
                                       

Abstract 

Recently, there has been considerable interest in the 
recognition of affect in language. In this paper, we 
investigate how information fusion using linguistic 
(lexical, stylometric, deictic) and acoustic information 
can be utilized for this purpose and present a 
comprehensive study of fusion. We examine fusion at the 
decision level and the feature level and discuss obtained 
results. 

1. Introduction 
Affect sensing in speech can be used in a wide range 

of applications, for instance, in dialogue systems or in 
robotics. However, since natural language is multifold, 
affect sensing is an error-prone issue. In order to 
improve classification results, affect sensing can make 
use of multimodal fusion. 

An utterance in a spoken dialogue can be understood 
both as its text, but also as its acoustic signal. Therefore, 
affect sensing can be performed by analyzing lexical 
elements in its text, but also by exploiting acoustic 
features. 

This paper focuses on issues of combining lexical and 
acoustic features. Hereby, we concentrate on the 
following questions: 

1. Is fusion beneficial for affect sensing at all? 
2. Should we consider the context of an utterance 

to improve affect sensing? 
3.  What is more beneficial for affect sensing: 

decision-level or feature-level fusion? 

2. Previous work 
A number of approaches are based on multimodal 

affect sensing. 
Kim and André [4] study affect sensing using fusion 

of physiological and acoustic data. The approach uses 
77 features from the physiological modality, e.g. mean 
value, standard deviation, and ratio of max/min of 
physiological signals such as skin conductivity, 
electrocardiogramm and 61 features from the acoustic 
modality, e.g. mean, absolute extremum, root mean 
square, standard deviation of energy. It implements 
feature-level fusion, decision-level fusion and hybrid 
fusion. Using feature-level fusion, the approach 

computes a joint feature set from the two modalities for 
which a classifier is trained. In decision-level fusion, the 
output of separate classifiers for each modality is 
combined using a probabilistic approach. Hybrid fusion 
utilizes the output of the feature-level fusion as an 
additional input to the decision-level fusion. The best 
results were obtained by feature-level fusion in 
combination with feature selection. 

Busso and colleagues [1] describe an approach to 
fusion of the facial expression modality and the acoustic 
modality at the feature level and the decision level. The 
examined corpus includes 258 emotional sentences 
annotated with 4 emotions. As acoustic features, they 
use features based on the mean, standard deviation, 
range, maximum, minimum and medians of pitch and 
energy. As visual features, the approach uses a 10-
dimensional feature vector representing positions of 
particular 3D face markers. In feature-level fusion, the 
approach merges features from both modalities; in 
decision-level fusion, the approach utilizes either the 
best 10 features selected using SDFS or uses posterior 
probabilities and weights modalities. By fusing the 
facial and acoustic modalities the approach achieves an 
improvement of accuracy rates while the performance of 
the two fusion approaches was similar. 

Schuller and colleagues [9] study fusion of acoustic 
and the lexical features. Experiments are performed on 
1,144 phrases from seven American movie scripts. The 
approach uses 276 acoustic features, for example, pitch 
and energy; the lexical features are lemmatized 
unigrams (Bag-of-Words) without 93 stopwords 
(articles, names, etc.). The performance of the emotion 
recognition could be slightly improved by integration of 
acoustic and lexical features. 

Truong and Raaijmakers [10] describe an approach to 
automatic recognition of spontaneous emotions that 
relies on the acoustic and the lexical modalities. It uses 
acoustic features (mean, standard deviation, max-min, 
the averaged slope of pitch and intensity) and lexical 
features (N-grams and the speech rate). The approach 
analyses positive/negative emotions and presents both 
uni-modal results and results of fusion at the feature 
level obtaining slight improvement after fusion. 

In summary, the fusion of multiple modalities led to 
an increase of recognition results. However, we extend 
previous approaches in several respects. First of all, 
previous work focused mainly on calculating higher 
classification results without investigating thoroughly 
the influences of the single modalities. Then, they 
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analyzed only a limited number of linguistic features, 
i.e. lexical, while we use lexical as well as stylometric 
and deictic features. Furthermore, we also consider the 
context of turns in dialogues and provide a clear 
visualization of fusion results by means of a tree 
representation. Hereby, we introduce a measure to 
estimate the possible upper bound for multimodal fusion 
on the decision (classification) level — the maximal 
multimodality value. 

3. Experimental setting 
We perform experiments in this study using the 

Sensitive Artificial Listener (SAL) corpus [6] which 
contains audio-visual data of four users communicating 
with one of four psychologically different characters: 
optimistic and outgoing (Poppy), confrontational and 
argumentative (Spike), pragmatic and practical 
(Prudence), depressing and gloomy (Obadiah). The 
characters try to draw the user into their own emotional 
state, thus eliciting emotional speech. Dialog turns in 
SAL are transcribed manually and emotions in the turns 
are annotated by 3-4 annotators with the FEELTRACE 
software [2] which allows for continuous annotation of 
the emotion dimensions (valence and arousal). In total, 
SAL contains 27 dialogs (672 turns). 

We mapped FEELTRACE values of turns onto 5 
emotional classes assigning each turn the majority vote 
of the annotators at the end of the turn. Since majority 
calculation was not always possible due to the missing 
agreement between the annotators, we extracted only 
574 turns from the original corpus that corresponds to 
85% of the entire corpus. The extracted turns are 176 
turns with low valence and high arousal, 103 turns with 
low valence and low arousal, 123 neutral turns with 
valence and arousal around zero, 24 turns with high 
valence and high arousal, 148 turns with high valence 
and low arousal. We considered a sixth “undefined” 
class of emotions that corresponds to turns whose affect 
is unclear: the annotators do not agree about the affect 
of the particular turn. However, we had to discard this 
class since the number of turns of this class was very big 
and the resulting distribution of affect classes would not 
reflect what SAL characters were intended to induce. 

To avoid computational complexity, we perform our 
experiments in two stages distinguishing between 4 
information streams of  speech: lexical, stylometric, 
deictic information streams from the linguistic modality, 
and the acoustic modality. In the first stage, the datasets 
of a particular stream are composed and classified. In 
the second stage, 10 best datasets of every stream are 
left for further experiments. Furthermore, since 
successive turns in SAL dialogs are semantically 
connected, we compose feature sets not only for the 
current turn but also for the current turn plus n 
preceding turns (the context of the turn). Hereby, we 
restrict to n=7 which we empirically found to be a 
beneficial value. 

In the lexical information stream, unigrams are used 
as features for composition of 29 lexical datasets. A 
lexical dataset considers the most frequent words in 
SAL frequency list and contains s/n features where 
s=2,033 is the length of the frequency list in words and 
n is the dataset number. Hence, the first dataset of the 
lexical modality (n=1) contains 2,033 features; the 
second dataset (n=2) consists of 1,019 words; the third 
dataset (n=3) contains 679 unigrams, and so on. 

We composed 31 stylometric datasets that contain 
possible combinations of the following feature groups 
[3], [5], [7]: letters, word lengths, digrams, standard 
deviation of word length, and sentence lengths in words. 
A stylometric dataset contains at least 1 feature and at 
most 730 features. The sentence lengths were 
represented as frequency vector. 

For deixis we consider 63 datasets with combinations 
of the following feature groups: demonstratives as 
determiners, demonstratives as pronouns as well as time 
references, place references, forms of the third person 
(references to persons or subjects as he or it), and 526 
stopwords from the WEKA toolkit [13]. A deictic 
dataset contains at least 1 feature and at most 530 
features. The features were evaluated as frequency 
vector. 

The acoustic feature set contains 1,316 features based 
on pitch, signal energy, MFCCs, the short-term 
frequency spectrum, and the harmonics-to-noise ratio 
that are extracted using the EmoVoice software [12]. 

We discretize the values of acoustic features. 
Discretization is a data mining method of feature 
evaluation that maps values in particular intervals onto 
interval names. For instance, a value of feature 
pitch_mean can be mapped onto an interval name as 
follows: values in interval (–∞, 108.5) are interpreted as 
the name Interval1, values in interval (108.5, 165.2) are 
interpreted as the name Interval2, values in interval 
(165.2, 221.5) are interpreted as the name Interval3, 
values in interval (221.5, -∞) are interpreted as the name 
Interval4. Hence, the sequence (120.9, 105.1, 187.3, 
275.1) is interpreted as the sequence (Interval2, 
Interval1, Interal3, Interval4). 

We compile 4 datasets of acoustic features: a dataset 
representing the current turn; a dataset representing the 
current turn and 7 previous turns; a dataset with discrete 
values representing the current turn; a dataset with 
discrete values representing the current turn and 7 
previous turns. The supervised discretization of acoustic 
datasets is performed using the Fayyad and Irani’s 
discretization filter in the WEKA toolkit. 

The classifier used throughout the experiments is 
SVM from the WEKA toolkit; the results are averaged 
over classes. 

4. Decision-level fusion 
To perform fusion at the decision level, we calculate 

the majority vote from the results of the single 

                                                                                                                                              



                                       

information streams. If no majority can be established, 
we gradually leave out the information stream with the 
lowest recall value in uni-modal recognition, until either 

majority voting is possible or only one information 
stream remains. 
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Figure 1: Decision-level fusion before discretization 

In Figure 1, each path in the trees represents a dataset 
with the feature groups contained in this dataset starting 
with a different root node. For instance, the A-L-S-D 
path corresponds to a dataset with the acoustic (A), 
lexical (L), stylometric (S), and deictic features (D). 
Each abstract I, II, III, IV corresponds to 4 datasets that 
are visualized using a different “root” information 
stream. The trees to the left show fusion results using 
the current turn in the context of the turns of history 7. 
The trees to the right show fusion results without 
history. 

Results in the first row are denoted using the class-
wise recall (R) and precision values (P). The second row 
denotes <maximal multimodality value> where 
<maximal multimodality value> is the value that could 
be obtained in the case of perfect fusion when at least 

one of the participating information streams would 
classify a particular instance correctly and the 
classification would rely on this information stream 
only. In other words, we understand the maximal 
multimodality value as an expectation of the maximal 
recall value that can be achieved using the participating 
datasets or as an anticipated upper bound of recognition 
(the coverage). Nodes that represent datasets with 
maximal recall values are shown in bold circles. Arcs 
that indicate decreasing recall values are dashed; the 
names of the corresponding nodes are italicized. 

Result trees that correspond to values after 
discretization of the acoustic datasets are shown in 
Figure 2. 

                                                                                                                                              



                                       

Figure 2: Decision-level fusion after discretization

Descriptions of nodes are the same as descriptions in 
Figure 1. 

5. Feature-level fusion 
Fusion at the feature level is performed by merging 

features of participating information streams into a 
single feature set (Figure 3). 

Figure 3: Feature-level fusion before discretization

Results are represented as trees similar to Figure 1 with 
a slight difference. The first row represents the recall 
value (R) and the precision value (P). However, the 
second row in italics shows the results (R, P) of the 
decision-level fusion once more in order to facilitate 

comparison of two fusion types. If the recall value in the 
feature-level fusion is greater than that in the decision-
level fusion the second row is shown in bold. Note that 
some fusion results in Figure 3 indicate that the 
decision-level fusion was more beneficial for affect 
sensing than the feature-level fusion. 

                                                                                                                                              



                                       

Again, we also compiled trees that show results of 
fusion after discretization of the acoustic datasets 

(Figure 4). 

Figure 4: Feature-level fusion after discretization 

The descriptions of the trees are the same as the 
descriptions in Figure 3. Note that Figure 4 contains in 
contrast to Figure 3 no rows that denote that the 
decision-level fusion yielded higher results than the 
feature-level fusion. 

6. Discussion 
The fusion results confirm the following: 

1. Role of context: Both for acoustic and linguistic 
features, we got better results when considering 
the context of a turn. However, this result may 
hold only to one corpus. Using a fixed number 
of turns might, however, be problematic in case 
where emotions rapidly change. 

2. Performance of the single information streams: 
The discretization of acoustic features 
remarkably improves classification rates. After 
discretization, acoustic features score better than 
linguistic features. Without discretization, 
linguistic features score better than acoustic 
features if context is considered. The high 
impact of discretization is probably due to the 
size of the database which is relatively small. 
However, as we have shown on a bigger 
database [11], the effect still holds up to a 
considerable size. 

3. Fusion: We were not in general able to improve 
recognition results by fusing linguistic and 
acoustic features. Only if no context was 
considered feature-level fusion led to better 
results than the analysis of the single 
information streams. However, when 
considering the context, the recognition rates 
obtained for the single information streams 
outperformed this result. Furthermore, we did 
not find neither fusion at the feature level nor at 
the decision level to be superior as both 
achieved about the same recognition results. 

7. Conclusion 
In this paper, we investigated decision-level and 

feature-level fusion and showed fusion results for a 
natural-language multimodal corpus. It turned out the 
discretized acoustic features outperformed linguistic 
features and that fusion of acoustic and lexical features 
was less beneficial than expected. In the paper, we 
introduced the maximal multimodality value as a means 
to assess the best possible results of decision-level 
fusion. In the analysis we conducted, this value goes to 
at most 77.8% demonstrating that a 100% recognition 
rate is not possible without improving the recognition 
rates of the single information streams. Therefore, we 
plan in the future to enhance results of the decision-
level fusion by improving the initial information streams 
as well as adding new modalities in order to increase the 
coverage (the multimodality value), for instance, we 
plan to add the visual modality [8]. Also we plan to 
conduct research on weighting information streams and 
possibly also weighting feature sets in feature fusion. 
Furthermore, we will conduct feature selection to 
eliminate correlated or redundant features, and thus 
improve recognition results. 
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