
CHAPTER 3.6

DETECTION OF AFFECTIVE PATTERNS IN

PHYSIOLOGICAL SIGNALS TOWARDS IMPROVING

AUTOMATIC EMOTION RECOGNITION

Jonghwa Kim and Elisabeth André
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In this chapter, we investigate the potential of physiological signals as reliable
channels for emotion recognition. All essential stages of an automatic recognition
system are discussed, from the recording of a physiological dataset to a feature-
based multiclass classification. In order to collect a physiological dataset from
multiple subjects, we developed a musical induction method, without any delib-
erate lab setting. Four-channel biosensors were used to measure electromyogram,
electrocardiogram, skin conductivity, and respiration changes. A wide range of
physiological features from various analysis domains is proposed to find the best
emotion-relevant features and correlate them with emotional states. The best fea-
tures extracted are specified in detail and their effectiveness is proven by classifi-
cation results. Classification of four musical emotions (positive/high arousal, neg-
ative/high arousal, negative/low arousal, positive/low arousal) is performed by
using an extended linear discriminant analysis (pLDA). Furthermore, by exploit-
ing a dichotomic property of the 2D emotion model, we develop a novel scheme of
emotion-specific multilevel dichotomous classification (EMDC) and compare its
performance with direct multiclass classification using the pLDA.

1. Introduction

In advanced human-computer interaction (HCI) today, resolving absence of mutual

sympathy (rapport) in interaction between human and machine is one of the most

important issues. With exponentially evolving technology, it is no exaggeration to

say that any interface that disregards human affective states in the interaction - and

thus fails to pertinently react to the states - will never be able to inspire confidence.

Instead, users will perceive it as cold, untrustworthy, and socially inept. In human

communication, expression and understanding of emotions helps achieve mutual

sympathy. To approach this in human-computer interaction, we need to equip ma-

chines with the means to interpret and understand human emotions without the in-

put of a user’s translated intention. Hence, one of the most important prerequisites

for realizing such an advanced user interface is a reliable emotion recognition system
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which guarantees acceptable recognition accuracy, robustness against any artifacts,

and adaptability to practical applications. Developing such a system requires the

following stages: to model, analyze, process, train, and classify emotional features

measured from the implicit emotion channels of human communication, such as

speech, facial expression, gesture, pose, physiological responses, etc. In this chapter

we concentrate on identifying emotional cues in various physiological measures.

Recently, numerous studies on engineering approaches to automatic emotion

recognition have been published, though research in that field is relatively new

compared to the long history of emotion research in psychology and psychophysiol-

ogy. In particular, many efforts have been deployed to recognize human emotions

using audiovisual channels of emotion expression, i.e. facial expressions, speech,

and gestures. Little attention, however, has been paid so far to using physiologi-

cal measures, as opposed to audiovisual emotion channels [1]. This is due to some

significant limitations that come with the use of physiological signals for emotion

recognition. The main difficulty lies in the fact that it is a very hard task to uniquely

map physiological patterns onto specific emotional states. As an emotion is a func-

tion of time, context, space, culture, and person, physiological patterns may widely

differ from user to user and from situation to situation. Above all, humans use

non-discrete labels to describe emotions.

In the next section, we give a brief overview of related research on automatic

emotion recognition using physiological signals. Section 3 gives the motivation

and rationale for our experimental setting of musical emotion induction and is

followed by a detailed explanation of all the biosensors we used. A systematic

description of signal analysis methods and classification procedure using extended

linear discriminant analysis is given in Section 4. In Section 5, we present the

best emotion-relevant ANS features with the recognition results we achieved. In

addition, the performance of the novel EMDC scheme is tested and its potential

is proven by improved recognition accuracy. In Section 6, we discuss the problems

faced during our work including the difficulty in subject-independent recognition.

We then conclude with perspectives related to future work.

2. Related Research

A significant amount of work has been conducted by Picard and colleagues at MIT

Lab showing that certain affective states may be recognized by using physiologi-

cal data including heart rate, skin conductivity, temperature, muscle activity and

respiration velocity [2]. They used personalized imagery to elicit target emotions

from a single subject who had two years’ experience in acting, and they achieved

an overall recognition accuracy of 81% for eight emotions by using hybrid linear

discriminant classification. Nasoz et al. [3] used movie clips based on the study by

Gross and Levenson [4] for eliciting target emotions from 29 subjects and achieved

an emotion classification accuracy of 83% using the Marquardt Backpropagation al-
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gorithm (MBP). In work [5], the IAPS photoset [6] is used to elicit target emotions

with positive and negative valence and variable arousal level from a single subject.

The arousal and valence dimensions of the emotions were classified separately us-

ing a neural network classifier and recognition accuracy rates of 96.6% and 89.9%

respectively were achieved.

More recently, an interesting user-independent emotion recognition system was

reported by Kim et al. [7]. They developed a set of recording protocols using mul-

timodal stimuli (audio, visual, and cognitive) to evoke targeted emotions (sadness,

stress, anger, and surprise) from 175 children aged five to eight. A classification

ratio of 78.43% was achieved for three emotions (sadness, stress, and anger) and a

ratio of 61.76% for four emotions (sadness, stress, anger, and surprise) by adopt-

ing support vector machines as pattern classifier. Most interestingly, analysis steps

in the system were fitted to handle relatively short lengths of the input signals

(segmented in 50 seconds) compared to previous works that required longer signal

lengths of about 2-6 min.

The aforementioned approaches achieved average accuracy rates of over 80%

which seem to be acceptable for practical applications. It is true, however, that

recognition rates are strongly dependent on the datasets that are used and on the

application context. Moreover, the physiological datasets used in most of these

works were gathered by using visual elicitation materials in a lab setting. The

subjects then “tried and felt” or “acted out” the target emotions while looking at

selected photos or watching movie clips that were carefully prearranged to elicit the

emotions. In other words, to put it bluntly, the recognition results were achieved

for specific users in specific contexts with “forced” emotional states.

Most of the previous works provide evidence of the fact that the accuracy of

arousal discrimination is always higher than that of valence differentiation. The

reason might be the that the change of the arousal level corresponds directly to the

intensity of discharge in ANS activities, such as sweat glands and blood pressure,

which is straightforward to measure, while valence differentiation of emotion re-

quires a multifactor analysis of cross-correlated ANS reactions. This finding led us

to develop an emotion-specific classification scheme and to calculate a wide range

of features in various analysis domains in order to extract valence-relevant features

from ECG and RSP signals.

3. Setting of Experiment

3.1. Musical emotion induction

To collect a database of physiological signals in which the targeted emotions cor-

responding to the four quadrants in the 2D emotion model (i.e. EQ1, EQ2, EQ3,

and EQ4 in Fig. 1) can be naturally reflected without any deliberate expression,

we decided to use the musical induction method, i.e. to record physiological signals

while the subjects were listening to different pieces of music.
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A well established mechanism of emotion induction consists in triggering emo-

tions by resorting to imagination or individual memories. Emotional reaction can be

triggered by a specific cue and be evoked by an experimental instruction to imagine

certain events. On the other hand, it can spontaneously be resurged in memory.

Music is a pervasive element accompanying many highly significant events in human

social life and particular pieces of music are often connected to significant personal

memories. Following this, music can be a powerful cue in awakening emotional ex-

periences and bringing back memories. Since listening to music is often done by an

individual in isolation, the possible artifacts of social masking and social interaction

can be minimized in the experiment. Furthermore, like odors, music can be treated

at lower levels of the brain that are particularly resistant to modifications by later

input, contrary to cortically based episodic memory. This is even the case when

the listening occurs at the same time as other activities within a social setting since

musical emotion cannot co-occur with social interaction in general.

The subjects were three males (one of the co-authors and two student researchers

recruited from the authors’ lab) aged 25-38 and who all enjoy listening to music

in their everyday life. The subjects were not paid, but allowed to perform the

experiments during their regular working hours. They individually handpicked four

songs that were intended to spontaneously evoke emotional memories and certain

moods corresponding to the four target emotions. Figure 1a shows the musical

emotion model referred to for the selection of their songs. Generally, emotional

responses to music varies greatly from individual to individual depending on their

unique past experiences. Moreover, cross-cultural comparisons in literature suggest

that emotional responses can be quite differentially emphasized by different musical

cultures and training. This is why we advised the subjects to choose themselves the

songs they believed would help them recall their individual special memories with

respect to the target emotions.

For the experiment, we prepared a quiet listening room in our institute in order

to ensure that the subjects could experience the emotions evoked by the music

undisturbed. For the recording, the subject had to position the sensors following

the instructions posted in the room, to put on the headphones, and select a song

from his song list saved in the computer. When clicking on the selected song, the

recording and music systems were automatically set up by preset values for each

song, such as volume, treble, and bass. Most importantly, before the start of the

experiment, the subjects were shown how to prepare the skin by using an antiseptic

spray and a skin preparation gel for reducing electrode-impedance, and how to

correctly position the sensors. Recording schedules were decided by the subjects

themselves and the recordings took place whenever they felt like listening to music.

They were also free to choose the songs they wanted to listen to. Thus, in contrast

aMetaphoric cues for song selection: song1 (positively exciting, energizing, joyful, exuberant),
song2 (noisy, loud, irritating, discord), song3 (melancholic, sad memory), song4 (blissful, pleasur-
able, slumberous, tender)
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to methods used in other studies, the subjects were not forced to participate in a lab

setting scenario and to use prespecified stimulation material. We believe that this

voluntary participation of the subjects during our experiment might help obtain a

high-quality dataset with natural emotions.

During the three months, a total of 360 samples (90 samples for each emotion)

from three subjects were collected. The signal length of each sample was between 3-5

minutes depending on the duration of the songs.
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Fig. 1.: Reference emotional cues in music
based on the 2D emotion model. EQ1 =
positive/high arousal, EQ2 = negative/high
arousal, EQ3 = negative/low arousal, EQ4 =
positive/low arousal
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Fig. 2.: Position and typical waveforms of the
biosensors: (a) ECG, (b) RSP, (c) SC, (d)
EMG.

3.2. Biosensors

The physiological signals were acquired using the Procompb InfinitiTM with four

biosensors, electromyogram (EMG), skin conductivity (SC), electrocardiogram

(ECG), and respiration (RSP). The sampling rates were 32 Hz for EMG, SC, and

RSP, and 256 Hz for ECG. The positions and typical waveforms of the biosensors

we used are illustrated in Fig. 2.

4. Methodology

The overall structure of our recognition system is illustrated in Figure 3.

After the preprocessing stage for signal segmentation and denoising we calcu-

lated 110 features from the 4-channel biosignals and selected the most significant

features by using the sequential backward search method. For classification, vari-

ous machine learning methods (supervised classification in our case) can be used [8].

bThis is an 8 channel multi-modal Biofeedback system with 14 bit resolution and a fiber optic
cable connection to the computer. www.MindMedia.nl
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Fig. 3.: Block diagram of supervised statistical classification system for emotion recognition

After having tested some classifiers, such as k-nearest neighbor (k-NN), multilayer

perceptron (MLP), and linear discriminant analysis (LDA), we chose the LDA which

outperformed with higher recognition accuracy in our case. It should, however, be

noted that there is no single best classification algorithm and the choice of the best

classification method strongly depends on the characteristics of the dataset to be

classified.

4.1. Preprocessing

Different types of artifacts were observed in all the four channel signals, such as

transient noise due to movement of the subjects during the recording, mostly at

the beginning and at the end of each recording. Thus, uniformly for all subjects

and channels, we segmented the signals into final samples of a 160 seconds each,

obtained by taking the middle part of each signal. It is important to note that the

EMG signal generally requires additional pre-processing such as deep smoothing

or signal separation, depending on the position of the sensor, because the nature

of the signal is such that all the muscle fibers within the recording area of the

sensor contract at different rates. In our case, the EMG signal contains artifacts

generated by heart beat and respiration, since we positioned the sensor at the upper

trapezius muscle. Using an adaptive bandpass filter we removed the artifacts (Fig.

4). For other signals we used pertinent lowpass filters to remove noises without loss

of information.

4.2. Measured features

From the four channel signals we calculated a total of 110 features from various

analysis domains including conventional statistics in time series, frequency domain,

geometric analysis, multiscale sample entropy, subband spectra, etc. For the signals

with non-periodic characteristics, such as EMG and SC, we focused on capturing

the amplitude variance and localizing the occurrences (number of transient changes)

in the signals. In the following sections, we describe the feature calculation methods

in detail.
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4.2.1. Electrocardiogram (ECG)

ECG measures depolarized electrical changes of muscular contraction associated

with cardiovascular activity. In general, the ECG is measured at the body surface

along the axis of the heart and results from the activation first of the two small heart

chambers, the atria, and then of the two larger heart chambers, the ventricles. The

contraction of the ventricles produces the specific waveform known as the QRS

complex (see Fig. 5).

To obtain the subband spectrum of the ECG signal we used the typical 1024

points fast Fourier transform (FFT) and partitioned the coefficients within the fre-

quency range 0-10 Hz into eight non-overlapping subbands with equal bandwidth.

First, as features, power mean values of each subband and fundamental frequency

(F0) are calculated by finding maximum magnitude in the spectrum within the

range 0-3 Hz. To capture peaks and their locations in subbands, subband spectral

entropy (SSE) is computed for each subband. Entropy plays an important role in

information theory as a measure of disorganization or uncertainty in a random vari-

able. In pattern recognition it is generally used to measure the degree of a classifier’s

confidence. To compute the SSE, it is necessary to convert each spectrum into a

probability mass function (PMF) like form. Eq. 1 is used for the normalization of

the spectrum.

xi =
Xi∑N
i=1 Xi

, for i = 1 . . .N (1)

where Xi is the energy of ith frequency component of the spectrum and x̃ =

{x1 . . . xN} is to be considered as the PMF of the spectrum. In each subband

the SSE is computed from x̃ by

Hsub = −

N∑

i=1

xi · log2 xi (2)
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By packing the eight subbands into two bands, i.e., subbands 1-3 as the low fre-

quency (LF) band and subbands 4-8 as the high frequency (HF) band, the ratios of

the LF/HF bands are calculated from the power mean values and the SSEs.

In biomedical engineering, the analysis of the local morphology of the QRS

waveform and its time varying properties has been a standard method for assessing

cardiac health. Importantly, heart rate variability (HRV) is one of the most often

used measures for ECG analysis. To obtain the HRV from the continuous ECG

signal, each QRS complex is detected and the RR intervals (all intervals between

adjacent R waves) or the normal-to-normal (NN) intervals (all intervals between

adjacent QRS complexes resulting from sinus node depolarization) are determined.

We used the QRS detection algorithm of Pan and Tompkins [10] in order to obtain

the HRV time series. Figure 6 shows examples of R wave detection and interpolated

HRV time series, referring to the increases and decreases over time in the NN

intervals.
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In the time-domain of the HRV, we calculated statistical features including mean

value, standard deviation of all NN intervals (SDNN), standard deviation of the first

difference of the HRV, the number of pairs of successive NN intervals differing by

more than 50 ms (NN50), the proportion derived by dividing NN50 by the total

number of NN intervals. By calculating the standard deviations in different dis-

tances of RR interbeats, we also added Poincaré geometry in the feature set to

capture the nature of interbeat (RR) interval fluctuations. Poincaré plot geometry

is a graph of each RR interval plotted against the next interval and provides quanti-

tative information of the heart activity by calculating the standard deviations of the

distances of R−R(i) to lines y = x and y = −x+2 ∗R−Rm, where R−Rm is the

mean of all R−R(i). Figure 6 (e) shows an example plot of the Poincaré geometry.

The standard deviations SD1 and SD2 refer to the fast beat-to-beat variability and

longer-term variability of R − R(i) respectively.
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Entropy-based features from the HRV time series were also considered. Based on

the so-called approximate entropy and sample entropy, a multiscale sample entropy

(MSE) was introduced [11] and successfully applied to physiological data, especially

for analysis of short and noisy biosignal. Given a time series {Xi} = {x1, x2, ..., xN}

of length N , the number (n
(m)
i ) of similar m-dimensional vectors y(m)(j) for each

sequence vectors y(m)(i) = {xi, xi+1, ..., xi+m−1} is determined by measuring their

respective distances. The relative frequency to find the vector y(m)(j) within a

tolerance level δ is defined by

C
(m)
i (δ) =

n
(m)
i

N − m + 1
(3)

The approximate entropy, hA(δ, m), and the sample entropy, hS(δ, m) are defined

as

hA(δ, m) = lim
N→∞

[H
(m]
N (δ) − H

(m+1)
N (δ)], (4)

hS(δ, m) = lim
N→∞

− ln
C(m+1)(δ)

C(m)(δ)
, (5)

where

H
(m)
N (δ) =

1

N − m + 1

N−m+1∑

i=1

lnC
(m)
i (δ), (6)

Because it has the advantage of being less dependent on the time series length N ,

we applied the sample entropy hS to coarse-grained versions (y
(τ)
j ) of the original

HRV time series {Xi},

yj(τ) =
1

τ

jτ∑

i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ, τ = 1, 2, 3, ... (7)

The time series {Xi} is first divided into N/τ segments by non-overlapped win-

dowing with length of scale factor τ and then the mean value of each segment is

calculated. Note that for scale one yj(1) = xj . From the scaled time series yj(τ)

we obtain the m-dimensional sequence vectors y(m)(i, τ). Finally, we calculate the

sample entropy hS for each sequence vector yj(τ). In our analysis we used m = 2

and fixed δ = 0.2σ for all scales, where σ is the standard deviation of the original

time series xi. Note that using the fixed tolerance level δ as a percentage of the

standard deviation corresponds to initial normalizing of the time series and it thus

ensures that hS does not depend on the variance of the original time series, but

only on their sequential ordering.

In the frequency-domain of the HRV time series, three frequency bands are

of general interest: the very-low frequency (VLF) band (0.003-0.04 Hz), the low

frequency (LF) band (0.04-0.15 Hz), and the high frequency (HF) band (0.15-0.4

Hz). From these subband spectra, we computed the dominant frequency and power
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of each band by integrating the power spectral densities (PSD) obtained by using

Welch’s algorithm, as well as the ratio of power within the low-frequency band

to that within the high-frequency band (LF/HF). Since parasympathetic activity

dominates at high frequency, the LF/HF ratio is generally thought to distinguish

sympathetic effects from parasympathetic effects. Figure 7 shows the heart rate

spectrum from one of the subjects.

4.2.2. Respiration (RSP)

RSP signal (breathing rate and intensity) is commonly acquired by measuring phys-

ical change of the thoracic expansion with a rubber band around the chest or belly

and contains less artifact in general than the other sensors using electrodes, e.g.,

ECG, EMG, SC etc. Including the typical statistics of the raw RSP signal, we cal-

culated similar types of features, such as the ECG features, the power mean values

of three subbands (obtained by dividing the Fourier coefficients within the range

0-0.8 Hz into non-overlapped three subbands with equal bandwidth), and the set of

subband spectral entropies (SSE). In order to investigate inherent correlation be-

tween respiration rate and heart rate, we considered a novel feature content for the

RSP signal. Since an RSP signal exhibits a quasi periodic waveform with sinusoidal

properties, it does not seem unreasonable to conduct an HRV-like analysis for the

RSP signal, i.e. to estimate breathing rate variability (BRV). After detrending using

the mean value of the entire signal and lowpass filtering, we calculated the BRV by

detecting the peaks in the signal using the maxima ranks within each zero-crossing

(Fig. 8).
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From the BRV time series, we calculated the mean value, SD, SD of the first

difference, MSE, Poincaré analysis, etc. In the spectrum of the BRV, peak fre-

quency, power of the two subbands, the low-frequency band (0-0.03Hz) and the

high-frequency band (0.03-0.15 Hz), and the ratio of the power within the two

bands (LF/HF) were calculated.

4.2.3. Skin Conductivity (SC)

The SC signal includes two types of electrodermal activity, the DC level component

and the skin conductance response (SCR). The DC level in the SC signal indicates

a general activity of the perspiratory glands influenced by body temperature or

external temperature. The SCR is the distinctive short waveform in the SC signal

and is considered to be useful for emotion recognition as it is linearly correlated

with the intensity of arousal responding to internal/external stimuli. The mean

value, standard deviation, and mean of first and second derivations were extracted

as features from the normalized SC signal and the low-passed SC signal using a

cutoff frequency of 0.2 Hz. To obtain a detrended SCR waveform without DC-level

components, we removed the continuous, piecewise linear trend in the two low-

passed signals, i.e., the very low-passed (VLP) and the low-passed (LP) signal with

a cutoff frequency of 0.08 Hz and 0.2 Hz, respectively (see Fig. 9 (a)-(e)).

The baseline of the SC signal was calculated and subtracted to consider only

relative amplitudes. By finding two consecutive zero-crossings and the maximum

value between them, we calculated the number of SCR occurrences within 100

seconds from each LP and VLP signal, the mean of the amplitudes of all occurrences,

and the ratio of the SCR occurrences within the low-passed signals (VLP/LP).

4.2.4. Electromyography (EMG)

For the EMG signal, we calculated types of features similar to those of the SC signal.

The mean value of the entire signal, the mean of the first and second derivations,

and the standard deviation were extracted as features from the normalized and

low-passed signals. The occurrence number of myo-responses and the ratio of that

within VLP and LP signals were also added to the feature set and were determined

in the same way as the SCR occurrence but using cutoff frequencies with 0.08 Hz

(VLP) and 0.3 Hz (LP) (see Fig. 9 (f)-(j)).

In the end, we obtained a total of 110 features from the 4-channel biosignals; 53

(ECG) + 37 (RSP) + 10 (SC) + 10 (EMG).

4.3. Classification

4.3.1. Feature selection

A large number of algorithms for feature subset selection have been proposed in the

literature [12]. Although sequential backward selection (SBS) is computationally
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more demanding than sequential forward selection (SFS), we decided to use SBS in

our recognition system because it outperformed SFS and other methods in the fea-

ture space. Nevertheless we note that the performance of all the selection methods

proposed is strongly dependent on the given dataset.

We did not consider integrating a dimensionality reduction method in our recog-

nition scheme, such as principle component analysis (PCA) and Fisher projection,

which are commonly used in combination with a classifier. Dimensionality reduction

amounts to projecting high-dimensional data to a lower dimensional space with a

minimal loss of information. This means that new features are created by the trans-

formation of original feature values, rather than by selecting a feature subset from

a given feature set. Such feature reduction methods were not suitable for the pur-

pose of our work since we seeked to determine the best emotion-relevant features

which preserve their origins of analysis domain and value. We use Fisher projection

exclusively to preview the distribution of the features.

4.3.2. Classifying using extended linear discriminant analysis

In discriminant analysis, for a given dataset, three scatter matrices, within-class

(Sw), between-class (Sb), and mixture scatter matrices (Sm) are defined as follows;

Sb =

c∑

i=1

Ni(µi − x)(µi − x)T = ΦbΦ
T
b , (8)

Sw =

c∑

i=1

∑

j∈Ci

(xj − µi)(xj − µi)
T = ΦwΦT

w, (9)

Sm = Sb + Sw =

N∑

i=1

(xi − x)(xi − x)T = ΦmΦT
m, (10)

where N is the number of all samples, Ni is the number of samples in class Ci(i =

1, 2, ..., c), µi is the mean of the samples in class Ci, and x is the mean of all samples,

i.e.,

µi =
1

Ni

∑

i∈Ci

xi, (11)

x =
1

N

c∑

i=1

xi =
1

N

c∑

i=1

Niµi. (12)

Note that the mixture scatter matrix Sm is the covariance matrix of all samples

regardless of their class assignments and all the scatter matrices are designed to be

invariant under coordinate shifts. The idea in LDA is to find an optimal transfor-

mation W which satisfies

J (W ) = argmax
W

|WT SbW |

|WT SwW |
, (13)
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such that the separation between classes is maximized while the variance within

a class is minimized (Fisher’s criterion). Finding the optimal W is equivalent to

finding the generalized eigenvectors satisfying SbW = λSwW , for λ = 0. Transfor-

mation W can be obtained by applying the eigenvalue decomposition to the matrix

S−1
w Sb if Sw is nonsingular, or to the matrix S−1

b Sw if Sb is nonsingular, and taking

the rows of the transformation matrix to be the eigenvectors corresponding to the

n − 1 largest eigenvalues. Applying the singular value decomposition (SVD) on

the scatter matrices of the training set is a stable way to compute the eigenvalue

decomposition [13]. Since there are at most c − 1 nonzero generalized eigenvectors

of the scatter matrix, the upper bound of the number of retained dimensions in

classical LDA is c − 1 and the dimensionality can be further reduced, for example,

by incorporating in W only those eigenvectors corresponding to the largest singular

values determined in the scatter SVD. Given the transformation W , classification

can be performed in the transformed space based on some distance measures d, such

as Euclidean distance. The new instance, v, is classified to

argmin
k

d (vW,xkW ) (14)

where xk is the centroid of k-th class and k = 1, 2, ..., c.

Note that a limitation of conventional LDA is that its objective function requires

that one of the scatter matrices be nonsingular. It means that for a given c-class,

p-dimensional classification problem, at least c + p samples are required to guar-

antee that the within-class scatter matrix Sw does not become singular. To deal

with the singularity problem, several extended LDA methods are proposed such

as PCA+LDA, pseudoinverse LDA, regularized LDA, and LDA using generalized

singular value decomposition (GSVD). In our work we used the pseudoinverse LDA

(pLDA), a natural extension of classical LDA, applying the eigenvalue decomposi-

tion to the matrix S+
b Sw, S+

wSb, or S+
mSb. Pseudoinverse matrix is a generalization

of the inverse matrix and exists for any m × n matrix. The computationally sim-

plest way to get the pseudoinverse is using SVD; if A = UΣV T is the singular value

decomposition of A, then the pseudoinverse A+ = V Σ+UT . For a diagonal matrix

such as Σ, we get the pseudoinverse by taking the reciprocal of each nonzero element

on the diagonal.

5. Results

5.1. Classification using SBS + pLDA

The confusion matrix in Table 1 presents the correct classification ratio (CCR) of

subject-dependent (Subject A, B, and C) and subject-independent (All) classifica-

tion where the features of all the subjects are simply merged and normalized. We

used the leave-one-out cross-validation method where a single observation taken

from the samples is used as the test data while the remaining observations are used
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for training the classifier. This is repeated such that each observation in the samples

is used once as the test data.

Table 1.: Recognition results in rates (error
0.00 = CCR 100%). # of samples: 120 for
each subject and 360 for All

EQ1 (joy) EQ2 (anger) EQ3 (sadness) EQ4 (pleasure)

(a)

(d)

(b)

(c)

1.36 1.37 1.38 1.39 1.4 1.41 1.42 1.43

x 10
-3

0.0221

0.0222

0.0223

0.0224

0.0225

0.0226

0.0227

-20 -15 -10 -5 0 5

x 10
-6

5.5

5.55

5.6

5.65
x 10

-3

2.4 2.6 2.8 3 3.2 3.4

x 10
-3

-6.5

-6.4

-6.3

-6.2

-6.1

-6

-5.9

-5.8

-5.7

-5.6

-5.5
x 10

-3

-5.6 -5.5 -5.4 -5.3 -5.2 -5.1

x 10
-4

-9.5

-9

-8.5

-8

-7.5

-7

-6.5
x 10

-4

Fig. 10.: Comparison of feature distributions
of subject-dependent and subject-independent
case. (a) Subject A, (b) Subject B, (c) Subject
C, (d) Subject-independent

The table shows that the CCR varies from subject to subject. For example, the

best accuracy was 91% for subject B and the lowest was 81% for subject A. Not

only does the overall accuracy differ from one subject to the next, but the CCR of

the single emotions varies as well. For example, EQ2 was perfectly recognized for

subject C while it caused the highest error rate for subject B. It was three times

mixed up with EQ1 which is characterized by opposite valence. As the confusion

matrix shows, the difficulty in valence differentiation can be observed for all subjects.

Most classification errors for Subject A and B lie in false classification between

EQ1 and EQ2 while an extreme uncertainty can be observed in the differentiation

between EQ3 and EQ4 for Subject C. On the other hand, it is very meaningful that

relatively robust recognition accuracy is achieved for the classification of emotions

that are reciprocal in the diagonal quadrants of the 2D emotion model, i.e., EQ1 vs.

EQ3 and EQ2 vs. EQ4. Moreover, the accuracy is much better than that of arousal

classification. The CCR of subject-independent classification was not comparable to

that obtained for subject-dependent classification. As shown in Figure 10, merging

the features of all subjects does not refine the discriminating information related to

the emotions, but rather leads to scattered class boundaries.
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We also tried to differentiate the emotions based on the two axes, arousal and

valence, in the 2D emotion model. The samples of four emotions were divided

into groups of negative valence (EQ2+EQ3) and positive valence (EQ1+EQ4) and

into groups of high arousal (EQ1+EQ2) and low arousal (EQ3+EQ4). By us-

ing the same methods, we then performed a two-class classification of the divided

samples for arousal and valence separately. It turned out that emotion-relevant

ANS specificity can be observed more conspicuously in the arousal axis regardless

of subject-dependent or independent cases. Classification of arousal achieved an

acceptable CCR of 97-99% for the subject-dependent recognition and 89% for the

subject-independent recognition, while the results for valence were 88-94% and 77%,

respectively.

5.2. Finding the best emotion-relevant ANS features

In most literature dealing with emotion-relevant ANS specificity, a tendency anal-

ysis of physiological changes has been used to correlate ANS activity with certain

emotional states, e.g. EQ1 with increased heart rate or anxiety with increased skin

conductivity. Even for multiclass classification problems, however, such a direction

analysis of physiological changes is not sufficient to capture accompanying multi-

modal ANS reactions that are cross-correlated with each other when using multi-

channel biosensors. Therefore, we tried to first identify the significant features for

each classification problem and thereby to investigate class-relevant feature domain

and interrelation between the features for a certain emotion.

In Table 2, the best emotion-relevant features, which we determined by ranking

the features selected for all subjects (including Subject All) in each classification

problem, are listed in detail by specifying their values and domains. One interesting

result is that each classification problem respectively links together with a certain

Table 2.: Best emotion-relevant features extracted from four channel physiological signals. Arousal
classes: EQ1+EQ2 vs. EQ3+EQ4, Valence classes: EQ1+EQ4 vs. EQ2+EQ3, Four classes:
EQ1/EQ2/EQ3/EQ4.
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feature domain. The features obtained from the time/frequency analysis of HRV

time series are decisive for the classification of arousal and for the classificaton of

the four emotions, while the features from the MSE domain of ECG signals are a

predominant factor for correct valence differentiation. More particularly, mutually

sympathizing correlate between HRV and BRV (firstly proposed in this paper) has

been clearly observed in all the classification problems by the features from their

time/frequency analysis and Poincaré domain, PoincareHRV and PoincareBRV.

This reveals a manifest cross-correlation between respiration and cardiac activity

with respect to emotional state. This is one of the most important findings for

future work. In fact, in biomedicine, it is commonly accepted that the respiratory

mechanism mediates high frequency components of HRV, but its specific role in

affective ANS reactions has so far not been satisfactorily explained. When inhaling,

the vagus nerve is impeded and the heart rate begins to increase, whereas this

pattern is reversed when exhaling, i.e., the activation of the vagus nerve typically

leads to a reduction in heart rate, blood pressure, or bothc. Apart from its influence

on the heart rate, the vagus nerve is also responsible for sweating, several muscle

movements in the mouth, and even for speech. It means that most physiological

channels we used are innately correlated with each other and respond together as

a chain reaction to emotional stimulation. For example, when the parasympathetic

nerves overcompensates a strong response from the sympathetic nervous system

innervating the sinoatrial node, which occurs in cases of extreme stress or fear, the

reduction in heart rate and blood pressure becomes proportionally faster to the

intensity of the emotion.

Our feature analysis proves that the correlation between heart rate and res-

piration is obviously captured by the features from the HRV power spectrum

( HRVspec), the fast/long-term HRV/BRV analysis using the Poincaré method,

and the multiscale variance analysis of HRV/BRV ( MSE ). It also demonstrates

that the peaks of high frequency range in the HR subband spectrum ( SubSpectra)

provide information about how the sinoatrial node responds to vagal activity at

certain respiration frequencies.

5.3. Emotion-specific multilevel dichotomous classification

Most common classifiers are best-suited to handle two-class problems. The pLDA

we used is no exception to this and assumes that the covariance matrices of each

class are the same or at least close to each other for multiclass (c > 2) classification.

Consequently, the performance of pLDA in multiclass classification could be subop-

timal depending on the difference between the covariance matrices of each class. In

our work, we actually used the averaged covariance to directly solve the multiclass

cThe influence of breathing on the flow of the sympathetic and vagus impulses to the sinoatrial
node causes the so called respiratory sinus arrhythmia (RSA). The degree of fluctuation in heart
rate is also significantly controlled by regular impulses from the baroreceptors in the aorta and
carotid arteries.
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problem using a single pLDA classifier. One straightforward way to handle a mul-

ticlass problem by using binary classifiers is to decompose the multiple categories

into a set of complementary two-class problems.

(a) (b)
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LOW AROUSAL

POSITIVE VALENCENEGATIVE VALENCE
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Fig. 11.: Framework of emotion-specific multilevel dichotomous classification (EMDC). (a) Dia-
gram of decomposition process, (b) Decomposition example for an eight-class problem

By taking advantage of supervised classification (where we know in advance

which emotion types have to be recognized) we developed an emotion-specific mul-

tilevel dichotomous classification (EMDC) scheme. This scheme exploits the prop-

erty of the dichotomous categorization in the 2D emotion model and the fact that

arousal classification yields higher CCR than valence classification or direct mul-

ticlass classification. This proves true in almost all previous works and according

to our results as well. Figure 11 illustrates the EMDC scheme and provides an

example of the dyadic decomposition for the eight-class problem.

First, the entire training patterns are grouped into two opposing “superclasses”

(on the basis of valence or arousal), C̄ consisting of all patterns in some subset of the

class categories and C as all remaining patterns, i.e., C̄ ∩ C = {}. This dyadic de-

composition using one of the two axes is serially performed until one subset contains

only two classes. The grouping axis can be different from each dichotomous level.

Then multiple binary classifiers for each level are trained from the corresponding

dyadic patterns. Therefore, the EMDC scheme is obviously emotion-specific and

effective for a 2D emotion model. Note that the performance of the EMDC scheme

is limited by a maximum CCR of first level classification and makes sense only if

the CCR for one of the two superclasses is higher than that for direct multiclass

classification (theoretically this always holds true for our case). Because we used

four emotion classes in our experiment, we needed a two-level classification based

on arousal and valence grouping for both superclasses in parallel.

Table 3 shows the dichotomous contingency table of recognition results by using

the novel EMDC scheme. The best feature sets shown in Table 2 are used for the

binary classification at each level. As expected, the CCRs significantly improve for

all class problems. For the classification of four emotions, we obtained an average

CCR of 95% for subject-dependent and 70% for subject-independent classification.
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Table 3.: Results using EMDC scheme with the best features

Compared with the results obtained for pLDA, the EMDC scheme achieved an

overall CCR improvement of about 5%-13% in each class problem.

6. Discussion

We achieved an overall CCR of 95%, which is more than three times higher than

chance probability, for four emotional states from three subjects. This should be

sufficient to support the view that emotions, either produced or perceived while

listening to music, exist and are accompanied by physiological differences in both

the arousal and valence dimensions such that they can eventually be recognized by

the machine. At the same time, however, some issues remain in relation to the

processing stages of our recognition system.

Recording physiological changes using biosensors is still invasive since the sub-

jects, for example, have to be in physical contact with adhesive electrodes. Further-

more, most biosensors using such electrodes are very susceptible to motion artifacts

which we could observe in almost all signals of our dataset. For practical HCI appli-

cations, it is therefore necessary to develop non-invasive biosensors, preferably with

built-in denoising filters in wirelessly miniaturized form. We expect that today’s

nano-technology will help design such hardware soon. This would then improve

not only the signal quality and the usability of the technology, but also reduce

computational costs in the preprocessing stage.

Our analysis results based on the best emotion-relevant features are incontro-

vertibly useful findings; for example, the consistent tendency of the feature contents

to valence and arousal differentiation separately and the proven efficiency of new

feature domains that are firstly considered in this paper. We should, however, note
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that the effectiveness of the best features might not be universally guaranteed for

other datasets or classifiers. First, only three subjects might not be sufficient to

generalize the features. Second, the SBS as well as most algorithms for feature

selection use a criterion based on a specific classifier and are therefore effective only

if the classifier used is known in advance. In addition, such sequential algorithms

may lead to suboptimal subsets due to their unidirectional property, i.e. once a

feature is added or removed, this action can never be reversed.

By dividing given patterns using the arousal and valence axis in the 2D emotion

model, we proposed the EMDC scheme which contributed to a significant improve-

ment of the recognition results. The scheme may, however, still be adjusted in

several ways. For instance, since it needs multiple classifiers to be trained for each

level, the combination of different classifiers seems to be feasible. By taking advan-

tage of the fact that EMDC enables us to view the classification results of each level

in multiresolution aspect (see Table 3), the scheme could be more sophisticatedly

designed thanks to the parametric refining of each binary classifier depending on

the level.

The reason for the great disparity of CCR between subject-dependent and inde-

pendent classification can be explained in many different ways indeed. We mention

that one of the main factors in the difficulty of subject-independent classification

is the intricate variety of non-emotional individual contexts among the subjects,

rather than an individual ANS specificity in emotion. A naive idea for improving

the performance of the user-independent system for practical applications would

be to first identify the user, prior to starting the recognition process, and then to

classify a user’s emotion in a user-dependent way. Of course, this is feasible only if

the number of users is finite and the users are known to the system, or if the system

can cumulatively collect the data of each user in a learning phase.

7. Future Work

One of the most challenging issues in the near future will be to explore multimodal

analysis for emotion recognition. We humans use several modalities jointly to in-

terpret emotional states, since emotion affects almost all modes- audiovisual (facial

expression, voice, gesture, posture, etc.), physiological (respiration, skin temper-

ature etc.), and contextual (goal, preference, environment, social situation, etc.)

states in human communication. In the recent literature, findings concerning emo-

tion recognition by combining multiple modalities have been reported; mostly by

fusing features extracted from audiovisual modalities such as facial expression and

speech. However, we note that combining multiple modalities by equally weighting

them does not always guarantee improved accuracy. The more crucial issue is how

to complementarily combine the additional modalities. An essential step towards a

human-like analysis and finer resolution of recognizable emotion classes would there-

fore be to find the innate priority among the modalities to be preferred for each
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emotional state. Then, an ambitious undertaking might be to decompose an emo-

tion recognition problem into several refining processes using additional modalities,

for example: arousal recognition through physiological channels, valence recognition

by using audiovisual channels, and then resolving of subtle uncertainties between

adjacent emotion classes.
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