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1. Introduction

The modelling and estimation of multivariate distributions is
one of the most critical issues in financial and economic appli-
cations. The distributions are usually restricted to the class of
multivariate elliptical distributions. The main drawback of this
procedure is the small number of alternative distributions and the
large number of parameters for a given family. The seminal result
of Sklar (1959) provides a partial solution to this problem. It al-
lows separation of themarginal distributions from the dependence
structures between the random variables. Since the theory ofmod-
elling and estimation of univariate distributions iswell established,
compared to the multivariate case, the initial problem reduces to
modelling the dependence by copulas.

Hence the theoretical properties and application of copulas
have recently attracted much attention in the academic literature.
The semiparametric estimation of copula functions and parame-
ters is discussed by Chen and Fan (2006), Chen et al. (2006), Genest
et al. (1995), Joe (2005), Wang andWells (2000), etc. Nonparamet-
ric estimation is discussed by Fermanian and Scaillet (2003), Chen
and Huang (2007), etc. Goodness-of-fit tests are developed in the
papers of Chen and Fan (2005), Chen et al. (2004), Fermanian
(2005), Genest et al. (2006), andGenest and Rémillard (2008). A de-
tailed review and discussion of Archimedean copulas is given in Joe
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(1997) and Nelsen (2006). Genest and Rivest (1993) derive impor-
tant properties and provide an estimation technique. An in-depth
discussion of simulation methodologies for Archimedean copulas
is provided in Whelan (2004) and McNeil (2008). Copulas have
found an increasing number of applications, especially in finance.
An application to riskmanagement is discussed by Embrechts et al.
(2002) and Junker andMay (2005). Portfolio selection problems are
considered by Hennessy and Lapan (2002) and Patton (2004). The-
oretical foundations of using copulas for GARCHmodels and appli-
cations are provided by Chen and Fan (2005). Lee and Long (2009)
and Giacomini et al. (2009) consider time varying copulas.

In principle, in all the mentioned papers, the authors consider
either elliptical or Archimedean copulas. However, the number of
parameters by elliptical copulas increases quadratically and the
postulated dependence is symmetric. The simple Archimedean
copulas put too much structure on the dependence between the
variables. One possibility to generalize the simple bivariate copulas
to multivariate framework offer the vine-copulas, suggested
by Bedford and Cooke (2002) and popularized by Aas et al.
(2009). The vine copulas allow cascade-type decomposition of a
multivariate distribution into a product of conditional bivariate
copulas, graphically shown as a sequence of trees. The model is
extremely flexible and special types of vines, like C-, D- or R-vines,
were suggested to reduce the number of potential alternative
models. Acar et al. (2012) discuss generalization of vines using
nonparametric smoothing to overcome the potentially misleading
results due to simplifying assumptions. The key advantage of the
vines is that at each node an arbitrary bivariate copula can be
used to model the conditional dependence. This implies that, on
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the one hand, that vines can be fitted in very high dimensions;
while, on the other hand, the number of potential candidate
models increases dramatically. Another class of multivariate
model copulas constitute the skew-elliptical copulas popularized
by Smith et al. (2012).

In this paper we advocate the Hierarchical Archimedean cop-
ulas (HAC), which allow a more flexible and intuitive depen-
dence structure compared with the simple Archimedean copulas,
and need a smaller number of parameters compared to elliptical
copulas. Joe (1997) introduced this class of copulas, while Whe-
lan (2004) and McNeil (2008) provide simulation techniques for
HAC. Savu and Trede (2008) and Savu and Trede (2010) discuss
goodness-of-fit tests and estimations of HACs with a known struc-
ture. Okhrin et al. (forthcoming) provide detailed statistical prop-
erties, like tail dependence, distribution of the copula function, etc.

Despite their advantages, little research has been done on
determining the best grouping of the variables in hierarchical
copulas, nor on their estimation and simulation. In a few empirical
papers, such as Savu and Trede (2008) and Savu and Trede (2010),
the structure of the copula was motivated economically. This
approaches fails in higher dimensions or for very heterogeneous
data sets. This paper attempts to fill this gap and provides a
method for estimating the structure of an HAC. This can be seen
as a part of copula selection problem. However, we concentrate
not on the empirical comparison of alternative copulas, but on
the estimation. We propose several approaches to determine the
optimal aggregation for the next step at each level of the hierarchy.
The first approach is based on a dimension free goodness-of-fit
test. The second approach is based on binary trees and aggregated
binary trees.

The subset of variables with the strongest fit are joined with
the chosen copula function. We estimate the parameters by
a multi-stage maximum-likelihood procedure and provide the
relevant asymptotic theory. In the simulation study, this method
of grouping dominates the goodness-of-fit approach.

This paper is structured as follows. Section 2 contains a short
review of copulas. The main results of the present paper concern
the determination of the structure and the estimation of copulas.
These are presented in Section 3. Section 4 provides a simulation
study and empirical applications of the methods developed.
Section 5 concludes and all proofs are given in the Appendix.

2. Theoretical background: Archimedean and hierarchical
Archimedean copulas

For an arbitrary k-dimensional continuous distribution function
F , the associated copula is unique and defined as the continuous
function C : [0, 1]k → [0, 1] such that F(x1, . . . , xk) = C(F1(x1),
. . . , Fk(xk)), x1, . . . , xk ∈ R, where F1(x1), . . . , Fk(xk) are the re-
spective continuous marginal distributions.

To formalize the definition of the new class of copulas, let us
introduce two classes of functions. The first is the family of strictly
decreasing differentiable functions

L = {φ : [0, ∞) → [0, 1] | φ(0) = 1, φ(∞) = 0,
(−1)jφ(j)

≥ 0, j = 1, . . . ,∞}.

This family is also known as the class of Laplace transforms of
strictly positive random variables. The second class L∗ comprises
functions with similar properties

L∗
= {ω : [0, ∞) → [0, ∞) | ω(0) = 0, ω(∞) = ∞,

(−1)j−1ω(j)
≥ 0, j = 1, . . . ,∞}.

The function C : [0, 1]k → [0, 1] defined as

C(u1, . . . , uk) = φ(φ−1(u1) + · · · + φ−1(uk))
Fig. 1. Examples of HAC k = 4.

is called a k-dimensional Archimedean copula if φ ∈ L. The func-
tion φ is referred to as the generator of the copula. McNeil and
Nešlehová (2009) give less restrictive conditions on the generator
φ, which is required to be k-monotone, i.e., k−2 times differentiable
with (−1)iφ(i)(x) ≥ 0, i = 0, . . . , k − 2 for any x ∈ [0, ∞) and
with (−1)k−2φ(k−2)(x) being nondecreasing and convex on [0, ∞).
However, here we restrict ourselves to the completely monotone
case. In general the generator φ depends on a vector of parame-
ters θ.

A simple multivariate Archimedean copula implies that the
variables are exchangeable. This means that the distribution of
(u1, . . . , uk) is the same as that of (uj1 , . . . , ujk) for all jℓ ≠ jv . This
is rarely a feasible assumption in practical applications. A much
more flexible method is provided by hierarchical Archimedean
copulas (HACs). In the special case of fully nested copulas, the
copula function is given by

C(u1, . . . , uk) = φk−1(φ
−1
k−1 ◦


φk−2[. . . (φ

−1
2 ◦ φ1[φ

−1
1 (u1)

+ φ−1
1 (u2)] + φ−1

2 (u3))

+ · · · + φ−1
k−2(uk−1)]


+ φ−1

k−1(uk)). (1)

This is illustrated together with a partially nested copula in Fig. 1.
To guarantee that C is a multivariate distribution function we

assume that φ−1
k−i ◦ φk−j ∈ L∗, i < j, see Schweizer and Sklar

(1983). Unlike the usual AC, HACs define the whole dependence
structure in a recursive way. At the lowest level of a fully nested
copula, the dependence between the first two variables is mod-
elled by a copula function with generator φ1, i.e., z1 = C(u1, u2) =

φ1[φ
−1
1 (u1) + φ−1

1 (u2)]. At the second level, another copula func-
tion is used to model the dependence between z1 and u3, etc. Note
that generators φi can come from the same family and differ only
through the parameter or, to introduce more flexibility, can come
from different generator families. Fully nested HACs were also
discussed by Joe (1997), Whelan (2004), Savu and Trede (2010),
and Embrechts et al. (2002).

In contrary to other copula classes, like elliptical or vines, the
density of theHAC cannot be given explicitly and should be derived
from the copula function by taking derivatives. It can be potentially
a tedious task, but should not be seen as a drawback. Note that
the generator functions are usually relatively simple functions
allowing us to compute analytic (see Hofert and Pham (0000)) or
numeric derivatives even in high dimensions. Furthermore, due to
numerical integration it is commonlymore difficult to compute the
distribution function using the density function than vice versa.

HACs have a list of interesting properties. First, since the struc-
ture is hierarchical, at each node of the tree we have a marginal
distribution which is also given by an HAC. Taking into account the
structure of the copula function and the properties of the generator
functions,we see that this also holds for any subset of the variables.
This implies that the HAC family is closed under taking multivari-
ate margins. For example, by setting uk = 1 in (1) and using the
fact that φ−1

k−1(1) = 0 we obtain

C(u1, . . . , uk−1, 1) = φk−2[. . . (φ
−1
2 ◦ φ1[φ

−1
1 (u1) + φ−1

1 (u2)]

+ φ−1
2 (u3)) + · · · + φ−1

k−2(uk−1)].
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Thus the marginal distribution of the first k− 1 variables is also an
HAC.

Second, if we consider copulas based on a single generator
function, for most cases the copula parameter should increase
from the lowest to the highest level. For a fully nested copula this
corresponds to θ1 > θ2 > · · · > θk−1. This follows from the
condition that φ−1

k−i ◦ φk−j ∈ L∗, i < j. In the case of an HAC
with different generator functions, the bounds on the parameters
should be determined individually (see Hofert (2012)). Third, the
flexibility of the structure and the fact that there are at most
k − 1 parameters make it a very flexible, but at the same time
parsimonious, distributionmodel. From this point of view, the HAC
approach can be seen as a flexible alternative to Gaussian models
and to clustering techniques applied to the correlation matrix,
see Mantegna (1999) and Tola et al. (2007). Correlation selection
techniques for Gaussian copulas were also elaborated by Pitt et al.
(2006) within a Bayesian framework for multivariate regression.

The recursive structure of an HAC may be particularly useful
in modelling the time-dependence of a univariate time series.
In contrary to the cross-sectional dependence, the time ordering
imposes a natural structure on the hierarchy and allows for
interesting alternatives to autoregressive models. The advantages
of vines for modelling longitudinal data are discussed in Smith
et al. (2010). These problems go, however, far beyond the issues
addressed in this paper.

Despite its importance and flexibility, no studies are available
on the estimation of the structure of HACs. Theoretically, for given
k and φ we can enumerate all possible structures and choose the
structure with the best fit. The number of different structures is
equal to the number of phylogenetic treeswith k nodes. For k = 10
this exceeds 2.8 · 108 and simple enumeration is unrealistic. Our
aim is to develop a technique for determining the structure of an
HAC leading to the best fit of the copula-based distribution to a
given data set. We follow in this paper frequentist approach, while
alternative procedures for determination of the structure can be
developed in Bayesian framework, similarly as it is suggested for
drawable vines by Smith et al. (2010) and Min and Czado (2010).

3. Determination of the structure

Let M = {φj}j=1,...,M denote the finite set of known generator
functions under consideration. We assume that each function φj
depends on a vector of parameters θj. Let X1, . . . , Xk denote the
vector of iid random variables whose dependence structure we
want to determine and let X = {xji}′ be the respective samples
for i = 1, . . . , n, j = 1, . . . , k. To simplify the presentation we
introduce some further notation. Let s denote the structure of the
HAC. It is a sequence of reordered indices {1, . . . , k} grouped using
parentheses to mark the variables joined at a single node. For
example, the structures of the copulas in Fig. 1 are ((12)3)4 and
(12)(34) respectively. The quantity sj is the structure of subcopulas
with sk = s and s1 is the identity function. We assume that the
variables Xj for j = 1, . . . , k follow arbitrary continuous marginal
distributions, which can be estimated either parametrically or
nonparametrically. Further let the k-dimensional HAC be denoted
by C(φ, θ; s)(u1, . . . , uk), where φ denotes the set of generating
functions for all levels and θ the set of copula parameters. For
example, the fully nested HAC in (1) can be expressed as

C(φ, θ; s = sk)(u1, . . . , uk)

= C({φ1, . . . , φk−1}, {θ1, . . . , θk−1}; {(sk−1)k})(u1, . . . , uk)

= φk−1,θk−1(φ
−1
k−1,θk−1

◦ C({φ1, . . . , φk−2}, {θ1, . . . , θk−2};

((sk−2)(k − 1)))(u1, . . . , uk−1) + φ−1
k−1,θk−1

(uk)),

where s = {(. . . (12)3) . . . k}.
Instead of enumerating and testing all possible structures we
select at each level j of the hierarchy the best subset of variables
I j to be grouped. For this purpose we estimate for some subsets
of the variables the copula parameters and choose the subset with
the best fit. We denote this subset by I j and the optimal generator
function and its parameters at level j by φj and θj respectively. The
estimation of the parameters is discussed in Section 4. The selected
subset is then used to define the pseudo-variables C(φj, θ̂j; (I j)),
which are treated as if variables in the usual sense at further levels.
The properties of the pseudo-variables were discussed in the case
of a bivariate Archimedean copula by Genest and Rivest (1993).

The estimation of the copula for a 4-dimensional data set is
illustrated in the case of a single generator function in Diagram 1.
At the first step we estimate the copula parameters for all subsets
of the variables and choose the best set to be grouped. Assume it
is the couple (X1, X3). At the next level of the hierarchy we define
the sub-copula Z13 = φθ13(φ

−1
θ13

(F̂1(X1)) + φ−1
θ13

(F̂3(X3))) and keep
it fixed at the subsequent steps. At the next level we estimate
the parameters of all subsets of X2, X4, Z(13) and assume that
the best fit is exhibited by Z(13) and X4. Therefore, we define the
next-level sub-copula as Z((13)4) = Ĉ(φ2, θ2; Z(13), F̂4(X4)) and it is
joined at the highest level of the hierarchy with X2. The estimated
structure is then s = (((13)4)2). If we restrict ourselves only to
binary trees, then we consider only the bivariate subsets listed
above the horizontal lines.

In the general case the algorithm can be sketched as follows:

Step 1. Estimate the parameters θj using theML technique for each
set {Xi}i∈Ikj , j = 1, . . . , 2k

− k − 1 and each φ ∈ M. In the
nonparametric setup we first estimate the marginal distri-
butions nonparametrically. Then the copula parameters are
determined by solving (4) with p = 1. For parametric mar-
gins the estimator θ̂j is obtained by solving (3) below.

Step 2. Determine the best subset of variables I1 to be grouped by
the given copula. Next, introduce a pseudo-variable defined
by Z1 = Ĉ(I1) and consider the set Z1∪{Xj}j∈{1,...,k}\I1 of size
k2 = k − dim(I1) + 1.

Step 3. With the new set, proceed similarly as in Step 1 and con-
sider all subsets of Z1 ∪ {Xj}j∈{1,...,k}\I1 of the variables at
level two. Next, for each subset estimate the parameters of
the copula by solving (3) or (4) below with p = 2.

Step 4. Determine the set of variables with the best copula fit at
the second level. Let the obtained grouping be denoted by
I2. It may contain the original variables as well as pseudo-
variables obtained from grouping at lower levels. Then, in-
troduce a new variable defined by Z2 = Ĉ(I2) and consider
the set Z2 ∪ {Xj}j∈{1,...,k2}\I2 of size k3 = k2 − dim(I2) + 1.

Step 5. . . . continue until kj = 1.
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Note that the pseudo-variables are only seen as functions of
the original variables X1, . . . , Xk and are not used explicitly in
the estimation procedure. This implies, that while computing
the copula density for the ML estimation, we have to take the
derivatives with respect to the original variables X1, . . . , Xk and
not with respect to the pseudo-variables Z . Proceeding in the latter
way produces incorrect estimates, as is shown in the simulation
study. The correct procedure we call hereafter the recursive
maximum likelihood estimation.

Two further important issues arise from the proposed approach.
First, the usual maximum likelihood estimation is hindered by the
fact that the stochastic properties of estimators at higher levels de-
pend on the fact that the parameters at lower levels are estimated
too. A detailed analysis of this issue is provided in Section 4. The
second problem is the choice of the subset of variables which can
bemodelled by a copula in the best way. In Section 4.2 we consider
following alternatives: goodness-of-fit, grouping based on binary
copulas, and parameter proximity. Although the overall procedure
seems to be computationally intensive, the hierarchical structure
of the copula leads to substantial numerical simplifications.

The suggested algorithms resembles the procedure suggested
for vines in (Dissmann et al. (0000)). In the case of vines the de-
scribed methodology is formally based on analysing the condi-
tional distributions and the set of potential candidates is enormous.
In the case of HAC, however, we concentrate on the unconditional
distributions, since the conditional structure is imposed by the
form of the HAC. Also the strategy for selecting the optimal sub-
set for grouping is theoretically unambiguous, while vines allow,
due to their flexibility, a variety of approaches (see Dissmann et al.
(0000) and Aas et al. (2009)).

4. Estimation issues

In this section we discuss the technical aspects of the estima-
tion procedure for the parameters of an HAC. Let H(x1, . . . , xk) de-
note the true distribution function on a measurable k-dimensional
Euclidean space and let g denote its measurable Radon–Nikodým
density. Since H is unknown we specify a parametric family of dis-
tribution functions F(x1, . . . , xk, η)with densities f (x1, . . . , xk, η).
It is assumed that the densities are measurable in (x1, . . . , xk) for
every η from a compact subspace of an Euclidean space and contin-
uous in η for every (x1, . . . , xk). The quasi-log-likelihood function
of the sample is defined by

L(η,X) =
1
n

n
i=1

log f (x1i, . . . , xki, η).

Then the quasi-ML estimator η̂ is obtained by maximizing L(η,X)
wrt to η over a compact subspace of an Euclidean space. This
estimator always exists under suitable regularity conditions, but
is not necessarily unique.

The linkage between H and F is crucial for the asymptotic
properties of the estimator. If F is correctly specified, i.e., if there
exists a vector η0 such that F(x1, . . . , xk, η0) = H(x1, . . . , xk) for
all (x1, . . . , xk), then the estimator η̂ is consistent for η0. Moreover,
it is asymptotically normal and achieves asymptotically the
Cramer–Rao lower bound. However, if the model is misspecified,
i.e., H does not belong to the family F , then the interpretation of
the estimator and its properties is not straightforward. The vector
η̂ is an estimator for η∗ which minimizes the Kullback–Leibler
divergence between the true and misspecified models defined by

K(h, f , η) = Eh{log[h(x1, . . . , xk)/f (x1, . . . , xk, η)]},

where the expectation is taken with respect to the true model. The
Kullback–Leibler divergence measures the information content of
the misspecified new model relative to the true density function.
Assume that E[log h(x1, . . . , xk)] exists and | log f (x1, . . . , xk, η)| ≤

m(x1, . . . , xk) for all η with m integrable with respect to H . If K
has a uniqueminimum at η∗, then η̂ converges almost surely to η∗.
Thus even if the model is misspecified the ML estimation still pro-
vides a consistent estimator of the parameters, but the limit is not
the true model H .

This discussion is particularly relevant while estimating the
HAC. The first form of misspecification arises if the family of the
distribution is specified incorrectly, for example HAC vs. Gaussian
models. This is a common form of misspecification. The second
form is specific to HAC. It arises if we specify the HAC family
correctly, but the structure is misspecified. Next we discuss the
estimation of HAC paying particular attention to misspecification
issues.

4.1. Estimation of HACs

The properties and goodness of the fit of estimators of the
copula parameters θ depend on the estimators F̂j for j = 1, . . . , k
of themarginal distributions.Wedistinguish between a parametric
and a nonparametric specification of the margins. On the one
hand, since we are interested in the estimator of the dependence
structure, the estimator of θ should be independent of any
parametric models for the margins. On the other hand, in practical
applications usually parametricmodels for individual variables are
preferred, see Joe (1997). To simplify the exposition we assume
that the margins are specified correctly. This can be justified by
the fact that we analyse the margins separately and determine the
model with the best fit independently of the copula.

Let αj denote the parameters of the j-th marginal distribution.
The ML estimator is given by

θ̂ = arg min
θ

n
i=1

log c(φ, θ; s)(F1(x1i, α1), . . . ,

Fk(xki, αk))

k
j=1

fj(xji, αj)


, (2)

where c(·, ·; ·) is the corresponding copula density.
If the margins are estimated nonparametrically, Genest et al.

(1995) derive the asymptotic moments of the ML estimators and
show their asymptotic normality and consistency. In the case
of parametric specification of the marginal distribution, the ML
estimation can be performed simultaneously for the parameters of
themargins and of the copula function or in a two-stage procedure,
see Joe (1997).

The ML estimation can only be applied to HACs with known
structures. In this paper the structure is determined using a
multistage ML procedure which can be sketched as follows. At the
first stagewe estimate themarginal distributions. At the next stage
we estimate the parameter of the copula at the first level by taking
the marginal distributions as known. At further stages the next
level copula parameter is estimated assuming that the margins as
well as the copula parameters at lower levels are known. In the
next sections we provide a detailed description of this procedure
and the relevant asymptotic theory.

Parametric margins

Assume that k variables are joined within p hierarchical levels,
which means that if s = ((123)(45)), then s = s3 = ((s1)(s2))
where s1, s2, s3 correspond to the levels 1, 2 and 3 respectively. Let
α = (α′

1, . . . ,α
′

k)
′ denote the vector of parameters of the marginal

distributions and θ = (θ′

1, . . . , θ
′

p)
′ the parameters of the copulas,
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starting with the lowest up to the highest level. The ML for the
estimator η̂ of η = (α′, θ′)′ with parametric margins is given by

L(η,X) =

n
i=1

log c(φ, θ; s)(F1(x1i, α1), . . . ,

Fk(xki, αk))

k
j=1

fj(xji, αj)



=

n
i=1

log c(φ, θ; s)(F1(x1i, α1), . . . ,

Fk(xki, αk)) +

k
j=1

log fj(xji, αj)


.

Recall that the θ are not free parameters and, therefore, the ML
procedure requires constrained optimization

η̂ = arg max
η

L(η,X) s.t. φ−1
j ◦ φi ∈ L∗, 0 ≤ i < j ≤ p.

The structure of the log-likelihood function allows to separate
the parameters of margins and of the copula in an additive way.
The optimization problem can be solved using the maximization
by parts technique of Song et al. (2005). The authors suggest
a recursive procedure. In the first step of the recursion we
estimate the parameters of margins; in the second step the copula
parameters are estimated, by assuming the marginal parameters
being constant. The procedure can formally be generalized and
applied to estimate the HACs. However, we concentrate on a
single loop of the recursion, since the major aim of the paper is a
computationally efficient estimator of the copula parameters and
of the structure. Because of the constraints on the parameters,
the estimation and, particularly, the asymptotic theory for these
estimators is very demanding. Multistage estimation eliminates
these problems. We obtain the estimators by solving

∂L1

∂α′

1
, . . . ,

∂Lk

∂α′

k
,
∂Lk+1

∂θ′

1
, . . . ,

∂Lk+p

∂θ′

p

′

= 0, (3)

where

Lj =

n
i=1

lj(Xi), for j = 1, . . . , k + p,

lj(Xi) = log fj(xji, αj), for j = 1, . . . , k, i = 1, . . . , n,

lj+k(Xi) = log


c({φℓ, θℓ}ℓ=1,...,j; sj)


{Fm(xmi, αm)}m∈sj


m∈sj

fm(xmi, αm)


for j = 1, . . . , p, i = 1, . . . , n.

The first k components in (3) correspond to the usual ML estima-
tion of the parameters of the marginal distributions. The next p
components reflect the recursive estimation at each level of hier-
archy, with each likelihood function depending on the copula pa-
rameters at lower levels. This implies that the constraints on the
parameters are fulfilled by construction.

Let the solution of this system be denoted by η̃. Following Joe
(2005) we collect the derivatives of the likelihoods ℓj on the LHS
of (3):
n

i=1

g(Xi, η) =

n
i=1

(g′

1(Xi, η), . . . , g′

k+p(Xi, η))′

=

n
i=1

∂ l1(Xi)

∂α′

1
, . . . ,

∂ lk(Xi)

∂α′

k
,
∂ lk+1(Xi)

∂θ′

1
, . . . ,

lk+p(Xi)

∂θ′

p

′

.

For r = 1, . . . , k+p denote by I∗

rj = −E ∂gr (·,η)

∂αj
for j = 1, . . . , k and

I∗

r,k+j = −E ∂gr (·,η)

∂θj
for j = 1, . . . , p. Note that I∗

rj = 0 if p ≠ j ≤ k
or j > r . The same holds if j ∉ sr for j ≤ k and r > k. Furthermore
let J∗

rj = E[gr(·, η)g′

j(·, η)] − E[gr(·, η)] E[g′

j(·, η)]. If both the
margins and the copula are correctly specified, then I∗

rr = Irr
are the Fisher information matrices of the individual ML problems
∂Lr
∂αr

= 0 for r = 1, . . . , k and ∂Lr
∂θr

= 0 for r = k + 1, . . . , k + p.
Furthermore, J∗

rj = Jrj = E[gr(·, η)g′

j(·, η)].
Theorem 1 is a generalization of Proposition A.1 in Joe (2005)

which gives the asymptotic behaviour of themulti-stage estimator
both in the case of a correctly specified and of amisspecified copula
function.

Theorem 1. (a) Suppose the model is misspecified, and let each
marginal density fr for r = 1, . . . , k and the copula density at each
level of the hierarchy satisfy the regularity conditions A1–A8 (see
Appendix A). Then

√
n(η̃−η∗)

a
∼ N (0, B∗ −1Σ∗(B∗ −1)′), with Σ∗

=

Var[g(X, η)] = {J∗

rj}r,j=1,...,k+p and B∗
= {I∗

rj}r,j=1,...,k+p and η∗

minimizes the Kullback–Leibler divergence between the HAC and the
true model.

(b) Now suppose the model is correctly specified and let each
marginal density fr for r = 1, . . . , k and the copula density at each
level of the hierarchy satisfy the regularity conditions A1–A4, A7, A9.
Then

√
n(η̃ − η0)

a
∼ N (0, B−1Σ(B−1)′), where Σ = {Σrj}r,j=1,...,k+p

and B = {Brj}r,j=1,...,k+p with

Σrj = Jrj, for r, j = 1, . . . , k,
Σrj = 0, for r, j = k + 1, . . . , k + p, r ≠ j,
Σrr = Irr , for r = k + 1, . . . , k + p,
Σrj = 0, for r = 1, . . . , k, j = k + 1, . . . , k + p,
Brr = Irr , for r = 1, . . . , k,
Brj = 0, for r, j = k + 1, . . . , k + p, r ≠ j,
Brj = 0, for r, j = 1, . . . , k, r ≠ j,
Brj = 0, for r = 1, . . . , k, j = k + 1, . . . , k + p,
Brr = Irr , for r = k + 1, . . . , k + p,

Brj =


Irj, for r = k + 1, . . . , k + p, k + 1 ≤ j < r

if sj ⊂ sr
0, for r = k + 1, . . . , k + p, k + 1 ≤ j < r

if sj ⊄ sr ,

,

Brj =


Irj, for r = k + 1, . . . , k + p, j = 1, . . . , k

if j ∈ sr
0, for r = k + 1, . . . , k + p, j = 1, . . . , k

if j ∉ sr .

.

Note that the regularity assumptions of the theorem are fulfilled by
virtually any common parametric HAC. The correct specification of
the copula imposes interesting constraints on the structure of the
covariance matrix and, therefore, on the asymptotic dependence
between the marginal parameters and copula parameters at
different levels. In particular, as follows from the form of the
components of Σ, we obtain that the gradients are asymptotically
independent. It holds that Σ∗

= {Jrj} with J∗

rj ≠ 0 in general, but

Σ =



J11 . . . J1k 0 . . . 0
...

. . .
...

...
. . .

...
Jk1 . . . Jkk 0 . . . 0
0 . . . 0 Ik+1,k+1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . Ik+p,k+p


.
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Similarly

B =



J11 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . Jkk 0 . . . 0

Ik+1,k+1 . . . 0

≠0
. . .

...
≠0 Ik+p,k+p


,

with B∗ having the same structure with the elements I∗

rj. In the
applications, the numerical discrepancy betweenmisspecified and
correctly specified models arises from two factors: the first factor
is the setting of some components of Σ∗ to zero; the second factor
is the reliance on the information inequality for the individual ML
problems. This problem will be assessed in the simulation study
below.

Depending on the structure of the hierarchical copula, the
derivatives needed to compute the asymptotic covariance matrix
may be difficult to obtain. Joe (1997) suggests a jackknife approach
to obtain an approximation. In this case only the univariate and
multivariate likelihoods have to be programmed. This approach
can also be extended to multi-stage estimation following the
technique in Joe (1997).
Nonparametric margins

In order to estimate the marginal distributions in a nonpara-
metric way we use the modification of the empirical distribution
family

F̂j(x) =
1

n + 1

n
i=1

I(xji ≤ x), j = 1, . . . , k,

where I denotes the indicator function. Since the results estab-
lished in this section do not depend on the explicit form of
the nonparametric kernel, but on its convergence properties, any
other suitable estimator can be used as well. Let us denote F =

(F1, . . . , Fk) and F̂ = (F̂1, . . . , F̂k). The canonical ML estimator θ̂ of
θ solves the system by maximizing the pseudo log-likelihood with
nonparametric margins

∂L1

∂θ′

1
, . . . ,

∂Lp

∂θ′

p

′

= 0, (4)

where

Lj =

n
i=1

lj(Xi) for j = 1, . . . , p,

lj(Xi) = log


c({φℓ, θℓ}ℓ=1,...,j; sj)


{F̂m(xmi)}m∈sj


m∈sj

f̂m(xmi)


for j = 1, . . . , p,

where f̂j(x) is the kernel density estimator with j = 1, . . . , k. As in
the parametric case, here also we show that the semiparametric
estimator θ̂ is asymptotically normal and find its asymptotic
moments. The asymptotic theory for nonparametric estimators is
usually based on the rank theory, especially the rank statistics
considered by Hájek and Ŝidák (1967) and Bhuchongkul (1964).
Here we closely follow the approach of Genest et al. (1995).
The next theorem provides intermediate results used further in
Theorem 3.

Theorem 2. Let Cn(u) be a empirical copula

Cn(u1, . . . , uk) =
1
n

n
i=1

k
j=1

I{F̂j(xji) ≤ uj}
and J(u) be a continuous function on (0, 1)k → R
p, wherep ≥ 1 is

such that

µ = E[J(F1(X1), . . . , Fk(Xk))]

= (E[J1(F1(X1), . . . , Fk(Xk))], . . . , E[Jp(F1(X1), . . . , Fk(Xk))])
′

=


· · ·


J(F) dC(F).

Consider the statistic

Rn =
1
n

n
i=1

J(F̂1(x1i), . . . , F̂k(xki))

=


1
n

n
i=1

J1(F̂1(x1i), . . . , F̂k(xki)), . . . ,

1
n

n
i=1

Jp(F̂1(x1i), . . . , F̂k(xki))
′

=


. . .


J(F̂) dCn(F).

If Jp∗(u) ≤ M
k

r=1 h(ur)
ar , for p∗

= 1, . . . ,p, with ar = (−1 +

δ)/pr , for all r = 1, . . . , k, h(u) = u(1 − u), δ > 0, p, q >

0,
k

r=1
1
pr

= 1, then Rn
a.s

−→ µ.
If br = (−0.5 + δ)/pr , for all r = 1, . . . , k, and J admits con-

tinuous partial derivatives on (0, 1)k such that ∂ Jp∗(u)/∂ur ≤ Mk
j=1, j≠r h(uj)

bj

h(ur)

br−1 for p∗
= 1, . . . ,p, then n

1
2 (Rn −µ) →

N (0, Σ), where

Σ = Cov


J(F̂) +

k
r=1


· · ·


I{Fr(xr) ≤ ur} − ur


×

∂J(u)

∂ur
dC(u)


.

Theorem 3. Suppose the model is misspecified and suppose ∂ lj
∂θj

and
∂ lj

∂θr ∂θ′
j
satisfy the conditions of the J-function from Theorem 2. Then the

estimator θ̂ is consistent and

n
1
2 (θ̂ − θ)

d
∼ N (0, B−1ΣB−1),

where the components Σ = {Σrj}r,j=1,...,p and B = {Brj}r,j=1,...,p can
be determined from

Σj = Cov


∂ lj(F̂1(x1), . . . , F̂k(xk))

∂θj

+

k
r=1


· · ·


I{Fr(xr) ≤ ur} − ur

∂2lj(u)

∂θj∂ur
dC(u)


for j = 1, . . . , p,

Σrj = 0 for r, j = 1, . . . , p,

Brj = −E


∂2lj(x)
∂θr∂θ′

j


for r, j = 1, . . . , p.

The second part of the expression for the Σj arises due to the
estimation of the marginal distributions. The correctly specified
case is obtained by taking the moments with respect to the true
measures.
Discussion of the estimation issues

In general the classical single-step ML estimators are usually
obtained as the solution of a systemof highly non-linear equations.
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This requires sophisticated numerical techniques to avoid local
optima. This is of special importance in problems with many
parameters. In the case of HAC we have an additional restriction
which reflects themonotonicity of the parameters from the bottom
to the top of the hierarchy. This complicates even further the
estimation and particularly the asymptotic theory.

The multistage procedure considered here lacks these prob-
lems, because the systems in (3) and (4) are solved equation by
equation. In each equation ∂L/∂θj (or a system of equations if we
have a generator function with several parameters) the parame-
ters estimated from previous equations (θ̂1, . . . , θ̂j−1) are taken as
known quantities. This leads to a dramatic reduction in the com-
putations and provides a more stable solution. Furthermore, the
monotonicity of the parameters is automatically fulfilled and need
not be enforced in the optimization, nor taken into account in the
asymptotic theory.

After the grouping, the parameters of the copula can be in
general reestimated. Since the structure of the copula is fixed we
can use the single-step MLE to achieve efficiency. Nevertheless, it
is still computationally demanding in higher dimensions due to
several reasons. First, the copula density and the derivatives for
the ML function have to be determined numerically. Second, the
maximization is performed with respect to many parameters and
subject to the above mentioned monotonicity constrains. Third,
because of the constrains the asymptotic theory is difficult to
establish. This diminishes the advantages of the reestimation.

The estimation of the copula parameter can be performed us-
ing Kendall’s τ and the method of moments as proposed by Gen-
est and Rivest (1993). This approach has several disadvantages.
By estimating the θ from Kendall’s τ , we cannot guarantee that
θ1 > · · · > θk−1 (or φk−i ◦ φk−j ∈ L∗

∞
(i < j) for copulas based

on different generator functions). Furthermore, the functional rela-
tionship between τ and θ in the bivariate case is strongly nonlinear
for most of the popular generator functions. Thus minor changes
in θ may lead to strong changes in τ and vice versa. The method,
however, works well with different generator functions and with
multiparameter copulas.

4.1.1. Extension to SCOMDY models
Let us assume that the process Xt is formed by the innovations

of the normalized semiparametric copula-based multivariate
dynamic models (SCOMDY) process Yt , i.e.,

Yt = µt(β0) + Σ
1/2
t (β0, β1)Xt ,

where

µt(α0) = E(Yt |Ft−1),

Σt(β0, β1) = diag{σ 2
jt (β0, β1)}j=1,...,k

= diag{E[(Yjt − µjt(β0))
2
|Ft−1]}j=1,...,k.

The SCOMDY parametrization is very flexible and allows for a
variety of model specifications such as VAR and GARCH, see Chen
and Fan (2006). The likelihood function of Yt is given by

L({β0, β1, η}, Y) = −
1
2n

n
i=1

log |Σ2
t (β0, β1)|

+
1
n

n
i=1

log f (x1i, . . . , xki, η).

We maximize the likelihood function with respect to the
parameters β0, β1, the joint density f , and the parameters η. Since
the aim of this paper is the estimation of HAC we assume for
simplicity that µt(β0) and Σ

1/2
t (β0, β1) are correctly specified.

To estimate the structural part we follow the approach of Chen
and Fan (2006). The estimators of β0 and β1 can be consistently
estimated using a two-stage procedure as follows.

β̂0 = arg min
β0


−

1
2n

n
i=1

(Yi − µi(β0))
′(Yi − µi(β0))


,

β̂1 = arg min
β1


−

1
2n

n
i=1

k
j=1


(Yji − µji(β̂0))

2

σ 2
ji (β̂0, β1)

+ log σ 2
ji (β̂0, β1)


.

At the second stagewe estimate the distribution of the innovations
Xt given by an HAC. In general the estimation of the copula
parameters is asymptotically independent of the estimation of the
structural parameters β0 and β1. This follows from Chen and Fan
(2006, Proposition 3.2). For this reason we proceed further only
with the estimation of the distribution of Xt given by an HAC.

4.2. Criteria for grouping

At each level of the hierarchy we decide which variables should
be gathered into a copula at the next level. Next we discuss several
potential alternatives for grouping.

4.2.1. Grouping based on goodness-of-fit tests
The classical goodness-of-fit tests (GOF), for example, Kol-

mogorov–Smirnov or χ2-type tests, cannot be applied directly
to copula functions, because copulas depend on the estimated
marginal distributions. Furthermore, inmost cases the distribution
of the test statistic is not a standard one and depends on the di-
mension. A dimension-free test is proposed in Chen et al. (2004).
As argued by Chen et al. (2004), the power and size of the test are
comparable with other more sophisticated tests. The test does not
depend explicitly on the type of the non-parametric estimator of
the marginals Fi, but uses the order of F̂j(xji) − Fj(xji) as a function
of n. Thus we apply the test of Chen et al. (2004) as one of the cri-
terion for grouping the variables at each level of the hierarchical
copula. The set of variables with the smallest test statistic is joined
by a copula at the next level.

Note that the GOF method appears to lead frequently to mis-
leading results due to the low power of the test against alternative
structures that are close to the true structure. Thus this method
of grouping has several drawbacks, however, we still apply in the
numerical studies for comparison purposes.

4.2.2. Grouping based on binary structures
A computationally simple approach is to determine a binary

copula. First we consider a single generator function. Let us denote
as {Iki}i=1,...,2k−k−1 the subsets of the initial set of size k, excluding
the empty set and single element sets. At each level of a binary
hierarchywe join the twovariableswith the strongest dependence.
This implies in most cases the couple with the highest value of the
copula parameter. More formally, the pair I j to be grouped at level
j is determined from

I j = arg max
Ik−j+1,i,|Ik−j+1,i|=2

θ(Ik−j+1,i).

By |Iki|wedenote the cardinality of the set Iki. This approach always
leads to a feasible copula function with k − 1 parameters. Note
that the procedure is not a specification test at each level of the
hierarchy, but merely a deterministic procedure, which selects the
couple with the strongest fit. This procedure also guarantees that
the copula parameters are monotone as argued above.

If the true copula is not binary, the procedure leads to a
potentially misspecified model. Despite a difference in structure,
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the difference in the distribution functions is in general minor.
To illustrate this point, we consider the following binary HAC
C1(φ, (θ1, θ2); ((12)3))(x1, x2, x3). If the parameters are close then
the dependence structure imposed by C1 is very close to the
dependence structure imposed by C2(φ, θ1; (123))(x1, x2, x3). This
property is referred to as associativity of Archimedean copulas, see
Theorem 4.1.5 of Nelsen (2006).

This fact additionally provides us with tools for aggregation
of binary copulas to general HACs. To join three variables into a
single copula the corresponding parameters of the binary copulas
should be close. We can measure the distance in two ways. One
approach uses the asymptotic test with H0 : θj = θj+1, where θj
and θj+1 are copula parameters at two subsequent levels. The test
can be implemented using the asymptotic results from Section 4.
Alternatively, to make the procedure similar to the tools of the
cluster analysis, we may use the threshold approach and join the
variables if, for example, (θ1 − θ2)/θ1 < α.

The aggregation of binary trees can be augmented by consider-
ing the parameters of subcopulas of dimension higher than two. To
group ℓ variables, we compare the parameters of ℓ-variate copulas
with the parameters of all possible ℓ − 1-variate subcopulas. We
formalize this idea using the minimax principle. Let
1 = min

Iki, |Iki|≥3
max

J⊂Iki,|J|=k−1
|θ(Iki) − θ(J)|

and the minimum is achieved at the subset I1. For each subset of
variables we find the largest distance between its θ and the θs of
its own subsets with a dimension of k−1. Then the subset with the
smallest maximal distance is taken as I1. This procedure, however,
does not allow of selecting a bivariate copula as the best grouping.
To improve thiswe determine the subset of variables to be grouped
using the criterion

I1 =


I1, 1 ≤ δ
argmax
Iki, |Iki|=2

θ(Iki), 1 > δ .

If 1 is larger than some predetermined constant δ, then the pa-
rameters of the copulas with higher dimension are too far from the
parameters of the lower dimensional copulas. In this case we take
the couple with the largest copula parameter as the best grouping.
If we choose δ small, then we prefer binary copulas, with only cou-
ples of variables joined at each level. For larger values of δ, joining
several variables at once becomesmore probable. The actual choice
of δ depends on the parameter domain of θ . We can either fix the
percentage deviation of the subset parameters or use confidence
intervals based on the asymptotic theory above.

If themultivariate copula is constructed using different genera-
tor functions, we cannot directly apply the abovemethod of group-
ing and of aggregating. However, at each level we can choose the
couple of variables to be joined for each generator function. The KL
divergence is used to select the couplewith the better fit. Note that
if the generator function is different at two subsequent levels of the
binary copula, the corresponding variables cannot be joined.

5. Simulation study

The aim of this simulation study is the comparison of the
discussed grouping methods for an example of simulated data. We
assess the goodness-of-fit of the estimated models and the ability
to capture the dependence correctly. Furthermore, we assess the
impact of misspecification by analysing the fit of HAC to Gaussian
data.

5.1. Comparison of the grouping techniques

To compare the grouping methods we consider two differ-
ent true structures s = (123)(45) and s = (12(34))5 with the
Gumbel generator function given by φ−1

= (−log(u))θ and φ =

exp{−u1/θ
}. The parameters for the first structure are set equal to

θ123 = 4, θ45 = 3, and θ(123)(45) = 2, and for the second structure,
to θ34 = 4, θ12(34) = 3, and θ(12(34))5 = 2. Without loss of general-
ity themarginal distributions are taken to be uniform on [0, 1] and
are not estimated. We simulate 1000 samples of size 500.

For the simulation we use the method based on Laplace trans-
forms suggested in McNeil (2008) and further assessed in Hofert
(2011), Hofert (2012). To implement the ML maximization, we
need the corresponding density functions. These are determined
explicitly by taking analytic derivatives of the copula using R soft-
ware. The computation is fast even in big dimensions. For each sim-
ulated data set of the study and each structurewe compared the fit,
the structure and the ability to capture the dependence for the sug-
gested grouping procedures. We consider the simple Archimedean
copula (sAC) and groupings based on the Chen et al. (2004) test
statistics (Chen), on the θ , binary copulas (binary), aggregated bi-
nary copulas (binary aggr.). The binary aggregated grouping with
recursive estimation is denoted by RML. As benchmark models we
consider the 5-dimensional Gaussian copula (Gauss) with Σ̂ esti-
mated from the data and the t copula.

The results of this part of the simulation study are summarized
in Table 1 for the first structure and in Table 2 for the second struc-
ture. The second column contains the three most frequent esti-
mated structures with average parameter values. The frequency of
the true structure for binary groupings is relative low. However,
since the parameters are close, the values of the copula function for
other structures will be numerically close to the value for the true
structure. This is additionally illustrated in the next two columns,
which contain the average Kullback–Leibler divergence and the av-
erage test statistic of Chen et al. (2004). The frequency of the true
structure is much higher for the grouping based on Kendall’s τ and
for the recursive reestimation. Note, however, that the estimators
are clearly biased in the former case.Weobserve that for theKL loss
the grouping based on θ ’s with recursive reestimation clearly dom-
inates the alternatives, followed by both grouping methods based
on τ , the binary and the aggregated binary trees. The results for
the Chen statistics obviously put more weights on the correspond-
ing grouping method, but still show clear outperformance of HAC
compared to the Gaussian and t-models.

To assess the ability of the estimated model to capture the
dependence structure of the data, we evaluate the discrepancy
between the pairwise true and the estimated Kendall’s τ and the
lower and upper tail indices. More precisely, we calculate the
Frobenius norm of the difference between the Kendalls matrix
for the true model and the Kendalls matrix for the model under
consideration, say Pmodel. The smallest error exhibits again the
grouping based on θ ’s with recursive reestimation. The grouping
based on τ ’s is the second best option, followed by groupings
based on θ ’s. Note that the Kendall τ ’s are well estimated by the
Gaussian and t-copulas. The Frobenius norms of the differences
in the true and estimated upper and lower tail indices are given
in the columns λU and λL respectively. However, frequently
recommended t-copula clearly fails to capture the zero lower-
tail dependence and heavily biases the upper part. This is an
important drawback, while the aim of copulas is the modelling
the dependence and tail dependence. The last column of the
tables contains the average computing times needed for a single
replications. The groupings based on τ and on binary trees are
computationally very efficient.

Next we address the issue of efficiency loss due to multistage
ML estimation. Table 3 provides the true parameters, the average
parameters from the multistage and the average parameters from
single stepML estimation. Since the variance of the asymptotic dis-
tribution for the full ML is unknown due to the imposed inequality
constraints on the parameters, we provide the corresponding em-
pirical standard deviations. The efficiency loss at all levels of the
hierarchy is generally small. A stronger jump in the standard devi-
ation is observed if more than two variables are joint together at a
single level, as we observe for the first structure. If, however, only
two variables are joined, the loss is minor.
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Table 3
The average parameters and computational times for multistage ML and full ML estimation based on 1000 simulated samples of size 500. Standard errors are provided in
brackets.

θ̂3, (θ3 = 4.0) θ̂2, (θ2 = 3.0) θ̂1, (θ1 = 2.0) Time (in s)

Structure ((123)4(45)3)2
Multistage 4.028 (0.103) 3.010 (0.112) 1.967 (0.058) 0.496 (0.032)
Full 4.002 (0.100) 3.010 (0.111) 2.002 (0.058) 0.949 (0.060)

Structure ((12(34)4)35)2
Multistage 3.983 (0.148) 2.995 (0.078) 2.003 (0.061) 1.995 (0.372)
Full 3.980 (0.141) 3.004 (0.070) 2.005 (0.061) 2.740 (0.326)
Fig. 2. Illustration of the misspecification problem: kernel density estimators
of the distribution of the KL divergence between the estimated and empirical
distributions. Simulation from the HAC with Gumbel generators (upper pictures),
simulation from the Gauss copula (lower pictures) with 200 runs. In the legend: (g)
and (c) refer to the fitted HAC with Gumbel and Clayton copulas respectively.

5.2. Misspecification

In this section we assess the impact of model misspecification
on the estimation results. We simulate the data from two models.
The first is a three dimensional HAC with Gumbel generator and
parameters 1.5 and 2. Themarginal distributions are standard nor-
mal. The secondmodel is the normal distribution, with correlation
matrix identical to the one imposed by the HAC in the first model.
To each of the simulated datasets we fit one of four models: HAC
with Gumbel generators, HAC with Clayton generators, the multi-
variate normal distribution and the C-vine with mixed generators.
For the copula-based models we distinguish between estimation
with nonparametric, true, and parametrically estimated margins.
In Fig. 2 we plot the nonparametric density estimators of the KL di-
vergence over the replications. The upper figures refer to the data
simulated from the HAC model, the bottom figures show the re-
sults for the normal data. Themodelwith the best fit should exhibit
a narrow density of the KL criteria centred around zero.
If the data is generated from the HAC-based model, the model
with the true known margins and correct generator function out-
performs the alternatives, followed by the models with the para-
metric and nonparametric margins. The fitted normal distribution
shows a stronger variation and a bias of the KL criteria if the sam-
ple size increases. The fit of the HAC with the misspecified Clayton
generator is extremely poor. The C-vine shows results close to the
results fromHAC.We conclude that themisspecification caused by
the fit of normal distribution to HAC-data is stronger that the mis-
specification caused by the fit of an HAC model to normal data for
smaller samples. Havingmore parameters and different generators
functions, the vines show slightly better performance compared to
HAC for Gaussian samples.

6. Empirical example

In this subsection we apply the proposed estimation technique
to real data. The purpose of the study is twofold. First, we assess
the potential of the HAC model for modelling the returns of the
given assets. Second, we evaluate the economic profit of applying
the HAC by calculating the VaR for the profit and loss function of
a portfolio. We consider daily log-returns of Apple (AAPL), Ford
(F), Google (GOOG), Microsoft (MSFT) and Toyota Motors (TM).
The sample period covers 1008 observations from 03.01.2007 to
31.12.2010. To overcome the time dependence of the data we
fit all five time series to univariate AR(1)–GARCH(1,1) processes
with generalized error distributed (GED) residuals (see Nelson
(1991)). The estimation results are given in Table 4. We conclude
that the fitted process successfully eliminates the autocorrelation
(Box–Ljung test) and the hypothesis of GED residuals cannot
be rejected by the Kolmogorov–Smirnov test. The subsequent
modelling uses these residuals.

The pairwise residuals and the residuals mapped on the unit
square by the empirical distribution functions show clear asym-
metric behaviour, for example, GOOG vs. AAPL, APPL vs. F, MSFT
vs. F, etc. We skip the corresponding pictures for brevity. This fact
advocates the attempt to fit the copula-based distribution with
GED margins to the five dimensional time series of the residuals.
Table 5 contains details on the estimated binary HAC with Gum-
bel and Clayton generators. Note that the estimated structure are
close for both generator functions. For bothmodels first GOOG and
AAPL are linked, with MSFT added at the next level. The automo-
tive companies are added either jointly for the Clayton generator
or linked sequentially with the Gumbel generator.

In the subsequent analysis we compare the fit of the HAC
model with Clayton or Gumbel generators to the fits of several
benchmarks. For simplicity we do not consider mixed generators.
For possible constellations of different generators within a single
HAC refer to Hofert (2011). The first two benchmarks are the
Gaussian and t-copula. The simple Archimedean copulas with the
same generators build the second class of alternatives.

To assess the dynamics of the estimated parameters and the
estimated structure we perform a moving window estimation.
At each step 100 observations are used for estimation purposes.
The respective time series of the BIC values, Kendall’s τ and of
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Table 4
Estimation results of fitting univariate AR(1)–GARCH(1,1) processes to the datawith the volatility equation σ 2

t = γ0+γ1(rt−1−µ−ω1rt−2)
2
+δ1σ

2
t−1 and GED residuals. The

columns BL and KS contain the p-values of the Box–Ljung for the autocorrelation of the squared residuals and the Kolmogorov–Smirnov test for GED. Second lines contain
the standard deviations of the parameters.

µ α1 γ0 γ1 δ1 shape BL KS

GOOG 8.585e−04 0.03429 3.323e−06 0.04525 0.94720 1.08482 0.3344 0.1038
4.271e−04 0.02121 1.809e−06 0.01152 0.01250 0.05705

AAPL 2.454e−03 −0.00964 6.075e−06 0.08711 0.90523 1.37463 0.1506 0.2886
5.282e−04 0.03262 4.088e−06 0.02115 0.02279 0.08272

MSFT 7.803e−05 −0.05871 5.153e−06 0.08253 0.90647 1.21966 0.6493 0.8201
4.676e−04 0.02550 2.793e−06 0.02396 0.02570 0.07182

TM −5.223e−04 −0.08890 4.697e−06 0.08965 0.89870 1.52981 0.9418 0.7060
4.693e−04 0.03221 2.404e−06 0.01932 0.02068 0.09729

F 7.963e−04 0.02220 1.483e−05 0.12247 0.87397 1.35513 0.3228 0.1423
7.356e−04 0.03145 8.834e−06 0.02945 0.02837 0.07890
Table 5
Estimation results for the fit of the HAC with Gumbel and Clayton generators to the residuals. The standard errors of the parameters are given in the parenthesis.

Generator estimated structure and parameters

Gumbel ((((GOOG.AAPL)1.692(0.078).MSFT )1.490(0.046).TM)1.344(0.028).F)1.280(0.025)
Clayton (((GOOG.AAPL)1.072(0.120).MSFT )0.762(0.089).(TM.F)0.554(0.058))0.548(0.051)
Fig. 3. BIC, the parameters transformed to Kendall’s τ and the structure from moving window estimation with window length 100 using Clayton (left) and Gumbel (right)
generators respectively.
the structure are shown in Fig. 3. The BIC reveals clear periods
where one of the models dominates the alternatives; particularly
important are the periods where the HAC-based distribution
with Gumbel generator outperforms the Gaussian, t and Clayton
benchmarks. The percentage of the days, when one of the models
is dominating, is given in the legend. The Kendall’s τ and the
correspondingly the parameters exhibit clear co-movement with
periodic divergences. There is no visual relationship between
the performance and the dynamics of the parameters. In the
periods with close parameters, the copula functions with different
structures are numerically indistinguishable despite possessing
different trees. For this reason we observe frequent jumps in the
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structure only in the periods with similar parameters, leading to
the conclusion that a few different structure are sufficient tomodel
the data over the whole estimation period. This also illustrates
the robustness of the estimation procedure: distant parameters
necessarily lead to a stable copula structure.

To compare the performance of HAC we rely on the economic
significance of the alternative distributions. For the analysis we
chose the Gaussian distribution, simple Archimedean copulas and
different vines. The vine-based benchmarks consist of six alter-
native models with three models arising from C-vines and three
models from D-vines. Each triple consists of a Clayton based vine,
Gumbel based vine and the mixed vine, which allows for a mix-
ture of Clayton, Gumbel, Gaussian and t copulas. Particularly we
consider the Value-at-Risk (VaR) of a portfolio of five assets with
weights w, assuming individual AR(1)–GARCH(1,1) data generat-
ing processes with GED residuals for each asset and the three al-
ternative joint distributions for the residuals. The profit and loss
function of the portfolio is defined as Lt+1 =

5
i=1 wiPit(eRi,t+1−1),

where Pit and Rit are the price and the return of the asset i at the
time point t respectively. We drop the time index and denote by FL
the distribution function of Lt+1. The VaR of the portfolio at level α
is given byVaR(α) = F−1

L (α). Since FL depends on themarginal dis-
tributions of the returns as well as on the joint distribution of the
residuals, it cannot be derived explicitly. The distribution function
FL is estimated by simulating the paths of the asset returns from the
above marginal processes and alternative joint distributions of the
residuals. TheVaR(α) is computed as the corresponding empirical
quantile.

Backtesting allows us to assess the economic significance of
the chosen copula model. We estimate the realized α as a relative
fraction of the exceedances in the time series, i.e.,

α̂w =
1
T

T
t=1

I{Lt < VaRt(α)}.

The relative distance between estimated α̂ and true α has been
calculated by

ew = |α̂w − α|/α.

Similarly to Giacomini et al. (2009), we compute α̂w and ew for a
set W = {w∗,wn; n = 1, . . . , 999} of portfolios, for each wn =

(wn,1, . . . , wn,5)
′ is the realization of a random vector uniformly

distributed on S = {(x1, . . . , x5) ∈ R5
:
5

i=1 xi = 1, xi ≥ 0.1}
and w∗

= (1/5, . . . , 1/5)′ is the equally weighted portfolio. Also
similarly to Giacomini et al. (2009), to measure the performance
of each model we used the average relative exceedance over
portfolios and its corresponding standard deviation

AW =
1

|W |


w∈W

ew, DW =


1

|W |


w∈W

(ew − AW )2

1/2

.

The results of the backtesting are summarized in Tables 6
and 7. Table 6 contains the empirical quantiles VaR(α) and
the corresponding standard deviations in parentheses for three
different levels of the Value-at-Risk 10%, 5% and 1%. The closer the
empirical level to the true level is, the better is the performance of
the model. The best model for the 10% level is the mixed C-vine,
the mixed D-vine optimal for 5% and, finally, for the 1% level the
best model is the D-vine with Clayton generators. The HAC with
Clayton generators is not the best model, however, in contrary to
the benchmarks, it provides very robust and good performance.
For 1% and 10% the empirical level for HAC model deviates from
the best model only in the fourth digit, while for 5% it shows the
fifth best results among 12models. Note that is not completely fair
to select as an alternative the mixed vine models, since these use
explicitly a mixture of Clayton, Gumbel, Gaussian and t copulas
Table 6
The empirical quantilesVaR(α) and the standard deviation in parenthesis.

10% 5% 1%

HAC (Gumbel) 0.1070 (0.0048) 0.0586 (0.0061) 0.0173 (0.0020)
AC (Gumbel) 0.1094 (0.0070) 0.0639 (0.0067) 0.0186 (0.0028)
HAC (Clayton) 0.1017 (0.0050) 0.0473 (0.0034) 0.0107 (0.0012)
AC (Clayton) 0.1098 (0.0072) 0.0545 (0.0042) 0.0118 (0.0014)
Gauss 0.1015 (0.0053) 0.0542 (0.0034) 0.0139 (0.0016)
t 0.1015 (0.0048) 0.0530 (0.0033) 0.0128 (0.0015)
vineC (mixed) 0.1010 (0.0042) 0.0528 (0.0033) 0.0139 (0.0015)
vineC (Gumbel) 0.1084 (0.0053) 0.0614 (0.0049) 0.0157 (0.0029)
vineC (Clayton) 0.1028 (0.0044) 0.0492 (0.0033) 0.0119 (0.0016)
vineD (mixed) 0.1034 (0.0049) 0.0503 (0.0032) 0.0125 (0.0011)
vineD (Gumbel) 0.1074 (0.0054) 0.0602 (0.0057) 0.0157 (0.0028)
vineD (Clayton) 0.1060 (0.0047) 0.0496 (0.0030) 0.0105 (0.0016)

Table 7
The average exceedance AW over all portfolios and its standard deviation DW .

10% 5% 1%

HAC (Gumbel) 0.0720 (0.0451) 0.1768 (0.1168) 0.7332 (0.2037)
AC (Gumbel) 0.0952 (0.0681) 0.2793 (0.1329) 0.8591 (0.2797)
HAC (Clayton) 0.0387 (0.0358) 0.0721 (0.0500) 0.1112 (0.0798)
AC (Clayton) 0.1002 (0.0679) 0.1024 (0.0691) 0.1957 (0.1174)
Gauss 0.0437 (0.0331) 0.0935 (0.0553) 0.3876 (0.1593)
t 0.0415 (0.0277) 0.0705 (0.0543) 0.2854 (0.1462)
vineC (optimal) 0.0347 (0.0257) 0.0733 (0.0467) 0.3898 (0.1488)
vineC (Gumbel) 0.0847 (0.0516) 0.2280 (0.0985) 0.5710 (0.2880)
vineC (Clayton) 0.0419 (0.0313) 0.0550 (0.0397) 0.2151 (0.1164)
vineD (optimal) 0.0451 (0.0389) 0.0517 (0.0383) 0.2529 (0.1029)
vineD (Gumbel) 0.0758 (0.0517) 0.2064 (0.1108) 0.5691 (0.2808)
vineD (Clayton) 0.0650 (0.0398) 0.0494 (0.0334) 0.1401 (0.0864)

within a single structure and depend on at least 10 parameters,
compared to four parameters in a HAC. Very similar conclusions
can be drawn from Table 7, where the relative exceedances and
their standard deviations are presented. Summarizing, from the
economic perspective the vine models are favourites, but it is
not possible to suggest a single dominating vine model. The HAC
with Clayton generator, however, exhibits very good performance,
which is robust with respect to the choice of the VaR level.

7. Summary

In many cases multivariate elliptical distributions are consid-
ered. However, its flexibility is rather limited and the number of
parameters increases dramatically with the dimension. This prob-
lem can be partially solved by modelling the dependence with hi-
erarchical Archimedean copulas.

This paper considers the problem of estimating and determin-
ing the structure of hierarchical Archimedean copulas.We develop
a hierarchical estimation technique, which determines the best
grouping of the variables at each level of the hierarchy.We provide
an asymptotic theory for the estimated copula parameters and dis-
tinguish between parametrically and nonparametrically estimated
marginal distributions. Particular attention is paid to misspeci-
fied and correctly specified models. Several criteria for grouping
are proposed. In practical applications we recommend construct-
ing the HAC using the recursive estimation method or, for com-
putational efficiency, either a binary tree or an aggregated binary
tree. For the simulated data the method developed provides good
results in determining the true structure. Moreover, the copula-
based distributions show a good fit even in modelling normal
samples.
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Appendix A

Let f (η) denote either the marginal density or the copula
density for arbitrary subcopula. The elements of the vector of
parameters η vary depending on the specification of f .

1. Let Xi be a stochastic process on a complete probability space
with an absolutely continuous distribution.

2. f : Rdim(X)
× Π −→ R+ are measurable and continuous for

each η ∈ Π .
3. f is continuously twice-differentiable on Π (a.s.).
4. E[log f (X, η)] exists and is finite for each η. Additionally

E[log f (X, η)] is continuous on Π (a.s.).
5. E[∇ log f (X, η)] exists and is finite for each η.
6. E[∇2 log f (X, η)] exists, is finite, positive definite and continu-

ous on Π .
7. Lj have identifiably unique maximizers on the interior of a

subspace of Π for j = 1, . . . , p + k.
8. n−1/2f (Xn, η̂

∗
) obeys, uniformly in n, the CLT, with a positive

definite covariance matrix.
9. For all η we have


∇f (X, η)dH(X) = 0 and


∇

2f (X, η)dH(X)
= 0.

Appendix B

Proof of Theorem 1. The asymptotic results follow directly from
Theorem 6.2 of White (1982) for misspecified and from Theorem
6.4 of White (1982) for correctly specified models. Here we
derive only the expressions for the components of the asymptotic
covariance matrix of the correctly specified ML estimators. We
have B = −E


∂g(Xi, η)/∂η′


. The last derivative can be written

explicitly in terms of the components of η

∂g(Xi, η)

∂η′
=



∂2l1(Xi)

∂α1∂α′

1
. . .

∂2l1(Xi)

∂α1∂α′

k

∂2l1(Xi)

∂α1∂θ′

1
. . .

∂2l1(Xi)

∂α1∂θ′

p

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

∂2lk(Xi)

∂αk∂α′

1
. . .

∂2lk(Xi)

∂αk∂α′

k

∂2lk(Xi)

∂αk∂θ′

1
. . .

∂2lk(Xi)

∂α2∂θ′

p

∂2lk+1(Xi)

∂θ1∂α′

1
. . .

∂2lk+1(Xi)

∂θ1∂α′

k

∂2lk+1(Xi)

∂θ1∂θ′

1
. . .

∂2lk+1(Xi)

∂θ1∂θ′

p

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

∂2lk+p(Xi)

∂θp∂α′

1
. . .

∂2lk+p(Xi)

∂θp∂α′

k

∂2lk+p(Xi)

∂θp∂θ′

1
. . .

∂2lk+p(Xi)

∂θp∂θ′

p



.

The elements on the main diagonal are parts of the information
matrices from the individual ML procedures. We denote them by

−E ∂2Lr
∂αr ∂α′

r
= Irr , for r = 1, . . . , k and −E ∂2Lk+j

∂θj∂θ′
j

= Ijj, for j = 1,

. . . , p. Since the likelihood function Lr for r = 1, . . . , k is inde-
pendent of αj for j = 1, . . . , k, r ≠ j and of θℓ for ℓ = 1, . . . , p, this
implies that

∂2Lr

∂αr∂α′

j
=

∂2Lr

∂αj∂α′
r

=
∂2Lr

∂αr∂θ′

ℓ

= 0,

r, j = 1, . . . , k; r ≠ j, ℓ = 1, . . . , p.

The elements in the last p rows below the main diagonal depend
on the structure of the HAC. If the element j has been grouped at
the level r , i.e., j ∈ sr , then −E ∂2Lr

∂θr ∂α′
j

= Irj for j = 1, . . . , k and

r = k + 1, . . . , p.
The matrix Σ is equal to Var(g) = Egg′. From Joe (1997) it fol-

lows that E ∂Lr
∂αr

∂Lk+1
∂θ′

1
= 0 for r = 1, . . . , k. We have to show that
also E ∂Lr
∂αr

∂Lk+j
∂θ′

j
= E ∂Lk+j

∂θj

∂Lk+ℓ

∂θ′
ℓ

= 0 for j, ℓ = 1, . . . , p and j ≠ ℓ.

Let r ∈ sj, then it holds that

E
∂ lr
∂αr

∂ lk+j

∂θ′

j

=


∂ lr(yr)
∂αr

∂ lk+j({yℓ}ℓ∈sj)

∂θ′

j
c(φj, θj; sj)

×({Fℓ(yℓ, αj)}ℓ∈sj)

ℓ∈sj

fℓ(yℓ, αj)dyℓ

=


∂ lr(yr)
∂αr

∂

∂θ′

j
log

c(φj, θj; sj)({Fℓ(yℓ, αj)}ℓ∈sj)


×c(φj, θj; sj)({Fℓ(yℓ, αj)}ℓ∈sj)


ℓ∈sj

fℓ(yℓ, αj)dyℓ

=


∂ lr(yr)
∂αr

∂

∂θ′

j
c(φj, θj; sj)({Fℓ(yℓ, αj)}ℓ∈sj)


ℓ∈sj

fℓ(yℓ, αj)dyℓ

=


yr

∂ lr(yr)
∂αr


y−r

∂

∂θ′

j
c(φj, θj; sj)({Fℓ(yℓ, αj)}ℓ∈sj)

×


ℓ∈sj

fℓ(yℓ, αj)


ℓ∈sj,ℓ≠r

dyℓ

 dyr

(where

y−r

denotes integration over all variables except for yr )

=


yr

∂ lr(yr)
∂αr

 ∂

∂θ′

j


y−r

c(φj, θj; sj)({Fℓ(yℓ, αj)}ℓ∈sj)

×


ℓ∈sj

fℓ(yℓ, αj)


ℓ∈sj,ℓ≠r

dyℓ

 dyr .

The internal integral is equal to the marginal density of the r-th
variable, and thus it is independent of θj. This implies that the
derivative and the whole expression are zero. For the second term
E ∂Lk+j

∂θj

∂Lk+ℓ

∂θ′
ℓ

= 0 we proceed in a similar way. Let r ∈ sr ⊂ sj. Oth-
erwise the expression is obviously zero, since Eg(Xr , η) = 0. Now
we have

E
∂ lk+r

∂θr

∂ lk+j

∂θ′

j

=


∂ lk+r({yℓ}ℓ∈sr )

∂θr

∂ lk+j({yℓ}ℓ∈sj)

∂θ′

j
c(φj, θj; sj)

×({Fℓ(yℓ, αj)}ℓ∈sj)

ℓ∈sj

fℓ(yℓ, αj)dyℓ

=


∂ lk+r({yℓ}ℓ∈sr )

∂θi

∂

∂θ′

j
c(φj, θj; sj)

× ({Fℓ(yℓ, αj)}ℓ∈sj)

ℓ∈sj

fℓ(yℓ, αj)dyℓ

=


yℓ,ℓ∈sr

∂ lk+r({yℓ}ℓ∈sr )

∂θr

×


∂

∂θ′

j


yℓ,ℓ∈sj/sr

c(φj, θj; sj)

× ({Fℓ(yℓ, αj)}ℓ∈sj)

ℓ∈sj

fℓ(yℓ, αj)


ℓ∈sj/sr

dyℓ


ℓ∈sr

dyℓ.
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The inner integral is equal to the joint distribution of the vari-
ables in sr and is, therefore, independent of θj. This implies that
the derivative with respect to θj and the whole expression is zero.
This completes the proof of the theorem.

Proof of Theorem 2. By the Lemma of Glivenko–Cantelli, Cn(F)
converges almost surely to C(F). Rn can be written in the following
way

Rn = E(Vn) = E(V1,n, . . . , Vp,n)
= E(J(v1n, . . . , vkn))

= (E(J1(v1n, . . . , vkn)), . . . , E(Jp(v1n, . . . , vkn)))
′,

where v1n, . . . , vkn ∼ Cn(F).

Observe that (v1n, . . . , vkn)
D

−→(v1, . . . , vk), where (v1, . . . , vk)
are random variables distributed according to C(F). Because of the
continuity of J, Vn converges to V = J(v1, . . . , vk). To complete the
proof we have to show that all components of Vn are uniformly in-
tegrable, i.e., that there exists an ϵ > 0 such that E(|Vp∗,n|

1+ϵ) for
p∗

= 1, . . . ,p are bounded. To prove this, we use a multivariate
extension of Hölder’s inequality. For positive functions f1(x), . . . ,
fk(x) : (a, b) → R, b

a

k
j=1

fj(x) dx ≤

k
j=1

 b

a
fj(x)pj dx

1/pj

.

From now on, we fix such p∗ that 1 ≤ p∗
≤ p. To show that

E(|Vp∗,n|
1+ϵ) is bounded we use its integral representation, the in-

equality given in Theorem 2 for J , and the extension of Hölder’s
inequality.

E(|Vp∗,n|
1+ϵ) =


· · ·


|Jp∗(F)|1+ϵ dCn(F)

≤ M


· · ·

 k
j=1

h(Fj)aj(1+ϵ) dCn(F)

≤ M
k

j=1


1
n

n
i=1

h
i

n + 1

(−1+δ)(1+ϵ)
1/pj

=
M
n

n
i=1

h
i

n + 1

(−1+δ)(1+ϵ)

≤ M
 1

0

1
[u(1 − u)](1−δ)(1+ϵ)

du.

The last integral is finite for ϵ < δ, which completes the proof of
the convergency of Rn to µ. To prove the existence of the variance
we split the elements of our statistic into the following summands:

n
1
2 (Rp∗,n − µp∗) = Hp∗,1n + Hp∗,2n + Gp∗,n,

where

Hp∗,1n = n
1
2


· · ·


Jp∗(F) d{Cn(F̂) − C(F)}

Hp∗,2n = n
1
2


· · ·


[Jp∗(F̂) − Jp∗(F)]d{Cn(F̂) − C(F)}

Gp∗,n =


· · ·


Jp∗(F̂) − Jp∗(F) dC(F) =

k
r=1

Gp∗,rn

=

k
r=1

n
1
2


· · ·


(F̂r − Fr)

×
∂ Jp∗(F1, . . . , Fr−1, Φr , Fr+1, . . . , Fk)

∂Φr Φr=Fr+△(F̂r−Fr )
dC(F),
where Gp∗,n is transformed by the mean value theorem and △ ∈

[0, 1]. Each Grn could be rewritten as

Gp∗,rn = n
1
2


· · ·


(F̂r − Fr)

×


∂ Jp∗(F1, . . . , Fr−1, Φr , Fr+1, . . . , Fk)

∂Φr Φr=Fr+△(F̂r−Fr )

−
∂ Jp∗(F)

∂Fr


dC(F) + n

1
2


· · ·


(F̂r − Fr)

∂ Jp∗(F)
∂Fr

dC(F).

While the first derivative of the function J is uniformly continuous
and bounded by the assumptions, and since |Φr − Fr | ≤ |F̂r − Fr |,
by the Lemma of Glivenko–Cantelli

∂ Jp∗ (F1,...,Fr−1,Φr ,Fr+1,...,Fk)
∂Φr Φr=Fr+△(F̂r−Fr )

converges in probability

to
∂ Jp∗ (F)

∂Fr
. Using the definition of the empirical distribution func-

tion which for simplicity is multiplied by n+1
n , the last summand

has following representation:

n
1
2


· · ·


(F̂r − Fr)

∂ Jp∗(F)
∂Fr

dC(F)

= n−
1
2

n
i=1


· · ·


(I{xri ≤ xr} − Fr)

∂ Jp∗(F)
∂Fr

dC(F)

= n−
1
2

n
i=1


· · ·


[I{xri ≤ xr} − Fr ]

∂ Jp∗(F)
∂Fr

dC(F)

= n
1
2


· · ·


[I{yr ≤ xr} − Fr ]

∂ Jp∗(F)
∂Fr

dC(F).

Note that
∂ Jp∗ (F)

∂Fr
has no influence on the variance but con-

tributes to the covariance between the elements of the vector.
Applying Hölder’s inequality and the assumption, that

∂ Jp∗ (F)
∂Fr

≤

M
k

j=1, j≠r h(uj)
bj

h(ur)

br−1 provides the existence of the second
moment of Gp∗,n:

Var(Gp∗,n) = Var


k

r=1


· · ·


I{yr ≤ xr}

∂ Jp∗(F)
∂Fr

dC(F)


.

In the main difference, Hp∗,1n can be rewritten in the following
form

Hp∗,1n = n−
1
2

n
i=1

Hp∗,1in,

where Hp∗,1in = Jp∗(F1(x1i), . . . , Fk(xki)) − µp∗ are iid with zero
means. Using that Jp∗(F) ≤ M

k
r=1 h(ur)

ar , the application of the
multivariate extension of the Hölder’s inequality for the same set
of pr , r = 1, . . . , k as in the first part of the theorem, shows that
Hp∗,1in has finite absolute moment of order 2+δ0, for some δ0 > 0.
By the Glivenko–Cantelli Lemma Hp∗,2n converges almost surely to
zero and from Bhuchongkul (1964) we get the resulting covariance

Cov[n
1
2 (Rn − µ)]

= Cov


J(F1(y1), . . . , Fk(yk))

+

k
r=1


· · ·


I{yr ≤ xr} − Fr(yr)


×

∂J(F1(y1), . . . , Fk(yk))
∂Fr(yr)

dC(F1(y1), . . . , Fk(yk))


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Proof of Theorem 3. In this proofweuse similarmethods as in the
proof of Theorem2.1 of Ruymgaart et al. (1972) and Proposition 2.1
of Genest et al. (1995). Expanding ∂Lj(θ,X)

∂θ
for j = 1, . . . , p in a

Taylor series we obtain

∂Lj(θ,X)

∂θ θ=θ̂

= 0 ≈ an − Bn(θ̂ − θ),

where

ajn =
1
n

n
i=1

∂ lj(F̂1(x1i), . . . , F̂k(xki))
∂θj

, for j = 1, . . . , p

an = (a′

1n, . . . , a
′

pn)
′

Bn = {Bjrn}r,j=1,...,p

=


−

1
n

n
i=1

∂2lj(F̂1(x1i), . . . , F̂k(xki))
∂θj∂θ′

r


r,j=1,...,p

,

where Bn is a block matrix. From the theory of rank statistics we
conclude that n

1
2 (θ̂ − θ) ≈ n

1
2 B−1

n an. Taking J in Theorem 2 equal

to ∂ lj
∂θj

and ∂2 lj
∂θj∂θr

wherep will be the number of parameters to be
estimated on the current level, we get

Brjn
a.s.
→ Υ rj = −E


∂2lj(F̂1(x1), . . . , F̂k(xk))

∂θr∂θ′

j



and n
1
2 ajn

a
∼N(0, Σj), where

Σj = Cov


∂ lj(F̂1(x1), . . . , F̂k(xk))

∂θj

+

k
r=1


· · ·


I{Fr(xr) ≤ ur} − ur

∂2lj(u)

∂θj∂ur
dC(u)


.

We assemble the variances Σj in the block matrix

Σ =


Σ1 0 . . . 0
0 Σ2 . . . 0
...

...
. . .

...
0 0 . . . Σp

 ,

as well as B = {Υ jr}j,r=1,...,p. Putting them together we can con-
clude that

n
1
2 (θ̂ − θ)

a
∼ N (0, B−1ΣB−1).
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