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Abstract—Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion

channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for

emotion recognition. All essential stages of an automatic recognition system are discussed, from the recording of a physiological data

set to a feature-based multiclass classification. In order to collect a physiological data set from multiple subjects over many weeks, we

used a musical induction method that spontaneously leads subjects to real emotional states, without any deliberate laboratory setting.

Four-channel biosensors were used to measure electromyogram, electrocardiogram, skin conductivity, and respiration changes. A

wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband

spectra, multiscale entropy, etc., is proposed in order to find the best emotion-relevant features and to correlate them with emotional

states. The best features extracted are specified in detail and their effectiveness is proven by classification results. Classification of

four musical emotions (positive/high arousal, negative/high arousal, negative/low arousal, and positive/low arousal) is performed by

using an extended linear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property of the 2D emotion model, we

develop a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) and compare its performance with direct

multiclass classification using the pLDA. An improved recognition accuracy of 95 percent and 70 percent for subject-dependent and

subject-independent classification, respectively, is achieved by using the EMDC scheme.

Index Terms—Emotion recognition, physiological signal, biosignal, skin conductance, electrocardiogram, electromyogram,

respiration, affective computing, human-computer interaction, musical emotion, autonomic nervous system, arousal, valence.

 

1 INTRODUCTION

RESOLVING the absence of mutual sympathy (rapport) in
interactions between humans and machines is one of

the most important issues in advanced human-computer
interaction (HCI) today. With exponentially evolving
technology, it is no exaggeration to say that any interface
that disregards human affective states in the interaction
—and thus fails to pertinently react to the states—will never
be able to inspire confidence. Instead, users will perceive it
as cold, untrustworthy, and socially inept. In human
communication, the expression and understanding of
emotions helps achieve mutual sympathy. To approach
this in HCI, we need to equip machines with the means to
interpret and understand human emotions without the
input of a user’s translated intention. Hence, one of the most
important prerequisites for realizing such an advanced user
interface is a reliable emotion recognition system that
guarantees acceptable recognition accuracy, robustness
against any artifacts, and adaptability to practical applica-
tions. Developing such a system requires the following
stages: modeling, analyzing, processing, training, and
classifying emotional features measured from the implicit
emotion channels of human communication, such as
speech, facial expression, gesture, pose, physiological

responses, etc. In this paper, we concentrate on identifying
emotional cues in various physiological measures.

The debate on which emotion can be distinguished on
the basis of physiological changes is far from being resolved
in psycho and neurophysiology. Two well-known long-
standing hypotheses are still under contention today, with
James [1] supporting the antecedence of physiological
specificity among emotional processes and Cannon [2]
rejecting this claim. In neurophysiology, these opposing
hypotheses can be reduced to the search for the central
circuitry of emotions at the human level, that is, to finding
the brain center in the central nervous system (CNS) and the
neural center in the peripheral nervous system (PNS); all
are involved in emotional experiences. The PNS is divided
into two major parts, the somatic nervous system and the
autonomic nervous system (ANS). The ANS consists of
sensory neurons and motor neurons that run between the
CNS and various internal organs such as the heart, lungs,
viscera, and glands. For example, motor neurons of the
autonomic system control the contraction of both the
smooth muscle and the cardiac muscle. The ANS includes
the sympathetic and parasympathetic systems.

In this paper, the expression “physiological changes”
(often called “biosignals”) exclusively applies to measures
of the PNS functions, for example, electrodermal activity,
heart and blood circulation, respiration (RSP), muscular
activity, etc.

Recently, numerous studies on engineering approaches
to automatic emotion recognition have been published,
although research in that field is relatively new compared to
the long history of emotion research in psychology and
psychophysiology. In particular, many efforts have been
deployed to recognize human emotions using audiovisual

                                                                                 2067

. The authors are with the Institut für Informatik, University of Augsburg,
Eichleitnerstr. 30, D-86159 Augsburg, Germany.
E-mail: {kim, andre}@informatik.uni-augsburg, de.

                                                             
                               
                                    
                                                                  
                                                              
                                                

                                                             
                                                                                                                                              



channels of emotion expression, that is, facial expressions,
speech, and gestures. Little attention, however, has been
paid so far to using physiological measures, as opposed to
audiovisual emotion channels [3]. This is due to some
significant limitations that come with the use of physiolo-
gical signals for emotion recognition. The main difficulty
lies in the fact that it is a very hard task to uniquely map
physiological patterns onto specific emotional states. As an
emotion is a function of time, context, space, culture, and
person, physiological patterns may widely differ from user
to user and from situation to situation. Above all, humans
use nondiscrete labels to describe emotions. Second,
recording of biosignals requires the user to be bodily
connected with biosensors and sensing using surface
electrodes is very sensitive to motion artifacts. Moreover,
as we use various biosensors at the same time and each of
them has its own specific characteristics, analyzing bio-
signals is itself a complex multivariate task and requires
broad insight into biological processes related to neuropsy-
chological functions. Third, obtaining the “ground truth” of
physiological data for research purposes is a crucial
problem. It differs from the cases of other external
audiovisual channels. Labeling audiovisual corpora is
relatively straightforward because they can be labeled
based on objective judgments by comprehending “signs”
that are associated with our common experiences in human
communication and can therefore be interpreted even by
perceiving and feeling them in facial expression and vocal
intonation, for example. However, in the case of physiolo-
gical signals, which can only be observed as a signal flow on
an instrument screen, we can neither feel nor perceive
emotions directly based on the signals. This leads to
difficulties in data annotation as a universal data set for
benchmarking research work is hard to obtain.

On the other hand, using physiological signals for
emotion recognition provides some considerable advan-
tages. We can continuously gather information about the
users’ affective states as long as they are connected with the
biosensors. Consider extreme cases where people resort to
the so-called “poker face” or simply do not say anything
because they are angry. In those cases, the emotional states
of the user remain internal and cannot be detected by any
audiovisual recording system. Second, since the ANS
activations are largely involuntary and generally cannot
be easily triggered by any conscious or intentional control,
we believe that physiological ANS activity would be a most
robust emotional channel to combat artifacts created by
human social masking. For example, it is not uncommon to
observe that people smile during negative emotional
experiences [4]. Such a smile is the result of social masking,
where people regulate or modulate emotions interperson-
ally, and it should not be interpreted as the user’s actual
affective state. Last, experimental results have shown that
some types of ANS activity are not culturally specific, that
is, there is cross-cultural consistency of ANS differences
between emotions. Levenson et al. [5] compared three
physiological measures (heart rate, skin conductance, and
finger temperature) sampled from Americans and the
Minangkabau of West Sumatra and found significant levels
of cross-cultural consistency in the ANS patterns among the
four negative emotions, anger, disgust, fear, and sadness.

In this paper, we use four-channel biosignals to deal with
all of the essential stages of an automatic emotion

recognition system based on physiological measures, from
data collection to the classification of four typical emotions
(positive/high arousal, negative/high arousal, negative/
low arousal, and positive/low arousal). The work in this
paper is novel: in trying to recognize naturally induced
musical emotions using physiological changes, in acquiring
a physiological data set through everyday life recording
over many weeks from multiple subjects, in finding
emotion-relevant ANS specificity through various feature
contents, and in designing an emotion-specific classification
method. After the calculation of a great number of features
(a total of 110 features) from various feature domains, we
tried to identify emotion-relevant features using the back-
ward feature selection method combined with a linear
classifier. These features can be directly used to design
affective human-machine interfaces for practical applica-
tions. Furthermore, we developed a novel scheme of
emotion-specific multilevel dichotomous classification
(EMDC) and compared its performance with direct multi-
class classification. Although this new scheme is based on a
very simple idea, exploiting the dichotomic structure of a
2D emotion model, it significantly improves the recognition
accuracy obtained by using direct multiclass classification.
Throughout the paper, we try to provide a focused
spectrum for each processing stage with selected methods
suitable for handling the nature of physiological changes,
instead of conducting a comparison study based on a large
number of pattern recognition methods.

In Section 2, we give a brief overview of related research
on musical emotion and physiological ANS specificity in
psychophysiology, as well as on automatic emotion
recognition in engineering science. Section 3 gives the
motivation and rationale for our experimental setting of
musical emotion induction and is followed by a detailed
explanation of all the biosensors we used. A systematic
description of signal analysis methods and classification
procedure using extended linear discriminant analysis
(LDA) is given in Section 4. In Section 5, we present the
best emotion-relevant ANS features with the recognition
results we achieved. In addition, the performance of the
novel EMDC scheme is tested, and its potential is proven by
improved recognition accuracy. In Section 6, we discuss the
problems faced during our work, including the difficulty in
subject-independent recognition. We then conclude with
perspectives related to future work.

2 RELATED RESEARCH

2.1 Physiological Differentiation of Emotions

We agree that emotion is not a phenomenon but a construct,
which is systematically produced by cognitive processes,
subjective feelings, physiological arousal, motivational
tendencies, and behavioral reactions. Likewise, several
influencing factors, including psychological processes such
as attention, orientation, social interaction, and appraisal,
may simultaneously impinge on the autonomous nervous
system. Thus, proving that there is an ANS differentiation
of emotions is an inherently difficult task.

Overall, there are a number of experiments that point to
the fact that physiological activity is not an independent
variable in ANS patterns but reflects experienced emotional
states with consistent correlates [6], [7], [8]. In the
psychophysiology literature, research on emotions with
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negative valence has far outpaced research on positive
emotions. For example, some reliable ANS differentiations
have been observed in emotions produced by directed facial
action and recalled emotional memories: heart rate accel-
eration in sadness, anger, and fear, heart rate deceleration in
disgust, and larger skin conductance in fear and disgust
than in happiness [7]. On the other side, however, there are
many objections to ANS specificity. For example, Schachter
and Singer [9] observed that undifferentiated arousal
resulted in different reports of emotions depending on the
subject’s cognitive response to external events. Stemmler
[10] reported that real-life fear (listening to the conclusion of
Poe’s The Fall of the Usher in a darkened room, with
appropriately spooky music) led to a statistically different
ANS activity than did a fear imagery task in which
participants were asked to recollect and speak about a
frightening personal event. Stemmler et al. [8] also asserted,
concerning the various cognitive and situational factors that
influence ANS activity, that a low degree of consistency of
ANS specificity in the literature comes as no surprise since
those influencing factors (contexts) vary widely across
emotion studies and that, therefore, consistent ANS
specificity among emotions could only be found if the
compound of emotion-plus-context pattern is decomposed.

2.2 Music and Emotion

A primary motive for listening to music is its emotional
effect, diversion, and the memories it awakens. Indeed,
many studies have shown that the emotions intended by a
performer are correctly recognized by listeners. Moreover,
children as young as three might be able to readily
recognize the intended emotions as adults do [11].
Although many scientists believe that music does not have
the power to actually produce genuine emotional states
though people do recognize the intended emotions,
contemporary experiments have revealed that emotional
reactions to music are real since music produces specific
patterns of change in heart rate, blood pressure, and other
autonomic bodily reactions that are linked to different
emotions. Thus, research on musical emotions can be
summarized in two main perspectives. Concerning the
perception and production of emotions while listening to
music, emotivists believe that music elicits emotions that are
qualitatively similar to nonmusical emotions, while cogni-
tists argue that the emotion is an expressive property of the
music that listeners recognize in it but do not themselves
experience [12]. In this section, we will briefly summarize
previous research on physiological responses to music,
focusing on the emotivist view of musical emotions.

It is a very old belief that music is a link between cognition
and emotion and that music can influence ANS reactions both
in an arousing and a calming fashion [13]. In his theory of
musical emotions, Meyer [14] submits that emotions are time
locked to events in the music and that a central factor of
musical emotions is expectations that are derived from both
general psychological principles (such as Gestalt principles of
perceptual organization) and knowledge of the music style
(such as tonality, harmonic progressions, and musical form).
In keeping with this position, ample empirical evidence has
recently been brought forward supporting music as a
preeminent stimulus to evoke powerful emotions accompa-
nied by differential changes in ANS reaction. For example,
Vaitl et al. [15] attempted to find the ANS differentiation of

musical emotion in live performance. While subjects were
listening to the leitmotivs of a number of Wagner operas
during the Bayreuth Festival (summers of 1987 and 1988),
they recorded two physiological measures, electrodermal
response and respiratory activity, and analyzed them
using ratings for emotional arousal. Noticeable differentia-
tions were observed in the physiological measures with
respect to the leitmotivs and their musical features (for
example, melody, rhythm, and continuation). A number of
results also appear in clinical and therapeutic contexts.
Davis and Thaut [16] found that music aroused ANS
responses (vascular construction, heart rate, muscle tension,
and finger skin temperature) even though subjects reported
decreases in anxiety and increases in relaxation. Guzzetta
[17] also reported physiological correlates of musical
emotions, concluding that music is associated with lower
heart rates and higher peripheral temperature.

If music is able to express the traditional basic discrete
emotions (such as happiness, anger, and sadness) that are
perceived when listening to music, it might also be able to
produce the same emotions that we experience in our daily
life. Krumhansl [13] recorded different physiological mea-
sures while listeners were hearing music that had been
independently judged to be one of three emotions, that is,
happiness, sadness, and fear, and analyzed them to find out
what relationship existed between the physiological mea-
sures and the dynamic ratings of emotions. Interestingly,
she found that the directions of the physiological changes
were the same for all three emotions. The heart rate
decreased, the blood pressure increased, RSP rate increased,
and the skin temperature decreased, while the magnitude of
the changes showed distinct patterns, depending on the
emotional quality of the excerpt. For instance, happiness
was linked to the largest changes in RSP, sadness involved
the greatest changes in heart rate, blood pressure, and skin
temperature, and fear was associated with maximal
changes in the rate of blood flow. These findings convin-
cingly support the hypothesis that music does not simply
convey emotions that we can recognize but rather induces
genuine emotions in the listener. However, the question of
whether the ANS changes and differentiation in musical
emotions correspond to those revealed in nonmusical
emotions remains to be elucidated.

2.3 Approaches to Emotion Recognition Using
Biosignals

A significant amount of work has been conducted by Picard et
al. at the Massachusetts Institute of Technology (MIT)
Laboratory, showing that certain affective states may be
recognized by using physiological data, including heart rate,
skin conductivity (SC), temperature, muscle activity, and RSP
velocity [18], [19]. They used personalized imagery to elicit
target emotions from a single subject who had two years of
experience in acting and they achieved an overall recognition
accuracy of 81 percent for eight emotions by using hybrid
linear discriminant classification. Nasoz et al. [20] used movie
clips based on the study of Gross and Levenson [21] for
eliciting target emotions from 29 subjects and achieved an
emotion classification accuracy of 83 percent using the
Marquardt Backpropagation algorithm (MBP). In [22], the
IAPS photoset [23] is used to elicit target emotions with
positive and negative valence and variable arousal level from
a single subject. The arousal and valence dimensions of the
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emotions were classified separately using a neural network
classifier, and recognition accuracy rates of 96.6 percent and
89.9 percent, respectively, were achieved.

More recently, an interesting user-independent emotion
recognition system was reported by Kim et al. [24]. They
developed a set of recording protocols using multimodal
stimuli (audio, visual, and cognitive) to evoke targeted
emotions (sadness, stress, anger, and surprise) from
175 children aged five to eight. A classification ratio of
78.43 percent was achieved for three emotions (sadness,
stress, and anger) and a ratio of 61.76 percent for four
emotions (sadness, stress, anger, and surprise) by adopting
support vector machines as a pattern classifier. Most
interestingly, analysis steps in the system were fitted to
handle relatively short lengths of the input signals
(segmented in 50 seconds) compared to previous works
that required longer signal lengths of about 2-6 min.

The aforementioned approaches achieved average accu-
racy rates of more than 80 percent, which seem to be
acceptable for practical applications. It is true, however, that
recognition rates are strongly dependent on the data sets that
are used and on the application context. Moreover, the
physiological data sets used in most of these works were
gathered by using visual elicitation materials in a laboratory
setting. The subjects then “tried and felt” or “acted out” the
target emotions while looking at selected photos or watching
movie clips that were carefully prearranged to elicit the
emotions. In other words, to put it bluntly, the recognition
results were achieved for specific users in specific contexts
with “forced” emotional states. The emotional state or mood
the subjects were in before starting the experiments, for
instance, was not taken into consideration. Such individual
differences can cause inconsistencies in the data sets. Another
factor of the inconsistency is the uncertainty concerning the
labeling of data sets due to different individual judgments (or
self-reports) and the situational variables in ANS activity, as
Stemmler argued in his reports [10].

Most of the aforementioned engineering approaches,
however, provide evidence of the fact that the accuracy of
arousal discrimination is always higher than that of valence
differentiation. The reason might be the that the change in
the arousal level corresponds directly to the intensity of
discharge in ANS activities, such as sweat glands and blood
pressure, which is straightforward to measure, while

valence differentiation of emotion requires a multifactor
analysis of cross-correlated ANS reactions. This finding led
us to develop an emotion-specific classification scheme and
to calculate a wide range of features in various analysis
domains in order to extract valence-relevant features from
ECG and RSP signals.

2.4 Modeling of Discrete Emotions

As all people express their emotions differently, it is not an
easy task to judge or to model human emotions. Research-
ers often use two different methods to model emotions. One
approach is to label emotions in discrete categories, that is,
human judges have to choose from a prescribed list of word
labels, for example, joy, sadness, surprise, anger, love, fear,
etc. One problem with this method is that the stimuli may
contain blended emotions that cannot be adequately
expressed in words since the choice of words may be too
restrictive and culturally dependent. Another way is to
have multiple dimensions or scales to categorize emotions.
Instead of choosing discrete labels or words, observers can
indicate their impression of each stimulus on several
continuous scales, for example, pleasant-unpleasant, atten-
tion-rejection, simple-complicated, etc.

Two common scales are valence and arousal. Valence
represents the pleasantness of stimuli, with positive (or
pleasant) at one end and negative (or unpleasant) at the
other. For example, happiness has a positive valence, while
disgust has a negative valence. Another dimension is
arousal (activation level). For example, sadness has low
arousal, whereas surprise has a high arousal level. The
different emotional labels can be plotted at various
positions on a 2D plane spanned by these two axes to
construct a 2D emotion model [25] (see Fig. 1a). The low
consistency of physiological configurations in recent re-
search has helped support the hypothesis that ANS
activation during emotions indicates the demands of a
specific action tendency and action disposition, instead of
reflecting emotions per se [26]. Scholsberg [27] suggested a
3D model in which he had attention-rejection in addition to
the 2D model. Researchers have subsumed these associated
action tendencies under the term “stance” in a 3D emotion
model, that is, arousal, valence, and stance (Fig. 1b). For
example, fear is associated with the action pattern of
“flight,” anger calls to mind the urge to “fight,” and so
on. However, it is not immediately obvious what elemental

2070                                                                                  

Fig. 1. Emotion models. (a) Two-dimensional model by valence and arousal. (b) Three-dimensional model by valence, arousal, and stance.

                                                                                                                                              



problem happiness solves and what action pattern or motor
program is associated with this emotion. Thus, such
positive emotions seem to be characterized by a lack of
autonomic activation and this might be one reason why
research on positive emotions has been lagging behind that
on negative emotions so far. Interestingly, Fredricson and
Levenson [28] reported the “undoing” effect of positive
emotions, namely, that certain positive emotions help speed
up recovery from the cardiovascular sequelae of negative
emotions. This finding supports the idea of a symmetric
process underlying the emotion system that negative
emotions help the organism escape from homeostasis while
positive emotions such as contentment and amusement
catalyze a more rapid return to homeostatic levels.

3 SETTING OF EXPERIMENT

3.1 Musical Emotion Induction

To collect a database of physiological signals in which the
targeted emotions corresponding to the four quadrants in
the 2D emotion model (that is, EQ1, EQ2, EQ3, and EQ4 in
Fig. 2) can be naturally reflected without any deliberate
expression, we decided to use the musical induction
method, that is, to record physiological signals while the
subjects were listening to different pieces of music.

A well-established mechanism of emotion induction
consists of triggering emotions by resorting to imagination
or individual memories. Emotional reaction can be trig-
gered by a specific cue and be evoked by an experimental
instruction to imagine certain events. On the other hand, it
can be spontaneously resurged in memory. Music is a
pervasive element accompanying many highly significant
events in human social life and particular pieces of music
are often connected to significant personal memories.
Following this, music can be a powerful cue in awakening
emotional experiences and bringing back memories. Since
listening to music is often done by an individual in
isolation, the possible artifacts of social masking and social
interaction can be minimized in the experiment. Further-
more, like odors, music can be treated at lower levels of the

brain that are particularly resistant to modifications by later
input, contrary to cortically-based episodic memory [29].
This is even the case when the listening occurs at the same
time as other activities within a social setting since musical
emotion cannot co-occur with social interaction in general.

The subjects were three males (one of the coauthors and
two student researchers recruited from the authors’
laboratory), aged 25-38, who all enjoy listening to music
in their everyday life. The subjects were not paid but were
allowed to perform the experiments during their regular
working hours. They individually handpicked four songs
that were intended to spontaneously evoke emotional
memories and certain moods corresponding to the four
target emotions. Fig. 21 shows the musical emotion model
referred to for the selection of their songs. Generally,
emotional responses to music vary greatly from individual
to individual, depending on their unique past experiences.
Moreover, cross-cultural comparisons in the literature
suggest that emotional responses can be quite differentially
emphasized by different musical cultures and training. This
is why we advised the subjects to choose for themselves the
songs they believed would help them recall their individual
special memories with respect to the target emotions.

For the experiment, we prepared a quiet listening room in
our institute in order to ensure that the subjects could
experience the emotions evoked by the music undisturbed.
For the recording, the subject had to position the sensors
following the instructions posted in the room, put on the
headphones, and select a song from his song list saved in the
computer. When clicking on the selected song, the recording
and music systems were automatically set up by preset values
for each song, such as volume, treble, and bass. Most
importantly, before the start of the experiment, the subjects
were shown how to prepare the skin by using an antiseptic
spray and a skin preparation gel for reducing electrode
impedance and how to correctly position the sensors.
Recording schedules were decided by the subjects them-
selves and the recordings took place whenever they felt like
listening to music. They were also free to choose the songs
they wanted to listen to. Thus, in contrast to methods used in
other studies, the subjects were not forced to participate in a
laboratory setting scenario and to use prespecified stimula-
tion material. We believe that this voluntary participation of
the subjects during our experiment might help obtain a high-
quality data set with natural emotions.

During the three months, a total of 360 samples (90 samples
for each emotion) from three subjects were collected. The signal
length of each sample was between 3 and 5 minutes, depending on
the duration of the songs.

3.2 Biosensors

The physiological signals were acquired using the Pro-
comp2 Infiniti with four biosensors: electromyogram
(EMG), SC, electrocardiogram (ECG), and RSP. The
sampling rates were 32 Hz for EMG, SC, and RSP, and
256 Hz for ECG. The positions and typical waveforms of the
biosensors we used are illustrated in Fig. 3.
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Fig. 2. Reference emotional cues in music based on the 2D emotion

model. EQ1 = positive/high arousal, EQ2 = negative/high arousal,

EQ3 = negative/low arousal, and EQ4 = positive/low arousal.

1. Metaphoric cues for song selection: song1 (positively exciting,
energizing, joyful, and exuberant), song2 (noisy, loud, irritating, and
discord), song3 (melancholic and sad memory), and song4 (blissful,
pleasurable, slumberous, and tender).

2. This is an eight-channel multimodal Biofeedback system with 14-bit
resolution and a fiber optic cable connection to the computer. www.Mind
Media.nl.

                                                                                                                                              



3.2.1 Electrocardiogram

We used a preamplified electrocardiograph sensor (band-
width: 0.05 Hz-1 KHz) connected with pregelled single
Ag/AgCl electrodes. We cannot measure individual action
potentials directly in the heart. We can, however, measure
the average action potential on the skin. The mean move-
ment of the action potential is along the “electrical axis” of
the heart. The action potential starts high in the right
atrium, moves to the center of the heart, and then moves
down toward the apex of the heart. Therefore, the main
electrical signal from the heart flows away from the upper
right of the body toward the lower left of the body.
Common features of the ECG signal are heart rate, interbeat
interval, and heart rate variability (HRV). The heart rate
reflects emotional activity. Generally, it has been used to
differentiate between positive and negative emotions, with
further differentiation made possible with finger tempera-
ture. HRV refers to the oscillation of the interval between
consecutive heartbeats. It has been used as an indication of
mental effort and stress in adults. In high-stress environ-
ments such as dispatch and air-traffic control, it is known to
be a useful measure.

3.2.2 Electromyogram

We used a Myoscan-Pro sensor with an active range of
20-500 Hz and pregelled single Ag/AgCl electrodes. It can
record EMG signals of up to 1,600 �V . Electromyography
measures muscle activity by detecting surface voltages that
occur when a muscle is contracted. Therefore, the best
readings are obtained when the sensor is placed on the
muscle belly and its positive and negative electrodes are
parallel to the muscle fibers. Since the number of muscle
fibers that are recruited during any given contraction
depends on the force required to perform the movement,
the intensity (amplitude) of the resulting electrical signal is
proportional to the strength of contraction. In psychophy-
siology, EMG was often used to find the correlation
between cognitive emotion and physiological reactions. In
the work by Sloan [30], for example, the EMG was
positioned on the face (jaw) to distinguish “smile” and
“frown” by measuring the activity of zygomatic major and
corrugator supercilli. In our experiment, bipolar electrodes

were placed at the upper trapezius muscle (near the neck)
in order to measure the mental stress of the subjects [31].

3.2.3 Respiration

A stretch sensor using a latex rubber band fixed with a
Velcro RSP belt was used to capture the breathing activity
of the subjects. It can be worn either thoracically or
abdominally over clothing. The amount of stretch in the
elastic is measured as a voltage change and recorded. The
rate of RSP and depth of breath are the most common
measures of RSP. Although RSP rate generally decreases
with relaxation, startling events and tense situations may
result in momentary RSP cessation. Negative emotions
generally cause irregularity in the RSP pattern. Because RSP
is closely linked to cardiac function, a deep breath can affect
other measures, for example, EMG and SC measurements.
In our experiment, this irregularity could be observed when
the subject was talking. The RSP cycle can also be obtained
by monitoring the contents of carbon dioxide ðCO2Þ in the
inhaled/exhaled air, known as capnography, or by measur-
ing the chest cavity expansion.

3.2.4 Skin Conductivity

SC is one of the measurements most often used to capture
the affective state of users, especially for arousal difference.
Many studies over the years have indicated that the
magnitude of electrodermal change and the intensity of
emotional experience are almost linearly associated in
arousal dimension, [25], [32]. The SC sensor measures the
skin’s ability to conduct electricity. A small voltage is
applied to the skin and the skin’s current conduction or
resistance is measured. Therefore, skin conductance is
considered to be a function of the activity of the eccrine
sweat glands (located in the palms of the hands and soles of
the feet) and the skin’s pore size. We used Ag/AgCl
electrodes fixed with a two-finger band and positioned at
the index and ring fingers of the nondominant hand. The SC
consists of two separate components. There is a slow-
moving tonic component that indicates general activity of
the perspiratory glands due to temperature or other
influences and a faster phasic component that is influenced
by emotions and the level of arousal. For example, when a
subject is startled or experiences anxiety, there will be a fast
increase in the skin conductance due to increased activity in
the sweat glands.

4 METHODOLOGY

The overall structure of our recognition system is illustrated
in Fig. 4. After the preprocessing stage for signal segmenta-
tion and denoising, we calculated 110 features from the
four-channel biosignals and selected the most significant
features by using the sequential backward search method.
For classification, various machine learning methods
(supervised classification in our case) can be used [33].
After having tested some classifiers such as k-nearest
neighbor (k-NN), multilayer perceptron (MLP), and LDA,
we chose the LDA which outperformed with higher
recognition accuracy in our case. It should, however, be
noted that there is no single best classification algorithm
and the choice of the best classification method strongly
depends on the characteristics of the data set to be
classified. In the work by King et al. [34], for example, this
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Fig. 3. Position and typical waveforms of the biosensors. (a) ECG.

(b) RSP. (c) SC. (d) EMG.

                                                                                                                                              



conclusion was supported by a vast comparative study of
about 20 different machine learning algorithms, including
symbolic learning, neural networks, and statistical ap-
proaches, evaluated on 12 different real-world data sets.

4.1 Preprocessing

Different types of artifacts were observed in all of the four-
channel signals, such as transient noise due to the move-
ment of the subjects during the recording, mostly at the
beginning and at the end of each recording. Thus,
uniformly, for all subjects and channels, we segmented
the signals into final samples of 160 seconds each, obtained
by taking the middle part of each signal. It is important to
note that the EMG signal generally requires additional
preprocessing, such as deep smoothing or signal separation,
depending on the position of the sensor, because the nature
of the signal is such that all of the muscle fibers within the
recording area of the sensor contract at different rates. In
our case, the EMG signal contains artifacts generated by the
heartbeat and RSP since we positioned the sensor at the
upper trapezius muscle. Using an adaptive bandpass filter,
we removed the artifacts (Fig. 5). For other signals, we used
pertinent low-pass filters to remove noises without loss of
information.

4.2 Measured Features

From the four-channel signals, we calculated a total of
110 features from various analysis domains, including

conventional statistics in time series, frequency domain,
geometric analysis, multiscale sample entropy (MSE), sub-
band spectra, etc. For the signals with nonperiodic character-
istics, such as EMG and SC, we focused on capturing the
amplitude variance and localizing the occurrences (number
of transient changes) in the signals. In the following sections,
we describe the feature calculation methods in detail.

4.2.1 Electrocardiogram

ECG measures depolarized electrical changes of muscular
contraction associated with cardiovascular activity. In
general, the ECG is measured at the body surface along
the axis of the heart and results from the activation, first, of
the two small heart chambers, the atria, and, then, of the
two larger heart chambers, the ventricles. The contraction of
the ventricles produces the specific waveform known as the
QRS complex (see Fig. 6).

To obtain the subband spectrum of the ECG signal, we
used the typical 1,024 points fast Fourier transform (FFT)
and partitioned the coefficients within the frequency range
0-10 Hz into eight nonoverlapping subbands with equal
bandwidth. First, as features, the power mean values of
each subband and the fundamental frequency (F0) are
calculated by finding the maximum magnitude in the
spectrum within the range 0-3 Hz. To capture peaks and
their locations in subbands, the subband spectral entropy
(SSE) is computed for each subband. Entropy plays an
important role in information theory as a measure of
disorganization or uncertainty in a random variable. In
pattern recognition, it is generally used to measure the
degree of a classifier’s confidence. To compute the SSE, it is
necessary to convert each spectrum into a probability mass
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Fig. 4. Block diagram of supervised statistical classification system for emotion recognition.

Fig. 5. Example of an EMG signal with heartbeat artifacts and denoised

signal.

Fig. 6. QRS waveform in an ECG signal. Usual lengths: P-wave (0.08-

0.10 s), QRS (0.06-0.10 s), PR-interval (0.12-0.20 s), and QTc-interval

ðQT=
ffiffiffiffiffiffiffiffi
RR
p

� 0:44 sÞ [35].

                                                                                                                                              



function (PMF)-like form. Equation (1) is used for the
normalization of the spectrum:

xi ¼
XiPN
i¼1 Xi

; for i ¼ 1 . . .N; ð1Þ

where Xi is the energy of the ith frequency component of
the spectrum and ~x ¼ fx1 . . .xNg is to be considered as the
PMF of the spectrum. In each subband, the SSE is computed
from ~x by

Hsub ¼ �
XN
i¼1

xi � log2 xi: ð2Þ

By packing the eight subbands into two bands, that is,
subbands 1-3 as the low-frequency (LF) band and
subbands 4-8 as the high-frequency (HF) band, the ratios
of the LF/HF bands are calculated from the power mean
values and the SSEs.

In biomedical engineering, the analysis of the local
morphology of the QRS waveform and its time-varying
properties has been a standard method for assessing cardiac
health [35]. Importantly, HRV is one of the most often used
measures for ECG analysis. To obtain the HRV from the
continuous ECG signal, each QRS complex is detected and
the RR intervals (all intervals between adjacent R waves) or
the normal-to-normal (NN) intervals (all intervals between
adjacent QRS complexes resulting from sinus node depo-
larization) are determined. We used the QRS detection
algorithm of Pan and Tompkins [36] in order to obtain the
HRV time series. Fig. 7 shows examples of R-wave detection
and an interpolated HRV time series, referring to the
increases and decreases over time in the NN intervals.

In the time domain of the HRV time series, we calculated
statistical features, including the mean value, the standard
deviation of all NN intervals (SDNN), the standard
deviation of the first difference of the HRV, the number of
pairs of successive NN intervals differing by more than
50 ms (NN50), and the proportion derived by dividing
NN50 by the total number of NN intervals. By calculating
the standard deviations in different distances of RR inter-
beats, we also added Poincaré geometry in the feature set to
capture the nature of interbeat interval fluctuations.

Poincaré plot geometry is a graph of each RR interval
plotted against the next interval and provides quantitative
information of the heart activity by calculating the standard
deviations of the distances of R�RðiÞ to lines y ¼ x and
y ¼ �xþ 2 �R�Rm, where R�Rm is the mean of all R�
RðiÞ [37]. Fig. 7e shows an example plot of the Poincaré
geometry. The standard deviations SD1 and SD2 refer to the
fast beat-to-beat variability and longer term variability of
R�RðiÞ, respectively.

Entropy-based features from the HRV time series were
also considered. Based on the so-called approximate entropy
and sample entropy proposed in [38], an MSE was introduced
[39] and successfully applied to physiological data, espe-
cially for the analysis of short and noisy biosignals [40].
Given a time series fXig ¼ fx1; x2; . . . ; xNg of length N , the
number ðnðmÞi Þ of similar m-dimensional vectors yðmÞðjÞ for
each sequence vector yðmÞðiÞ ¼ fxi; xiþ1; . . . ; xiþm�1g is de-
termined by measuring their respective distances. The
relative frequency to find the vector yðmÞðjÞ within a
tolerance level � is defined by

C
ðmÞ
i ð�Þ ¼

n
ðmÞ
i

N �mþ 1
: ð3Þ

The approximate entropy hAð�;mÞ and the sample entropy
hSð�;mÞ are defined as

hAð�;mÞ ¼ lim
N!1

H
ðm�
N ð�Þ �H

ðmþ1Þ
N ð�Þ

h i
; ð4Þ

hSð�;mÞ ¼ lim
N!1

� ln
Cðmþ1Þð�Þ
CðmÞð�Þ ; ð5Þ

where

H
ðmÞ
N ð�Þ ¼

1

N �mþ 1

XN�mþ1

i¼1

lnC
ðmÞ
i ð�Þ: ð6Þ

Because it has the advantage of being less dependent on the

time-series length N , we applied the sample entropy hS to

coarse-grained versions ðyð�Þj Þ of the original HRV time

series fXig:

yjð�Þ ¼
1

�

Xj�

i¼ðj�1Þ�þ1

xi; 1 � j � N=�; � ¼ 1; 2; 3; . . . : ð7Þ

The time series fXig is first divided into N=� segments by
nonoverlapped windowing with length-of-scale factor �
and, then, the mean value of each segment is calculated.
Note that, for scale one, yjð1Þ ¼ xj. From the scaled time
series yjð�Þ, we obtain the m-dimensional sequence vectors
yðmÞði; �Þ. Finally, we calculate the sample entropy hS for
each sequence vector yjð�Þ. In our analysis, we used m ¼ 2
and fixed � ¼ 0:2� for all scales, where � is the standard
deviation of the original time series xi. Note that using the
fixed tolerance level � as a percentage of the standard
deviation corresponds to the initial normalizing of the time
series and it thus ensures that hS does not depend on the
variance of the original time series but only on their
sequential ordering.

In the frequency domain of the HRV time series, three
frequency bands are of general interest: the very LF (VLF)
band (0.003-0.04 Hz), the LF band (0.04-0.15 Hz), and the
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Fig. 7. Example of ECG analysis. (a) Raw ECG signal with RSP

artifacts. (b) Detrended signal. (c) Detected RR interbeats.

(d) Interpolated HRV time series using RR intervals. (e) Poincaré plot

of the HRV time series.

                                                                                                                                              



HF band (0.15-0.4 Hz). From these subband spectra, we
computed the dominant frequency and power of each band
by integrating the power spectral densities (PSDs) obtained
by using Welch’s algorithm, as well as the ratio of power
within the LF band to that within the HF band (LF/HF).
Since parasympathetic activity dominates at HF, the LF/HF
ratio is generally thought to distinguish sympathetic effects
from parasympathetic effects [41]. Fig. 8 shows the heart
rate spectrum from one of the subjects.

4.2.2 Respiration

RSP signal (breathing rate and intensity) is commonly
acquired by measuring the physical change of the thoracic
expansion with a rubber band around the chest or belly and
contains fewer artifacts in general than the other sensors
using electrodes, for example, ECG, EMG, SC, etc. Including
the typical statistics of the raw RSP signal, we calculated
similar types of features such as the ECG features, the
power mean values of three subbands (obtained by
dividing the Fourier coefficients within the range 0-0.8 Hz
into nonoverlapped three subbands with equal bandwidth),
and the set of SSEs.

In order to investigate the inherent correlation between
the RSP rate and the heart rate, we considered a novel
feature content for the RSP signal. Since an RSP signal
exhibits a quasi-periodic waveform with sinusoidal proper-
ties, it does not seem unreasonable to conduct an HRV-like
analysis for the RSP signal, that is, analysis of breathing rate
variability (BRV). After detrending using the mean value of
the entire signal and low-pass filtering, we calculated the
BRV time series, referring to the increases and decreases
over time in the peak-to-peak (PP) intervals, by detecting
the peaks in the signal using the maximum ranks within
each zero crossing (Fig. 9).

From the BRV time series, we calculated the mean value,
SD, SD of the first difference, MSE, Poincaré analysis, etc. In
the spectrum of the BRV, the peak frequency, the power of
the two subbands, the LF band (0-0.03 Hz), the HF band
(0.03-0.15 Hz), and the ratio of the power within the two
bands (LF/HF) were calculated.

4.2.3 Skin Conductivity

The SC signal includes two types of electrodermal activity:
the DC level component and the skin conductance response
(SCR). The DC level in the SC signal indicates the general
activity of the perspiratory glands influenced by body
temperature or external temperature. The SCR is the
distinctive short waveform in the SC signal and is considered

to be useful for emotion recognition as it is linearly correlated

with the intensity of arousal responding to internal/external

stimuli. The mean value, standard deviation, and mean of the

first and second derivations were extracted as features from

the normalized SC signal and the low-passed (LP) SC signal

using a cutoff frequency of 0.2 Hz. To obtain a detrended SCR

waveform without DC-level components, we removed the

continuous piecewise linear trend in the two LP signals, that

is, the very LP (VLP) and the LP signal with a cutoff frequency

of 0.08 Hz and 0.2 Hz, respectively (see Figs. 10a, 10b, 10c, 10d,

and 10e).
The baseline of the SC signal was calculated and

subtracted to consider only relative amplitudes. By finding

two consecutive zero crossings and the maximum value

between them, we calculated the number of SCR occur-

rences within 100 seconds from each LP and VLP signal, the

mean of the amplitudes of all occurrences, and the ratio of

the SCR occurrences within the LP signals (VLP/LP).

4.2.4 Electromyography

For the EMG signal, we calculated types of features similar

to those of the SC signal. The mean value of the entire

signal, the mean of the first and second derivations, and the

standard deviation were extracted as features from the

normalized and LP signals. The occurrence number of

myoresponses and the ratio of that within VLP and

LP signals were also added to the feature set and were

determined in the same way as the SCR occurrence, but

using cutoff frequencies of 0.08 Hz (VLP) and 0.3 Hz (LP)

(see Figs. 10f, 10g, 10h, 10i, and 10j).
In the end, we obtained a total of 110 features from the four-

channel biosignals: 53 (ECG) + 37 (RSP) + 10(SC) + 10 (EMG).

See Table 4.
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Fig. 8. Example of the heart rate spectrum in three subbands using the

1,024-point Fast Fourier transform.

Fig. 9. BRV analysis for an RSP signal. (a) Raw RSP signal with Fs =

32Hz. (b) LP and detrended signal of (a). (c) Peak detection. (d) BRV

time series referring to PP intervals.

                                                                                                                                              



4.3 Classification

4.3.1 Feature Selection

Compared to the works we reviewed, we calculated a
relatively large amount of features within the various
domains described in the previous sections. Since we
calculated these features based on the signal analysis aspect
exclusively, without any preliminary information on which
physiological pattern might be correlated with which
emotion type, there may exist garbage features within the
calculated features that inherently have no bearing on the
differentiation of the four emotion types. Such garbage
features can ultimately reduce the performance of classifiers
constructed from a limited number of training samples. If
we consider the ratio between the number of features
(110 features) and the fixed sample size (360 samples) in our
case, we must consider that a classifier can also suffer from
the “curse of dimensionality” [33]. Hence, the most essential
step in our recognition system is to select salient emotion-
relevant features from the given feature vectors and to map
them into the emotional cues.

A large number of algorithms for feature subset selection
have been proposed in the literature [42], [43], including
sequential forward selection (SFS), sequential backward
selection (SBS), sequential floating forward selection (SFFS),
genetic algorithm (GA), etc. Most algorithms for feature
selection use a criterion based on a specific classifier and are
therefore useful if the classifier to be used is already known.
SFS performs a heuristic-guided Depth-First search on the
feature space. By starting with an empty subset, all features
not yet included in the subset are sequentially incorporated
in the subset and a criterion value is computed. On each
iteration, the feature that yields the best value is then

included in the new subset. SBS is the top-down equivalent
of SFS since it begins with a complete set of the features and
removes one feature on every iteration. We tested both
selection methods in combination with LDA (see Section 5)
as a classifier. Although SBS is computationally more
demanding than SFS, we decided to use SBS in our
recognition system because it outperformed SFS in the
feature space. This might be explained by the fact that SBS
evaluates the contribution of a given feature in the context
of all other features, while SFS only evaluates the contribu-
tion of a feature in the limited context of the previously
selected features. We must, however, note that the
performance of all the selection methods proposed is
strongly dependent on the given data set.

We did not consider integrating a dimensionality reduc-
tion method in our recognition scheme, such as principal
component analysis (PCA) and Fisher projection, which are
commonly used in combination with a classifier. Dimension-
ality reduction amounts to projecting high-dimensional data
to a lower dimensional space with a minimal loss of
information. This means that new features are created by
the transformation of original feature values, rather than by
selecting a feature subset from a given feature set. Such
feature reduction methods were not suitable for the purpose
of our work since we sought to determine the best emotion-
relevant features that preserve their origins of analysis
domain and value. We use Fisher projection exclusively to
preview the distribution of the features.

4.3.2 Classifying Using Extended Linear Discriminant

Analysis

In discriminant analysis, for a given data set, three scatter
matrices, within-class ðSwÞ, between-class ðSbÞ, and mixture
scatter matrices ðSmÞ, are defined as follows:

Sb ¼
Xc
i¼1

Nið�i � xÞð�i � xÞT ¼ �b�
T
b ; ð8Þ

Sw ¼
Xc
i¼1

X
j2Ci
ðxj � �iÞðxj � �iÞT ¼ �w�T

w; ð9Þ

Sm ¼ Sb þ Sw ¼
XN
i¼1

ðxi � xÞðxi � xÞT ¼ �m�T
m; ð10Þ

where N is the number of all samples, Ni is the number of
samples in class Ci ði ¼ 1; 2; . . . ; cÞ, �i is the mean of the
samples in class Ci, and x is the mean of all samples, that is,

�i ¼
1

Ni

X
i2Ci

xi; ð11Þ

x ¼ 1

N

Xc
i¼1

xi ¼
1

N

Xc
i¼1

Ni�i: ð12Þ

Note that the mixture scatter matrix Sm is the covariance
matrix of all samples regardless of their class assignments,
and all of the scatter matrices are designed to be invariant
under coordinate shifts. The idea in LDA is to find an
optimal transformation W that satisfies
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Fig. 10. Analysis examples of SC and EMG signals. (a) SC_raw signal.
(b) SC_lowpassed, fc ¼ 0:2 Hz. (c) SC_detrended, # occurrence.
(d) SC_vlowpassed, fc ¼ 0:08 Hz. (e) SC_detrended, # occurrence.
(f) EMG_raw signal. (g) EMG_lowpassed, fc ¼ 0:3 Hz. (h) EMG_de-
trended, # occurrence. (i) EMG_vlowpassed, fc ¼ 0:08 Hz. (j) EMG_de-
trended, # occurrence.

                                                                                                                                              



J ðWÞ ¼ argmax
W

jWTSbW j
jWTSwW j

; ð13Þ

such that the separation between classes is maximized
while the variance within a class is minimized (Fisher’s
criterion). Finding the optimal W is equivalent to finding
the generalized eigenvectors satisfying SbW ¼ �SwW , for
� 6¼ 0. Transformation W can be obtained by applying the
eigenvalue decomposition to the matrix S�1

w Sb if Sw is
nonsingular or to the matrix S�1

b Sw if Sb is nonsingular and
taking the rows of the transformation matrix to be the
eigenvectors corresponding to the n� 1 largest eigenvalues.
It is shown in [44] that applying the singular value
decomposition (SVD) on the scatter matrices of the training
set is a stable way to compute the eigenvalue decomposi-
tion. Since there are at most c� 1 nonzero generalized
eigenvectors of the scatter matrix, the upper bound of the
number of retained dimensions in classical LDA is c� 1 and
the dimensionality can be further reduced, for example, by
incorporating in W only those eigenvectors corresponding
to the largest singular values determined in the scatter SVD.
Given the transformation W , classification can be per-
formed in the transformed space based on some distance
measures d such as euclidean distance. The new instance v
is classified to

argmin
k

d ðvW;xkWÞ; ð14Þ

where xk is the centroid of the kth class and k ¼ 1; 2; . . . ; c.
Note that a limitation of conventional LDA is that its

objective function requires that one of the scatter matrices is
nonsingular. It means that, for a given c-class p-dimensional
classification problem, at least cþ p samples are required to
guarantee that the within-class scatter matrix Sw does not
become singular. To deal with the singularity problem,
several extended LDA methods are proposed, such as
PCA+LDA, pseudoinverse LDA (pLDA), regularized LDA,
and LDA using generalized SVD (GSVD). In our work we
used pLDA, a natural extension of classical LDA, applying
the eigenvalue decomposition to the matrix Sþb Sw, SþwSb, or
SþmSb. The pseudoinverse matrix is a generalization of the
inverse matrix and exists for any m� n matrix. The
computationally simplest way to get the pseudoinverse is
using SVD; if A ¼ U�V T is the singular value decomposi-
tion of A, then the pseudoinverse Aþ ¼ V�þUT . For a
diagonal matrix such as �, we get the pseudoinverse by
taking the reciprocal of each nonzero element on the
diagonal.

5 RESULTS

5.1 Classification Using SBS + pLDA

The confusion matrix in Table 1 presents the correct
classification ratio (CCR) of subject-dependent (Subjects A,
B, and C) and subject-independent (All) classification where
the features of all of the subjects are simply merged and
normalized. We used the leave-one-out cross-validation
method, where a single observation taken from the samples
is used as the test data while the remaining observations are
used for training the classifier. This is repeated such that each
observation in the samples is used once as the test data.

The table shows that theCCRvaries from subject to subject.
For example, the best accuracy was 91 percent for Subject B
and the lowest was 81 percent for Subject A. Not only does the

overall accuracy differ from one subject to the next, but the
CCR of the single emotions varies as well. For example, EQ2
was perfectly recognized for Subject C, while it caused the
highest error rate for Subject B. It was mixed up three times
with EQ1, which is characterized by opposite valence. As the
confusion matrix shows, the difficulty in valence differentia-
tion can be observed for all subjects. Most classification errors
for Subjects A and B lie in false classification between EQ1 and
EQ2, while an extreme uncertainty can be observed in the
differentiation between EQ3 and EQ4 for Subject C. On the
other hand, it is very meaningful that relatively robust
recognition accuracy is achieved for the classification of
emotions that are reciprocal in the diagonal quadrants of the
2D emotion model, that is, EQ1 versus EQ3 and EQ2 versus
EQ4. Moreover, the accuracy is much better than that of
arousal classification. The CCR of subject-independent
classification was not comparable to that obtained for
subject-dependent classification. As shown in Fig. 11, mer-
ging the features of all subjects does not refine the
discriminating information related to the emotions but,
rather, leads to scattered class boundaries.

We also tried to differentiate the emotions based on the
two axes, arousal and valence, in the 2D emotion model.
The samples of four emotions were divided into groups of
negative valence (EQ2+EQ3) and positive valence
(EQ1+EQ4) and into groups of high arousal (EQ1+EQ2)
and low arousal (EQ3+EQ4). By using the same methods,
we then performed a two-class classification of the divided
samples for arousal and valence separately. Table 2 shows
the results of arousal and valence classification. It turned
out that emotion-relevant ANS specificity can be observed

                                                                          2077

TABLE 1
Recognition Results in Rates ðerror 0:00 ¼ CCR 100 percentÞ

Achieved by Using pLDA with SBS and
Leave-One-Out Cross Validation

Number of samples: 120 for each subject and 360 for all. Subject A
ðCCR% ¼ 81%Þ. Subject B ðCCR% ¼ 91%Þ. Subject C ðCCR% ¼ 89%Þ.
All: Subject-independent ðCCR% ¼ 65%Þ.

                                                                                                                                              



more conspicuously in the arousal axis regardless of
subject-dependent or independent cases. The classification
of arousal achieved an acceptable CCR of 97-99 percent for
the subject-dependent recognition and 89 percent for the
subject-independent recognition, while the results for
valence were 88-94 percent and 77 percent, respectively.

5.2 Finding the Best Emotion-Relevant ANS
Features

In most of the literature dealing with emotion-relevant ANS
specificity, a tendency analysis of physiological changes has
been used to correlate ANS activity with certain emotional
states, for example, EQ1 with increased heart rate or anxiety
with increased SC. Even for multiclass classification
problems, however, such a direction analysis of physiolo-
gical changes is not sufficient to capture accompanying
multimodal ANS reactions that are cross-correlated with
each other when using multichannel biosensors. Therefore,
we tried to first identify the significant features for each
classification problem and thereby to investigate the class-
relevant feature domain and interrelation between the
features for a certain emotion.

In Table 3, the best emotion-relevant features, which we
determined by ranking the features selected for all subjects
(including Subject All) in each classification problem, are
listed in detail by specifying their values and domains. One
interesting result is that each classification problem respec-
tively links together with a certain feature domain. The
features obtained from the time/frequency analysis of the
HRV time series are decisive for the classification of arousal
and for the classification of the four emotions, while the
features from the MSE domain of ECG signals are a
predominant factor for correct valence differentiation. More

particularly, the mutually sympathizing correlate between
HRV and BRV (first proposed in this paper) has been clearly
observed in all of the classification problems by the features
from their time/frequency analysis and Poincaré domain,
_PoincareHRV and _PoincareBRV. This reveals a manifest
cross correlation between RSP and cardiac activity with
respect to the emotional state. This is one of the most
important findings for future work. In fact, in biomedicine,3 it
is commonly accepted that the respiratory mechanism
mediates HF components of HRV, but its specific role in
affective ANS reactions has so far not been satisfactorily
explained. When inhaling, the vagus nerve is impeded and
the heart rate begins to increase, whereas this pattern is
reversed when exhaling, that is, the activation of the vagus
nerve typically leads to a reduction in heart rate, blood
pressure, or both. Apart from its influence on the heart rate,
the vagus nerve is also responsible for sweating, several
muscle movements in the mouth, and even for speech. It
means that most physiological channels we used are innately
correlated with each other and respond together as a chain
reaction to emotional stimulation. For example, when the
parasympathetic nerves overcompensate, a strong response
from the sympathetic nervous system innervating the
sinoatrial node, which occurs in cases of extreme stress or
fear, the reduction in heart rate and blood pressure becomes
proportionally faster to the intensity of the emotion.

Our feature analysis proves that the correlation between
the heart rate and RSP is obviously captured by the features
from the HRV power spectrum (_HRVspec), the fast/long-
term HRV/BRV analysis using the Poincaré method, and
the multiscale variance analysis of HRV/BRV (_MSE). It
also demonstrates that the peaks of the HF range in the HR
subband spectrum (_SubSpectra) provide information about
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Fig. 11. Comparison of feature distributions of subject-dependent and

subject-independent cases. (a) Subject A. (b) Subject B. (c) Subject C.

(d) Subject independent.

TABLE 2
Results of Arousal and Valence Recognition

3. The influence of breathing on the flow of the sympathetic and vagus
impulses to the sinoatrial node causes the so-called respiratory sinus
arrhythmia (RSA). The degree of fluctuation in heart rate is also
significantly controlled by regular impulses from the baroreceptors in the
aorta and carotid arteries.

                                                                                                                                              



how the sinoatrial node responds to vagal activity at certain
RSP frequencies.

Table 4 shows the number of selected features using the

SBS method for the three classification problems: arousal,

valence, and the four emotional states. For the arousal

classification, relatively few features were used, but they

achieved higher recognition accuracy compared to the other

class problems. If we take a look at the ratio of the number

of selected features to the total feature number of each

channel, it is obvious that the SC and EMG activities

reflected in both the _RawLowpassed and _RawNormed

domains (see Table 3) are more significant for arousal

classification than the other channels. This also supports the

experimental conclusions of previous research according to

which the SCR is linearly correlated with the intensity of

arousal. On the other hand, we observe a remarkable
increase in the number of ECG and RSP features for the case
of valence classification.

5.3 Emotion-Specific Multilevel Dichotomous
Classification

Most common classifiers are best suited to handling two-
class problems. The pLDA we used is no exception to this
and assumes that the covariance matrices of each class are
the same or at least close to each other for multiclass ðc > 2Þ
classification. Consequently, the performance of pLDA in
multiclass classification could be suboptimal, depending on
the difference between the covariance matrices of each class.
In our work, we actually used the averaged covariance to
directly solve the multiclass problem using a single pLDA
classifier. One straightforward way to handle a multiclass
problem by using binary classifiers is to decompose the
multiple categories into a set of complementary two-class
problems. Various approaches to do this have been
proposed [45], [46]. The one-against-all decomposition, for
example, consists of subsets grouped by opposing each
class to all of the others and c binary classifiers are trained
from the whole set of training samples. Alternatively, each
class can be opposed to each of the other ones (one-against-
one or pairwise decomposition). In this case, cðc� 1Þ=2
pairwise classifiers are trained from training samples
corresponding to two classes. Some methods for classifier
combination exploiting the complementarity of multiple
classifiers have also been proposed [47].

By taking advantage of supervised classification (where
we know in advance which emotion types have to be
recognized), we developed an EMDC scheme. This scheme
exploits the property of the dichotomous categorization in the
2D emotion model and the fact that arousal classification
yields a higher CCR than valence classification or direct
multiclass classification. This proves true in almost all
previous works and according to our results as well. Fig. 12
illustrates the EMDC scheme and provides an example of the
dyadic decomposition for the eight-class problem in Fig. 1a.

First, the entire training patterns are grouped into two
opposing “superclasses” (on the basis of valence or
arousal): �C consisting of all patterns in some subset of the
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TABLE 3
Best Emotion-Relevant Features Extracted from Four-Channel Physiological Signals

Arousal classes: EQ1þEQ2 versus EQ3þEQ4. Valence classes: EQ1þEQ4 versus EQ2þEQ3. Four classes: EQ1/EQ2/EQ3/EQ4.

TABLE 4
Number of Selected Features for Each Class Problem

Arousal classification. Valence classification. 4-class classification.

                                                                                                                                              



class categories and C consisting of all remaining patterns,
that is, �C \ C ¼ fg. This dyadic decomposition using one of
the two axes is serially performed until one subset contains
only two classes. The grouping axis can be different for each
dichotomous level. Then, multiple binary classifiers for each
level are trained from the corresponding dyadic patterns.
Therefore, the EMDC scheme is obviously emotion specific
and effective for a 2D emotion model. Note that the
performance of the EMDC scheme is limited by the
maximum CCR of the first-level classification and makes
sense only if the CCR for one of the two superclasses is
higher than that for direct multiclass classification (theore-
tically, this always holds true; see Table 2 for our case).
Because we used four emotion classes in our experiment,
we needed a two-level classification based on arousal and
valence grouping for both superclasses in parallel.

Table 5 shows the dichotomous contingency table of
recognition results by using the novel EMDC scheme. The
best feature sets shown in Table 3 are used for the binary
classification at each level. As expected, the CCRs signifi-
cantly improved for all class problems. For the classification
of four emotions, we obtained an average CCR of 95 percent

for subject-dependent and 70 percent for subject-indepen-
dent classification. Compared to the results obtained for
pLDA, the EMDC scheme achieved an overall CCR
improvement of about 5-13 percent in each class problem
(see Table 6).

6 DISCUSSION

We achieved an overall CCR of 95 percent, which is more
than three times higher than chance probability, for four
emotional states from three subjects. This should be
sufficient to support the view that emotions, either
produced or perceived while listening to music, exist and
are accompanied by physiological differences in both the
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Fig. 12. Framework of emotion-specific multilevel dichotomous classification (EMDC). (a) Diagram of the decomposition process. (b) Decomposition

example for an eight-class problem.

TABLE 5
Results Using the EMDC Scheme with the Best Features

TABLE 6
CCR Comparison between pLDA and EMDC

                                                                                                                                              



arousal and valence dimensions such that they can
eventually be recognized by the machine. At the same
time, however, some issues remain in relation to the
processing stages of our recognition system.

Recording physiological changes using biosensors is still
invasive since the subjects, for example, have to be in
physical contact with adhesive electrodes. Furthermore,
most biosensors using such electrodes are very susceptible
to motion artifacts, which we could observe in almost all
signals of our data set. For practical HCI applications, it is
therefore necessary to develop noninvasive biosensors,
preferably with built-in denoising filters in wirelessly
miniaturized form. We expect that today’s nanotechnology
will help design such hardware soon. This would then not
only improve the signal quality and the usability of the
technology but also reduce computational costs in the
preprocessing stage.

Our analysis results based on the best emotion-relevant
features are incontrovertibly useful findings, for example,
the consistent tendency of the feature contents to valence
and arousal differentiation separately and the proven
efficiency of new feature domains that are first considered
in this paper. We should, however, note that the effective-
ness of the best features might not be universally
guaranteed for other data sets or classifiers. First, only
three subjects might not be sufficient to generalize the
features. Second, the SBS and most algorithms for feature
selection use a criterion based on a specific classifier and are
therefore effective only if the classifier used is known in
advance. In addition, such sequential algorithms may lead
to suboptimal subsets due to their unidirectional property,
that is, once a feature is added or removed, this action can
never be reversed.

By dividing given patterns using the arousal and valence
axes in the 2D emotion model, we proposed the EMDC
scheme, which contributed to a significant improvement in
the recognition results. The scheme may, however, still be
adjusted in several ways. For instance, since it needs
multiple classifiers to be trained for each level, the
combination of different classifiers seems to be feasible.
By taking advantage of the fact that EMDC enables us to
view the classification results of each level in a multi-
resolution aspect (see Table 5), the scheme could be more
sophisticatedly designed thanks to the parametric refining
of each binary classifier depending on the level.

The reason for the great disparity of CCR between
subject-dependent classification and independent classifica-
tion can be explained in many different ways indeed. We
mention that one of the main factors in the difficulty of
subject-independent classification is the intricate variety of
nonemotional individual contexts among the subjects,
rather than an individual ANS specificity in emotion. A
naive idea for improving the performance of the user-
independent system for practical applications would be to
first identify the user, prior to starting the recognition
process, and then to classify a user’s emotion in a user-
dependent way. Of course, this is feasible only if the
number of users is finite and the users are known to the
system or if the system can cumulatively collect the data of
each user in a learning phase. Although this goes beyond
the subject of this paper, we tried to identify the subjects in
our experiment by using the same feature set and the pLDA
classifier that we used for the emotion recognition task.

Surprisingly enough, we obtained perfect identification
accuracy with a CCR of 100 percent from all emotion-
dependent identifications, that is, subject identification for
each emotion, EQ1, EQ2, EQ3, and EQ4, respectively, and
99.4 percent from the emotion-independent identification
using all the data sets taken together. Illustrated below are
the detailed results with the confusion matrix for the latter
case and the person-specific features extracted by ranking
overlapped features in each identification problem.

More interestingly, it is likely that the accuracy of person
identification is inversely proportional to the accuracy of
subject-independent emotion classification when using the
same features for both systems.

7 CONCLUSION

In this paper, we dealt with all the essential stages of an
automatic emotion recognition system using multichannel
physiological measures, from data collection to the classi-
fication process, and analyzed the results from each stage of
the system. For four emotional states of three subjects, we
achieved an average recognition accuracy of 95 percent,
which connotes more than a prima facie evidence that there
are some ANS differences among emotions. Moreover, the
accuracy is higher than that in the previous works reviewed
in this paper when considering the different experimental
settings in the works, such as the number of target classes,
the number of subjects, the naturalness of the data set, etc.

To acquire a naturalistic data set from a reliable
experiment, we designed a musical induction method that
was not based on any laboratory setting or any deliberate
instructions for evoking certain emotions but was based
instead on the voluntary participation of subjects who
collected the musical induction materials according to
target emotions and determined the recording schedule
themselves. Hence, a recorded data set must not necessarily
be annotated by a labeler or through self-judgment.

A wide range of physiological features from various
analysis domains, including time, frequency, entropy,
geometric analysis, subband spectra, multiscale entropy,
and HRV/BRV, were proposed to search for the best
emotion-relevant features and to correlate them with
emotional states. The selected best features were described
in detail and their effectiveness was proven by classification
results. We found that SC and EMG are linearly correlated
with arousal change in emotional ANS activities and that
the features in ECG and RSP are dominant for valence
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differentiation. Particularly, the HRV/BRV analysis re-
vealed the cross correlation between the heart rate and
RSP. The classification of the features was performed by
using the SBS and the pLDA classifier for arousal, valence,
and four emotion classes and achieved an average recogni-
tion accuracy of 98 percent, 91 percent, and 87 percent,
respectively.

In addition, in order to further improve the accuracy of
the four emotion classes, we developed a new EMDC
scheme. With this scheme, we actually obtained a max-
imum of 13 percent improved accuracy for all subjects.
However, the recognition accuracy of subject-independent
classification (70 percent for four classes) was not compar-
able with the subject-dependent case (95 percent for four
classes). The main reason can probably be ascribed to the
intricate difference of nonemotional individual contexts
between the subjects rather than to any inconsistency of
ANS differences among emotions. To deal with the
difficulty of subject-independent recognition, we briefly
discussed an extended recognition system where we
identified the user prior to starting the recognition process
and then classified the user’s emotions in a user-dependent
manner. Supporting this simple idea, we showed identifica-
tion results achieving an almost perfect accuracy of
99.4 percent; this was obtained by using the same features
we had used for emotion recognition.

One of the most challenging issues in the near future will
be to explore multimodal analysis for emotion recognition.
We humans use several modalities jointly to interpret
emotional states, since emotion affects almost all modes—
audiovisual (facial expression, voice, gesture, posture, etc.),
physiological (RSP, skin temperature, etc.), and contextual
(goal, preference, environment, social situation, etc.) states
in human communication. In the recent literature, findings
concerning emotion recognition by combining multiple
modalities have been reported, mostly by fusing features
extracted from audiovisual modalities such as facial
expressions and speech. However, we note that combining
multiple modalities by equally weighting them does not
always guarantee improved accuracy. The more crucial
issue is how to complementarily combine the additional
modalities. An essential step toward a human-like analysis
and finer resolution of recognizable emotion classes would
therefore be to find the innate priority among the modalities
to be preferred for each emotional state. Then, an ambitious
undertaking might be to decompose an emotion recognition
problem into several refining processes using additional
modalities, for example, arousal recognition through
physiological channels, valence recognition by using audio-
visual channels, and then resolving of subtle uncertainties
between adjacent emotion classes, or even predicting the
“stance” in a 3D emotion model by cumulative analysis of a
user’s context information. In this sense, the physiological
channel can be considered as a “baseline channel” in
designing a multimodal emotion recognition system since it
provides several advantages over other external channels
and an acceptable recognition accuracy, as we have
presented in this paper.
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