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Abstract
Recently, there has been a significant amount of work on

the recognition of emotions from speech and biosignals. Most
approaches to emotion recognition so far concentrate on a single
modality and do not take advantage of the fact that an integrated
multimodal analysis may help to resolve ambiguities and com-
pensate for errors. In this paper, we describe various methods
for fusing physiological and voice data at the feature-level and
the decision-level as well as a hybrid integration scheme. The
results of the integrated recognition approach are then compared
with the individual recognition results from each modality.

1. Introduction
In the past few years, increasing attempts have been made to
exploit emotional cues in man-machine communication. The
driving force behind this work is the insight that a user inter-
face is more likely to be accepted by the user if it is sensitive
towards the user’s affective states. A necessary prerequisite to
realize such a behavior is the availability of robust methods for
the recognition of emotions from various channels of expres-
sion as well as the context of interaction. Most research so
far has focused on the analysis of a single modality or an in-
tegrated analysis of audio-visual data (see [1] for a comprehen-
sive overview). In this paper, we will concentrate on speech
in combination with physiological measures, a topic which has
been largely neglected so far.

There are several advantages of using biosensor feedback
in addition to affective speech. First of all, biosensors allow us
to continuously gather information on the users affective state
while the analysis of emotions from speech should only be trig-
gered when the microphone receives speech signals from the
user. Secondly, it is much harder for the user to deliberately ma-
nipulate biofeedfack than external channels of expression which
allows us to largely circumvent the artifact of social masking.
Finally, an integrated analysis of biosignals and speech may
help to resolve ambiguities and compensate for errors.

When combining multiple modalities, the following ques-
tions arise: (1) How to handle conflicting cases between the
single modalities? For instance, a user may consciously or un-
consciously conceal his/her real emotions by external channels
of expression, but still reveal them by internal channels of ex-
pression. (2) At which level of abstraction should the single
modalities be fused in order to increase the accuracy of the
recognition results? A straightforward approach is to compute a
joint feature set for the single modalities for which several joint
statistical pattern classifiers are tested. An alternative would
be to fuse the recognition results at the decision-level based on
the outputs of separate unimodal classifiers. Finally, we may
combine feature-level and decision-level fusion by applying a
hybrid integration scheme.

In this paper, we describe the results of a Wizard-of-Oz ex-

periment we conducted in order to acquire a corpus of sponta-
neous vocal and physiological data that reveal information on
the user’s emotional state. We then use the corpus to evaluate
the three different fusion methods and compare them with the
unimodal recognition approaches. In particular, we are inter-
ested in the question of whether a bimodal analysis may indeed
improve the accuracy of the recognition results.

2. Related Work
There is a vast body of literature on the automatic recognition
of emotions with the aim to improve human-computer interac-
tion. With labeled data collected from different modalities, most
studies have used supervised pattern classification approaches
for automatic emotion recognition systems. We briefly review
some of these works.

With long tradition of speech analysis in signal processing,
many efforts were taken to recognize affective states from vocal
information. As emotion-specific contents in speech, supraseg-
mental prosodic features including intensity, pitch, and dura-
tion of utterance have been widely used in the recognition sys-
tems. Mel-frequency cepstral coefficients (MFCC) are also ex-
tensively used feature in the literature to exploit dynamic varia-
tion along an utterance, for example, Nwe et al. [2] achieved an
average accuracy of 66% for six basic emotions acted from two
speakers by using 12-MFCC features as input to discrete hid-
den Markov model (HMM). A rule-based method for emotion
recognition was proposed by Chen [3]. Particularly, the data
used in this work contained two foreign languages (Spanish and
Sinhala) for the judges who did not comprehend either language
and were therefore able to make their judgment on vocal emo-
tions without possible influence of linguistic/semantic content.
Batliner et al. [4] achieved about 40% for a 4-class problem
with elicited emotions in spontaneous speech.

Relatively little attention has been paid so far to physiolog-
ical signals for emotion recognition compared to other chan-
nels of expression. A significant series of work has been con-
ducted by Picard and colleagues at MIT Lab, for example, in the
work [5] they showed that certain affective states may be recog-
nized by using physiological measures including heart rate, skin
conductivity, temperature, muscle activity and respiration ve-
locity. Eight emotions deliberately elicited from a subject in
multiple weeks were classified with overall accuracy of 81%.
Nasoz et al. [6] used movie clips based on a study by Gross
and Levenson [7] to elicit target emotions from 29 subjects and
achieved the best recognition accuracy (83%) by applying the
Marquardt Backpropagation algorithm. More recently, Wagner
et al. [8] aimed at recognizing musical emotions by using 4-
channel biosignals which were recorded while the subject was
listening to music songs, and reached an overall recognition ac-
curacy of 92% for a 4-class problem.

In order to improve the recognition accuracy obtained from



the unimodal recognition system, many studies attempted to ex-
ploit the advantage of using multimodal information, especially
by fusing audiovisual information. For example, De Silva and
Ng [9] proposed a rule-based singular classification of audio-
visual data recorded from two subjects into six emotion cate-
gories. Moreover, by comparing the outputs of each unimodal
system, they observed that some emotions are easier to identify
with audio, such as sadness and fear, and others with video, such
as anger and happiness. Using decision-level fusion in bimodal
recognition system, a recognition rate of 72% has been reported.
A set of singular classification methods was proposed by Chen
and Huang [10], in which audio-visual data collected from five
subjects was classified into six basic emotions (happiness, sad-
ness, disgust, fear, anger, and surprise). They could improve the
performance of decision-level fusion by considering the domi-
nant modality, determined by empirical studies, in case signif-
icant discrepancy between the outputs of each unimodal clas-
sifier has been observed. Recently, a large-scale audio-visual
database was collected by Zeng et al. [11], which contains four
HCI-related affective responses (confusion, interest, boredom,
and frustration) in addition to seven basic emotions. To clas-
sify the 11 emotions subject-dependently, they used the SNoW
(Sparse Network of Winnow) classifier with Naive Bayes as the
update rule and achieved a recognition accuracy of almost 90%
through bimodal fusion while the unimodal classifiers yielded
only 45-56%.

Most of these previous studies have shown that the perfor-
mance of emotion recognition systems can be improved by the
use of audio-visual information. However, it should be noted
that the recognition accuracies achieved in literature depend
rather on the type of underlying database, whether the emo-
tions were from acted, elicited or real-life situation, than the
used algorithms and classification methods. Moreover, there
has been scarcely any literature on emotion recognition by inte-
grating biosignals and speech. In this paper, we will investigate
in how far the robustness of an emotion recognition system can
be increased by integrating both vocal and physiological cues.
In particular, we will evaluate two fusion methods that combine
the bimodal information at different levels of abstraction as well
as a hybrid integration scheme.

3. Experimental Setting
As a test bed for our experiment, we implemented a system
that was inspired by the quiz “Who wants to be a millionaire?”.
Questions along with options for answers were presented on a
graphical display whose design was inspired by the correspond-
ing quiz shows on German TV. In order to make sure that we got
a sufficient amount of speech data, the subjects were not offered
any letters as abbreviations for the single options (as very com-
mon in quiz shows on TV), but were forced to produce longer
utterances. Furthermore, the user’s current score was indicated
as well as the amount of money s/he may win or loose depend-
ing on whether his/er answer is correct or not.

The three test subjects of our experiment were all students
- three males in their twenties. All subjects were native speak-
ers of German, which was also the language for the experiment.
Each of the session took about 45 minutes to complete. The sub-
jects were equipped with a directed microphone to interact with
a virtual quiz master via spoken natural language utterances.
The virtual quiz master was represented by a disembodied voice
using the AT&T Natural Voices speech synthesizer. While the
subjects interacted with the system, their physiological feed-
back was monitored by 4-channel biosensors to record elec-

tromyogram (EMG) at the nape of the neck, electrocardiogram
(ECG), skin conductivity (SC) and respiration change (RSP).
In addition, we recorded the interaction between the user and
the quiz master and captured a visual impression of the user on
video.

In the experimental setting, the agent is controlled through
a Wizard-of-Oz interface by a human quiz master who guides
the quiz, following a working script to evoke situations that
lead to a certain emotional response. To achieve this, the quiz
master may for example ask extremely difficult questions that
nobody is supposed to know combined with a high loss of al-
ready gained money. The wizard was allowed to freely type
utterances, but also had access to a set of macros that contain
pre-defined questions or comments which made it easier for the
human wizard to follow the script and to get reproducible situ-
ations.

The wizard’s working script can be roughly divided into
four situations which serve to induce certain emotional states in
the user. We make use of a dimensional emotion model which
characterizes emotions in terms of the two continuous dimen-
sions of arousal and valence (see [12]). Arousal refers to the in-
tensity of an emotional response. Valence determines whether
an emotion is positive or negative and to what degree. Apart
from the ease of describing emotional states that cannot be dis-
tributed into clear-cut fixed categories, the two dimensions va-
lence and arousal are well suited for emotion recognition [8].
The four phases of the experiment correspond to extreme posi-
tions on the axes of the emotional model (phase 1: low arousal,
positive valence, phase 2: high arousal, positive valence, phase
3: low arousal, negative valence, phase 4: high arousal, negative
valence).

First, the users are offered a set of very easy questions every
user is supposed to know to achieve equal conditions for all of
them. This phase is characterized by a slight increase of the
score and gentle appraisal of the agent and serves to induce an
emotional state of positive valence and low arousal in the user.
In phase 2, the user is confronted with extremely difficult ques-
tions nobody is supposed to know. Whatever option the user
chooses, the agent pretends the user’s answer is correct so that
the user gets the feeling that s/he hits the right option just by
chance. In order to evoke high arousal and positive valence, this
phase leads to a high gain of money. During the third phase, we
try to stress the user by a mix of solvable and difficult questions
that lead, however, not to a drastic loss of money. Furthermore,
the agent provides boring information related to the topics ad-
dressed in the questions. Thus, the phase should lead to negative
valence and low arousal. Finally, the user gets frustrated by un-
solvable questions. Whatever option the user chooses, the agent
always pretends the answer is wrong resulting in a high loss of
money. Furthermore, we include simple questions for which we
offer similar-sounding options. The user is supposed to choose
the right option, but we make him/er believe that the speech
recognizer is not working properly and deliberately select the
wrong option. This phase is intended to evoke high arousal and
negative valence.

4. Recognition of Emotions from Speech
and Biosignals

In the following, we first describe the employed unimodal meth-
ods to recognize emotions from speech and biosignals as well
as three different fusion methods. To ease the integration of the
recognition results, the same emotion model (see Section 3) is



applied to all unimodal classifiers.

4.1. Unimodal emotion recognition
Speech signals: First, all occurrences of speech were extracted
from the videos. In order to synchronize the speech signals
with window length of the physiological data, all speech sig-
nals belonging to the same question were analyzed together. As
a consequence, we obtained about 60 speech segments per sub-
ject. Features were extracted following the same procedure as
in [13] which was inspired by [14]: For every utterance, pitch,
energy and 12 MFCCs as a function of time were calculated.
From pitch, also the series of the minima and maxima, and of
distances, magnitudes and steepness between adjacent extrema
were obtained. Energy was treated like pitch, additionally us-
ing the first and second derivatives and their minima and max-
ima series. For the MFCCs, first and second derivatives were
calculated with minima and maxima from all coefficients. Al-
together, this amounted to 1280 features. Then, redundant fea-
tures were removed by correlation-based feature subset selec-
tion [15]. This resulted in a new subset of 15-20 dimensional
feature vectors. The numbers vary as for every task (speaker-
dependent/independent) different features were removed. But a
clear tendency towards 1 or 2 pitch minima or maxima related
features and the rest being MFCC related features could be ob-
served.

Physiological signals: All segments of physiological signal are
firstly lowpass-filtered with pertinent cutoff-frequencies, which
are empirically determined for each biosensor channel, in or-
der to remove noisy samples. In the case of subject-dependent
classification the baselines of 4-channel signals were calculated.
Overall 26 features per segment were extracted, typical statistics
such as mean and standard deviation as well as spectral/subband
features from the periodic signals (ECG, RSP). Thus we have
26-dimensional feature vector per segment which varied be-
tween 10 to 115 seconds (on the average 42 seconds). Then all
feature vectors were normalized using standard deviation and
mean value.

For both speech and physiological signal, Fisher’s linear
discriminant function (LDF), a linear combination of compo-
nents weighted by known prior probability, was used to clas-
sify four emotional states, i.e., positive/high, positive/low, nega-
tive/high, and negative/low. We note that the feature vectors ex-
tracted from speech and physiological signal might well be used
to train dynamic models such as HMM, but we have chosen
the LDF classifier because the feature vector of the two modal-
ities consists of global-level features that are extracted at the
same segment length for both signals. The sequential forward
selection method (SFS) was employed to obtain a new subset
of features which contains the most emotion-relevant features
that maximize the performance of the classifier. Leave-one-out
method was used to train and to test all classifiers.

4.2. Bimodal emotion recognition

We expect that the bimodal approach relying on the combina-
tion of vocal-physiological data may give better performance
of emotion recognition system through complementary and re-
dundant intereffects between the two modalities in the decision
process. Three different fusion approaches were implemented
to exploit the advantage of using two modalities for emotion
recognition. In feature-level fusion, the features of both modal-
ities are simply merged and provided as input to a single classi-
fier. Thereby, we also attempted to extract the most significant
features from the fused features by SFS to compare the results.

In decision-level fusion, the outputs of two unimodal classifiers
for speech and biosignals were integrated according to a given
set of criteria. We employed posterior probability criteria used
in [16]. As a further variation, we applied majority voting to
the decision process, according to the recognition rates of each
emotion from unimodal classifiers. Finally, we employed a new
hybrid scheme of the two fusion methods in which the ouput
of feature-level fusion is also fed as an auxiliary input to the
decision-level fusion stage.

5. Results and Discussion
We classified the bimodal data subject-dependently (User A,
User B, and User C) and subject-independently (All) since this
gave us a deeper insight on what terms the multimodal systems
could improve the results of unimodal emotion recognition. Ta-
ble 1 shows the classification results where selected features (by
SFS) of both modalities were used as input to the classifiers.
During our experiment, we could observe individual differences
in the physiological and vocal expressions of the three test sub-
jects. Indeed, as showed in Table 1, the emotions of User A and
User C were more accurately recognized by using biosignals
(77 % and 85%) than by their voice (68% and 76%) whereas
it was inverse for the case of User B (75% for voice and 60%
for biosignals). However, any suggestively dominant modal-
ity could not be observed in the results of subject-dependent
classification, which may be used as a decision criterion in the
decision-level fusion process to improve the recognition accu-
racy.

System pos/ pos/ neg/ neg/ Quote
low high low high

User A
Bio Single 0.67 0.80 0.73 0.87 0.77

Speech Single 0.53 0.87 0.60 0.73 0.68
Feature Fusion 0.67 0.80 0.87 0.80 0.78
Decision Fusion 0.60 0.80 0.80 0.87 0.77
Hybrid Fusion 0.60 0.80 0.80 0.87 0.77

User B
Bio Single 0.47 0.60 0.60 0.73 0.60

Speech Single 0.73 0.80 0.73 0.73 0.75
Feature Fusion 0.73 0.80 0.73 0.73 0.75
Decision Fusion 0.80 0.73 0.67 0.80 0.75
Hybrid Fusion 0.80 0.73 0.67 0.80 0.75

User C
Bio Single 0.73 0.87 0.87 0.92 0.85

Speech Single 0.73 0.73 0.73 0.85 0.76
Feature Fusion 0.80 0.93 0.93 1.00 0.92
Decision Fusion 0.73 0.87 0.87 0.92 0.85
Hybrid Fusion 0.80 0.93 0.87 0.92 0.88

All
Bio Single 0.58 0.57 0.36 0.61 0.53

Speech Single 0.38 0.59 0.60 0.52 0.52
Feature Fusion 0.56 0.64 0.71 0.73 0.66
Decision Fusion 0.51 0.70 0.47 0.61 057
Hybrid Fusion 0.51 0.68 0.53 0.68 0.60

Table 1: Summary of recognition results (rates) from uni- and
bimodal systems with feature selection. Best results are printed
in bold.

Moreover Table 1 shows that the performance of the uni-
modal systems varies not only from subject to subject, but also



System User A User B User C All

Bio Single 0.57 0.43 0.59 0.47
Speech Single 0.50 0.63 0.69 0.45
Feature Fusion 0.65 0.37 0.68 0.51
Decision Fusion 0.68 0.63 0.74 0.54
Hybrid Fusion 0.70 0.58 0.78 0.55

Table 2: Summary of recognition results (rates) from uni- and
bimodal systems without feature selection.

for the single emotional states. For instance, classification of the
physiological data shows a poor result of only 36% for neg/low
while the single speech system achieved 60% for the same emo-
tional state. In contrast, recognition accuracy of pos/low was
just 38% for the speech system, but 58% for the physiologi-
cal system. From our speech corpus, we obtained much better
results (55%) than we achieved for the SmartKom corpus in an
earlier experiment (41%) for four emotion categories (see [13]),
which we regard as evidence that we succeeded quite well in in-
ducing the intended emotions in the subject. Nevertheless, the
results from biosignals were by far not as good as in the experi-
ment we presented in our previous work [8] (up to 92% for four
emotional states) using 4-channel biosignals. Here, we need to
consider that in this work the subject was asked to put himself
into a certain emotion while this process was supported by lis-
tening to music. In contrast, the participants in the experiment
described in this paper were not told that we were interested in
analyzing their emotions.

Tables 1 and 2 show that the overall recognition rate for
the bimodal system surpassed or was equal to the results of the
best unimodal system regardless of whether features were se-
lected beforehand or not. When performing feature selection,
the best results were obtained for feature-level fusion (see Table
1). When classifying the data subject-independently, feature-
level fusion led to an improvement from 53% to 66%. When
omitting feature selection, hybrid feature selection yielded the
best results for User A and C. For User B, we obtained the best
results using decision-level fusion.

6. Conclusion
In this paper, we presented a Wizard-of-Oz study we conducted
to acquire a multimodal corpus of emotional speech and biosig-
nals. An analysis of the corpus revealed great individual differ-
ences in the degree of expression for the single modalities which
emphasizes the added value of approaches relying on more than
one modality. We evaluated several fusion methods as well as
a hybrid recognition scheme and compared them with the uni-
modal recognition methods. The best results were obtained by
feature-level fusion in combination with feature selection. In
this case, not only user-dependent, but also user-independent
emotion classification could be improved compared to the uni-
modal methods. We did not achieve the same high gains that
were achieved for audio-visual data which seems to indicate
that speech and physiological data contain less complementary
information. Furthermore, in a natural setting like ours, we can-
not exclude that the subjects are inconsistent in their emotional
expression. Inconsistencies are less likely to occur in scenar-
ios where actors are asked to deliberately express emotions via
speech and mimics which explains why fusion algorithms lead
to a greater increase of the recognition rate in this case. Our ex-
periment is based on the assumption that we actually succeeded
in eliciting the intended emotional states during the complete
phases of the experiment. A comparison of the results with the

outcome we got for the SmartKom corpus seems to indicate that
this objective was achieved quite well. In the future, we will re-
fine our analysis by studying the subjects’ reactions individually
which might lead to higher recognition rates.

7. Acknowledgements
This work was partially funded by a grant from the DFG in the
graduate program 256 and by the EU Network of Excellence
Humaine. We would like to thank Nikolaus Bee for his help
with the implementation and conduction of the experiment.

8. References
[1] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kol-

lias, W. Fellenz, and J. G. Taylor, “Emotion recognition in human-
computer interaction,” IEEE Signal Processing Mag., vol. 18, pp.
32–80, 2001.

[2] T. L. Nwe, F. S. Wei, and L. C. D. Silva, “Speech based emotion
classification,” in IEEE Region 10 International Conference on
Electrical Electronic Technology, vol. 1, Aug. 2001, pp. 297–301.

[3] L. S. Chen, “Joint processing of audio-visual information for
the recognition of emotional expression in human-computer in-
teraction,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, Dept. of Electrical Engineering, 2000.

[4] A. Batliner, V. Zeissler, C. Frank, J. Adelhardt, R. P. Shi, and
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emotions: Implementing and comparing selected methods for fea-
ture extraction and classification,” in ICME’05, Amsterdam, July
2005.

[9] L. C. De Silva and P. C. Ng, “Bimodal emotion recognition,” in
IEEE International Conf. on Automatic Face and Gesture Recog-
nition, March 2000, pp. 332–335.

[10] L. S. Chen and T. S. Huang, “Emotional expressions in audiovi-
sual human computer interaction,” in International Conf. on Mul-
timedia and Expo (ICME), 2000, pp. 423–426.

[11] Z. Zeng, J. Tu, M. Liu, T. Zhang, N. Rizzolo, Z. Zhang, T. S.
Huang, D. Roth, and S. Levinson, “Bimodal HCI-related affect
recognition,” in ICMI’04, The 6th International Conf. on Multi-
modal Interfaces, Oct. 2004.

[12] P. Lang, “The emotion probe: Studies of motivation and atten-
tion,” American Psychologist, vol. 50(5), pp. 372–385, 1995.
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