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Introduction
In systems biology, the computational analysis of molecular 
networks is an essential prerequisite to better understand their 
behavior at the system level and to gain insight into the func-
tioning of complex biological networks. Computational simu-
lation can reveal dysfunctional components in a signaling 
network during transduction processes for pathological states1; 
or may reflect key energy and nutrient resources for sustaining 
vital cancer proliferation and development in a metabolic net-
work.2,3 Examples for tools which support the dynamic simula-
tion of molecular networks include biocellion,4 BioNetCAD,5 
and COPASI6 which use ordinary differential equation (ODE) 
systems. Quantitative simulations are impeded by meeting 
accurate setting criteria of systems due to variances in tempera-
ture, pH-value, salt concentration, and other environmental 
factors.

Packages such as Acorn,7 BioMet Toolbox,8 and FBA-
SimVis (Grafahrend-Belau et al., 2009)9 implement flux bal-
ance analysis (FBA) by simultaneously monitoring the 
hundreds or thousands of biochemical reactions that constitute 
the network. Due to the qualitative focus of FBA, it cannot 
make full use of signaling network features such as feedback 
control mechanisms or transcriptional and translational regula-
tion mechanisms. A number of modeling and simulation 
frameworks apply Petri nets (PNs) to investigate properties of 
biological systems such as crosstalk between signaling path-
ways and gene regulatory networks.10 While various extensions 
make PNs suitable for the definition of qualitative and quanti-
tative models,11 networks with a high grade of complexity can 

pose a challenge due to performance issues and difficulties in 
managing the order of firing.

AutoAnalyze is a new powerful and modular visualization/
analysis tool with applications in systems biology. It has been 
successfully deployed in the automotive domain to evaluate the 
integrity of critical timing aspects in large-scale embedded 
software systems12 based on the industry standard AUTOSAR 
(www.autosar.org) and is part of the tool chain of the BMBF-
funded ARAMIS II project (www.aramis2.org). Simulation 
relies on data-flow analysis (DFA), a generic and highly scala-
ble static analysis technique commonly applied in the area of 
compiler construction to approximate the runtime behavior of 
program code by evaluating its control-flow graph.

Extensions to AutoAnalyze add support for biological 
molecular networks. Mappings to graphical literals such as 
nodes, ports, and connectors along with a set of predefined fil-
ters and wizards enable users to visualize and navigate the net-
work, perform basic editing, and create reports. In a case study, 
a prediction of treatment response of cell lines and overall sur-
vival of patients from different types of cancers yielded satis-
factory results.13

Technology and Method
Principles from kinetic equation–based simulation approaches 
(ODE, PN, and others) have been adapted into a data-flow 
framework by encoding the kinetic rate laws for different reac-
tion types as data-flow rules (if not specified otherwise, the 
applied kinetic law corresponds to the mass action law). For 
instance, a transcription which when involves gene A, is regulated 
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by a transcription factor B and produces an mRNA concentra-
tion C, this can be described by the following formula

C  K  A     Btranscription gene transactivator[ ]   [ ]( )= +* * 1 	 (1)

Here, A is the expression level of gene A, which is set by some 
provided or previously computed input. The protein concen-
tration B has been computed by the corresponding translation 
and transcription related to gene B. The kinetic parameter 
Ktranscription is specified according to the type of reaction as 
described in our previous study.14

Molecular networks are specified in a simple XML-based 
format which can, for example, be exported using SimCell, 
COPASI, CellDesigner, or other systems biology–related soft-
ware. A network model defines a list of reactions and reaction 
objects. The latter comprise the inputs and outputs of the reac-
tions and are assigned different roles in the context of each 
reaction in which they take part, depending on the reaction 
type and the respective rate law. For example, for reactions of 
the transcription type, a list of objects which are categorized as 
genes will be expected, along with an (optional) set of objects 
which are classified as transactivators and transrepressors. Cell 
line or patient data (gene expression profiles) containing initial 
concentration values for specific components are also provided 
in a simple XML-based format (Supplemental information).

From these inputs, a combined network model is con-
structed, which is then subjected to an analysis to derive final 
concentration values. The simulation is carried out using the 
model analysis framework (MAF),15 a model-based imple-
mentation of the DFA technique. For this purpose, kinetic rate 
laws have been implemented as declarative and parametrizable 
data-flow rules which, in this application scenario, compute 
concentration values at network elements. First, the implemen-
tations of the kinetic rate laws are assigned to the respective 
reactions in the model, and the concentration values at the 
reaction objects are set to their initial values. This forms an 
(potentially cyclic) equation system, which is then evaluated 
using a demand-driven fixed-point algorithm: a kinetic rate 
law is selected and executed. Its implementation will then 
dynamically determine the required inputs and make a request 
to acquire their current values. This request is intercepted by 
MAF which records the dependency between input and output 
objects and schedules the evaluation of the corresponding rate 
laws. Due to cyclic paths, input values can change multiple 

times during the simulation in which case MAF automatically 
performs a repeated evaluation of the affected parts of the 
model. The dependency graph, which overlays the network 
model, allows the framework to derive an optimal optimized 
execution order, thereby greatly reducing the performance 
impact. Computation is aborted once concentration values sta-
bilize in a fixed point. For non-stable paths, recomputations are 
limited to a predetermined number to reflect the effects of 
natural decay.

AutoAnalyze is built on top of Eclipse RCP (www.
eclipse.org) technology and comprises a set of open service 
gateway initiative (OSGi) plugins which implement visuali-
zation, editing, and analysis functionality. Table 1 summa-
rizes and compares functions of visualization and simulation 
between different tools. A modular architecture and dedi-
cated extension points allow for extensive customization 
and support of arbitrary application domains via suitable 
connector plugins. Internal data representation relies on the 
eclipse modeling framework (EMF) which implements the 
meta-modeling standard MOF (http://www.omg.org/mof ), 
while simulation capabilities are provided by the MAF. The 
distribution also includes the statistics library Waikato 
Environment for Knowledge Analysis (WEKA) and the 
genetic algorithm framework Jenetics. A dedicated optimi-
zation mode makes use of these components to automati-
cally fine-tune kinetic constants by scoring analysis results 
for known outcomes. The installation package consists of a 
self-contained eclipse distribution and requires only JRE 
version 7 or newer to run.

Key Functions
The AutoAnalyze package provides users with an extensive set 
of functions to customize the visualization, including different 
layouts and filters. Editing functions, for example, setting 
inhibitors and the import of meta and treatment data of 
patients can be accessed via context menu. Separate tabs of the 
editor provide tabular views with detailed information about 
patient data and computed concentration values, which can 
also be exported as CSV files for external processing. Table 1 
summarizes and compares functions of visualization and simu-
lation between different tools.

Using the preferences dialog (Window/Preferences), the 
user can manually adjust constants for concentration decay and 
kinetic rate laws as well as normalization properties. Since 

Table 1.  Functional comparison between AutoAnalyze, CellDesigner, COPASI, and Cytoscape.

Visualization/simulation AutoAnalyze CellDesigner COPASI Cytoscape

Changing layout Yes Yes Yes Yes

Changing perspective No Yes Yes Yes

Search function/advanced effect Yes No No Yes

Construction/simulation Yes Yes Yes No

https://journals.sagepub.com/doi/suppl/10.1177/1177932218818458
www.eclipse.org
www.eclipse.org
http://www.omg.org/mof


Saad et al	 3

these values are based on approximations, AutoAnalyze also 
includes an optimization component which allows to fine-tune 
the analysis (Figure 1). The user can configure the exploration 
space by setting allowable ranges which are then explored using 
a genetic algorithm. A fitness function assesses the results for 
known treatment outcomes and scores the respective configu-
ration. Recently published open-source software BioNetGen2.2 
has functionalities similar to AutoAnalyze.16 The goal of 
BioNetGen2.2 is to improve execute-power for functional 
kinetic laws, accelerate the stochastic simulation, and enable 
hybrid particle/population simulation. Since AutoAnalyze 
employs a DFA-centric approach, various functional kinetic 
laws including stochastic kinetics can be applied seamlessly 
during mode simulation. One of its main purposes is the appli-
cation of flux-comparative-analysis (FCA), which usually 
requires users to simulate a genome-scale network with inte-
gration of large amount of genetic data such as NGS data to 
compare different states of individual objects, for instance, con-
trol versus treatment; and control versus mutation. To our 
knowledge, currently, only AutoAnalyze can fulfill this task. 
Furthermore, the software is able to take the morphology of 
input networks into consideration, which is normally neglected 
by other tools in systems biology. The final goal of AutoAnalyze 
is to support preclinical and/or clinical decisions. User-
guidance for simulation network and visualization can be found 
in the Supplemental information.

Case Study
We constructed a molecular metabolic network (MCPM: 
methionine cycle-based metabolic model) by combining infor-
mation from literature (PubMed search with keyword “meth-
ylation cancer drug”) and publicly available databases such as 
KEGG (http://www.genome.jp/kegg/). The construction was 
performed by applying SimCell and obeying the role of basic 
cellular biology: gene→RNA→protein.12 The MCPM was 
exported as an XML file (Supplemental information) and 
imported it into AutoAnalyze along with genetic data from the 
Cancer Cell Line Encyclopedia (CCLE).17 These input data 
consist of gene expression profiles of all cancer cell lines from 
CCLE and follow the XML-format described above 
(Supplemental information). To integrate the data with the 
model network described above, each component of the input 
model requires a unique identifier . In this case, all gene com-
ponents in the MCPM model were assigned their Ensembl 
ID. AutoAnalyze is then used as a computational machinery to 
simulate network states. The workflow of this case study is 
shown in the Figure 2. The output of AutoAnalyze comprises 
the simulation result for all reactions within the MCPM model 
in the form of concentration values. Activity states of specific 
network components were correlated with treatment response 
data (IC50) also available in the CCLE. Zhang et al did con-
firm that several components of the methionine cycle–based 
metabolism (MAT2A, ATP6V0E1, PIP4K2C, and others) 

Figure 1.  (A) A large-scale metabolic network is visualized in the graphical editor in AutoAnalyze; (B) the statistical evaluation of components is showing 

the concentration distribution for the selected reaction; and (C) the enlarged detailed view of a single component and related two reactions from this 

network.
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show differential correlation with IC50 with respect to treat-
ments applied. This result is in agreement with several 
independent studies and demonstrates the potential of compu-
tational simulation for the purpose of biomarker discovery 
within systems medicine.13 Evaluation of gene expression data 
of 479 cancer cell lines from CCLE using AutoAnalyze took 
approximately 900 seconds. The simulation duration of CCLE 
data integrated into the model MCPM with 4750 reactions 
and 3755 components in AutoAnalyze was approximately 
200 seconds. Consequently, the software allows bedside appli-
cation of specific system-medical computations for treatment 
decisions on a small standard notebooks or tablets.
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Figure 2.  The application workflow of AutoAnalyze regarding the case study.
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