolutionary prototypes that run on the end-user
device and the support to conduct remote usability studies.
SUPPLE [13], MakeIT [15], OIDE [26], Mobile Bristol [30]
and TERESA [5] are examples of tools that support in the
design of a prototype. SUPPLE, MakeIT and Mobile Bris-
tol support developers of pervasive or ubiquitous interfaces.
TERESA addresses the tool-based design of functional no-
madic interfaces and OIDE the generation of multimodal in-
terfaces. The mixed-fidelity prototyping tool from Sá [8]
supports in the design and conduction of user studies of low-
fidelity, mid-fidelity and high-fidelity prototypes for mobile
phones. Compared to these tools, there are fewer tools that
assist in the conduction and/or analysis of user studies. Most
available evaluation and/or analysis tools support in the log-
ging of web traffic and their visualisation (e.g. [2]). My-
Experience [12], DRUM [23], Momento [4] and UMARA
[3] are examples of tools that support in the conduction of

95



user studies and/or their analyses. MyExperience supports
in the recording of evaluations for mobile phone applications
whereas DRUM, UMARA and Momento are both evaluation
and analysis tools that even concentrate on tests for mobile
(Momento) or desktop settings (DRUM and UMARA).

MOPEDT’S COMPONENT FEATURES
In this section, we summarize MoPeDT’s features for the de-
sign, evaluation and analysis components that were applied
in our user study. MoPeDT’s features mainly base on mean-
ingful features of the just mentioned tools. Thus, the follow-
ing overview also might provide an insight to feasible tool
features for other UCP tools.

The Design Component
For the specification of the appearance and the behaviour
of a prototype, SUEDE, d.tools, the mixed-fidelity prototyp-
ing tool from Sá, MakeIT and OIDE are examples that pro-
vide a graphical user interface (GUI) and visualise a state-
chart diagram: screens or speech acts are represented by
states whereas the user’s interactions are represented by tran-
sitions. By these means, at the runtime, a user interaction
triggers a specified transition and leads to another state and
the display of a specified screen. MoPeDT also applies this
approach (see Fig. 2). Since several views on the spec-
ification can provide benefits for the developer, MoPeDT
does not only support a state-chart diagram view but also
a tree view. For instance, MoPeDT’s tree view supports a
better overview when working on a specific screen whereas
the state-chart view provides a better overview of the entire
specification of the appearance and behaviour. A special fea-
ture of MoPeDT is the support to specify static and dynamic
content of the interface’s appearance. Most design tools fo-
cus a static content specification, such as the mixed-fidelity
prototyping tool from Sá, SUEDE and d.tools. SUPPLE,
Mobile Bristol as well as MoPeDT [21] facilitates a scripting
language to specify dynamic content of interfaces, e.g. for
multimedia presentations that are context-adaptively loaded
and displayed. As previously described, MoPeDT also fea-
tures the specification and employment of different interac-
tion techniques that make use of the mobile phone’s built-
in hardware (e.g. the NFC reader). Mobile Bristol, SUP-
PLE, OIDE and MakeIT are examples that also provide as-
sistance for the application of pervasive or ubiquitous inter-
action techniques. For instance, Mobile Bristol enables the
specification of GPS-based locations that can be used as user
input in a mobile application. Finally, in contrast to most
other tools (e.g. d.tools and SUEDE), MoPeDT also assists
in the compliance of approved interface guidelines in order
to improve the quality of the resulted prototypes. Besides
classical IDE’s with integrated GUI builder (e.g. Netbeans),
the mixed-fidelity prototyping tool from Sá and MoPeDT
are the only tools that support in the compliance of interface
guidelines. Sá’s tool supports assistance to arrange the loca-
tion and size of screen components for a consistent layout.
MoPeDT facilitates the compliance of mobile phone guide-
lines by supporting interface developers with an expendable
set of screen templates that base on Nokia’s Design and User
Experience Library2. For instance, these templates consider
2http://library.forum.nokia.com

a consistent layout, softkey usage and navigation style. Each
screen generated with MoPeDT has a heading, content and a
softkey part. The left softkey is used for options, the middle
key is used for conformations and navigations and the right
softkey is used for negative actions (back, cancel or exit).
Additionally, each screen contains a help and an option to
return to the main menu. Moreover, from each screen the
user can return to the previous state automatically. The re-
sult of MoPeDT’s design component is an executable JAR
file that makes use of the previously mentioned plug-and-
play component called mobile client. The JAR file directly
runs on the end-device. We successfully tested the generated
prototypes on several Nokia phones (S40 and S60).

The Evaluation Component
A main feature of MoPeDT’s evaluation component is the
support to synchronously record all user interactions dur-
ing a user study. For this feature, MoPeDT makes use of
the architecture’s plug-and-play component called evalua-
tor. D.tools, the mixed-fidelity prototyping tool from Sá,
MyExperience, DRUM, UMARA and Momento also log user
interactions for the later analysis, e.g. in order to measure
the occurrence of a specific event. Besides the recording of
user interactions, a further feature of MoPeDT’s evaluation
component is the support to audio-visually record the user
and her environment while she is interacting with a proto-
type, e.g. in order to complete a task (see Fig. 3). Simi-
lar to MoPeDT, d.tools and Momento are examples that also
support the synchronised recording of user interactions and
audio-visual content. By this mean, the interpretation of
captured audio-visual data can be eased when having them
synchronised with the logged user interactions. Whenever a
user study is conducted, MoPeDT displays a cloned screen
view of the subject’s mobile phone screen on the evaluator’s
computer. Thus, during the local or remote user study in a
laboratory or field setting, the evaluator can always trace all
interactions of the subject and the subject’s current screen
view. This cloned mobile phone screen is also used in order
to take screen shots at certain points in time during the user
study. For instance, MoPeDT captures screen shots of the
cloned screen view whenever a new appearance is displayed.
After the study, the captured screen shots can help to analyse
the logged interactions, contexts and the captured videos. In
addition to the afore mentioned features of the evaluation
component, live annotations are a further support that is pro-
vided by MoPeDT. During the evaluation, evaluators can use
this feature in order to log comments and observations or de-
scribe the executed task more detailed. Since the user con-
text (e.g. the user’s activity and state) can also give valuable
information for later analyses, their recording is another fea-
ture of MoPeDT’s evaluation component. Apart from the
user context, the environmental context (e.g. the tempera-
ture and lighting conditions) can also be recorded for the
later analysis. In contrast to most other user-centred proto-
typing or evaluation tools, the MoPeDT architecture enables
the add-on and application of components that enable the de-
termination and logging of user and environmental contexts.
This feature, however, was not used in our user study in or-
der to reduce the complexity of the evaluation phase for our
subjects.

96



Figure 2. The Design Component of MoPeDT

The Analysis Component
MoPeDT’s analysis component provides the time-line based
visualisation of the recorded data in order to navigate through
them and interact with them (e.g. to find usability problems
or user preferences). D.tools and Momento also apply the in-
teractive time-line based visualisation of the logged data as
well as the audio-visual content. We extended ANVIL [19]
in order to develop MoPeDT’s analysis component. ANVIL
supports the display of audio-visual content as well as the vi-
sualisation and modification of annotations at various freely
definable time-line based tracks. The extended version of
ANVIL automatically synchronises and annotates the cap-
tured audio-visual content with the recorded user interac-
tions and contexts. Now, the interface developer can scroll
through the pre-annotated video or jump to intended data
that are displayed in the tracks in order to investigate the
user’s behaviour in different contextual situations. Since
the determination of significant results is often an important
analysis task, a further feature of MoPeDT’s analysis com-
ponent is to support statistical analyses. MoPeDT supports
the export of the annotated data in different formats of statis-
tic tools (e.g. SPSS) in order to investigate the probability of
occurrence for an intended context or behaviour. Thus, the
number or the subject’s errors or the subject’s required time
to complete a task can be statistically analysed with the as-
sistance of MoPeDT.

THE EVALUATION OF MOPEDT
The evaluation approach of MoPeDT mainly bases on the
evaluation method of TERESA [5]. Few authors have de-

scribed their evaluations [11] and if so most of them were
performed rather informally. From all previously mentioned
tools, TERESA is the only tool that was evaluated by a com-
parative study in two different settings. Comparative stud-
ies can provide meaningful knowledge about an added value
when using the tool instead of another approach. In the first
setting of TERESAS’ evaluation - the baseline setting - sub-
jects used traditional approaches to generate websites for a
desktop computer and a mobile phone whereas TERESA
was used in the second setting. During the development of
the interfaces in both settings, the subjects documented prob-
lems, commented on tool features but also noted the required
time to develop the interfaces. Several aspects of the evalua-
tion, such as the developer’s satisfaction and efficiency were
rated in a questionnaire to also get subjective data of the
users. Despite the carefully thought out method, TERESA’s
evaluation method, however, rather addressed the investiga-
tion of the process (formative evaluation) than the resulted
prototypes (summative evaluation) [29]. Thus, TERESA’s
evaluation method can only be applied to verify Myers’ sec-
ond requirement about the ease of use and the efficiency to
apply a tool for a process [27].

In our evaluation approach we also used a comparative method
that applies analytic and empiric evaluation techniques to
collect subjective and objective data for revealing a UDP
tool’s benefits and problems as well as the meeting of Myers’
mentioned requirements. Nielsen [28] mentioned the need to
combine analytical and empirical techniques to gather objec-
tive and subjective data. In our method we also combine the

97



Figure 3. The Evaluation Component of MoPeDT

formative with the summative evaluation for analysing (2)
the ease of use, the satisfaction and efficiency when applying
the user-centred development process (formative) with and
without the tool-support as well as (1) the results of the two
processes (summative): the effectiveness of interface devel-
oper to generate user-friendly prototypes. By these means,
the results of the evaluation can verify whether a tool meets
the two requirements defined by Myers [27] or not. Addi-
tionally, the results should also shed light in the questions of
potential problems and benefits of an all-in-one UCP tool,
such as MoPeDT. In the following, we first describe the ex-
perimental setting of our evaluation method, we next report
on the conduction of the evaluation and finally we illustrate
our results.

The Experimental Setting
We formulated the following expectations, falling into three
categories based on the definition of usability (ISO 9241 part
11): efficiency, effectiveness and satisfaction. H1: MoPeDT
improves the developer’s efficiency to quickly develop an
interface prototype. H2: MoPeDT improves the developer’s
effectiveness to develop a highly user-friendly interface pro-
totype. H3: MoPeDT improves the developer’s satisfac-
tion. To investigate our three hypotheses, we defined the
used platform as independent variable with the following
two levels. In the first level the interface developers applied
MoPeDT and the mentioned features for the user-centred de-
sign, evaluation and analysis of a pervasive interface whereas
in the second level the interface developers used as a baseline
traditional design, evaluation and analysis platforms (e.g.

Eclipse or Netbeans). Thus, in contrast to most mentioned
tool evaluations, we conducted a comparative study with
well-known and commonly used tools for all steps of the
user-centred design process to investigate our hypotheses.
Moreover, quite contrary to the other methods, we gathered
subjective and objective data in order to measure our depen-
dent variables: efficiency, effectiveness and satisfaction. For
these measurements, we applied a questionnaire to acquire
subjective data whereas protocol recordings and a guideline
review were utilized in order to collect objective data. Later
on, the aggregated data were compared in order to deter-
mine the correctness of our hypotheses. For the experiment
we used a within-subjects design and therefore, all of our
20 subjects participated in both levels of the experiment. To
prevent any position effects, ten subjects started with the de-
sign, evaluation and analysis of the prototype based on the
traditional application of the user-centred design and after-
wards used MoPeDT whereas the other ten students used
MoPeDT first.

Evaluation Techniques
In the following we describe our three used evaluation tech-
niques. We applied an analytic method: an inspection method
of a guideline review and two empirical methods: an obser-
vation method of a protocol recording and an inquiry method
of a questionnaire. To gather objective data for hypothesis
H2 (Effectiveness), we conducted a summative evaluation
(Guideline Review) and investigated the resulted prototypes
for both levels (with and without MoPeDT). An independent
usability expert who was not involved in the development or

98



evaluation of MoPeDT used the generated prototypes and
investigated their robustness and completeness based on the
task description (see Conducting the Experiment) as well as
their violation against the 22 mentioned guidelines that base
on Nokia’s Design and User Experience Library. For exam-
ple, the expert controlled a consistent softkey usage (G1) and
layout (G2) as well as a correct error handling (G3), a sup-
port of a contextual help in the different screens (G4) and an
easy reversibility of actions (G5). Further examples are the
consideration to minimize the number of screens (G12), to
display important information with text and icons (G15) and
to clearly structure screens (G16). Some of the guidelines
are automatically supported by MoPeDT (e.g. G1, G2, G3,
G5 and G16) but other guidelines are not covered, such as
G12 and G15.

The protocol recording was applied in order to conduct a
formative evaluation and gather objective data for the inves-
tigation of hypothesis H1 (Efficiency). The subjects used the
protocols for the documentation of the required time to com-
plete different steps while designing, evaluating and analysing
the prototypes. Moreover, emerged problems had to be noted.
In order to keep comparability between the different sub-
jects, they used the same wording since the protocols pro-
vided a predefined list of all required steps for the design,
evaluation and analysis (e.g. Implementation of the client-
server connection; Programming of the graphical user inter-
face for the mobile phone; Recording of videos; Synchroni-
sation of the recorded events with the captured videos).

In our post-task questionnaire, we first asked for the sub-
ject’s age, gender and software and usability engineering
skills whereas in the main part of the questionnaire we asked
the subjects to rate statements about the prototype’s design,
evaluation and analysis for both levels: with MoPeDT and
with the traditional approach. The statements addressed the
efficiency (E), effectiveness (Eff), satisfaction (S), learnabil-
ity (L), transparency (T) and their satisfaction with the inter-
face developer’s sphere of action (A). In terms of efficiency,
the subjects had to estimate a level’s influence on their effi-
ciency in the design (E1) and in the evaluation and analysis
(E2). Additionally, the levels were measured whether they
usefully support the conduction of the user-centred design
process (E3) and whether they could provide a gain in time
(E4). The statement about effectiveness concerned the satis-
faction with the generated prototype in both levels (Eff1). In
order to investigate hypothesis H3 about the user’s satisfac-
tion, we collected the subjective data in terms of satisfaction,
learnability, transparency and the satisfaction with the inter-
face developer’s sphere of action (user control). First, the
subjects had to rate their satisfaction when designing (S1)
and when evaluating and analysing a prototype (S2). Then,
the subjects had to estimate the ease of learnability for the
design (L1) and for the evaluation and analysis (L2). In this
context, the subjects also had to rate the required program-
ming (L3) and evaluation skills (L4). Further statements
were about a level’s transparency for the design (T1) and for
the evaluation and analysis (T2). Finally, the subjects had
to estimate the satisfaction with the sphere of action for the
design (A1) and the evaluation and analysis (A2) in both lev-

els. In this term, the subjects also assessed the scope of the
supported screen templates (A3). All mentioned statements
had to be rated on a five point scale (from strongly disagree
to strongly agree). In addition to the statements, the ques-
tionnaire also contained questions that asked the subjects to
select preferences, such as the preference for a component
of MoPeDT.

Conducting the Experiment
In both levels, the user-centred prototyping with and without
MoPeDT, the same pervasive shopping assistant for mobile
phones had to be (1) designed, (2) evaluated and (3) later on
analysed with end-users of the application. This pervasive
shopping assistant helps users to receive information about
articles in a shopping store (e.g. about the ingredients of
articles). We used a very simple task scenario for our user
study in order to enable the conduction within the one month
of our course. Normally, we also could have done another
previously described scenario, such as the game called trea-
sure hunt. (1) To keep comparability, the subjects received a
detailed description about the intended prototype. For exam-
ple, the types of screens and content to display were prede-
fined. Moreover, the description also contained the require-
ment to implement prototypes that enable a keyboard-based
and a touch-based interaction (NFC). The subjects were also
instructed to implement a logging mechanism for the proto-
type that was generated with the traditional approach in or-
der to enable a recording of the user interactions in the eval-
uation phase. (2) For the evaluation of their generated proto-
types, the subjects were instructed to audio-visually capture
three end-users while they were interacting with the two gen-
erated prototypes. The tasks for these evaluations were also
predefined (e.g. the users had to select the potato to read
its description) in order to enable the comparison between
the captured evaluations of the two settings. (3) After the
user evaluation, the subjects had to analyse their captured
audio-visual content and logged user interactions in order to
find usability problems of the two prototypes, such as word-
ing problems. Overall, the task description contained all re-
quired steps to complete the design, evaluation and analysis
with and without MoPeDT. Figure 4 shows two prototypes
that were designed, evaluated and analysed from one subject
in the levels with and without MoPeDT.

The subjects of our studies were students of our three-month
course ’Usability Engineering’. Before we ran the study at
the last third of the course, we conducted tutorials within the
course and taught all subjects how to use MoPeDT for the
interface’s design, evaluation and analysis and how to im-
plement and evaluate mobile phone prototypes using Eclipse
with EclipseME and Netbeans with the Mobility Pack. Dur-
ing this training period and the user study, we did not tell the
subjects that MoPeDT is a software tool that was developed
at our lab. In addition to the software skills, we compre-
hensively taught all subjects about usability in general, the
user-centred design, mobile phone usability and the mobile
phone guidelines that the usability expert also used for the
guideline review. We reminded the subjects to apply these
guidelines for both levels when designing, evaluating and
analysing the prototypes in our user study. During the de-

99



sign, evaluation and analysis of the user study, the subjects
were ordered to fill in the protocols for all completed steps.
After having developed prototypes in both levels of the inde-
pendent variable, the subjects had to fill in our questionnaire.
20 computer science students (16 male and four female stu-
dents) of our course ’Usability Engineering’ participated in
our one-month user study. The subjects were aged between
22 and 29 (M = 24.15, SD = 1.90). First, our subjects had
to rate their programming and usability skills on a 5 point
scale (from none to expert). On average, most of the partici-
pants rated themselves as medium skilled in object-oriented
programming languages, e.g. Java and C++ (M = 3.9, SD =
0.64) and mobile phone programming, e.g. J2ME (M = 2.3,
SD = 0.86) as well as medium skilled in usability engineer-
ing in general (M = 3.25, SD = 0.86) and mobile usability
engineering (M = 2.95, SD = 0.83). Two subjects had pre-
vious knowledge in mobile phone programming - about one
year.

Figure 4. Screen shots of the interfaces that were developed with
MoPeDT (first row) and with the traditional approach (second row).

Results and Discussion
In this section we describe the results of our user study and
discuss their consequences on our three hypotheses: the in-
creased interface developer’s efficiency to quicker develop
prototypes, the improved interface developer’s effectiveness
to develop more user-friendly and robust interfaces as well
as the increased interface developer’s satisfaction, when us-
ing the all-in-one solution MoPeDT instead the traditional
approach.

The analysis of the objective and subjective data proved our
assumption about an increased efficiency when using a UCP
tool, such as MoPeDT. When analysing the protocols based
on a two-sided dependent t-test, on average, the required
design, evaluation and analysis time in minutes with tradi-
tional approaches, e.g. Eclipse (M = 816.60, SD = 318.81),
was significantly higher than when using MoPeDT (M =
266.65, SD = 208.14), t(19) = 9.2, p < 0.001. When not us-
ing MoPeDT, the network and GUI programming required
much more time in the prototype design phase. In the eval-
uation and analysis phase, the annotation and analysis of the
captured videos decelerated the user-centred design process
when not using MoPeDT. These objective data were also re-
flected when analysing our subjective data of the question-

naire. Based on our rating scale from one to five, on average,
the subjects agreed with the statement about their increased
efficiency for the design when using MoPeDT (E1: M =
3.85, SD = 1.27), which was significantly higher than when
using the traditional approach to run the user-centred design
process (E1: M = 2.15, SD = 0.88), t(19) = 4.68, p < 0.001.
The efficiency when using MoPeDT for the evaluation and
analysis (E2: M = 3.5, SD = 1.32), was also seen as higher
but not significantly (E2: M = 3.35, SD = 0.88). The subjects
also found that MoPeDT (E3: M = 3.5, SD = 0.09) makes
the whole user-centred design process more efficient com-
pared to the traditional approach (E3: M = 2.8, SD = 1.01),
t(19) = 2.05, p = 0.054. Additionally, the time gain with
MoPeDT (E4: M = 3.95, SD = 1.0) was significantly higher
rated than the time gain when using the traditional approach
(E4: M = 1.6, SD = 0.6), t(19) = 7.37, p < 0.001. The quali-
tative feedback of the questionnaire substantiates the results.
Most subjects found the tool usage ”quick and easy” and see
a benefit in ”the very quick prototyping and evaluation of
applications”. The results of the protocol recording and the
questionnaire prove our first hypothesis and the requirement
of Myers that a tool has to increase the interface developer’s
efficiency.

The analysis of the subjective data revealed no significant
benefit for the developer’s effectiveness when using a UCP
tool, such as MoPeDT. The subjects similarly rated the qual-
ity of prototypes that were generated with traditional ap-
proaches (Eff1: M = 3.9, SD = 0.92) compared to the pro-
totypes that were generated with MoPeDT (Eff1: M = 3.95,
SD = 0.76). The analysis of the qualitative data shed light on
the participants’ rating. While most of them highlighted the
prototype’s design as ”beautiful” which ”is independent on
the mobile phone platform” and ”follows design guidelines”,
they also claimed the limitation caused by the screen tem-
plates. For instance, one subjects claimed that ”I could not
individually design the application because I had to conform
to the prefabricated patterns”. This finding can be supported
by the ratings regarding the scope of the supported screen
templates (A3: M = 2.7, SD = 1.03). Nevertheless, based
on a two-sided dependent t-test, the results of our guideline
review showed a highly significant difference between the
interfaces that were designed, evaluated and analysed with
MoPeDT compared to the generated interfaces with the tra-
ditional approach. Interfaces generated with MoPeDT had,
on average, less violations against the 22 guidelines (M =
0.85, SD = 0.93) than the interfaces that were developed with
traditional approaches (M = 4.35, SD = 2.52), t(19) = 5.48,
p < 0.001. Most often, the interfaces developed with tra-
ditional approaches did not consider a consistent usage of
the softkeys (G1: 17 of 20 subjects) and did not use icons
and text for important information (G15: 17 of 20 subjects)
(see Fig. 4). Another often occurred error was the non-
compliance to support contextual help for each screen (G4:
11 of 20 subjects). Based on our objective data, the sec-
ond hypothesis and Myers’ requirement about the increased
effectiveness of the developers to generate user-friendlier
interfaces is suggestively proved due to the fact, that the
resulted interfaces of MoPeDT provided a better usability
based on the guideline review than interfaces that were gen-

100



erated with traditional approaches. The subjects, however,
would like to have a wider range of action when designing
the layout with MoPeDT. The limitations of MoPeDT did
not only affect the layout design. In general, the subjects
considered a significant lack of their sphere of action when
using MoPeDT (A1: M = 2.95, SD = 1.15) compared to the
sphere of action that was supported by the traditional ap-
proach (A1: M = 4.15, SD = 1.09), t(19) = 3.21, p < 0.01.
The supported sphere of action for the evaluation and analy-
sis with MoPeDT (A2: M = 3.35, SD = 1.09), was a little bit
higher rated than for the traditional approach (A2: M = 3.05,
SD = 1.19). The limited sphere of action mainly causes that
the subjects were significantly more satisfied when using the
traditional approach (S1: M = 3.6, SD = 0.68) for the design
of a prototype compared to MoPeDT (S1: M = 2.9, SD =
1.07), t(19) = 2.41, p < 0.05. For the evaluation and analy-
sis, the satisfaction with MoPeDT (S2: M = 2.8, SD = 1.11)
was similar as with the traditional approach (S2: M = 3.1,
SD = 0.85). Beside the limited sphere of action, the trans-
parency was also pointed out as a problem of MoPeDT. The
collected data in terms of transparency for the design (T1:
M = 3.05, SD = 1.10) and evaluation and analysis (T2: M =
3.2, SD = 0.89) indicated an undistinguished transparency of
MoPeDT. The interface designers ”want to see what is going
on in the background”. Despite these overall negative results
in terms of satisfaction, the subjects considered some bene-
fits for the learnability. On average, the ease of learnability
was significantly higher rated for the design with MoPeDT
(L1: M = 3.65, SD = 1.27) than the traditional approach (L1:
M = 2.5, SD = 1.05), t(19) = 3.61, p < 0.01 whereas the ease
of learnability for the evaluation and analysis with MoPeDT
(L2: M = 3.45, SD = 0.89) was similarly rated than when
not using MoPeDT (L2: M = 3.50, SD = 0.76). The sub-
jects rated less required skills when designing (L3: M = 4.4,
SD = 0.60) or evaluating and analysing prototypes (L4: M
= 3.1, SD = 0.97) with MoPeDT compared to the traditional
approach. In our questionnaire, we also asked the subjects
about their overall acceptance of MoPeDT. Thus, we asked
them to decide about their preferred approach (MoPeDT or
the traditional approach) for the design as well as the eval-
uation and analysis. For the design, five subjects chose the
traditional approach whereas seven selected MoPeDT and
eight subjects mentioned both approaches as useful which
is quite similar to the results of the preferred evaluation and
analysis approach. Four subjects favoured the traditional ap-
proach for evaluating and analysing prototypes whereas 11
subjects preferred only MoPeDT and five saw benefits in us-
ing both approaches. Thus, despite the negative satisfaction
with MoPeDT, the subjects tendentially preferred MoPeDT
for the design, evaluation and analysis compared to the tradi-
tional approach. We also asked the subject’s preferred com-
ponents of MoPeDT, one subject did not like a single com-
ponent of MoPeDT, while six subjects only liked the design
component and two subjects only liked the evaluation and
analysis component. 11 subjects liked all components of
MoPeDT, the components to design, evaluate and analyse
a prototype. The qualitative feedback reveals that the partic-
ipants favoured the approach to have an all-in-one solution.
For instance, a subject mentioned the benefit ”to handle ev-
erything in a single program: the database, the design, eval-

uation and analysis”. Another subject mentioned that ”only
the combination of all components meaningfully supports
the iterative prototyping” which is similarly to the statement
that the quick and easy prototyping can be improved by ”the
close interleaving of the three components” and ”the all-in-
one approach” that prevents ”the induction in several pro-
grams”. Overall, we could not prove the hypothesis about
the increased interface developer’s satisfaction when using
MoPeDT because there are some problems due to the insuf-
ficiency of user control and transparency. The overall pref-
erence of an all-in-one tools solution appears in outlines.

CONCLUSION
In this paper we covered the idea of UCP tools as an all-
in-one solution for interface developers. Characteristically,
these tools support the user-centred prototyping with three
closely linked components: a component to design, evalu-
ate and analyse an interface prototype. As a contribution,
we introduced our UCP called MoPeDT that provides pos-
sible enhancements compared to other UCP tools, such as a
plug-and-play architecture in order to enable more compre-
hensive user studies. Additionally, we provided an overview
of MoPeDT’s components that might provide an insight to
other tool developers. This paper also illustrated the com-
parative tool evaluation of MoPeDT. As a result of this study
we can summarise the following knowledge. MoPeDT as an
all-in-one UCP tool can decrease the required time to de-
sign, evaluate and analyse an evolutionary prototype (Effi-
ciency) as well as reduce the prototypes’ non-compliance
of interface guidelines (Effectiveness). Additionally, our re-
sults also indicate that interface developers mostly accept a
UCP tool, such as MoPeDT for all steps of the user-centred
prototyping as well as that the user feedback seems to imply
the preference of a single tool solution which integrates all
components instead of separated tools for each single step of
the user-centred prototyping. The results of our user study,
however, also might indicate typical problems when apply-
ing UCP tools, such as MoPeDT. The developers’ overall
satisfaction (Satisfaction) of a UCP tool seems to be strongly
depending on the satisfaction with the user control as well
as the tool’s transparency. In particular, screen templates in-
crease the usability of the generated prototype in terms of
the compliances of interface guidelines but they limit the in-
terface designers’ user control in order to individually adapt
the layout.

ACKNOWLEDGMENT
This research is partly sponsored by OC-Trust (FOR 1085)
of the German research foundation (DFG).

REFERENCES
1. M. S. Andreasen, H. V. Nielsen, S. O. Schrøder, and

J. Stage. What happened to remote usability testing?:
an empirical study of three methods. In CHI ’07:
SIGCHI conference on Human factors in computing
systems, pages 1405–1414. ACM, 2007.

2. E. Arroyo, T. Selker, and W. Wei. Usability tool for
analysis of web designs using mouse tracks. In CHI
’06: CHI ’06 extended abstracts on Human factors in
computing systems, pages 484–489. ACM, 2006.

101



3. S. Bateman, C. Gutwin, N. Osgood, and G. McCalla.
Interactive usability instrumentation. In EICS ’09: 1st
ACM SIGCHI symposium on Engineering interactive
computing systems, pages 45–54. ACM, 2009.

4. S. Carter, J. Mankoff, and J. Heer. Momento: support
for situated ubicomp experimentation. In CHI ’07:
SIGCHI conference on Human factors in computing
systems, pages 125–134. ACM, 2007.

5. C. Chesta, F. Patern, and C. Santoro. Methods and tools
for designing and developing usable multi-platform
interactive applications. PsychNology Journal,
2(1):123–139, 2004.

6. A. M. Davis. Operational prototyping: A new
development approach. IEEE Softw., 9(5):70–78, 1992.

7. A. M. Davis, H. Bersoff, and E. R. Comer. A strategy
for comparing alternative software development life
cycle models. IEEE Trans. Softw. Eng.,
14(10):1453–1461, 1988.

8. M. de Sá, L. Carriço, L. Duarte, and T. Reis. A
mixed-fidelity prototyping tool for mobile devices. In
AVI ’08: Conference on Advanced visual interfaces,
pages 225–232. ACM, 2008.

9. B. Hartmann, S. R. Klemmer, M. Bernstein,
L. Abdulla, B. Burr, A. Robinson-Mosher, and J. Gee.
Reflective physical prototyping through integrated
design, test, and analysis. In UIST ’06: 19th annual
ACM symposium on User interface software and
technology, pages 299–308, ACM, 2006.

10. S. Dow, J. Lee, C. Oezbek, B. Maclntyre, J. D. Bolter,
and M. Gandy. Exploring spatial narratives and mixed
reality experiences in oakland cemetery. In ACE ’05:
ACM SIGCHI International Conference on Advances in
computer entertainment technology, pages 51–60.
ACM, 2005.

11. G. Ellis and A. Dix. An explorative analysis of user
evaluation studies in information visualisation. In
BELIV ’06: AVI workshop on BEyond time and errors,
pages 1–7. ACM, 2006.

12. J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and
J. A. Landay. Myexperience: a system for in situ
tracing and capturing of user feedback on mobile
phones. In MobiSys ’07: 5th international conference
on Mobile systems, applications and services, pages
57–70. ACM, 2007.

13. K. Gajos, D. B. Christianson, R. Hoffmann, T. Shaked,
K. Henning, J. J. Long, and D. S. Weld. Fast and robust
interface generation for ubiquitous applications. In
Ubicomp, pages 37–55, 2005.

14. G. Gopal, T. Kindberg, T. Kindberg, and e. a.
John Barton. People, places, things: web presence for
the real world. In WMCSA2000, pages 365–376, 2000.

15. P. Holleis and A. Schmidt. Makeit: Integrate user
interaction times in the design process of mobile
applications. In Pervasive, pages 56–74, 2008.

16. L. E. Holmquist. Prototyping: generating ideas or cargo
cult designs? interactions, 12(2):48–54, 2005.

17. S. Houde and C. Hill. What do prototypes prototype?
Handbook of Human-Computer Interaction.

18. E. Kangas and T. Kinnunen. Applying user-centered
design to mobile application development. Commun.
ACM, 48(7):55–59, 2005.

19. M. Kipp. Anvil - a generic annotation tool for
multimodal dialogue. In 7th European Conference on
Speech Communication and Technology (Eurospeech),
pages 1367–1370, 2001.

20. S. R. Klemmer, A. K. Sinha, J. Chen, J. A. Landay,
N. Aboobaker, and A. Wang. Suede: a wizard of oz
prototyping tool for speech user interfaces. In UIST
’00: 13th annual ACM symposium on User interface
software and technology, pages 1–10. ACM, 2000.

21. K. Leichtenstern and E. André. The assisted
user-centred generation and evaluation of pervasive
interfaces. In AmI ’09: European Conference on
Ambient Intelligence, pages 245–255. Springer, 2009.

22. K. Leichtenstern and E. André. Studying multi-user
settings for pervasive games. In 11th International
Conference on Human-Computer Interaction with
Mobile Devices and Services (MobileHCI), pages
190–199. ACM, 2009.

23. M. Macleod and R. Rengger. The development of
drum: A software tool for video-assisted usability
evaluation. In In HCI’93, pages 293–309. Cambridge
University Press, 1993.

24. J.-Y. Mao, K. Vredenburg, P. W. Smith, and T. Carey.
The state of user-centered design practice. Commun.
ACM, 48(3):105–109, 2005.

25. F. Mattern and C. Floerkemeier. Vom internet der
computer zum internet der dinge. Informatik-Spektrum,
33(2), 2010.

26. M. R. McGee-Lennon, A. Ramsay, D. McGookin, and
P. Gray. User evaluation of oide: a rapid prototyping
platform for multimodal interaction. In EICS ’09: 1st
ACM SIGCHI symposium on Engineering interactive
computing systems, pages 237–242. ACM, 2009.

27. B. A. Myers. User interface software tools. ACM Trans.
Comput.-Hum. Interact., 2(1):64–103, 1995.

28. J. Nielsen. Usability engineering. In The Computer
Science and Engineering Handbook. 1997.

29. M. Scriven. The methodology of evaluation. In R. G. R.
Tyler and M. Scriven, editors, Perspectives on
curriculum evaluation, AERA Monograph Series -
Curriculum Evaluation. Rand McNally & Co., 1967.

30. R. Hull, B. Clayton, and T. Melamed. Rapid authoring
of mediascapes. In N. Davies, E. D. Mynatt, and I. Siio,
editors, Ubicomp, volume 3205 of Lecture Notes in
Computer Science, pages 125–142. Springer, 2004.

102


	Introduction
	User-Centred Prototyping Tools
	MoPeDT's component features
	The Design Component
	The Evaluation Component
	The Analysis Component

	The Evaluation of MoPeDT
	The Experimental Setting
	Evaluation Techniques
	Conducting the Experiment

	Results and Discussion

	Conclusion
	Acknowledgment
	REFERENCES 

