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1 Introduction

Transition metal compounds exhibit some of the most intriguing phenomena in con-
densed matter physics. Famous examples are the occurrence of high-temperature su-
perconductivity in materials with copper-oxygen planes, the colossal magnetoresistance
in manganese-based perovskite oxides, or the Mott metal-insulator transition, e.g., in
certain vanadates. The richness of physics in these compounds is promoted by several
factors. First of all, electronic correlations play an important role due to the spatial
confinement in narrow d orbitals, so that the above mentioned effects cannot be de-
scribed within the one-particle picture. They have to be understood as cooperative
phenomena involving a large number of microscopic degrees of freedom. The complex
interplay of the d electrons’ internal degrees of freedom — i.e., charge, spin and orbital
angular momentum — together with the lattice degrees of freedom, often makes this
class of materials extremely sensitive to small changes in external parameters, such as
temperature, pressure, magnetic field, or doping. Moreover certain structural aspects
influence the emergence of exotic ordering phenomena at low temperatures. Geometric
frustration of the magnetic interactions and a reduced dimensionality have to be named
in this context.

In this thesis two studies of low-dimensional transition metal compounds are presented,
in which virtually all of the above listed ingredients contribute and the competition of
the involved degrees of freedom leads to interesting broken-symmetry ground states.
The physics of the quasi-two-dimensional material 1T -TaSe2, on which the focus lies
first, is characterized by the occurrence of two, usually separate phenomena: The charge
density wave (CDW) and the Mott metal-insulator transition. This is already a clear
sign that the charge, spin and lattice degrees of freedom are tightly entangled in this
system. Unfortunately, a theoretical description of the Mott transition is not yet able
to fully incorporate all these aspects. Up to date the Hubbard model, which is typically
chosen to describe strongly correlated systems, can only be solved under rather restric-
tive assumptions, and a realistic modelling including the coupling to the lattice is not
yet possible. Nevertheless, it will be shown that this system offers the opportunity to
study a metal-insulator transition that can be described in close analogy to the highly
idealized Hubbard model. It is possible to measure the energy- and momentum depen-
dent electronic excitation spectrum while tuning the crucial ratio U/W of the onsite
Coulomb energy U and the electronic bandwidth W in the same crystal, controlled by
an external parameter, namely by varying the temperature. Remarkably, this is possible
by exploiting the properties of the charge density wave, which modulates the transfer
integrals and therewith modifies the bandwidth as a function of temperature.
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1 Introduction

Motivated by the discovery of this effect in 2003 [Perfetti03], a detailed investiga-
tion of the electronic properties of 1T -TaSe2 was conducted by means of photoelectron
spectroscopy (PES), supplemented by density functional theory (DFT) calculations in
collaboration with Dr. Eyert (Universität Augsburg).

In the second and more extensive study focussing on the titanium oxyhalides TiOCl
and TiOBr, it will be shown that the physics of these low-dimensional compounds is
again characterized by the interplay between electronic and lattice degrees of freedom.
In conjuncture with the low spin of S = 1/2 and the geometric frustration of a simple
antiferromagnetic order, these quantum magnets can be considered promising candidates
for the long-sought realization of the resonating valence bond (RVB) state. However, it
will become clear that these compounds — at least when undoped — adopt a different,
but not less interesting ground state, viz., a spin-Peierls state with record-high energy
scales concerning the magnetic exchange and the transition temperatures.

This was first shown by Seidel et al. in 2003 [Seidel03], and motivated by this discovery
TiOCl single crystals were synthesized by means of the chemical vapor transport (CVT)
technique in cooperation with Dr. Klemm at Prof. Horn’s chair (Universität Augsburg).
It is not exaggerated to state that the sample preparation delivered excellent results, as
a comparison with other published results of, e.g., the magnetic susceptibility proves.
Based on this success, several experimental collaborations were initiated with the aim to
find a consistent and comprehensive picture of the physics in TiOCl. The nature of the
two successive phase transitions was investigated by measurements of the specific heat
by Dr. Hemberger at Prof. Loidl’s chair (Universität Augsburg) [Hemberger05]. Fur-
ther collaborations with Prof. Loidl’s group include an electron spin resonance (ESR)
study [Zakharov06], and an x-ray diffraction (XRD) experiment at Hasylab in Ham-
burg [Krimmel06] carried out by Dr. Krimmel, who is also in charge of neutron scatter-
ing experiments at the Institute Laue-Langevin in Grenoble, France. Another fruitful
collaboration exists with Prof. van Smaalen’s group (Universität Bayreuth), which lead
to the determination of the low-temperature structure of TiOCl and its unambiguous
identification as a spin-Peierls state [Shaz05]. Even though the following efforts did not
result in publications (yet), it is added that muon spin rotation (µSR) experiments were
conducted in a collaboration with Prof. Blundells group in Oxford, United Kingdom,
and an extended x-ray absorption fine structure (EXAFS) experiment was carried out
by Dr. Pfalzer of Prof. Horn’s chair at the ANKA synchrotron in Karlsruhe.

A main focus of this thesis must certainly be seen in the investigation of the electronic
structure of the oxyhalides TiOCl and TiOBr, both by experimental and theoretical
means [Hoinkis05,Hoinkis06]. An extensive photoemission study includes homelab mea-
surements at He i, He ii and AlKα photon energies, angle-resolved mappings of the elec-
tronic dispersions of both TiOCl and TiOBr (TiOBr crystals were supplied by Prof. van
Smaalen’s group), and polarization-dependent experiments with the aim to determine
the symmetry of the TiOCl valence states. Furthermore, photoemission and x-ray ab-
sorption synchrotron experiments were performed at the Swiss Light Source in Villigen,
Switzerland, at Elettra in Trieste, Italy, and at BESSY ii in Berlin, which turned out
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to be complicated by charging effects due to the insulating nature of TiOCl. On the
theoretical side, the photoemission data were complemented within a framework of col-
laborations with several theory groups. The cooperation with Prof. Valenti (Universität
Frankfurt) and her co-workers is pointed out as particularly productive, as it enabled
a comparison of the experimental TiOCl and TiOBr spectra to various DFT calcula-
tions [Hoinkis05,Hoinkis06]. Moreover, a collaboration with Prof. Jeckelmann (Univer-
sität Hannover) and Dr. Benthien (Universität Marburg), who calculated the spectral
function of the one-dimensional Hubbard model, must not be forgotten, as their results
turned out to yield the best available match to the photoemission data [Hoinkis05].

Last but not least another experimental collaboration is cited to close the circle and
return to the initially mentioned prospects regarding RVB physics in TiOCl: Very in-
teresting results arose from the cooperation with Prof. Kuntscher’s group (formerly
Universität Stuttgart, now Universität Augsburg), which discovered a metal-insulator
transition under pressure by means of optical spectroscopy [Kuntscher06]. The possibil-
ity to drive the compound TiOCl into a metallic state certainly fuels the speculations of
the proximity to an RVB state, which is particularly interesting considering the prospects
of a novel, RVB-type superconductivity.

Outline of the Thesis

This dissertation is structured as follows: In Chapter 2 the theoretical concepts necessary
to describe the various phenomena occurring in the examined compounds are discussed.
It was already mentioned that this includes the Mott metal-insulator transition, the
charge density wave instability, the spin-Peierls transition, and the RVB model. It will
be seen that these topics, although they might seem rather unrelated at first glance,
share many common features and exhibit a multitude of parallels. This becomes ob-
vious, for example, in the often very similar description of the systems with Hamilton
operators that appear in almost identical form in various sections of this chapter. And
also certain aspects of the mean-field descriptions, which often refer to the well known
BCS results of ordinary superconductivity, show a strong resemblance in this chapter.
After a brief introduction into the experimental technique of photoemission, which is
given in Chapter 3 due to its importance for this thesis, the two central chapters follow.
Chapter 4 focusses — as outlined above — on the experimental and theoretical inves-
tigation of the transition metal compound 1T -TaSe2. In Chapter 5, a comprehensive
study of the titanium oxyhalides TiOCl and TiOBr by means of various experimental
and theoretical methods is presented. The thesis concludes with a short summary in
Chapter 6.
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2 Theoretical Concepts

2.1 Mott Transition

It was a great success of quantum mechanics in the 1920s and 1930s that the metallic or
insulating behavior of numerous materials could be explained applying the independent
electron approximation. Band theory discovered that the distinctive feature between
metals and non-metals is the presence or absence of a partly filled band. However, it
was soon realized that systems with open d and f shells, where the corresponding orbitals
are quite localized and hence the electrons occupy narrow orbitals, pose a problem to this
scheme. In many transition metal compounds, especially in those involving cations of the
3d series, the independent electron approximation breaks down: The highly correlated
electrons experience a strong, short-ranged Coulombic repulsion so that they cannot
be treated independently. At a conference in Bristol in 1937 it was pointed out by
de Boer and Verwey that Nickel oxide is an insulator despite the fact that its eight
d electrons should only partly fill the 3d subshells [Mott90]. In the following discussion
Peierls already attributed this phenomenon to electronic correlations, but it took more
than ten years until Mott published his famous work that explains the insulating nature
of NiO and describes the possibility of a metal-insulator transition, now termed the
Mott transition [Mott49,Mott61]. It was mainly for this work that he was granted the
1977 Nobel prize in physics, together with van Vleck and Anderson. It is interesting to
note that, beyond this achievement, the latter name is inseparably connected with the
resonating valence bond theory presented in Chapter 2.4.

In a Gedankenexperiment Mott imagined a crystalline array of hydrogen-like atoms
with a lattice constant a that can be varied, as illustrated in Fig. 2.1 (a) [Mott61]. In a
tight-binding picture, the single s electron per site gives rise to a half-filled band, whose
width depends on the orbitals’ overlap. Starting with a value of a comparable to the
extent of the 1s orbital, a rather wide band will be formed. According to band theory
this crystal is expected to be metallic. This statement should continue to hold when
the interatomic distances are increased. Of course, the s band will become narrower as
sketched in Fig. 2.1 (b), nevertheless it will be always half-filled so that the hypothetic
crystal remains in a metallic state. It goes without saying that this scenario eventually
becomes absurd, when the lattice constant is large enough that clearly an array of
neutral atoms is expected. This result can not be explained within the independent
electron picture. How can it be then understood that the hypothetical stretching of
this crystal will finally end in an insulating state? The crucial argument is that at
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(a)

b b b b b

b b b b b

b b b b b

b b b b b
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U

a

(b)

E

a

Figure 2.1: Gedankenexperiment of a hypothetical crystal with variable lattice constant. (a) Square
lattice with a lattice constant a and one electron per site. Hopping of an electron creates a doubly-
occupied site and is therefore connected with the energy cost U . (b) Schematic representation of the
lattice constant dependence of the tight-binding band structure. The s band becomes narrower with
increasing lattice constant a, but stays half-filled (The shading indicates filled states).

half-filling transport of charge is inevitably connected with double occupancy of sites.
If two electrons share the same orbital, they have to pay an energy cost, the intra-
atomic Coulomb energy, usually referred to as Hubbard U . This quantity is typically
in the range from 1 eV to 10 eV for the valence orbitals of a solid material. The critical
question is now, does the kinetic energy gain t connected with the hopping outweigh
the energy cost U? Above some critical value of the lattice constant it will certainly
not, so that an insulating state results. It is remarkable that there is no smooth cross-
over from the metallic to the non-metallic state as one could naively expect — on
the contrary, a first order phase transition was predicted by Mott using a screening
argument [Mott61]. He pointed out that in the insulating state, electron-hole pairs can
be formed as a consequence of their Coulomb attraction. For the metallic phase he
assumed that the formation of excitons is inhibited by the Thomas-Fermi screening,
where the bare Coulomb potential −e2/r is replaced by

− (e2/r) exp (−qr), (2.1)

with the constant q depending on the density of free electrons n. He assumed that
the transition into an insulating state would occur when the screening is just weak
enough that an electron could be trapped. The resulting transition would therefore be
discontinuous. From this condition Mott estimated the threshold

n1/3aH ≈ 0.2 (2.2)

for the metal-insulator transition, where aH is the Bohr radius.
While the Mott insulator can be easiest understood in the above real-space picture,

the conduction electrons of metals are best described as Bloch waves in momentum
space. The modelling of the Mott transition is complicated as one moves away from
these extreme limits and tries to address the electrons of transition metal compounds
that are neither fully itinerant nor fully localized at their atomic sites [Kotliar04].
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2.1 Mott Transition

Hubbard Model

The simplest model able to describe these two extreme cases is the Hubbard model.
It became a standard framework for studying the Mott transition since it was intro-
duced independently by Gutzwiller, Hubbard and Kanamori [Gutzwiller63,Hubbard63,
Kanamori63]. The single-band Hubbard Hamiltonian reads

HHubbard = T + U = t
∑
〈ij〉σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓, (2.3)

where i and j are lattice site indices, σ =↑,↓ denotes the spin, angle brackets 〈ij〉 indicate
a summation over nearest neighbors, and every pair shall be counted only once. The
operator c†iσ creates an electron with spin σ in a Wannier state φ(r−Ri) at the lattice
site i, whereas ciσ is the corresponding destruction operator. The number operator is
defined as niσ = c†iσciσ.

The Hubbard Hamiltonian is characterized by the competition of its two parts, the
kinetic energy or band term T and the interaction term U . The relative strength of
the two terms is parameterized by the transfer integral t and by the local Coulomb
repulsion U , respectively. While the kinetic part promotes the mobility of electrons, the
interaction energy is minimized by suppressing charge fluctuations involving a double
occupancy of sites — a localization at the atomic sites is thus favored. The two parts
will be separately examined in the following.

The kinetic energy term T describes the energy gain associated with hopping from
site to site. Note that this term, strictly speaking, has contributions from both the
kinetic energy, and the atomic potentials [Fazekas99a]. This band term can be Fourier
transformed into its diagonal representation

T =
∑
kσ

εknkσ. (2.4)

The dilemma of choosing between real space and momentum space to describe the Mott
transition is now also formally evident: While the kinetic part T is diagonal when
expressed in terms of Bloch waves, the interaction part U is diagonal in real space using
the Wannier state description. The energy ε(k) of the Bloch wave is obtained by the
Fourier transformation. For a D-dimensional cubic lattice with lattice constant a the
result is simply

ε(k) = −2t
D∑

j=i

cos kja. (2.5)

The bandwidth W is thus proportional to the hopping probability:

W = 4Dt (2.6)

Instead of this tight-binding approach, it is also possible to admit any form of ε(k) in
the Hubbard model, so that the result of band structure calculations can be adopted.

7
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b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b(a) (b) (c)

ǫat

ǫat + U

LHB

UHB

Spectral function

Figure 2.2: (a) Snapshot of the Fermi sea ground state of T . On average 25% of the sites are doubly
occupied, and 25% are empty. (b) One possible configuration of the insulating ground state of U .
Every site is occupied with exactly one electron. For N sites, 2N degenerate spin configurations exist.
(c) Energy level diagram for two sites with single and double occupancy, respectively. The incoherent
propagation of these states leads to the broadened lower Hubbard band (LHB) and upper Hubbard
band (UHB) shown on the right hand side.

At half-filling, the metallic ground state |Ψm〉 of T is easily determined: It is given by
the Fermi sea

|Ψm〉 =

εk<εF∏
k

c†k↑c
†
k↓ |0〉 , (2.7)

filled up to the Fermi energy εF. In this state the occupancy of an orbital by an electron
with spin “up” is independent of its occupation with spin “down”. In other words, the
probability of finding an electron with a certain spin direction at a given site is 50%.
Consequently the probability for double occupancy is 25%, just as 25% of the sites will
be empty. Figure 2.2 (a) shows a snapshot characteristic of the Fermi sea in real space.

Now the second part of the Hubbard Hamiltonian, U , will be addressed. It takes
account of the interaction of electrons sharing the same Wannier orbital due to the
Coulomb repulsion. The Hubbard U is defined as

U =

∫
dr1 dr2 |φ(r1 −Ri)|2

e2

|r1 − r2|
|φ(r2 −Ri)|2 . (2.8)

In this simple model only the onsite Coulomb interaction is regarded, while the long-
range part of the Coulomb interaction is neglected (which indeed at least partially cancels
out due to screening effects). The insulating ground state |Ψi〉 of the interaction term U
at half-filling is trivially given by the constellation with every site singly occupied. It is
highly degenerate since every spin is free to point up or down,1 as shown in Fig. 2.2 (b).

An interesting observation can be made when the two states |Ψm〉 and |Ψi〉 are used as
trial wave functions for the Hubbard Hamiltonian [Müller-Hartmann88]. For a cubic two-
dimensional lattice the energies of these states are obtained to be εm = −16t/π2 + U/4

1In Chapter 2.3 it will be seen that a Mott insulator tends to magnetic ordering in the sense that the
spins effectively interact. However, for this phenomenon it is essential that hopping of electrons is
allowed for, whereas here only the term U is considered.
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2.1 Mott Transition

and εi = 0. From this simple estimate it can be already concluded that a critical ratio
U/t exists, where the system undergoes a transition from metallic to insulating behavior.
For the one-dimensional Hubbard model it must be stated though, that a metal-insulator
transition does not occur, proven by Lieb and Wu with a Bethe Ansatz [Lieb68]. Later in
this chapter the extreme opposite, i.e., the limit of infinite dimensions, will be examined.

At this point some general remarks about the properties and limitations of the Hub-
bard model are appropriate. First the symmetry of the Hubbard model shall be illumi-
nated. In addition to the purely geometrical symmetries of the underlying lattice, it is
easy to see that the Hamiltonian 2.3 shows spin-rotational invariance. This means that
any form of magnetic ordering that can arise (cf. the discussion in Sec. 2.3) must be
regarded as a spontaneous breaking of this symmetry. Furthermore, the model exhibits
time-reversal invariance in the absence of magnetic fields. Depending on the chosen
lattice, also electron-hole symmetry is possible [Fazekas99a]. Note that for the system
1T -TaSe2 investigated in Chapter 4 this is not the case.

One of the most drastic simplifications of this one-band Hubbard model — besides
the artificial truncation of the Coulomb repulsion — is that only the electrons of a
single orbital are considered. It must be kept in mind that in the systems of interest
the partially filled d shells are often characterized by orbital degeneracy, which is an
important source of more complicated behavior.

Having presented the limits of either t or U being zero, the discussion of the interme-
diate regime is now commenced, coming from the atomic limit where the Hubbard U
dominates the parameter t. If hopping from site to site is allowed for, the picture drawn
in Fig. 2.2 (b) will change in the sense that a small fraction of sites will become occupied
with two electrons. The diagram of Panel (c) shows what energetic configurations can
arise as a consequence of the hopping processes. The sites with single occupation are
characterized by their atomic energy, which is labelled εat. Electron pairs in the same
orbital, on the other hand, have the energy εat +U , since the local Coulomb energy has
to be paid in this case. The level scheme is thus occupation-dependent: The existence
of the upper energy level depends on the presence of electrons in the lower level. In
the solid the excitations, viz., both the double occupation and the hole left behind, can
propagate through the crystal. However, they will be scattered at the internal degrees
of freedom like spin, or orbital angular momentum (not included in the simple Hubbard
Hamiltonian 2.3). Consequently, a broadening into the incoherent, so-called lower and
upper Hubbard bands will set in, as sketched in Panel (c) of Fig. 2.2. It is underlined
that the emergence of the Hubbard bands is a many-particle effect. The Hubbard bands
must therefore not be interpreted in the usual semiconductor band picture. The dif-
ference becomes obvious when the number of states in a Hubbard band is considered.
While an ordinary band of a crystal with N sites can host 2N electrons, a full Hubbard
band contains only N electrons. Consequently, the density of states (DOS) is strictly
speaking not a useful quantity for the description of the many-body electronic structure.
Instead, the spectral function A(E) can be used to take over this role, as it measures
the probability of removing (adding) an electron from the many-particle system at the
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energy E below (above) the Fermi level. Therewith it can be regarded as the counterpart
of the density of states of the one-particle picture.

Limit of Infinite Dimensions

Amazingly, it is possible to gain more insight into the nature of the Hubbard model by
considering the limit of D = ∞. In 1989 Metzner and Vollhardt were able to show that
in this limit the diagrammatic treatment of the Hubbard model simplifies substantially,
while the many-body nature is still preserved [Metzner89]. The advantage that the
infinite-dimensional model offers can be understood by the following argument. The
complexity of a many-particle problem is greatly reduced by applying a mean field
theory: Instead of being forced to treat each single electron explicitly, for it is coupled
with its neighbors, the system is mapped onto an effective one-body problem. While in a
three-dimensional simple cubic system every site is coordinated by six nearest neighbors,
the infinite-dimensional hypercubic lattice is characterized by an infinite coordination
number. In this limit an electron can be imagined as interacting with a bath of non-
interacting excitations — in other words, the mean field theory becomes exact. This is
the basis for the dynamical mean field theory (DMFT).

Before its results with direct impact for the understanding of the Mott metal-insulator
transition will be presented, a couple of particularities at D = ∞ shall be briefly ad-
dressed. If each site is connected to an infinite number of nearest neighbors that can
be reached by a hopping process, the parameter t associated with this hopping must
be scaled suitably, so that the kinetic energy does not diverge. A further important
aspect that must be kept in mind when dealing with infinite dimensions is that certain
familiar and useful concepts fail to hold any longer. One such example is the Fermi
surface, which separates occupied and unoccupied regions in k-space. This concept is
based on the smoothness in the k-dependence of the electronic energies, which is absent
at D = ∞: Electronic states with nearby momenta possess completely uncorrelated
energies [Fazekas99a].

By means of the dynamical mean field theory it became possible to fill the gap between
the two extremes of the ratio U/W . For W dominating over U , the spectral function is
characterized by a quasiparticle peak — while the two Hubbard subbands arise in the
opposite limit U/W � 1, i.e., in a Mott insulator. The DMFT is able to realistically
describe materials in the intermediate regime ranging from weakly correlated metals to
Mott insulators. DMFT results of two calculations with different ratios U/W taken from
Ref. [Bulla99] are plotted in Fig. 2.3. The spectrum with U/W = 2 lies on the insulating
side of the transition. At the Fermi energy the intensity vanishes, the spectral weight
is found instead in the lower and upper Hubbard bands separated by the energy U , as
it was expected from the simple picture drawn in Fig. 2.2. When the value of U/W is
lowered below the critical value of ≈ 1.4, a quasiparticle peak emerges at zero energy.
The resulting three-peak structure shown for U/W = 1 can be regarded as being typical
for a correlated metal. These two spectra illustrate how the spectral features, which can
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Figure 2.3: Evolution of the spectral functions calculated in the dynamical mean field theory for the
infinite-dimensional Hubbard model [Bulla99]. In the insulating regime, i.e., for U/W = 2, the spectrum
consists of two features, the lower and upper Hubbard bands, located at the energetic positions ± 1

2U .
Lowering U leads to a metal-insulator transition, so that for U/W = 1 a metallic spectrum results. As
a third feature a quasiparticle (QP) peak appears at the Fermi energy.

be measured by photoemission, evolve in the dynamical mean field theory solution of
the Hubbard model at half-filling. A metal-insulator transition is observed that can be
characterized by a transfer of spectral weight between the low-frequency quasiparticle
peak and the high-frequency Hubbard subbands.

2.2 Charge Density Waves

A charge density wave is a broken-symmetry state that develops in low-dimensional
metals as a consequence of electron-phonon interactions. In 1955 Peierls discovered
that in one dimension (1D), a metallic state coupled to phonons is not stable at low
temperatures. Interestingly, the relevance of this phenomenon for real physical systems
was not clear at that time even to Peierls himself, as he describes in Ref. [Peierls91]:

“This instability came to me as a complete surprise when I was tidying
material for my book [Peierls55], and it took me a considerable time to
convince myself that the argument was sound. It seemed of only academic
significance, however, since there are no strictly one-dimensional systems
in nature (and if there were, they would become disordered at any finite
temperature [Peierls34]). I therefore did not think it worth publishing the
argument, beyond a brief remark in the book (. . . ).”

Today the Science Citation Index Expanded database [ISI06] counts approximately 2000
cited references for this brief remark, and several groups of organic and inorganic com-
pounds are known that display this so-called Peierls instability.

Charge density waves can occur in materials with two- or even three-dimensional band
structures, but they are basically a one-dimensional phenomenon [Grüner88]. However,
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as was already touched upon in the above quote, a transition into a state with long-range
ordering is not possible for a strictly one-dimensional system at finite temperatures. This
is due to fluctuations of the order parameter [Peierls34, Landau79]. In real materials,
weak interchain interactions and also three-dimensional phonons will always be present,
so that the Peierls state with broken translational symmetry can survive at finite tem-
peratures. Such systems are termed quasi-one-dimensional.

As it will be argued in the remainder of this section, the driving force of a charge
density wave is the lowering of the electronic free energy. The related instability con-
nected with a lowering of the magnetic free energy resulting in the so-called spin-Peierls
transition originates from spin-phonon coupling and is treated in Section 2.3.

It is emphasized that the CDW instability is a cooperative phenomenon and can only
be understood by inspecting the interplay between lattice and electronic system. This
can be done from both viewpoints, i.e., starting from an unperturbed electronic system
and considering the coupling to the phonons as perturbation, or vice versa. In this
section both aspects will be illuminated. It commences with a brief presentation of the
2kF-instability of the 1D free electron gas. The focus is then set on the phonon system,
treating the electron-phonon coupling as a perturbation, which results in a renormal-
ization of the phonon dispersion known as the Kohn anomaly. This is followed by a
mean-field treatment where the roles are interchanged, thus showing how the electronic
properties are altered in the presence of a perturbing potential induced by the interaction
with phonons.

Response Function of the Free Electron Gas

In order to understand how the energy of the electronic system is lowered in a charge-
Peierls system, it will be shown that a one-dimensional electron gas is unstable towards
a perturbation with wave vector 2kF. To this aim the response of the free electron
gas to a time-independent potential with Fourier components φ(q) will be examined
(boldface symbols denote three-dimensional vectors) [Grüner94]. If φ(q) is small it is
a fair assumption that the Fourier components of the induced charge density ρind(q)
depend linearly on the perturbation, and one can write

ρind(q) = χ(q)φ(q). (2.9)

The constant of proportionality χ(q) is the so-called Lindhard response function, which
is given by

χ(q) = −e2
∑
k

fk − fk+q

εk − εk+q

, (2.10)

where fk ≡ f(εk) is the Fermi distribution. Evaluating this sum at zero temperature
yields the results displayed in Fig. 2.4 (a). It can be seen that the response in one dimen-
sion is dramatically different from that obtained in higher dimensions: χ(q) diverges at
q = 2kF in the one-dimensional case, whereas this divergence is absent in two or three
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Figure 2.4: (a) Lindhard response function χ for the one-, two-, and three-dimensional free electron
gas at zero temperature as function of the wave vector q [Grüner94]. (b,c) Fermi surfaces of the one-
and two-dimensional free electron gas. The arrows indicate electron-hole pairs differing by the wave
vector q of length 2kF. (d) Contour plot of constant energy surfaces of a quasi-one-dimensional electron
gas (ta/tb = 8). The Fermi surface is plotted as a thick black line and arrows indicate the partial
nesting.

dimensions. The logarithmic singularity of the one-dimensional electron gas is the ori-
gin of the Peierls instability, as it implies that an arbitrarily small external perturbation
leads to a divergent charge density response. This suggests through self-consistency that
the electron gas itself is unstable towards a periodic modulation of the charge density.

The underlying reason for this qualitative difference between one and higher dimen-
sions can be understood from the Fermi surface topology. The largest contributions to
the sum in Equation 2.10 come from pairs of states, one occupied and one empty, that
are connected by the same wave vector q and differ only negligibly in energy. This con-
dition can be fulfilled if large portions of the Fermi surface can be mapped onto other
areas by translation with the same momentum vector q. In one dimension, where the
Fermi surface consists of two parallel planes 2kF apart, this so-called nesting condition
is perfectly fulfilled, as depicted in Fig. 2.4 (b). In Panel (c) it is shown that already in
two dimensions only a vanishing fraction of the Fermi surface can be connected with the
same wave vector. This causes the removal of the singularity in the response function.
However, the possibility of a Peierls instability does also exist in two dimensions if a
strong anisotropy of the electronic structure is given. In order to model such a system
an electronic dispersion

ε(k) = ε0 − 2ta cos(kxa)− 2tb cos(kyb) (2.11)

shall be assumed, with tight binding parameters ta,b. The anisotropy is taken into
account choosing ta � tb. Figure 2.4 (d) shows the Fermi surface that results from such
a quasi-one-dimensional electronic dispersion. The resemblance to the 1D Fermi surface
is apparent, and it can be seen that large parts of the Fermi surface fulfill the nesting
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condition. With ta/tb approaching unity, this fraction will be diminished as the number
of electron-hole pairs that contribute significantly to Equation 2.10 becomes smaller,
leading to a gradual removal of the logarithmic singularity in the response function.
In a real system, the Fermi surface will in general possess a much more complicated
topology than that depicted in Fig. 2.4 (d). However, it is still possible — even in three
dimensions — that parts of the Fermi surface nest with each other with the same effect
discussed above.

The interaction of the electronic with the phonon system provides the perturbation
that is responsible for the emergence of a broken-symmetry state in CDW systems. To
illustrate this, an external potential φext shall be considered, which leads to a density
fluctuation ρind, and — as a consequence of the electron-phonon coupling — to a poten-
tial φind induced by ρind. With the electron-phonon coupling constant g < 0 assumed to
be momentum-independent, one can write

φind(q) = −g ρind(q). (2.12)

With Equation 2.9, the induced charge density can be expressed as

ρind(q) =
χ(q)φext(q)

1 + g χ(q)
. (2.13)

This means that the system is unstable when 1 + g χ(q) vanishes. At T = 0 the
system will thus be subject to the Peierls instability if the electronic response function
is sufficiently large. A CDW system is then characterized by a broken-symmetry state
with a finite induced charge density ρind.

Up to this point, only the case T = 0 was discussed. Finite temperatures have the
effect of attenuating the singularity of the electronic response. It is thus clear that raising
the temperature will eventually lead to a phase transition, usually referred to as Peierls
transition, into a state with unbroken symmetry.

As pointed out, in CDW systems electron-phonon coupling is responsible for the for-
mation of electron-hole pairs. A closely related phenomenon that can be caused by
electron-phonon coupling is the formation of electron-electron pairs leading to supercon-
ductivity. If the circle is drawn wider and a generic interaction potential is assumed,
even more possible instabilities come into view. The nature of the adopted ground state
depends on the detailed interaction potential and its q-dependence. In Table 2.1 the four
possibilities of pair formation are summarized that occur considering a one-dimensional
metal. In this case, the Fermi surface simply consists of two points at ±kF. The first
two of these states involve electron-electron pairing: Cooper pairs with total momentum
q = 0 are formed in the ground state of the singlet or triplet superconductors. In the
last two states electron-hole pairing with a finite momentum q = 2kF leads to a periodic
modulation of the charge and spin density. The latter phenomenon is the so-called spin
density wave and is caused by the electron-electron interaction.
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Table 2.1: Possible broken symmetry ground states of one-dimensional metals. Electrons and holes
are denoted by e and h, respectively, the subscripts 1 and 2 refer to the two points of the Fermi surface
at ±kF, and arrows indicate the spin orientation.

Ground state Paring Total Spin Total Momentum

singlet superconductor e1↑ , e2↓ S = 0 q = 0

triplet superconductor e1↑ , e2↑ S = 1 q = 0

charge density wave e1↑ , h2↑ S = 0 q = 2kF

spin density wave e1↑ , h2↓ S = 1 q = 2kF

Fröhlich Hamiltonian

Turning back to the charge density wave, another effect of the electron-phonon coupling
has to be mentioned: Not only the electronic system is affected but also the lattice.
The modulation of the charge density is always accompanied by a modulation of the
lattice with the same periodicity. Both the renormalization of the electron and the
phonon spectrum that are responsible for the according modulations can be understood
by describing an electron gas coupled to the phonon system with the Fröhlich Hamil-
tonian [Fröhlich54]. The following treatment is motivated not only by its relevance for
the CDW system 1T-TaSe2, but also because the results can partly be applied to the
spin-Peierls transition treated in Section 2.3 and, last but not least, it is apt to show
very nicely the analogies between the charge-Peierls and the spin-Peierls transition.

The Fröhlich Hamiltonian consists of two parts, viz., the unperturbed Hamiltonian
H0, describing the free electron gas and the phonon system, and the perturbation Hel-ph,
describing the electron-phonon interaction. The first part is given in second quantized
notation as

H0 =
∑
k

εkc
†
kck +

∑
q

h̄ωqb
†
qbq, (2.14)

where the free electron gas is represented by the sum over the creation and annihilation
operators c†k and ck for an electron with energy εk = h̄2k2/2m and wave vector k. The
phonon part is described in terms of the corresponding bosonic operators b†q and bq
of a phonon with energy h̄ωq and wave vector q. For simplicity only a single acoustic
phonon branch with longitudinal polarization is considered. The interaction Hamiltonian
is expressed in this notation as

Hel-ph =
∑
k,q

gkq(b
†
−q + bq)c

†
k+qck, (2.15)

where gkq is the electron-phonon coupling constant. Summing up both contributions,
the Fröhlich Hamiltonian reads

HFröhlich =
∑
k

εkc
†
kck +

∑
q

h̄ωqb
†
qbq +

∑
k,q

gkq(b
†
−q + bq)c

†
k+qck. (2.16)
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Figure 2.5: Diagrammatic representation of an electron scattered under emission (a) or absorption (b)
of a phonon. In both cases the total wave number is conserved.

The interaction can be viewed as consisting of two parts: Terms involving b†−qc
†
k+qck and

terms involving bqc
†
k+qck. The underlying physical processes are visualized in Fig. 2.5.

In the diagram (a), an electron with wave number k is scattered into a state with k + q
under emission of a phonon with wave number −q. Panel (b) shows the corresponding
diagram where a phonon with wave number q is absorbed in the scattering process.

Kohn Anomaly

The renormalization of the phonon dispersion can be derived using perturbation theory
[Taylor02]. The total energy of the Fröhlich Hamiltonian to second order in Hel-ph can
be written as

ε = ε0 + 〈Ψ|Hel-ph |Ψ〉+ 〈Ψ|Hel-ph(ε0 −H0)
−1Hel-ph |Ψ〉 , (2.17)

where ε0 is the unperturbed energy of the state Ψ with nq = b†qbq phonons in the

longitudinally polarized mode q and nk = c†kck electrons in state k. It can be easily
seen that the first order term vanishes. The interaction Hamiltonian Hel-ph contains only
terms that either destroy or create one phonon, so that Hel-ph |Ψ〉 is orthogonal to |Ψ〉.
This argument does not apply to the second term, since a phonon destroyed by the first
operator Hel-ph can be replaced by the second Hel-ph, and vice versa. A typical scattering
event contributing to the second-order term is depicted in Fig. 2.6 (a): An electron is
scattered from state k into state k+q under absorption of a phonon with wave vector q.
The electron is then scattered back into its original state associated with the re-emission
of a phonon, again with wave vector q, so that the total momentum is conserved.

The resulting total energy of second order perturbation theory can be used to de-
termine the perturbed phonon frequency ω(p)

q , as it can be identified with the energy
required to create one phonon:

h̄ω(p)

q =
∂ε

∂〈nq〉
= h̄ωq −

∑
k

2|gkq|2
〈nk+q(1− nk)〉
εk − εk+q

, (2.18)

where nk = c†kck and nq = b†qbq are the number operators for electrons and phonons,
respectively.

The origin of this renormalization can be understood redrawing the diagram shown
in Fig. 2.6 (a) in the form of Fig. 2.6 (b), which focusses on the role of the phonon. Here
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Figure 2.6: Two equivalent diagrams describing the same scattering process that contributes to the
energy of the electron-phonon system in second order perturbation theory. (a) An electron is scattered
under absorption and re-emission of a phonon. (b) A phonon is annihilated and re-created involving a
virtual electron-hole pair.

the first scattering event is viewed as the creation of an electron hole pair. To formulate
the key point of this diagram, one can say that the phonon spends part of its time as a
virtual electron-hole pair, and through this process its energy is renormalized.

In this form the phonon renormalization is reminiscent of the expression for the elec-
tronic response function in Equation 2.10. Again, the most significant contributions to
the sum come from pairs of states, one occupied and one empty, which differ by the same
wave vector q and possess the same energy. Similarly to the discussion that followed
Equation 2.10, where the topology of the Fermi surface in one dimension was found to
be the origin of the singularity in the response function, one can now argue that the
Fermi surface topology plays a crucial role in determining the phonon renormalization.
Consequently, the dimensionality strongly influences the outcome, as it can be seen in
Fig. 2.7 (a): In three dimensions it is only the derivative ∂ω

(p)
q /∂q that diverges when

the phonon wave vector is equal to the diameter of the Fermi surface. In other words,
a kink appears in the phonon dispersion. This effect is known as the Kohn anomaly. In
one dimension this effect is much more pronounced, the sum in Equation 2.18 actually
diverges at zero temperature, which is of course unphysical. However, on its way to neg-
ative infinity the phonon frequency must pass through zero, and this simply means that
the lattice becomes statically distorted. At finite temperatures, the sum shows no diver-
gence. Upon cooling the phonon is said to “soften”, i.e., its frequency is lowered, until
it finally reaches zero, indicating a “frozen-in” lattice distortion. This static distortion,
caused by a macroscopically occupied phonon mode, is then energetically favored by the
system. As it will be shown, an electronic band gap opens at the Peierls transition, in
this way prohibiting the sum in Equation 2.18 from the unphysical divergence.

Mean-Field Treatment

Having examined the effect of the electron-phonon coupling on the phonon dispersion,
which finally led to the Kohn anomaly, in the following it will be shown how the electron
dispersion is altered. To this aim a mean-field approach will be applied to the case of
a CDW system, in close analogy to the BCS treatment of low-temperature supercon-
ductors. However, one has to keep in mind that serious deviations from the mean field
treatment cannot be excluded because of the necessarily low-dimensional character of a
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Figure 2.7: (a) Acoustic phonon dispersion relation for one-, two-, and three-dimensional metals as
function of the wave vector q [Grüner94]. The renormalization at 2kF is known as the Kohn anomaly.
(b) Tight binding electron band for a one-dimensional system. A band gap of 2|∆| opens at ±kF in the
Peierls state. (c) Electron density and atomic positions for a one-dimensional system. In the Peierls
state a charge density wave develops, accompanied by a periodic lattice distortion.

Peierls system.
The Fröhlich operator 2.16 can be simplified using a mean-field approximation, i.e., by

replacing the boson operators nq, bq, and b†q by their expectation values 〈nq〉, 〈bq〉, and
〈b†q〉. Note that, in contrast to the normal metallic state, the expectation values 〈bq〉 and
〈b†q〉 do not vanish below the Peierls transition due to the existence of macroscopically
occupied phonon modes. They are thus well suited to define an order parameter. In the
following the discussion is limited to the one-dimensional case, and the order parameter
is defined as

∆eiφ = g2kF

(
〈b2kF

〉+ 〈b†−2kF
〉
)
, (2.19)

where ∆ shall be chosen to be real. Applying the mean field replacements, the Fröhlich
Hamiltonian reads

H =
∑

k

εkc
†
kck +

∑
q

h̄ωq〈b†qbq〉+
∑
k,q

gq〈b†−q + bq〉c†k+qck, (2.20)

and the sum over q now contains only the values ±kF. Using 〈b2kF
〉 = 〈b†−2kF

〉 and
g2kF

= g−2kF
, the electronic part of the Hamiltonian can be written as

Hel =
∑

k

εkc
†
kck + 2g2kF

∑
k

[
〈b†−2kF

〉c†k+2kF
ck + 〈b−2kF

〉c†k−2kF
ck

]
. (2.21)

With the order parameter introduced above, the electronic part of the Hamiltonian
becomes

Hel =
∑

k

[
εkc

†
kck + ∆eiφc†k+2kF

ck + ∆e−iφc†k−2kF
ck

]
. (2.22)
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This is a typical mean-field Hamilton operator and strongly resembles the model Hamil-
tonian for a low-temperature superconductor, described for example in Ref. [Tinkham75].
The major difference to the case of superconductivity, however, lies in the fact that in
Equation 2.22 the order parameter is connected with the occurrence of electron-hole
pairs, whereas superconductivity is based on the formation of electron-electron pairs,
viz., the Cooper pairs (cf. Table 2.1).

The mean-field Hamiltonian can be diagonalized utilizing a canonical transforma-
tion [Grüner94] — the counterpart of the Bogoliubov transformation in normal BCS
theory. For the detailed solution the reader is referred to the extensive BCS treatment
in the literature for the superconducting state. As a direct result of the canonical trans-
formation the excitation spectrum is obtained. An energy gap 2∆ is introduced in the
electron band structure so that the one-electron energies Ek become

Ek = sgn(εk)
(
ε2k + ∆2

)1/2
, (2.23)

where εk, the unperturbed single electron energy, is measured from the Fermi level.
This result is plotted in Fig. 2.7 (b). The order parameter ∆eiφ can either be viewed
as describing the lattice distortion, as it was introduced above, or, alternatively, be
identified with the band gap.

Another straightforward output of the mentioned transformation is the charge density
being periodically modulated in the Peierls state, depicted in Fig. 2.7 (c) together with
the static distortion of the underlying lattice. In one dimension it is especially simple to
understand the nature of the Peierls instability: Then kF lies exactly halfway between Γ
and the Brillouin zone boundary, and the lattice distortion is simply a dimerization. A
new periodicity is thus introduced, and Bragg scattering of the electron states at the new
Brillouin zone boundaries leads to the opening of the electronic band gap. Accordingly,
in the one-dimensional case, the Peierls transition is a metal-insulator transition. In a
quasi-one-dimensional system this is not necessarily the case. Only parts of the Fermi
surface will be gapped, and the electronic energy gain of this partial gapping can be
sufficient to trigger the Peierls transition. This CDW state is then still characterized by
a metallic conductivity. Another qualitative difference can be inferred from Fig. 2.4 (d).
In contrast to a purely one-dimensional system, the nesting vector and consequently the
CDW periodicity will in general not be commensurate with the lattice. It shall be noted,
however, that the coupling of the periodic lattice to the charge density wave favors com-
mensurate modulations. If the two periods are close to being commensurate, the system
lowers its energy via a lock-in transition from an incommensurate to a commensurate
state as the CDW snaps in with the lattice periodicity.

With the obtained energy dispersion relation 2.23, it is an easy task to determine the
energy gain of the 1D electronic system

Eel =
∑

k

(εk − Ek). (2.24)
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In the weak coupling limit, where εF � ∆, evaluating Equation 2.24 leads to an elec-
tronic energy gain proportional to ∆2 ln(W/∆), where W is the electronic bandwidth.
This value has to be compared to the elastic energy of the lattice distortion, which is
proportional to the square of the displacement amplitudes and thus to ∆2. It becomes
clear that at zero temperature the one-dimensional metal is unstable towards the devel-
opment of a Peierls distortion if ∆ is sufficiently small — the lowering of the electronic
energy outweighs the energy cost to distort the lattice.

The condensation energy can be used to calculate the magnitude of the order pa-
rameter, and thus one obtains that the famous relation of the BCS theory in the weak
coupling regime also applies to the case of a charge-Peierls transition:

2∆(0) = 3.52 kBTc (2.25)

Another important BCS result directly translates to the CDW case, namely the temper-
ature dependence of the order parameter. Close to the transition temperature, where
the gap approaches zero, the behavior can be approximated as

∆(T )

∆(0)
= 1.74

(
1− T

Tc

)1/2

. (2.26)

Also the temperature dependence of the specific heat C(T ) follows the behavior of a
BCS superconductor. At low temperatures it is exponentially suppressed due to the
electronic gap. Directly at Tc it shows a finite discontinuity proportional to its value Cn

in the normal metallic state, which is linear in T for a free electron gas. The jump is
thus given by

∆C = 1.43 γTc = 1.43 Cn(Tc), (2.27)

where γ is the Sommerfeld constant.

At this point, a critical statement concerning the above BCS results is appropriate:
The mean-field treatment of a one-dimensional system leads to a finite transition tem-
perature below which long-range order develops. This is an artefact of the mean-field
approximation that averages out fluctuations of the order parameter. However, in highly
anisotropic systems these fluctuations become important, culminating in the absence of
long-range order at finite temperatures in strictly one-dimensional systems [Landau79].
As pointed out before, in real systems there exists always a finite interchain coupling,
and a transition into a charge density wave state becomes possible at finite tempera-
tures. However, for a strongly anisotropic system the transition temperature T 3D

c will be
significantly reduced from its mean-field value TMF

c . The temperature regime between
T 3D

c and TMF
c will be dominated by fluctuations and a development of short-range order

can be observed.
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2.3 Spin-Peierls Instability

The spin-Peierls transition closely resembles the charge-Peierls transition described in
the previous section. Both instabilities are basically one-dimensional phenomena and
therefore occur in quasi-one-dimensional chains. In both cases, the instability involves
a periodic lattice distortion, which in the simplest case corresponds to a dimerization
of lattice sites. Another parallel is the thermodynamic description, which is almost
identical for the two transitions. However, the origins of these two phase transitions are
of completely different nature. Whereas a charge density wave system draws the energy
gain from the electronic system, the spin-Peierls instability is a magneto-elastic effect in
antiferromagnetic (AFM) insulating spin chains, where a lowering of the magnetic free
energy is achieved by the formation of spin singlet pairs.

The first materials to display the spin-Peierls transition were discovered in the 1970s.
Several organic compounds were found to be subject to this instability, which benefits
from the soft lattice vibrations in organic materials — the Peierls distortion is thus less
costly. Another favorable property in these compounds is the typically large distance
between neighboring chains. One famous example is the organic charge transfer salt
TTF-CuBDT with a transition temperature Tc = 12K [Moncton77]. TTF stands for
tetrathiafulvalene and is the organic donor for the copper bisdithiolene complex CuBDT.
In 1993 the inorganic CuGeO3 was discovered as a spin-Peierls system [Hase93]. For
almost ten years, it remained the only known inorganic compound, for which the spin-
Peierls state was unambiguously established, until in 2002 the oxychloride TiOCl, subject
of this thesis, was interpreted as another realization of a spin-Peierls system [Seidel03].

To get a qualitative picture of the spin-Peierls instability, an assembly of quantum
spin chains is considered, where the spins interact only via nearest neighbor exchange
of antiferromagnetic type. The coupling of spins on different chains be not included.
Spin-phonon coupling is a necessary ingredient, as the separation between successive
spins will influence the exchange constant. The ground state of this system is comprised
of a dimerized lattice, where the ions are displaced from their uniform locations, so that
they move alternately closer and further apart. The magnetic energy of the system is
then minimized by forming magnetic singlets of spin pairs. Exciting the system from
the singlet ground state into a triplet state is connected with an energetic cost, termed
the spin gap. The presence of this gap is a quantum effect — the classical Heisenberg
model for an alternating spin chain does not yield a spin gap.

Heisenberg Hamiltonian

In order to get a deeper understanding of this phenomenon, one has to take a look at
the Hamiltonian that is typically chosen to represent this physical situation, viz., the
Heisenberg Hamiltonian, and spend a few thoughts about its possible ground states.

The Heisenberg Hamiltonian describing the low energy fluctuations of a set of inter-
acting spins can be derived from the Hubbard Hamiltonian 2.3 for half-filling in the
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strong coupling limit. In this limit the onsite Coulomb repulsion U is much larger than
the hopping energy t, and thus enforces single occupancy of each site. The kinetic en-
ergy term T can be treated as a small perturbation compared to the Coulomb term
U . In zeroth order the resulting ground state is highly degenerate, as the spin of each
electron can point both up or down. For N sites, all 2N eigenstates |Ψ〉 of U with
eigenvalue ε0 = 〈Ψ| U |Ψ〉 = 0, having the general form c†1σ1

c†2σ2
. . . c†NσN

|0〉, contribute
to the unperturbed ground state. This enormous degeneracy remains unchanged by the
hopping term in first order: ε1 = 〈Ψ| T |Ψ〉 = 0, since each term of T acting on a purely
singly-occupied state must produce an orthogonal state with one double occupation.
Therefore, the second order term in T is required to lift the degeneracy, which reads

ε2 = 〈Ψ| T (ε0 − U)−1T |Ψ〉 . (2.28)

The factor (ε0 − U)−1 measures the lifetime of the intermediate states T |Ψ〉. For any
|Ψ〉 the same eigenvalue (−U)−1 is obtained. This means that the energy shift ε2 of
any state with only singly-occupied sites is the same as that resulting from an effective
Hamiltonian

Heff = −T 2/U = − t
2

U

∑
〈ij〉σ

∑
〈kl〉σ′

(
c†iσcjσ + c†jσciσ

)(
c†kσ′clσ′ + c†lσ′ckσ′

)
, (2.29)

where 〈ij〉 denotes a summation over nearest-neighbors, and every pair shall be counted
only once. The site indices i, j, k, and l have to be chosen such that one arrives again
at a state with one electron on each site, which yields

Heff = − t
2

U

∑
〈ij〉σσ′

(
c†iσcjσc

†
jσ′ciσ′ + h.c.

)
. (2.30)

The corresponding hopping processes of this Hamiltonian can be viewed as one electron
hopping to a neighboring site, briefly doubly occupying it, and then one of the two
electrons hopping back as depicted in Fig. 2.8. Due to the Pauli exclusion principle,
two electrons cannot occupy the same site if their spins point in the same direction.
Consequently, only two neighboring electrons with antiparallel spins are able to profit
from the hopping process. This arrangement is thus preferred to the parallel one — the
system can be described by an antiferromagnetic exchange constant.

Introducing the spin operators2 Sz
i = 1

2
(ni↑ − ni↓), S

+
i = c†i↑ci↓, and S−

i = c†i↓ci↑, one
can rewrite Equation 2.30 to obtain the usual form of the Heisenberg Hamiltonian

HHeisenberg = J
∑
〈ij〉

(
Si · Sj − 1

4

)
, (2.31)

with the Heisenberg interaction J = 4t2/U per bond. The constant offset of 1
4

can be
omitted, as it merely shifts the zero of energy.

2Note that h̄ = 1 is chosen in this section to permit the simple form 2.31 of the Heisenberg Hamiltonian.
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Figure 2.8: Hopping processes of second order perturbation theory for a lattice with only two sites.
Starting from a state with spin up on the left site and and spin down on the right site, the four
possibilities are sketched that lead again to a state without double occupancy. Only these four terms
can contribute to the sum in Equation 2.29. Each process is composed of two hops of energy t and
involves an intermediate state of energy U , so that its energy contribution is −t2/U . In total, the four
processes lower the energy of the system by −4t2/U .

The Heisenberg Hamiltonian is not limited to AFM systems — it is able to describe
ferromagnetic (FM) exchange as well by choosing a negative exchange constant. For a
Heisenberg ferromagnet it is a simple task to find the ground state. Inspired by classical
spins, one would expect the configuration with all spins aligned parallel to each other
as the state with the lowest energy. Indeed, the state where each spin is maximally
polarized in the same direction is an eigenstate of the Hamiltonian 2.31, and it can be
shown that this is actually the ground state.

The situation is quite different for a Heisenberg antiferromagnet. Assuming a bipartite
lattice, the obvious guess for the ground state is the Néel state depicted in Fig. 2.9 (a),
with the spins on each sublattice ferromagnetically aligned, however with opposite sub-
lattice magnetizations. For classical spins, this would yield the lowest possible energy,
as each spin is surrounded by spins oppositely directed. This is still true for the Ising
model, where the scalar product of the quantum-mechanical spins Si · Sj of the Heisen-
berg Hamiltonian is replaced by the product of the z-components Sz

i S
z
j . In the AFM

Heisenberg model, however, this state is not even an eigenstate. The spin-flip terms
S+

i S
−
j and S−

i S
+
j do not vanish, as in the ferromagnetic case, but produce a state, where

a spin’s z-component in one sublattice is reduced by unity, and that of another is raised.
Consequently, this state is not an eigenstate.

To illustrate this in form of a simple example, the case of two interacting spins with
S = 1/2 is considered. The corresponding Hamiltonian reads

H = JS1 · S2 = JSz
1S

z
2 +

J

2

(
S+

1 S
−
2 + S−

1 S
+
2

)
. (2.32)
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Figure 2.9: Ground states of an antiferromagnetic spin chain. (a) Néel state of a spin chain with
a uniform exchange interaction J . (b) Dimerized state of an alternating spin chain with intradimer
exchange J1 and interdimer exchange J2. (c) Ground state energies of an alternating spin-1/2 chain
as a function of the amount of dimerization α = J2/J1. The average exchange J = 1

2 (J1 + J2) is kept
constant. The Heisenberg results for α = 0.2, 0.4, 0.6, 0.8 are taken from Ref. [Duffy68]. E0(α = 1) is
the exact Bethe result, and E0(α = 0) is the exact result for spin singlets according to Equation 2.33.

Applying this Hamiltonian to the Néel state gives H |↑↓〉 = −J
4
|↑↓〉 + J

2
|↓↑〉, a linear

independent state. The energy of this state is ENéel = −0.25J , equal to the result for
classical spins.

The ground state of this system is the spin singlet |Ψsinglet〉 = − 1√
2
(|↑↓〉 − |↓↑〉). Its

energy is

Esinglet = 〈Ψsinglet|H |Ψsinglet〉 = 1
2

(
−J

4
− J

4
− J

2
− J

2

)
= −0.75J, (2.33)

where the first two terms stem from the z-z, or Ising, part of the Heisenberg interaction,
and the latter two from the spin-flip part. From this example it becomes clear that
strict antiparallel alignment only gains energy from the Ising part of the Hamiltonian.
However, a lower energy can be obtained by letting the spins fluctuate, so that also the
spin-flip part of the Hamiltonian is utilized. This also applies to the general case of a
spin-S bipartite lattice. Again the Néel state is higher in energy than the true ground
state, and also a lower bound for the ground state energy E0 can be found [Ashcroft76]:

− S(S + 1)NJ ≤ E0 ≤ −NS2J, (2.34)

where N counts the number of nearest-neighbor bonds. From this inequation one can
see why a system with low spin behaves differently as a classical spin system. In the
limit of large spin, when the spins resemble classical spins, the bounds become equal,
and the neel state is a good approximation to the ground state. In the other limit, i.e.,
for S = 1/2, these bounds leave much more freedom for the system, as Equation 2.34
becomes −0.75NJ ≤ E0 ≤ −0.25NJ . Except for the special case of a one-dimensional
spin-1/2 chain, which Bethe showed to have a ground state energy E0 = −0.443NJ

24
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[Bethe31], finding a solution to the ground state problem is not yet solved in the general
case. From the above two-site example, however, one can learn that it is advantageous
for the system to form dimers, and this tendency increases for small spins. The effect is
further enforced if the spins are given the possibility to distort the lattice, so that the
interaction strength of a spin pair is raised. Depending on the detailed geometry of the
lattice and of the exchange paths, this can lead to different ground states. Every pair of
interacting spins would like to form a singlet, but a magnetic moment can only pair up
with one other moment at a time. It was suggested by Anderson in 1973 that for a two
dimensional spin-1/2 lattice, where a simple AFM order is frustrated, the ground state is
defined by a linear combination of all possible singlets of the whole system. This state is
termed the resonating valence bond state and will be presented in detail in Section 2.4.

Physical Picture of the Spin-Peierls Transition

A one-dimensional spin-1/2 chain is able to lower its energy in a much simpler way,
opposed to the 2D RVB case. The energy can be minimized by distorting the lattice
in such a way, that spin dimers with an enhanced exchange interaction are generated
adjacent to each other. Magnetic singlets are then formed within these dimers, as
depicted in Fig. 2.9 (b). This is the essence of a spin-Peierls transition. In a classical
model, this effect cannot be understood, and also the Ising model does not support
this possibility. It can be seen from Fig 2.9 (c), where the ground state energies of an
alternating magnetic chain according to the different models is plotted, that only in
the quantum Heisenberg model the free energy is lowered when the ratio of exchange
constants α = J2/J1 begins to deviate from unity, where J1 and J2 denote the intradimer
and interdimer exchange, respectively. Moreover, one would not expect a spin-Peierls
transition in a material with S > 1/2, since the importance of quantum fluctuations
decreases rapidly with increasing magnetic moment and the upper and lower bound in
Fig 2.9 (c) move closer together.

The initially mentioned analogy to the charge-Peierls transition has now become clear:
While a CDW system minimizes its electronic free energy, a spin-Peierls system mini-
mizes its magnetic free energy. In both cases, this is connected with a distortion of the
lattice, but the energy cost of the distortion is outweighed by the energy gain of the
electronic or magnetic system, respectively. The role of the electron-phonon coupling is
taken over by the spin-phonon coupling.

The same considerations that were conducted in the context of the charge-Peierls tran-
sition can be applied to the spin-Peierls case: Also the spin-Peierls distortion is a one-
dimensional phenomenon, and strictly speaking no broken-symmetry ground state is pos-
sible in one dimension. However, in nature the systems are only quasi-one-dimensional,
as a finite interchain coupling will always be present. This may be due to non-vanishing
exchange paths between the chains, or to the coupling of the magnetic moments to
three-dimensional phonons.

25



2 Theoretical Concepts

Pseudofermion Representation

Formally, the similarity to a charge density wave can be seen by converting the spin op-
erators into pseudofermion operators via the Jordan-Wigner transformation [Buzdin80,
Pytte74,Bulaevskii63]. As a starting point, the model Hamiltonian

H =
∑

j

Jj,j+1Sj · Sj+1 +
∑

q

ωqb
†
qbq (2.35)

for a one-dimensional spin-1/2 system is chosen including a term describing one-dimen-
sional phonons. To minimize the number of indices, only a single phonon branch is
considered. Note that an exact treatment would include three-dimensional phonons. To
simplify matters, this will not be taken account of. The three-dimensional nature of the
phonons will merely be seen as an implicit means of suppressing the one-dimensional
fluctuations, thus enabling the possibility of a finite transition temperature [Bray83].

The destruction operator of the Jordan-Wigner transformation is defined as

Ψj = (−2)l−1Sz
1S

z
2 . . . S

z
j−1S

−
j , (2.36)

and it is easily verified that these quasiparticles obey the anti-commutation rules of
fermions {Ψj,Ψl} = δjl. The spin operators in the Hamiltonian 2.35 can be substituted
using the identities

S+
j S

−
j+1 = ψ†

jψj+1 (2.37)

and
Sz

j = 1
2
− ψ†

jψj. (2.38)

From the last equation the nature of these quasiparticles can be inferred. Instead of
describing the spin state of a site as up or down, one can alternatively view the same
situation as a site occupied or unoccupied with one pseudofermion. With these operators,
the Hamiltonian now translates into

H =
∑

j

Jj,j+1

[
1
2
Ψ†

jΨj+1 + 1
2
Ψ†

j+1Ψj −Ψ†
jΨj + Ψ†

jΨjΨ
†
j+1Ψj+1 + 1

4

]
+
∑

q

ωqb
†
qbq. (2.39)

At this point, two approximations will be applied, to further simplify the Hamiltonian.
The first one concerns the spin-phonon coupling — the exchange interaction is expanded
in first order in intersite spacing (uj − uj+1):

Jj,j+1 = J + (uj − uj+1)
∂Jj,j+1

∂ (uj − uj+1)
(2.40)

After Fourier transforming the Hamiltonian 2.39 into k-space and rewriting the lattice
displacements in second quantized notation in terms of phonon creation and destruction
operators, the second approximation is applied: The Hartree approximation converts
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the fermion-fermion interaction terms into single particle terms via the mean field as-
sumption 〈

Ψ†
kΨk′

〉
= fkδkk′ , (2.41)

where fk is the Fermi distribution. Again, one has to keep in mind that a mean-field
treatment is in general a poor approximation for a one-dimensional system. Neglecting
the fluctuation effects leads to exaggerated transition temperatures, and in reality one
expects a fluctuation regime between T 3D

c and TMF
c .

With these approximations, the Hamiltonian

H =
∑

k

εkΨ
†
kΨk +

∑
q

ωqb
†
qbq +

∑
k,q

gkq(b
†
−q + bq)Ψ

†
k+qΨk (2.42)

is obtained. The pseudofermion energy is defined as

εk = pJ cos ka, (2.43)

where a is the lattice constant and p is a dimensionless renormalization factor that is
determined by the self-consistency condition

p = 1− 2
∑

k

fk cos ka. (2.44)

In the limit T � J , p is approximately constant with p = 1.64. The coupling constant
gkq is a function of the fermion and boson wave vectors k and q and furthermore depends
on the gradient of the exchange constant ∂Jj,j+1/∂ (uj − uj+1).

The above Hamiltonian is nothing but the one-dimensional form of the Fröhlich Hamil-
tonian 2.16, which was used in the previous chapter as the basis for describing a charge
density wave. As both systems can be described with the same Hamilton operator, it
is obvious that a charge density wave is the corresponding spinless fermion system to
a spin-Peierls system. The following discussion of the effect of finite temperatures is
consequently analog to the one in the previous section.

Finite Temperatures

In the absence of a magnetic field, the band of pseudofermions is half-filled, the Fermi
vector kF thus lies in the exact center between Γ and the Brillouin zone boundary.3 In one
dimension the Fermi surface consists of only two points, whereas in higher dimensions it
will adopt a more complicated topology. As derived for the CDW case, it follows from
the form of a quasi-one-dimensional Fermi surface that the lattice is unstable towards a
distortion with wave vector 2kF. The Kohn anomaly, illustrated in Fig. 2.7, also develops

3To avoid confusion it shall be emphasized that a Fermi vector is only defined for the quasiparticles
introduced by the Jordan-Wigner transformation. The electronic system certainly remains in an
insulating state and does not possess a Fermi surface.
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Figure 2.10: Mean-field results for the thermodynamic properties of a spin-Peierls system in the
weak-coupling regime. (a) Temperature dependence of the spin gap ∆(T ) [Mühlschlegel59], of its ap-
proximation in the vicinity of the transition, and of the renormalized phonon frequency ω(p)

2kF
(T ). In

the spin-Peierls phase the phonon state with wave vector 2kF is macroscopically occupied as its en-
ergy vanishes below Tc. (b) Temperature dependence of the specific heat. A jump of magnitude
∆C = 1.43 Cn(Tc) occurs at the transition temperature.

in a spin-Peierls system. Upon cooling, the phonon with wave vector 2kF softens, until
its energy completely vanishes at the spin-Peierls transition temperature, as depicted in
Fig. 2.10 (a). Close to Tc the temperature dependence of the phonon frequency can be
approximated by

ω(p)

2kF
(T ) ∝

(
T

Tc

− 1

)1/2

. (2.45)

The spin gap ∆, i.e., the energy required to break up one magnetic singlet and to excite
a triplet state, can be derived replacing the phonon operators by their expectation values
in a mean-field approximation. The gap is then defined analog to Equation 2.19. In the
weak coupling regime, where Tc � J , BCS theory can be applied yielding the zero
temperature result

2∆(0) = 3.52 kBTc. (2.46)

The temperature dependence of the gap is given implicitly by the BCS gap equation.
The self-consistent solutions are tabulated in Ref. [Mühlschlegel59]. In the vicinity of Tc

the gap obeys the square-root-like temperature dependence

∆(T )

∆(0)
= 1.74

(
1− T

Tc

)1/2

. (2.47)

Both the spin gap and its approximation close to Tc are plotted in Fig. 2.10 (a). The
increase of the gap width below Tc is responsible for a rapid suppression of the magnetic
susceptibility with decreasing temperature.

The last BCS result to be mentioned here is the temperature dependence of the specific
heat C(T ), displayed in Fig. 2.10 (b). It is exponentially damped by the spin gap ∆(T )
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below Tc. Not too far above Tc and disregarding lattice contributions, the specific heat
is given by γT characteristic for a AFM Heisenberg chain with γ = 2k2

B/3J [Buzdin80].
Directly at Tc, BCS predicts a jump of 1.43 times the corresponding value in the normal
state:

∆C = 1.43 γTc = 1.43 Cn(Tc) (2.48)

Effect of an External Magnetic Field

In the absence of a magnetic fieldH, the band of pseudofermions is half-filled, as outlined
above, and the system can benefit from the commensurability. To take account of an
applied magnetic field, the term gµBH

∑
j Ψ†

jΨj = gµBH
∑

k Ψ†
kΨk has to be added to

the Hamiltonian 2.42, and the pseudofermion energy has to be replaced by

εk = pJ cos ka+ gµBH, (2.49)

where g is the Landé factor. This effectively changes the chemical potential of the
pseudofermions. The magnetic field thus maps onto the band filling of the correspond-
ing spinless fermion system. This is in contrast to a CDW system, where the chemical
potential is determined by the material parameters and cannot be varied at will. The
spin-Peierls transition thus offers a possibility to study the role of commensurability ef-
fects very directly. Switching on an external magnetic field shifts the Fermi vector away
from its commensurate value halfway between Γ and the Brillouin zone boundary. For
small deviations, i.e., for weak magnetic fields, the system prefers to remain in the state
with twice the period of its normal state in order to gain from the commensurability
energy. A sufficiently low magnetic field will therefore not change the structure of the
Peierls distortion, but it will reduce Tc [Cross79]. Increasing the field strength above
a certain threshold can then take the system into an incommensurate state. For fields
larger than a critical field Hc the spin-Peierls distortion will finally vanish. This is the
case when the pseudofermion band is completely depleted and all spins are ferromag-
netically aligned. The mean field result for the critical field [Bray83] is

µBHc ' 0.75 kBTc. (2.50)

2.4 Resonating Valence Bond Model

Having examined the properties of a one-dimensional spin-1/2 system in the previous sec-
tion, the two-dimensional case of a quantum Heisenberg system with antiferromagnetic
exchange will now be considered. Motivated by the rareness of experimental S = 1/2
systems with antiferromagnetic order, Anderson published his pioneering work [Ander-
son73] introducing the RVB state in 1973. This state is clearly distinct from the two
other stable possibilities, the Néel state and the spin-Peierls state, which both break the
symmetry of the high-temperature paramagnetic state in a phase transition at a tem-
perature Tc. The RVB state is a precise singlet, has no obvious long-range order, and is
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a fluid in the sense that it supports the quantum transport of spin excitations [Ander-
son87b].

In his original publication Anderson used the triangular lattice to illustrate the RVB
state as an alternative possibility for the ground state of low-dimensional quantum spin
systems. The term “resonating valence bonds” was inspired by the work of Pauling [Paul-
ing33], who used linear combinations of bonding schemes to describe the valence states
of aromatic molecular systems. While only limited activity followed Anderson’s origi-
nal ideas, the discovery of high-temperature superconductivity by Bednorz and Müller
in 1986 [Bednorz86] revived the interest in the RVB model. Anderson suggested that
the RVB state of a Mott insulator, rather than the conventional metallic Fermi-liquid
state, is the appropriate reference state for the description of the new high-Tc cuprate
superconductors, particularly addressing those based on La2CuO4 [Anderson87a]. He
departed from the traditional BCS approach that was not able to explain the high tran-
sition temperatures by identifying a predominantly electronic and magnetic mechanism
as the origin of superconductivity, instead of an exchange of virtual phonons. In his view,
the preexisting magnetic singlet pairs take over the role of the conventional Cooper pairs
when they become charged upon sufficiently strong doping of the initial insulator. Today
it is widely believed that RVB ideas are not applicable to the cuprate superconductors.
Nevertheless it is an interesting route to superconductivity, as the physics takes place
on the energy scale of the magnetic exchange constant J , which is of the order of 700K
for the compound in the focus of this thesis, TiOCl.

Basic Properties of the RVB State

In the previous section it was shown that for a single pair of interacting spins the ground
state is a singlet or, in Anderson’s nomenclature, a valence bond, which may be written
as

b†ij = 1√
2

(
c†i↑c

†
j↓ − c†i↓c

†
i↑

)
. (2.51)

It is clear that in a two-dimensional S = 1/2 lattice every pair of interacting magnetic
moments would like to form a spin singlet. However, this cannot be achieved for all
possible pairs simultaneously, because a given magnetic moment can only form a singlet
with one partner at a time. Note also that any complete covering of the lattice with
singlets is not an eigenstate of the Heisenberg Hamiltonian, as will be illustrated later in
a simple example. As a solution to this problem, Anderson suggested to delocalize the
singlets among all pairs of electrons. In this way, every spin can be satisfied in a singlet
state, and moreover, the system can gain a resonance energy because the Heisenberg
Hamiltonian transforms related singlet configurations into one another, as will become
clear in the example below. Such a state of singlets is created by the operator

∑
〈ij〉 aijb

†
ij.

Here only nearest neighbor interactions are considered, which will lead to a so-called
short-range RVB state. Of course, it is possible to include also the interaction between
more distant spins.
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Figure 2.11: Schematic illustration of the short-range RVB ground state. Valence bonds, i.e., singlet
pairs, between neighboring magnetic moments are formed, and the RVB ground state is expressed as
the superposition of all configurations of the kind depicted in the figure.

The N electrons can Bose condense into a state Ψ with N/2 valence bonds

Ψ =
(∑

〈ij〉

aijb
†
ij

)N/2

|0〉 , (2.52)

where |0〉 is the vacuum state. Unfortunately, Ψ contains large numbers of empty and
doubly occupied sites, the latter costing the energy U , and is therefore not a good
description for Mott insulators. In order to remedy this situation a projection technique
can be applied. The Gutzwiller operator

PG =
∏

i

(1− ni↑ni↓) (2.53)

projects out every state with double occupancy. The RVB state can now be expressed
as

ΨRVB = PG

(∑
〈ij〉

aijb
†
ij

)N/2

|0〉 . (2.54)

This form is a mathematical exact description of the short-range RVB state. However,
it is not very convenient to handle for two reasons: Firstly due to the Gutzwiller projec-
tion, and secondly, because two different valence bond configurations are not necessarily
orthogonal. The valence bond basis is thus overcomplete and non-orthogonal.

An illustration of the RVB state, which is nothing but the superposition of all possible
singlet configurations that do not lead to doubly occupied sites, is given in Fig. 2.11. It
is a precise magnetic singlet, the analogue of the Bethe solution for a linear AFM chain.
An enormous degeneracy characterizes the RVB state, as the number of possible valence
bond coverings increases exponentially with the number of lattice sites. The ground
state can be viewed as a quantum liquid of valence bonds, whereas in this context the
spin-Peierls state could be termed a crystal of valence bonds, which cannot resonate
with other configurations without breaking bonds. It shall be stressed at this point that
the suggestive phrase “valence bond” does not have a meaning in the chemical sense in
this context. It is rather a pictorial representation of the magnetic singlets that can in
principle form even between distant lattice sites.
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It is remarkable that if the limitation to nearest-neighbor exchange in Equation 2.54
is lifted, the RVB state is capable of describing the Luttinger liquid or even long-range
Néel order, depending on the choice of the coefficients aij [Baskaran93].

The above mentioned properties of the RVB state, e.g., the non-orthogonality of the
valence bond configurations or the lowering of the free energy via resonance between
those configurations, can be best understood by considering a simple example. Often
the six interacting spins of a benzene ring are utilized, as it was this molecule that
inspired Anderson to his pioneering work. In this thesis, however, the even simpler
example of four spins arranged in a square are chosen. The sites are labelled with arabic
numbers, as shown in Fig. 2.12 (a). For this situation one can write

ΨRVB = PG

(∑
〈ij〉

aijb
†
ij

)2

|0〉

= PG

(
a12b

†
12 + a23b

†
23 + a34b

†
34 + a41b

†
41

)2

|0〉 .
(2.55)

Equal amplitudes aij for each singlet, i.e., the same interaction strengths, shall be as-
sumed. The Gutzwiller operator now eliminates all configurations that involve double
occupancy, and the RVB state becomes

ΨRVB = 1√
3

(
b†12b

†
34 + b†23b

†
41

)
|0〉

= 1
2
√

3

(
2 |↑↓↑↓〉+ 2 |↓↑↓↑〉 − |↑↓↓↑〉 − |↓↑↑↓〉 − |↑↑↓↓〉 − |↓↓↑↑〉

)
.

(2.56)

The prefactor 1√
3

ensures the normalization to unity. From this form, it can be seen
that Equation 2.54 indeed leads to a state comprised of all possible bond configurations
allowed by the Gutzwiller projection. In this simple case there exist only two — the one
with horizontally and the one with vertically aligned bonds depicted in Fig. 2.12 (b) and
(c), respectively. They are not orthogonal, as their scalar product does not vanish:

〈0| b12b34 b
†
23b

†
41 |0〉 = 1

4

(
〈↑↓↑↓| − 〈↑↓↓↑| − 〈↓↑↑↓|+ 〈↓↑↓↑|

)
(
|↓↑↓↑〉 − |↑↑↓↓〉 − |↓↓↑↑〉+ |↑↓↑↓〉

)
= 1

2
(2.57)

This is the reason for the unusual value 1√
3

of the normalization factor.

Now a second observation follows that is more easily seen in this example than in the
general case of a 2D lattice: A single valence bond configuration is not an eigenstate of
the Heisenberg Hamiltonian, which reads in this case

H4 = J (S1 ·S2 + S2 ·S3 + S3 ·S4 + S4 ·S1) . (2.58)

A single configuration is an eigenstate only of the scalar product of two spin operators
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Figure 2.12: Valence bond configurations of the four-site problem. (a) Labelling of the sites. (b) Con-
figuration with horizontal bonds. (c) Configuration with vertical bonds. (d) RVB state as the superpo-
sition of all possible configurations.

of electrons within the same singlet, as for example

S1 ·S2 b
†
12b

†
34 |0〉 =

(
Sz

1S
z
2 + 1

2
S+

1 S
−
2 + 1

2
S−

1 S
+
2

)
1
2

(
|↑↓↑↓〉 − |↑↓↓↑〉 − |↓↑↑↓〉+ |↓↑↓↑〉

)
= −1

8

(
|↑↓↑↓〉 − |↑↓↓↑〉 − |↓↑↑↓〉+ |↓↑↓↑〉

)
+ 1

4

(
− |↑↓↑↓〉+ |↑↓↓↑〉

)
+ 1

4

(
|↓↑↑↓〉 − |↓↑↓↑〉

)
= −3

4
b†12b

†
34 |0〉 .

(2.59)

The situation is different if a scalar product is chosen that does not fulfill the above
condition. Letting act S2 ·S3 on the same state yields

S2 ·S3 b
†
12b

†
34 |0〉 = −1

4
b†23b

†
41 |0〉 − 1

4
b†13b

†
24 |0〉 . (2.60)

Hence, the considered state is not an eigenstate of S2·S3, and neither is it an eigenstate
of the complete Heisenberg Hamiltonian. The second term of the result 2.60 is not of
further relevance, as the singlet bond connects sites that are not nearest neighbors and
do not interact. The first term, however, is the origin of the resonance energy in the RVB
ground state as it couples the state depicted in Panel (b) with the state of Panel (c).
From this result it can be learnt that parts of the Heisenberg Hamiltonian make the
system “resonate” between different singlet configurations, i.e., a certain singlet bond
configuration is transformed into another. As the RVB state consists not only of one
configuration, but is a linear combination of all combinations allowed by the Gutzwiller
projection, it is able to take advantage of this resonance. Summing up all contributions
of the above type leads to the ground state energy

E0 = 〈ΨRVB|H4 |ΨRVB〉

=
J

3
〈0| (b12b34 + b23b41) (S1 ·S2 + S2 ·S3 + S3 ·S4 + S4 ·S1) (b†12b

†
34 + b†23b

†
41) |0〉

= (−3
4
− 3

4
− 1

4
− 1

4
)J = −2J.

(2.61)
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On the other hand, the energy of a single configuration is

〈0| b12b34 H4 b
†
12b

†
34 |0〉 = (−3

4
− 3

4
)J = −1.5J, (2.62)

i.e., simply twice the energy Esinglet of one singlet derived in Equation 2.33. The RVB
ground state is thus lower in energy than the crystalline arrangement of valence bonds.
This is the essence of the RVB state.

Another property of this state is the absence of antiferromagnetic order in the Néel
sense, which expresses itself in the fact that 〈ΨRVB|Sz

i |ΨRVB〉 = 0 for every site i.
However, it is easy to see that the magnetic correlations between interacting sites do not
vanish, so 〈ΨRVB|Sz

i S
z
i+1 |ΨRVB〉 = −1

6
.

The RVB State — A Fragile State of Matter

After this simple example, that nicely illustrated the basic properties of the RVB state,
the question will be answered if this state is likely to occur at all. Up to date no experi-
ment was able to show that the RVB state is realized in nature. From the theoretical side,
it was proven that the ground state of the antiferromagnetic S = 1/2 Heisenberg model
for a three-dimensional cubic lattice shows AFM order. Even for the two-dimensional
square lattice the AFM order is universally accepted [Fazekas99b]. Moreover, if a finite
coupling to the phonons is allowed for, the most straightforward possibility to break
the symmetry of an antiferromagnet would rather be the spin-Peierls state. It is there-
fore likely that a Heisenberg system will undergo a phase transition with broken spin
rotational or translational symmetry (or both) before the RVB state can develop. Pre-
sumably, it can only then prevail when all more obvious types of ordered states are
frustrated. So, what are then the conditions for the establishment of the RVB state?

One loophole poses the geometric frustration of a system. The emergence of magnetic
order relies heavily on the fact that the ground state of the Ising term is essentially
unambiguous. This is ensured when dealing with a bipartite lattice, e.g., the square
lattice with nearest-neighbor coupling only. In this situation, an up-down alternation
of the spins is possible without complications. However, if such a configuration is geo-
metrically frustrated as illustrated in Fig. 2.13, the RVB state gets a chance to develop.
Exactly for this reason Anderson considered the triangular lattice in his original publi-
cation [Anderson73]. Another candidate is the square lattice, if either or both of the two
possibilities occur: A next-nearest-neighbor interaction strong enough to frustrate the
Néel state, or a coupling to the phonon system short of being strong enough to induce
the spin-Peierls instability [Anderson87a].

Other necessary conditions for the applicability of the RVB theory are low spin and
low dimensionality, because in this regime the effects of quantum fluctuations are more
dramatic. This can be demonstrated comparing the energy of a singlet-pair state and of
a Néel state as a function of dimensionality and spin. For a D-dimensional cubic lattice
with N sites of spin S, the DN nearest neighbor pairs contribute to the Néel state’s
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Figure 2.13: Illustration of geometric frustration. (a) In this triangular system, the two spins drawn
in black are able to minimize their magnetic energy, whereas this is not possible for the remaining spin
drawn in blue. It is exposed to the conflicting interactions of both its neighbors. (b) The situation is
similar for the over-determined system of four spins arranged in a square with nearest-neighbor and
next-nearest-neighbor coupling. Without the diagonal interaction the system would be unfrustrated,
for every spin could reside in a state unambiguously determined by the condition of minimizing the
total energy. Switching on the diagonal coupling leads again to competing interactions and the system
becomes frustrated.

energy
ENéel = −DNS2J. (2.63)

The singlet state profits independently of the dimensionality from N/2 pairs, and its
energy thus is given by

Esinglet = −1
2
NS(S + 1)J. (2.64)

Obviously, in high dimensions and for high spin the Néel state is preferred, while the
singlet state takes advantage of the opposite limit. Note, however, that this argument
not only applies to the RVB but also to the spin-Peierls state, which benefits from the
formation of singlet bonds as well.

Even though the high-temperature superconductors are strongly anisotropic S = 1/2
systems, it seems unlikely that the superconductivity in the cuprates can be explained
by the RVB model for the following reasons: The superconductivity in these systems is
an amazingly robust phenomenon, in contrast to the fragile RVB state, and furthermore,
types of magnetic order seem to persist in the doped cuprates even into the supercon-
ducting state, which is not compatible with the RVB model [Carlson04].

t-J Model and Spin-Charge Separation

Up to this point the discussion was limited to the special case of a half-filled band. The
question naturally arises what happens when this restriction is lifted, i.e., carriers such
as holes are introduced into the Mott insulator. This situation can be described by the
so-called t-J model, which can be derived from the Hubbard Hamiltonian 2.3 in the large
U limit by an appropriate canonical transformation [Fulde91]. The t-J Hamiltonian can
be written as

HtJ = t
∑
〈ij〉σ

(
(1−ni,−σ)c†iσcjσ(1−nj,−σ) + h.c.

)
+ J

∑
〈ij〉

Si · Sj, (2.65)
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Figure 2.14: (a) Schematic picture of a spinon and a holon excitation in the RVB model. Spinons
carry a S = 1/2 magnetic moment and no charge, holons are charged excitations that carry no spin.
(b) Diagram illustrating the frustration effect of a propagating hole. If a holon hops to the neighboring
site, it inevitably destroys a singlet bond, and as a result two unpaired spins appear.

with the projection operators (1−ni,−σ) to exclude double occupancy. This projection
is necessary since the hopping term could otherwise lead to a state outside the singly
occupied subspace. From this Hamiltonian, the Heisenberg Hamiltonian follows trivially
for half-filling. For a finite doping concentration x, the basic physics of this model can
be viewed as the competition between the energy gain ∼ xt due to mobile holes, and the
cost of the exchange energy ∼ J resulting from the disruption of the antiferromagnetic
correlations [Manske04].

An important concept associated with the RVB model is the spin-charge separation.
This phenomenon can be understood by examining the excitations that arise in the
RVB picture. If a hole is inserted into the half-filled RVB state, one unpaired magnetic
moment and one vacant site with charge +e will appear, as shown in Fig. 2.14 (a).
Anderson introduced the term “spinon” for the neutral spin-1/2 excitation, the charged
spin-0 excitation is called “holon”. The spinon and the holon are not bound to each other,
and due to the liquid-like character of the RVB state they can propagate independently
with the aid of the transfer energy t. In this way, spin and charge separate, and the
liquid of valence bonds will fill the space between the two excitations as they drift apart.

The spin excitation with its magnetic moment of S = 1/2 is clearly a fermion. This
is in contrast to the Néel state, where the excitations are bosonic magnons with spin-1
or spin-0 singlets. Concerning the holons, it is tempting to assign a bosonic character to
these spinless excitations. Although this is correct for a number of regards, the matter
is more complicated than this simple view. There is no universal answer to the question
if the holon is a boson or a fermion. The statistics of this quasiparticle is dynamically
determined, there are even transitions between states in which the holon has different
statistics [Carlson04].

As can be seen from Fig. 2.14 (b), the motion of a holon is inevitably connected with
the destruction of local singlet bonds. The mobile holes thus frustrate the tendency of
the spins to order. The valence bond liquid is much better able to compensate this effect
than the crystalline arrangement of the spin-Peierls state. Doping therefore stabilizes
the RVB state.
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Figure 2.15: Mean-field phase diagram of the RVB model obtained by a Ginzburg Landau theory
[Nagaosa92]. Only the boundary to the superconducting region is found to correspond to a genuine phase
transition, the remaining phase space can be regarded as a crossover from the spin-charge separated
phase to the Fermi liquid.

This fact is reflected in the phase diagram of the RVB model that was calculated
by a phenomenological Ginzburg-Landau theory with two order parameters, viz., for
the spinon pairing and for the Bose condensation of the holons [Nagaosa92]. From this
mean-field calculation the holon condensation temperature is found to increase with
the hole concentration x. On the other hand, the spinon pairing temperature is a
decreasing function of x and reaches zero when x ∼ J/t. The two scales associated with
carrier coherence and singlet pairing give rise to the lines drawn in Fig. 2.15, where the
resulting phase diagram with four different regions is displayed. In the region where
both the spinons are paired and the holon system has condensed, a superconducting
phase is predicted. Note the obvious resemblance to the phase diagram of the high-
Tc superconductors with the superconducting “dome” and the pseudogapped phase (cf.
Ref. [Carlson04] for a review).

Superconductivity

At first sight it seems to be very surprising that the RVB state of a Mott insulator is
able to produce a superconducting phase, since conventional superconductivity emerges
from a Fermi liquid reference state. At closer inspection, however, one sees that the
RVB state is full of singlet electron pairs, just as the familiar Cooper pairs of a BCS
superconductor. Even if these singlet pairs are not able to carry a current at half-
filling, where any form of charge transport is connected with a great energy cost, one
cannot disapprove the idea that the valence bonds are preexisting, yet uncharged Cooper
pairs [Müller-Hartmann88].

The mean-field theory developed by Baskaran, Zou, and Anderson (BZA) is able to
show how superconductivity can arise from the RVB model [Baskaran87]. In the BZA
theory the exchange term J

∑
〈ij〉 Si ·Sj in Equation 2.65 plays the role of the interaction

term of the conventional BCS theory. The formal similarity is appreciated when going
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back to the form 2.30, where the exchange term was written in terms of four fermion
operators. BZA treated the interaction with a Hartree-Fock approximation. The four
fermion operators are reduced to two by introducing the order parameter

∆ =
√

2〈b†ij〉 = 〈c†i↑c
†
j↓ − c†i↓c

†
i↑〉. (2.66)

This Hamiltonian can be diagonalized à la BCS by a Bogoliubov transformation. Before
discussing the general solution of the resulting gap equation, the trivial solution will
be examined, which corresponds to the half-filled case without doping. It leads to the
RVB state 2.54 constructed originally by Anderson. Furthermore, one obtains that the
low energy excitations are the above introduced spinons. In contrast to the charged
excitations, the spinon excitation spectrum is gapless — spinons possess a pseudo Fermi
surface where the excitation energy vanishes. As a consequence, a linear temperature
dependence of the specific heat C(T ) ∝ γT is expected, analog to the heat capacity of a
normal metal. In the presence of a magnetic field, the degeneracy of spinon states will
be lifted giving rise to a Pauli susceptibility.

The RVB state, obtained in this way from first principles, has a strong analogy to the
BCS ground state, which is usually written as

ΨBCS =
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉 . (2.67)

It is an easy task to show (cf. Ref. [Anderson87a]) that the projection of ΨBCS to the
state with N/2 cooper pairs reads

ΨBCS =

(∑
ij

gi,jc
†
i↑c

†
j↓

)N/2

|0〉 , (2.68)

where gi,j is the Cooper pair wave function. Comparing this to the RVB state given
by Equation 2.54 yields that the main difference is the removal of double occupancy
imposed by the Gutzwiller projection.

Turning now back to the general solution of the gap equation, a superconducting
state with a true energy gap is produced when the system is doped. While the motion
of singlet pairs is not accompanied by any charge flow at half-filling, a valence bond can
carry charge if it is next to a hole. In other words, the motion of holes can be thought
of as a motion of charge carrying singlet bonds. The previously uncharged Cooper pairs
become thus charged.

From this mean-field point of view, the system will become a superconductor as soon
as it is metallized, since the pairing exists already in the insulating state. Breaking a
singlet costs an energy of the order of J , which determines the spin gap. The pairing is a
property of the spin degree of freedom, and involves little or no pairing of actual charge.
In the superconducting state, the system can be viewed as being in a quantum protec-
torate, which means that the many-body correlations are so strong that the dynamics
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Table 2.2: Comparison between conventional BCS theory and RVB theory.

Theory Reference State Mechanism Excitations

BCS Fermi liquid
Exchange of
Bose quanta

Bogoliubov
quasiparticles

RVB
Mott insulator,

quantum spin liquid
Exchange
interaction

spinons

can no longer be described in terms of individual particles. Perturbations which scatter
individual particles are consequently not effective, and the system is superconducting.

In Table 2.2 the features of the BCS theory are compared to the RVB theory, which
is able to generate superconductivity as well. The most novel aspect is probably the
parting of ways from the traditional approach of building pair condensation in a Fermi
liquid reference state [Baskaran01].

When the system is doped too much, electron pairs will break up by gaining kinetic
energy, and superconductivity will disappear. The optimum doping concentration is
expected to be of order of t/U , as then the kinetic energy and pair binding energies
match. The corresponding transition temperature will be of the order or less than
J [Anderson87a], which can be much higher than the typical transition temperature of
a conventional BCS superconductor.
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3 Photoemission Spectroscopy

The experimental examination of low-dimensional transition metal compounds systems
is the main subject of this thesis, but, of course, only the joint efforts of experiment and
theory can lead to a deeper understanding of the involved phenomena. In this regard
photoemission spectroscopy must be appreciated as an extremely useful tool, since the
momentum-dependent spectral function A(E,k) — a key property of many-body elec-
tron systems — can be accessed very directly by this technique. Hence, a comparison to
the results of theoretical methods is straightforwardly possible. It is a fortunate circum-
stance that the necessary condition for the emergence of RVB, Mott, or Peierls physics,
viz., low dimensionality, constitutes a perfect ground for the photoemission experiment.
It will become clear in the course of this chapter that both the experimental procedure
and the interpretation of the results strongly benefit from the low-dimensional character.
In the following an introduction to the experimental technique of photoelectron spec-
troscopy will be given, focussed on those aspects with direct relevance for the discussion
of the experimental results.

In an angle-resolved photoemission (ARPES) experiment, a single crystal is exposed
to a beam of monochromatized radiation, produced for instance by a gas-discharge lamp
or by a synchrotron radiation source with typical photon energies in the range from 10
to 100 eV. Electrons will then be emitted by the photoelectric effect and escape into the
vacuum in all directions. By collecting photoelectrons with an electron energy analyzer
characterized by a finite acceptance angle, both their kinetic energy and their emission
angle are recorded, as sketched in Fig. 3.1 (a). The wave vector of the photoelectron in
vacuo is thus completely determined. Both its components parallel and perpendicular
to the surface are easily expressed in terms of the polar emission angle ϑ:

h̄kvac
‖ =

√
2mEkin sinϑ (3.1)

h̄kvac
⊥ =

√
2mEkin cosϑ (3.2)

It is then the aim to deduce from this information the energy and momentum distribution
in the solid by exploiting the corresponding conservation laws. In order to account for
the many-body effects discussed in the previous chapter, one has to choose also a suitable
many-body description of the photoemission process. But before this approach will be
presented, the general properties of the photoemission experiment shall be addressed
within the independent electron picture, as it offers an intuitive understanding of the
photoemission process.
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Figure 3.1: (a) Schematic illustration of a photoemission experiment. (b) Energetics of the photo-
emission process. (c) Refraction of the photoelectron at the escape into vacuum.

One-Particle Picture

In the one-particle picture, the binding energy of the electron before the excitation is
derived by a simple argument of energy conservation according to the energy scheme
displayed in Fig. 3.1 (b) as

EB = hν − φ− Ekin, (3.3)

where EB is the binding energy, hν the photon energy, and φ the work function. In order
to obtain the electronic momentum in the solid, it is essential to recall that according
to band theory, the electrons in a crystal can be described by Bloch waves of the form
Ψ(k, r) = un(r) exp(ik · r), where un is a function obeying the lattice periodicity. The
Bloch theorem still holds outside the solid if restricted to the dimensions parallel to the
sample surface. In this case the condition of translational invariance with the lattice
periodicity is trivially satisfied. Therefore, the wave vector components parallel to the
surface are conserved:

h̄k‖ = h̄kvac
‖ =

√
2mEkin sinϑ (3.4)

Note, however, that in this equation the photon wave vector was neglected, as is common
practice in the analysis of ARPES experiments. This is well justified for ultraviolet
radiation — for example, the momentum of a He i photon is only ∼ 1% of an electron
momentum at the Brillouin zone edge in TiOCl or TaSe2.

The case of the perpendicular momentum k⊥ is more complicated, since the trans-
lational invariance fails to hold in this dimension, and therefore the photoelectron is
refracted when leaving the crystal, as illustrated in Fig. 3.1 (c). In general it is a com-
plex task to determine k⊥, which requires additional information about the final states,
but for a crude estimate it is possible to make the a priori assumption of nearly-free
electrons. Adopting this description for the final bulk Bloch states, one obtains

h̄k⊥ =
√

2m (Ekin cos2 ϑ+ V0), (3.5)

where V0 is the inner potential corresponding to the energy of the bottom of the valence
band referenced to the vacuum level Evac. Note that this method is expected to work well
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for high-energy final states in which case the crystal potential is a small perturbation.
Eventually the bands become so closely spaced in energy to form a continuum, and the
details of the final-state band structure become unimportant [Damascelli04].

Not only is it difficult to determine the perpendicular momentum due to the refraction
at the potential step from the solid into the vacuum, also the damping of the final state
perpendicular to the surface poses a problem. At the typical kinetic energies of an
ARPES experiment the threshold of plasmon excitation is exceeded, leading to a high
cross section for electron-plasmon scattering. Also interband transitions are likely to
scatter the photoelectrons inelastically, so that an extremely low mean free path of
the order of 5–15 Å results. This is the reason for the strong surface sensitivity of the
photoemission technique. Furthermore, the damping of the perpendicular momentum
relaxes the selection rule for k⊥, so that the information on the electronic structure
becomes smeared out in this direction [Strocov03].

Fortunately, the drawbacks caused by the lack of control of k⊥ become irrelevant for
strongly anisotropic systems, where the dispersion of the electronic structure is only
weakly pronounced in the direction perpendicular to the surface. The layered materials
investigated in this thesis are thus ideally suited for photoemission experiments. In fact,
TaSe2 was the first material for which it was demonstrated that the electronic structure
can be mapped by angle resolved photoemission [Smith74]. It is added that not only
does the interpretation of the experimental spectra benefit from the strongly anisotropic
electronic structure. In addition, layered compounds offer the possibility to prepare in
situ clean surfaces due to the presence of natural cleavage planes.

For non-interacting electrons, the probability to detect a photoelectron with momen-
tum kf and energy Ef can be expressed according to Fermi’s Golden Rule as

I(kf , Ef ) ∝
∑
ki

|Mfi|2δ(Ef − Ei − hν) , (3.6)

where Mif = 〈ki|Hint |kf〉 is the one-particle matrix element of the optical transition.
Note that the summation involves only the initial states, as the final state is already
determined by the experiment itself (Ef and the measured Ekin are easily translated
with help of the energy diagram of Fig. 3.1). The operator Hint describes the interaction
of the electrons with an oscillating electromagnetic wave field A(r, t). Replacing the
momentum operator p by p + A and neglecting terms of quadratic order in A leads to
the form

Hint =
e

2mc
(A · p + p ·A). (3.7)

To give an illustrative meaning to the result 3.6, it is pointed out that under the
assumption of a constant matrix element, it is possibly to deduce the band structure
E(k) in the solid directly from the measured energy and momentum distribution of the
photoemission signal. An integration in k-space consequently yields the density of states
in this one-particle description.
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Many-Body Picture

In order to incorporate electronic correlations, which are an essential ingredient in the
physics of the investigated materials, it is necessary to work with N -electron wave func-
tions and energies, instead of the corresponding one-particle quantities. Only then
it is possible to take account of the reaction of the N−1 particle system that is in-
duced by the removal of the photoelectron. Analogous to the one-particle description,
it is possible to apply time-dependent perturbation theory, but now Fermi’s Golden
Rule has to be formulated in the N -particle Hilbert space (for a review, see Refs. [Ke-
van92,Hüfner95,Claessen97,Hüfner99,Schattke03,Damascelli04]). For simplicity, it shall
be assumed that T = 0, i.e., before the excitation the system is in its ground state |N〉
with energy E(N, 0). The final state relevant for photoemission must obviously contain
one free electron with wave vector kf and energy Ef . The remaining N − 1 electrons
will be left behind in an excited state labelled by the quantum number s with energy
E(N−1, s). The final state is thus written as |kf ;N−1, s〉. With this nomenclature, the
photoemission intensity reads

I(kf , Ef ) ∝
∑

s

|〈kf ;N−1, s|Hint |N〉|2 δ(Ef − Es − hν) , (3.8)

where Es = E(N, 0) − E(N−1, s) is the energy of the excited photohole state and the
subscript f refers to the wave vector and energy of the photoelectron, both of which are
measured in the experiment.

Starting from this expression, it will be derived in the following that the photoemission
signal is closely related to the spectral function — a quantity which is directly accessible
by many-body theory.

The matrix element can be simplified considerably with help of the sudden approx-
imation. One then assumes that relaxation processes of the N−1 electron system do
not have time to occur before the photoelectron leaves the solid. In other words, an
electron is instantaneously removed, and the effective potential of the system changes
discontinuously at that instance without any interaction between the photoelectron and
the system left behind. At sufficiently high energies, this approximation is certainly
justified, but for He i radiation or even lower photon energies it is advisable to apply
this approximation with caution.

The essential step in simplifying the matrix element is the factorization of the final
state. The state can then be written as a product of the photoelectron and the N−1
electron state:

|kf ;N−1, s〉 = c†f |N−1, s〉 (3.9)

Writing the interaction operator in second quantization

Hint =
∑
lm

〈kl|Hint |km〉 c†l cm =
∑
lm

Mlmc
†
l cm, (3.10)
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where Mlm is the one-particle matrix element, leads to the following form of Fermi’s
Golden Rule:

I(kf , Ef ) ∝
∑

s

∣∣∣∣∣〈N−1, s| cf
∑
lm

Mlmc
†
l cm |N〉

∣∣∣∣∣
2

δ(Ef − Es − hν) (3.11)

If the photoelectron is fast enough, there are no virtual states f in the ground state |N〉
to annihilate. Consequently, cf must match c†l and one can write

I(kf , Ef ) ∝
∑

s

∣∣∣∣∣∑
m

Mfm 〈N−1, s| cm |N〉

∣∣∣∣∣
2

δ(Ef − Es − hν)

=
∑
mn

MfmM
∗
fn

∑
s

〈N−1, s| cm |N〉 〈N | c†n |N−1, s〉 δ(Ef − Es − hν)

=
∑
mn

MfmM
∗
fn Amn(Ef − hν) ,

(3.12)

where Amn(E) is a matrix generalization of the spectral function. In its simplest
form, the sudden approximation assumes that this matrix is diagonal, i.e., Amn(E) =
A<(kn, E) δmn, with the spectral function defined as

A<(kn, E) =
∑

s

|〈N−1, s| cn |N〉|2 δ(E − Es) . (3.13)

The photoemission signal can now be written as

I(kf , Ef ) =
∑

n

|Mfn|2 A< (kn, Ef − hν) . (3.14)

Assuming that the one-electron matrix element Mfn conserves momentum, this result
can be interpreted in the sense that the spectral function is the theoretical counterpart
of the photocurrent. This is a very natural result considering the definition of A<(kn, E)
as describing the spectrum of excitation energies when a particle is removed from the
system. This physical meaning is best understood when interpreting Equation 3.13 as
instruction for a quantum-mechanical measurement [Claessen97]: The operator cn first
destroys an electron with Bloch wave vector kn in the ground state |N〉. The resulting
hole state will in general not be an eigenstate of the N −1 particle system. In the
measurement it is projected onto the excited states |N−1, s〉, and only if the energy of
interest E matches the excitation energy Es = E(N, 0)−E(N−1, s), the matrix element
can contribute to the result. The spectral function is thus the many-body generalization
of the k-resolved density of states. For non-interacting electrons, the hole state cn |N〉
will be identical to exactly one of the excited states |N−1, s〉, so that A<(kn, E) boils
down to the δ-function. Along with that, Equation 3.13 transforms into its one-particle
counterpart 3.6.
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3 Photoemission Spectroscopy

A great advantage of photoemission can definitely be seen in the close connection
to the spectral function, which is in turn intimately related to its one-particle Green’s
function G(k, E). Extending the Green’s function formalism to include the effect of
finite temperatures, the spectral function is given as

A<(k, E) =
1

π
ImG(k, E − i0+) f(E, T ), (3.15)

where f(E, T ) is the Fermi function.
Even though it is very helpful to have the above described intuitive interpretation of

the photoemission signal, it must not be forgotten that the applied approximations omit
that the interaction with light is associated with a cross section — an aspect to which
the remainder of this chapter is devoted.

The Matrix Element

It was shown that in an ARPES experiment information about the spectral function can
be gained. However, several effects perturb a direct extraction of this quantity: The finite
experimental resolution in determining energy and momentum of the photoelectron, and
also the background of secondary electrons, which escape from the solid after having lost
parts of their kinetic energy in inelastic scattering events. Last but not least, the matrix
element stands in the way of identifying the photoemission signal directly with the
desired spectral function. While it is often assumed that the matrix element is a slowly
varying function of energy and momentum, so that its effect can be neglected, a special
case will be presented in the following, where this assumption fails utterly: For certain
geometric measurement conditions, the matrix element for the emission from particular
initial states can vanish identically.

The matrix element is usually simplified by means of the so-called dipole approxima-
tion, which assumes that the commutator [p,A] = ih̄∇A vanishes. This is justified
when the spatial variation of the light field is small on the atomic scale. The interaction
operator introduced in Equation 3.7 then reduces to

Hint =
e

mc
A · p. (3.16)

The momentum operator can be rewritten as commutator of the unperturbed Hamil-
tonian H0 and the position operator r, so that the matrix element can be expressed
as

Mif =
e

mc
〈kf |A · p |ki〉 = − ie

h̄c
A0 (Ef − Ei) 〈kf | ε · r |ki〉 , (3.17)

where ε is a unit vector along the polarization direction of the vector potential A, whose
amplitude is A0.

In the following the experiment sketched in Fig. 3.2 shall be considered. The geometry
is such that the wave vector of both the incoming photon and the escaping photoelectron
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Figure 3.2: Geometry of an experiment with mirror plane emission from an even-symmetry orbital.
The light polarization εp is parallel to the mirror plane, whereas εs is perpendicular. With the coordinate
system on the right, chosen in accordance with the compound TiOCl (cf. Chapter 5), the depicted orbital
corresponds to dxy symmetry.

are located within the same mirror plane of the sample. If a real-space basis is chosen
for the states |kf〉 and |ki〉, it becomes obvious that the integrand of the matrix element
φk

f (r)ε·rφk
i (r) must be an even function under reflection with respect to the mirror plane,

otherwise it would vanish. The parity of the three factors comprising the integrand will
now be examined separately. The final state φk

f (r) must be even, as a wavefunction
with odd symmetry would require that the mirror plane is a nodal plane. It could
therefore not be detected in this experiment, where the detector is located in exactly
this plane. The parity of the second factor ε · r depends on the polarization of the
incident radiation: If the polarization vector is parallel to the mirror plane, εp selects
only the in-plane components of r, and the scalar product is even. The opposite is true
for the perpendicular polarization; then εs · r is an odd function with respect to the
mirror plane. The initial state can be of either parity, of course. Assume, for instance, a
Bloch wave with wave vector ki within the mirror plane, which is comprised exclusively
of even orbitals. As an example a dxy orbital of the compound TiOCl can be considered,
which is oriented in space as shown in Fig. 3.2. This orbital possesses an even parity,
and so does the Bloch wave, consequently. The separately discussed parities for emission
from this initial state can be summarized as

〈kf |A · p |ki〉 =

{
〈+|+ |+〉 6= 0 if ε = εp,

〈+| − |+〉 = 0 if ε = εs.
(3.18)

Hence, in this example photoemission is symmetry forbidden when the light polarization
is perpendicular to the mirror plane. Exactly this effect will be utilized in a polarization-
dependent photoemission study on TiOCl subject of Section 5.5.3, which shows that it
is possible to determine the symmetry of the low-lying electronic states in this way.
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4 Surface Metal-Insulator
Transition in 1T -TaSe2

4.1 Motivation

In 1979 Fazekas and Tosatti revealed that the interplay of lattice, charge and spin de-
grees of freedom in 1T -TaS2 couples two phenomena which usually occur independently
from each other: The charge density wave, which is based on electron-phonon inter-
actions, and the Mott metal-insulator transition, which emerges from electronic corre-
lations [Fazekas79]. Until today 1T -TaS2 and related transition metal dichalcogenides
receive ongoing interest, not only because of the wealth of physics that evolves from this
interplay, but also because they are perfectly suited to examine the electronic structure
and its changes responsible for these phenomena. The quasi-two-dimensional structure
makes them an ideal sample for angle-resolved photoelectron spectroscopy, both from
the experimental point of view, and because the complications in interpreting the data
are minimized due to the strongly anisotropic electronic structure.

The basic units of the CDW superstructure in 1T -TaS2 are so-called star-of-David
clusters consisting of 13 Ta atoms. However, several distinct CDW phases are found,
and only below 180K these clusters are ordered in a triangular lattice. Above this
temperature a nearly-commensurate, a domain-like incommensurate, and an incommen-
surate phase were found to exist [Bayliss84,Wu89]. At the 180K phase transition the
system not only changes between two different CDW states, this transition is addi-
tionally accompanied by a Mott metal-insulator transition. Due to the complex phase
diagram, this system cannot be considered as an example for a canonical Mott-Hubbard
transition.

It was discovered first by Perfetti et al. that the isostructural and isoelectronic 1T -
TaSe2 offers the possibility to analyze the Mott transition without an interfering CDW
transition, as it is controlled by a continuous tuning of the U/W ratio, where U is the
onsite Hubbard repulsion and W the conduction bandwidth [Perfetti03]. From the phase
diagram it can be concluded that the CDW is stronger in the selenide, in the sense that
the commensurate state prevails up to 475K. On the other hand, it will be seen that
the tendency towards Mott localization is less pronounced, and an insulating state is
not reached in the bulk even down to LHe temperatures. Nevertheless, it is possible to
induce a metal-insulator transition at the surface. This bandwidth-controlled transition
has the advantage over a filling-controlled transition that there is no disorder involved,
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4 Surface Metal-Insulator Transition in 1T -TaSe2

as it is inevitably the case in doping studies.
This chapter is organized as follows. First the system 1T -TaSe2 and its structural

properties will be introduced, presenting both the ideal crystal structure and the lattice
distortions induced by the charge density wave. Then a brief section provides the experi-
mental details concerning the sample preparation and characterization. The next section
discusses the electronic structure of 1T -TaSe2 that was investigated both by theoretical
and experimental means. At this point it is remarked that a great number of stud-
ies already exist examining the electronic structure of TaSe2 [Smith75,Myron75,Wool-
ley77, Aebi01, Horiba02, Aiura03a, Bovet04, Clerc04]. Hence this investigation focusses
on certain aspects of the electronic structure and the CDW-induced changes, paving the
way for the surface metal-insulator transition, which will finally be addressed.

4.2 Crystal Structure and Charge Density Wave

1T -TaSe2 belongs to the family of transition metal dichalcogenides, which possess a
layered crystal structure with the basic building blocks consisting of one hexagonal
sheet of transition metal atoms sandwiched between two sheets of hexagonally packed
chalcogen atoms. These layers repeat along the crystallographic c direction, as depicted
in Fig. 4.1 (a). While strong ionic and covalent bonding predominates within the layers,
weak van der Waals forces act between them.

Two different possibilities of ligand coordination exist for the Ta ions: They can either
be in an octahedral or in a trigonal prismatic environment of Se ions, displayed in Panels
(b) and (c). Different stacking orders of the ligand sheets give rise to pure octahedral,
pure trigonal prismatic or mixed coordination polytypes. The point symmetry is denoted
by T (trigonal), H (hexagonal), or R (rhombohedral) [Lieth77]. Whereas a unit cell in
1T -TaSe2 extends over only one layer in the c dimension, the periodicity is doubled in
the 2H polytype in order to reach a stable configuration.

The basic structure of 1T -TaSe2 is of CdI2 type, with space group P3m1 and lattice
parameters a = 3.4733 Å and c = 6.2715 Å at room temperature [Wiegers01]. This
crystal structure can be viewed as an almost perfect hexagonal close packing of the
anions, with the cations in the octahedral interstitials. Note that the rotation axis
contained in this space group is only threefold and not sixfold, as one could naively
conclude from the hexagonal sheets of metal and ligand atoms. With a ratio c/a =
1.806 deviating from the ideal value of 1.633, the coordinating octahedra are trigonally
distorted, viz., elongated in the c dimension.

The corresponding Brillouin zone with the conventional high-symmetry points is dis-
played in Fig. 4.1 (d). While all six corners of a hexagon in one plane of the Brillouin
zone are equivalent, as for instance the K-points, one has to distinguish between M- and
M’-points on the edges of the hexagon.

For the further investigation of 1T -TaSe2 it is important to note that the crystal
structure of the 1T polytype is distorted by a commensurate charge density wave at
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Figure 4.1: Basic structure of 1T -TaSe2. (a) Layered crystal structure consisting of Se–Ta–Se sand-
wiches separated by van der Waals gaps. (b,c) Octahedral and trigonal prismatic coordination of the
cations in the 1T and 2H polytype. (d) 1T Brillouin zone with the conventional high-symmetry points.

room temperature. The above described basic structure serves as a fundament for the
description of the

√
13 ×

√
13 superstructure adopted by the compound below 475K

[Wilson75]. Heating above this temperature takes the system from the commensurate
into an incommensurate state via a first order phase transition. The normal state cannot
be reached by heating to higher temperatures, as 1T -TaSe2 is only metastable below
870K and is thus irreversibly transformed into the 2H polytype at approximately 600K.
The CDW distorted state is characterized by a

√
13×

√
13 superlattice, which is rotated

by 13.9◦ with respect to the original lattice [Brouwer80]. The basal plane unit cell
contains 13 Ta atoms, which are arranged in star-of-David-shaped clusters, as depicted
in Fig. 4.2 (a). The atoms on the inner ring of a cluster move closer to the center atom —
an effect of approximately 7% at room temperature [Wiegers01]. The six outer atoms are
situated asymmetrically with respect to the inner hexagon, again with a shorter distance
to these atoms than the average Ta–Ta distance. As a consequence of this clustering
of Ta atoms, the Se atoms residing approximately above the centers of the clusters are
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Figure 4.2: (a) Ta sites forming star-of-David clusters in the commensurate CDW phase. Atomic
positions are taken from Ref. [Wiegers01]. The unit cells of the undistorted 1T phase and of the CDW
distorted phase are indicated in amber and red colors, respectively. (b) Brillouin zone projections of
the undistorted lattice (amber) and of the

√
13×

√
13 superlattice (red).

shifted away from the central Ta plane. The Se atoms in between the clusters are shifted
towards the central Ta plane. The resulting buckled sheets of Se atoms lead to a new
periodicity along the c axis, viz., 13 times the value of the basic structure, as the relative
phases of the CDW on neighboring layers is governed by the Se–Se contacts between
those layers. The new, smaller Brillouin zone of the CDW superstructure is displayed
together with the one of the basic structure in Panel (b).

4.3 Sample Preparation and Characterization

1T -TaSe2 was synthesized from the elements with the chemical vapor transport tech-
nique. For a more detailed description of this method, confer Section 5.3. Here, only
a brief account of the parameters is given [Huisman69,DiSalvo74,Slough86,Buslaps91].
Approximately 5 g of Ta and the amount of Se corresponding to a Se excess of 2mg/cm3

was brought into quartz ampoules of 20 cm length. Iodine was used as transport agent
with a concentration of 5mg/cm3. The crystals were grown at a temperature of ≈ 960◦C
in a temperature gradient of 40◦C along the ampoule length. Before the stable growth
phase of 18 days, the direction of the temperature gradient was repeatedly switched for
one to three days in order to dissolve the smallest of the developing crystals. In this
way the formation of polycrystalline clusters is impeded in favor of larger undisturbed
single crystals. As a result of this approach, a quartz tube typically contained several
single crystal platelets with an in-plane dimension of the order of 5mm and a thickness
of approximately 0.5mm.
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Figure 4.3: (a) Resistivity of a 1T -TaSe2 single crystal measured by the four-point method compared to
published results [Wilson75]. Above and below 300 K different sample holders were used; the pronounced
noise in the data is partly due to the instability of the solder contacts at elevated temperatures. (b) Laue
photography of a 1T -TaSe2 crystal (UA = 25 kV). Arrows point to features that demonstrate the
threefold symmetry of the pattern.

Since the 2H polytype is the stable form of TaSe2 at room temperature, it is important
to avoid that the crystals are transformed from the high temperature 1T polytype into
the 2H polytype after the end of the growth process. For this reason, the crystals were
rapidly quenched by shooting the ampoules out of the furnace into a basin of ice water.
The large majority of the resulting crystals could already be classified by inspection
with the bare eye to be the correct 1T polymorph, evident from their shiny golden color,
which clearly differs from the silver or black color of the other possible polytypes. Only
a few crystals, primarily those in large clusters without direct contact to the wall of the
quartz tubes were apparently not quenched fast enough, as their silver color hinted to
the 2H polytype.

The classification into the 1T or 2H type is unambiguous when the conductivity
is considered. The 1T polytype is characterized by a first-order incommensurate-to-
commensurate phase transition of the charge density wave at 475K, both states being
metallic. On the other hand, the 2H phase exhibits a second-order phase transition
at 120K. Below this temperature the compound is in a 3 × 3 charge density wave
state, above this transition it is in the normal, undistorted state. The results of DC
transport measurements carried out on a single crystal are plotted in Fig. 4.3 (a). From
the comparison to the data of Ref. [Wilson75] one can deduce that the sample must
indeed be assigned to the 1T polytype. Even though the temperature dependence of
the two curves is not identical in the whole temperature range, the position of the phase
transition coincides in both data sets, and also the jump height is reproduced.
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4 Surface Metal-Insulator Transition in 1T -TaSe2

A further feature to distinguish the two polytypes can be found in the Laue diffraction
pattern. While the structure of the 1T polytype is characterized by a threefold symmetry,
a sixfold rotation axis is contained in the point group of the 2H form. By close inspection
of the Laue diffractogram displayed in Fig. 4.3 (b), features can be identified that occur
only every 120◦, and thus confirm the threefold symmetry of the sample. The arrows
point to features resembling the number five on a dice that occur exactly three times
on a full turn. In order to determine the crystals’ orientation, the Laue pattern was
simulated with the LaueX software [Soyer96]. From the comparison of the experimental
diagram with the simulation, it can be inferred that the marked features are located on
the line parallel to the ΓM’ direction. The other directions then follow straightforwardly.

4.4 Electronic Structure

In the following the electronic structure of 1T -TaSe2 in its normal state and in the
presence of the charge density wave will be presented, serving as a fundament for the
metal-insulator transition in the focus of the next section.

In a local picture, the electronic structure of 1T -TaSe2 is determined by the 5d1

configuration of the Ta atom. The odd number of valence electrons produces a metallic
conductivity, since the onsite Coulomb repulsion is apparently not strong enough to
induce a Mott insulating state. This is not surprising given that the 5d shell stretches
out much farther in space than the orbitals of the 3d compounds, which are often found to
be Mott insulators. As a consequence of the octahedral coordination of the 1T polytype,
the 5d levels are expected to split up in the crystal field into t2g and eg states, with the
single electron residing in the lower lying t2g manifold. As pointed out in Section 4.2,
the coordinating octahedra are elongated along the crystallographic c direction. This
effect, amounting to approximately 5% [Wiegers01], is responsible for the lifting of the
degeneracy of the t2g triplet. With the basis of the local coordinate system x, y, and z
chosen to coincide with the crystallographic axes a, b, and c,1 in many transition metal
dichalcogenides the t2g orbital with d3z2−r2 symmetry is occupied, which points along
the c axis.

This simple picture of the electronic structure is confirmed by DFT calculations carried
out by Dr. Eyert. The calculations were performed in the local density approximation
(LDA) using a new implementation of the scalar-relativistic augmented spherical wave
(ASW) method [Eyert00]. In order to represent the correct shape of the crystal poten-
tial in the large voids of the open crystal structures, additional augmentation spheres
were inserted. Optimal augmentation sphere positions as well as radii of all spheres
were automatically generated by the sphere geometry optimization algorithm [Eyert98].
Self-consistency was achieved by a highly efficient algorithm for convergence accelera-
tion [Eyert96]. Brillouin zone sampling was done using an increased number of k-points
ranging from 63 to 6975 points within the irreducible wedge of the hexagonal Brillouin

1Note that this coordinate system does not coincide with the axes of the coordinating octahedra.
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Figure 4.4: 1T -TaSe2 density of states obtained by DFT calculations. (a) LDA density of states
decomposed into Ta t2g, Ta eg, and Se contributions, calculated for the ideal 1T structure. The Se
states strongly hybridize with the Ta derived states. (b) LDA density of states of the ideal structure
and of the CDW distorted structure. At the Fermi level, the density of states is suppressed due to the
lattice distortion, and an additional gap opens up approximately 0.2 eV above the chemical potential.

zone in the 1T structure. In contrast, for the distorted trigonal low-temperature struc-
ture 32 to 864 irreducible points were used. In all calculations the basis set consisted of
Ta 6s, 6p, 5d, and 5f as well as Se 4s, 4p, and 4d orbitals, which were treated as valence
states.

The density of states calculated for the ideal 1T structure is shown in Fig. 4.4 (a).
Apparently, both atomic species contribute considerably to the valence band in its full
energy range. This is a special feature of 1T -TaSe2 — in marked contrast to the sulfide,
where the Ta and S levels are much less hybridized. This difference is primarily respon-
sible for the different behavior of the Peierls and Mott physics that is found in the two
isostructural and isoelectronic compounds.

Around the Fermi energy, the states clearly are of t2g nature. The unoccupied eg states
are separated by a crystal field splitting of approximately 1 eV. The orbital character of
the Ta 5d band crossing the Fermi energy was identified to be predominantly d3z2−r2 (not
shown), as expected from the trigonal distortion of the coordinating octahedra. Minor
contributions come from dx2−y2 orbitals, and from the dxz orbital with eg symmetry.
This is possibly another distinctive feature with respect to the sulfide, for which it was
recently proposed on the basis of tight-binding calculations that the dx2−y2 and dxy states
are of comparable or even larger importance [Rossnagel06].

Panel (b) shows how the electronic structure is altered by the CDW-induced recon-
struction of the lattice. As expected for a quasi-two-dimensional system, the nested
parts of the Fermi surface become gapped, which is responsible for the observed sup-
pression of the DOS at the Fermi energy. Note, however, that the spectral weight is not
completely removed from the Fermi level and that the LDA calculation hence correctly
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Figure 4.5: 1T -TaSe2 band structure obtained by DFT calculations. (a) Electron dispersions calcu-
lated for the ideal 1T structure. Ta 5d bands with predominant t2g and eg character are plotted in
green and amber colors, respectively. (b) Band structure of the ideal 1T structure in a reduced energy
range, plotted along the high symmetry paths of the ΓMK plane only. (c) Band structure of the ideal
1T structure, but with a 13fold superlattice. The bands are displayed in the original Brillouin zone,
i.e., the paths correspond to the symmetry directions in the Brillouin zone of the unreconstructed crys-
tal. (d) Band structure of the CDW distorted lattice, displayed in the the original Brillouin zone. A
separated band (blue) with a width of approximately 0.35 eV emerges at the Fermi level.

yields a metallic CDW state. Electronic correlations, which are not adequately treated
in this DFT approach, are expected to further diminish the quasiparticle weight at the
Fermi energy.

A deeper insight into the CDW-induced modifications of the electronic structure is
gained by examining the band structure obtained from the DFT calculations. Fig. 4.5 (a)
shows the electronic dispersions of the ideal 1T structure along certain high symmetry
paths in the first Brillouin zone. The bands of predominantly Ta 5d t2g and eg character
are drawn in green and amber, respectively. Note, however, that this classification is
not absolute, but shall rather be understood as a tendency. Of course, the Bloch waves
corresponding to a band derived from a certain d orbital contain minor admixtures of
other d orbitals, too. As expected from the layered crystal structure of 1T -TaSe2 the
strongest band dispersions are found in the planes parallel to the crystal layers, e.g.,
along the paths ΓM or MK. However, non-vanishing band dispersions are also found
along the ΓA path, which is perpendicular to the crystal layers. This effect can be
attributed to the comparatively strong hybridization of Ta and Se states, which is more
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pronounced in the Selenide as for instance in the related compound 1T -TaS2 and hence
causes a more three-dimensional electronic structure [Horiba02].

In order to understand the effects of the CDW, additionally the band structure was
calculated for the same unreconstructed crystal structure but in the superlattice of the√

13×
√

13 CDW phase, leading to the 13fold number of bands, as shown in Panel (c).
However, these Umklapp bands are still plotted in the larger Brillouin zone of the undis-
torted lattice. The relationship between the considered high-symmetry paths of the ideal
1T crystal structure and the Brillouin zones of the reconstructed lattice is illustrated in
Fig. 4.2 (b). Although the basic principle is the same as the back-folding into a Brillouin
zone of half the original size for a one-dimensional system (cf. Fig. 2.7), the changes
induced by the

√
13 ×

√
13 distortion are obviously more complex, as the back-folding

involves 13 bands.
Switching on now the CDW potential leads to the band structure displayed in Panel (d)

of Fig. 4.5. Many of the band crossings are removed by the inclusion of the CDW. As
an interesting result, a single band at the Fermi energy stands out that is notably
separated from the others. In the ionic picture, where each Ta atom is left with one
valence electron, this band hosts the last and 13th Ta 5d electron and is therefore half-
filled. This is reminiscent of the results of Smith et al., who chose a similar approach to
calculate the band structure of 1T -TaS2 [Smith85]. They obtained that the Ta 5d band
collapses into three sub-bands, with a topmost conduction band of only 50meV width.
Their tight binding calculation considered only the Ta 5d band and did not include S 3p
contributions. In the selenide, however, the ligand contribution cannot be neglected due
to the strong cation-anion hybridization. As a marked difference to the sulfide results
of Smith et al., the DFT calculations for the related compound 1T -TaSe2 do not yield
a separation into three sub-bands.

The effect of a single band at the Fermi energy being split-off might even be further
enhanced if the spin-orbit interaction were included in the calculations, as it was observed
by a tight-binding simulation for the related sulfide compound [Rossnagel06]. Indeed,
one would expect that spin-orbit coupling plays a non-negligible role, given the high
atomic number of Ta.

The above described theoretically obtained information on the electronic structure
can be tested experimentally by photoelectron spectroscopy. Both angle-integrated and
angle-resolved measurements were performed in the homelab using He i radiation (hν =
21.2 eV) and an Omicron EA 125 HR electron energy analyzer. The acceptance angle
of this analyzer determining the angular resolution is approximately ±1◦ in the angle-
resolved mode. The total energy resolution amounted to≈ 50meV. Additionally, a Fermi
surface mapping experiment was carried out at the beamline 7.0.1 of the Advanced Light
Source (ALS) in Berkeley, USA, utilizing a goniometer capable of two orthogonal polar
rotations. The Scienta SES-100 electron analyzer was operated at an angular resolution
of ≈ 0.1◦ and a total energy resolution of ≈ 40meV. The energetic calibration of the
photoemission spectra was conducted using the position of a Fermi edge, measured on
sputtered silver or gold surfaces.
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Figure 4.6: (a) LEED pattern obtained from a cleaved surface of a 1T -TaSe2 crystal at a primary
electron energy of ≈ 80 eV. The surface Brillouin zones of the unreconstructed lattice and of the

√
13×√

13 superstructure are indicated by amber and red hexagons, respectively. (b) 1T -TaSe2 XPS spectrum
recorded with AlKα radiation (hν = 1486.6 eV). No indication for oxygen contamination is detected
at the O 1s binding energy of 532 eV. A possible C 1s peak at 285 eV cannot be found as it is hidden
under a Se Auger line. The unmonochromated x-ray source is responsible for a number of unindexed
satellite peaks.

1T -TaSe2 crystals were glued with silver epoxy on top of aluminum sample holders,
ensuring a good electrical contact to the ground. Fresh surfaces were obtained by in
situ crystal cleavages that were performed with scotch tape in the fast entry lock of the
vacuum system at a pressure of approximately 1×10−9 mbar. The resulting surfaces are
inert and were not contaminated significantly during the transfer time of typically less
than one minute from this pressure into the analysis chamber (p < 1× 10−10 mbar), as
the quasi-two-dimensional crystal structure consists of only loosely coupled layers with
saturated bonds. Indeed, long-range ordered surfaces were evidenced by low-energy elec-
tron diffraction (LEED) as displayed in Fig. 4.6 (a). The diffraction pattern contains
both the reflections of the basic structure, recognizable by their slightly stronger inten-
sity, and the superstructure reflections of the

√
13 ×

√
13 charge density wave. X-ray

induced photoemission (XPS) measurements show that the cleaved surfaces are not con-
taminated by oxygen. In the spectrum plotted in Fig. 4.6 (b) no indication for a O 1s
peak can be found. Also a significant contamination of iodine, the transport agent of
the crystal growth process, can be ruled out on the basis of the XPS data. Carbon
contamination cannot be detected directly, because the C 1s peak at −285 eV is hidden
under a Se Auger line. However, the relative intensities of the adjacent Se Auger peaks
at −284 eV and −296 eV at least show that there can be no strong C 1s contribution.

The results of the angle-resolved photoemission experiments are displayed in Fig. 4.7.
Panel (a) shows an intensity plot I(k, E) of data recorded with He i radiation at room
temperature. For the measurement the crystal was oriented along the ΓM line using
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Figure 4.7: Angle-resolved photoemission of 1T -TaSe2 (hν = 21.2 eV). (a) ARPES intensity plot
I(k, E) covering almost the full path ΓM’ΓMΓ of the original Brillouin zone. Each EDC was normalized
to the same integrated intensity. (b) ARPES EDCs measured along the MΓM’ path. Arrows mark
CDW-induced structures. (c) Cross section of Brillouin zones in the ΓALM plane. The path sampled
by the experiment with He i photons as estimated from Equation 3.5 is indicated in red. (d) ARPES
data compared to DFT bands of the ideal 1T structure along the paths ΓM (green) and AL (blue),
respectively. Arrows again mark CDW-induced structures that cannot be explained by the calculations.

its Laue diffractogram, and a very wide angle range from −60◦ to +60◦ with respect to
normal emission was covered. The corresponding path in reciprocal space is plotted in
Panel (c). As discussed in Chapter 3, the component of the wave vector perpendicular
to the crystal surface k⊥ can be estimated by Equation 3.5. For the system 1T -TaSe2

an inner potential of V0 = 9 eV was assumed [Buslaps91], and the error bar represents
the uncertainty of 1 eV in the choice of V0. From this calculation it can be seen that the
measurement samples a path which is located in the vicinity of the top of the Brillouin
zone and is thus closer to the L’AL line than to the M’ΓM line. Nevertheless, the latter
nomenclature corresponding to zero perpendicular momentum will be chosen in the
remainder of this chapter for simplicity. Turning back now to the photoemission data,
Panel (a) clearly shows the symmetry of the dispersions around the central Γ-point. The
intensity of the Ta bands is stronger at the M-point than at the M’-point due to matrix
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4 Surface Metal-Insulator Transition in 1T -TaSe2

element effects. Upon approaching the Γ-points of the adjacent Brillouin zones, the
dispersions do not seem to perfectly reproduce the behavior around the central Γ-point.
This fact can probably be traced back to a slight misalignment of the crystal. At about
±1/4ΓM a band is found to cross the Fermi energy, indicating the metallic nature of the
CDW phase of 1T -TaSe2.

The same data set is displayed, in a reduced k range, in Panel (b) as energy distribution
curves (EDCs). In this representation of the data, the steeply dispersing feature around Γ
is clearly resolved to consist of two different bands. A detailed discussion of this splitting
can be found in Ref. [Clerc04], where it is shown that both the crystal symmetry and
the spin-orbit interaction are responsible for this effect.

A comparison of the experimental data with the calculated band structure is shown in
Panel (d). Both the DFT bands along the ΓM line (green) and along the AL line (blue)
are plotted in this graph. As argued above, the calculated bands along the latter path
are rather suited to be compared to the photoemission data. Indeed, a better agreement
between experiment and theory is found when this path is considered, especially as far as
the location of the Fermi vector kF is concerned. Note, however, that the photoemission
experiment with He i radiation primarily probes the surface electronic properties. The
escape depth of electrons stemming from the Fermi level approximately corresponds to
one interlayer distance of 1T -TaSe2. The DFT calculation, on the other hand, describes
the bulk electronic structure, so that a consistent comparison is, strictly speaking, not
possible. As a loophole, it is common practice in the transition metal dichalcogenides to
regard the surface electronic structure as being only marginally different from that of the
bulk due to the quasi-two-dimensional crystal structure. Each layer only weakly interacts
with the adjacent layers by van der Waals forces, and for the surface layer the absence
of one neighboring layer is thus regarded as a minor perturbation. However, it shall be
warningly remarked at this point that the anisotropy of the electronic structure is rather
weakly pronounced in this system compared to other dichalcogenides. Consequently, the
difference between surface and bulk electronic properties might be larger in the selenide
than, e.g., in the sulfide.

By comparison of the measured and calculated band structure, the topmost narrow
experimental band can be identified as being derived mainly from Ta 5d levels, whereas
the steep and less intense bands are mainly formed out of Se 4p levels. It is again
emphasized, however, that a strong hybridization of Ta and Se states is present in this
compound.

At first glance it seems surprising that the experimental band structure — obtained
at room temperature — qualitatively agrees with the DFT calculation for the ideal,
unreconstructed crystal, while it is known that 1T -TaSe2 is in a CDW state at this tem-
perature. One could naively expect that the spectral weight distribution should rather
be compared to the band structure displayed in Fig. 4.5 (d), which was calculated for
a CDW distorted TaSe2 crystal. However, this inconsistency is resolved when not only
the energetic positions (in other words the eigenvalues) at a certain k-point are consid-
ered, which define the band structure. In fact, it is equally important to consider also
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the spectral weight connected with each state, which is determined by the correspond-
ing eigenvector of a certain E(k) value. It was shown in form of a simple example in
Ref. [Voit00] that the spectral weight distribution is concentrated on the original band
in the extended zone scheme if the disturbing potential of the CDW is much smaller
then the crystal potential of the unreconstructed structure. Applied to the related com-
pound 1T -TaSxSe2−x, in which the selenium ligands are partly substituted by sulfur
atoms, it was shown by model calculations that the charge density wave causes only
minor corrections to the original spectral weight distribution of the unreconstructed
state [Aiura03b,Aiura04]. For this reason, it is justified to study the electronic structure
in the extended Brillouin zone of the unreconstructed 1T -TaSe2 crystal structure and
to compare the experiments to the corresponding calculations disregarding the charge
density wave.

Some effects of the CDW can be found in the experimental data, however: Following
the Ta 5d band on its decreasing path away from Γ, one observes that roughly at 0.8ΓM
(E = −0.8 eV) the intensity breaks down. The band seems to be continued not only
along the straightforward direction, but also a band bending upwards is found, albeit
with much weaker intensity. These shadow bands, marked by arrows in Fig. 4.7 (b,d),
can be interpreted as band back-folding due to the charge density wave. Also the Se
bands show signatures of CDW-induced changes; the steep bands undergo a more subtle
intensity modulation at about −1.25 eV.

Up to this point, all photoemission data were presented as function of energy and one
component of k‖, i.e., along certain directions in k-space. An alternative presentation,
namely as constant energy cuts through the Brillouin zone, is given in Fig. 4.8. The dis-
played intensity maps show photoemission data recorded with synchrotron radiation at
the ALS. The photon energy of hν = 110 eV was chosen such that the probed electronic
states in the sample are estimated to be located in the vicinity of the Brillouin zone
lid, so that the results are comparable to the He i data in this respect (cf. Fig. 4.7 (c)).
Panel (a) shows a constant energy surface that was obtained by integrating the photo-
emission intensity in an energy window of 0.2 eV width, centered 0.3 eV below the Fermi
level. The integration window chosen for Panel (b) is centered at the Fermi level, so
that the intensity plot corresponds to a Fermi surface map of 1T -TaSe2. In Panel (a)
one recognizes elliptically shaped contours stemming from the Ta 5d band, which crosses
the E = EF − 0.3 eV plane on its way to the Fermi level. These contours qualitatively
match the shape of the Fermi surface, as it is expected for a typical 1T polytype of a
transition metal dichalcogenide. In the particular case of the unreconstructed TaSe2,
band structure calculations yield ellipse-like cross sections of the Fermi surface in the
ALH plane [Myron75,Woolley77, Sharma02]. This plane approximately corresponds to
the k-space surface that was probed in the ARPES experiments. In the ΓMK plane these
six ellipses are expected to grow together to a single connected structure. In consistency
with these results, the symmetry of the experimental constant energy surface does not
show any signs of the

√
13×

√
13 superstructure. As a further observation, the intensity

in the Brillouin zone centered at zero parallel momentum is found to be much larger
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Figure 4.8: Constant energy intensity maps I(kx, ky) of 1T -TaSe2. (a) Photoemission intensity
measured with photons of 110 eV and integrated in an energy window of 0.2 eV centered around
E = EF − 0.3 eV. The first Brillouin zone of the unreconstructed lattice is indicated in amber color to-
gether with certain high symmetry points. The path ΓMΓ of the measurements in Fig. 4.7 is shown as a
white line. The green ellipse serves as a guide to the eye to follow the constant energy surface. (b) Fermi
surface map (E = EF). The white circle indicates the estimated area covered by the angle-integrated
measurements of Fig. 4.10.

compared to the adjacent Brillouin zones. This could by explained as a photoemission
matrix element effect, as the intensity from Ta 5d3z2−r2 electrons is expected to decrease
with increasing emission angle ϑ proportional to |Y20|2, where Y20 =

√
5/16π(3 cos2 ϑ−1)

is the spherical harmonic with d3z2−r2 character [Aebi01].

The Fermi surface map displayed in Panel (b) deviates from the above described
constant energy surface mainly in two regards. Firstly, the apices of the ellipses move
towards the Γ-point, an effect which is readily explained by the dispersion of the Ta band
displayed in Fig. 4.7 (d). The second and more interesting observation is the almost
complete collapse of intensity in the region around the zone boundary where the ellipses
possess their smallest curvature. This is exactly the location where Fermi surface nesting
would be anticipated. Considering the expectation formulated in Section 2.2, it would be
tempting to interpret the suppression of intensity as partial gapping of the Fermi surface
induced by the charge density wave. However, the authors of Ref. [Bovet04] attribute
this observation to photoemission matrix element effects. They rather propose that
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Figure 4.9: Surface metal-insulator transition in 1T -TaSe2 observed by angle-resolved photoemission
(hν = 21.2 eV). (a,b) ARPES intensity plots I(k, E) measured at 325 K and 100 K, respectively

the experimental data hint to a pseudo-gapped Fermi surface, i.e., an overall reduced
intensity at the Fermi energy.

Definitely, a more systematic investigation of the electronic structure would be nec-
essary to verify Fermi surface nesting as driving force for the development of a charge
density wave in 1T -TaSe2. In particular, this would require to analyze the topogra-
phy of the Fermi surface in all three dimensions. The band structure calculations yield
electronic band dispersions which are not confined to the (a,b) plane, resulting in a rela-
tively pronounced three-dimensional character of the Fermi surface. For a determination
of the nesting vector it is therefore essential to regard also the third dimension. In a
photoemission experiment, this could be realized by systematically sweeping the photon
energy at a synchrotron source.

4.5 Surface Metal-Insulator Transition

Whereas the difference between bulk and surface electronic structure was treated in the
previous section as being small enough to reasonably facilitate a comparison between
photoemission data and band structure calculations, this section focusses on an effect
which is brought about by exactly this difference. A metal-insulator transition will be
presented that occurs at the surface of 1T -TaSe2, but not in the bulk [Perfetti03].

Figure 4.9 shows angle resolved photoemission data recorded at 325K and 100K, re-
spectively. The data of both intensity maps thus belong to the same

√
13×

√
13 CDW

phase of 1T -TaSe2. However a drastic difference is evident when both data sets are com-
pared. The high-temperature measurement yields a metallic behavior with the Ta 5d
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Figure 4.10: Surface metal-insulator transition in 1T -TaSe2 observed by angle-integrated photoemis-
sion (hν = 21.2 eV). (a) Angle-integrated photoemission intensity I(E) recorded at the Fermi wave
vector on the ΓM line (cf. Fig. 4.8 (b)) and normalized to the same integrated area. (b) Temperature
dependence of the intensity at the Fermi level. The transition shows a large hysteresis. (c) Symmetrized
photoemission intensity Is(E) = I(E) + I(−E) (for details, see text).

band crossing the Fermi level at ≈ ±1/4ΓM, as discussed in the previous section. In con-
trast, at low temperature the spectral weight is clearly shifted away from the Fermi level
and a gap appears. Further photoemission measurements carried out with synchrotron
radiation at the ALS have shown that this gapping affects the complete Fermi surface
and not only the Fermi wave vectors lying on the M’ΓM line, thus signalling a truly
insulating state. However, it is well established that the commensurate phase of bulk
1T -TaSe2 is metallic, as seen for instance in the dc transport measurement of Fig. 4.3.
Therefore, the conclusion must be drawn that the observed metal-insulator transition
affects only the surface, which is mainly probed in the photoemission experiment. As
already mentioned, the escape depth of He i excited electrons corresponds to roughly
one interlayer distance, i.e., approximately two thirds of the photoemission information
stem from the topmost sandwich layer, and another 20% from the second.

The angle-integrated photoemission data presented in Fig. 4.10 provide further ev-
idence that the observed gap extends over the complete Fermi surface. The spectra
were recorded in the angle-integrated mode of the Omicron analyzer, thus counting the
photoelectrons with an emission angle ϑ ≤ 8◦. The area covered in reciprocal space by
this measurement is indicated in Fig. 4.8 (b). One can see that a large portion of the
Fermi surface is thus taken account of, having in mind that only the asymmetric unit of
the Brillouin zone with its threefold symmetry has to be considered. The three spectra
shown in Panel (a) reveal a suppression of intensity at the Fermi level below the transi-
tion temperature, the fingerprint of the metal-insulator transition. Note, however, that
the intensity does not drop to zero, but that a shoulder of remnant intensity persists at
the Fermi energy. This intensity is probably due to emission from the bulk. The decline
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4.5 Surface Metal-Insulator Transition

of remnant intensity with decreasing temperature can be taken as a sign that the surface
region undergoing the transition into an insulating state reaches deeper and deeper into
the bulk.

The transition temperature can be inferred from the temperature dependence of the
signal at the Fermi level depicted in Panel (b). The cooling curve shows a sudden drop
of intensity at about 270K, followed by a rather flat decline, which is attributed to the
increasing extent of the insulating zone at the surface. The heating curve is characterized
by a strongly delayed recovering of intensity, which is an indication for a first-order phase
transition. Above 350K the hysteresis curve is closed again. This is confirmed by an
inspection of the angle-integrated spectra that correspond to the points marked by filled
symbols in Panel (b), yielding an exact match of the spectral shapes (not shown).

Below the phase transition, it sticks out that the cooling and heating curves do not
come to lie on top of each other. This could be a consequence of pinning effects: The
deepest extent of the insulating region, reached at the lowest temperature of the experi-
ment, will not immediately recede upon heating when it is pinned at structural defects.
It must be stressed at this point that the metal-insulator transition was found to be
very sensitive to the surface quality. Depending on the quality of the cleavage surface
and on the exposure to possible contaminants during the experiment, several samples
did not show a surface transition at all. The strong dependency on sample quality is
also mentioned in Ref. [Colonna05].

Coming now to the question what the nature of the observed phase transition is, it
must be stated first that structural changes can be ruled out for several reasons. For
the bulk it is obvious that no structural phase transition occurs in the relevant tem-
perature range, as measurements of the resistivity and magnetization show (cf. Fig. 4.3
and Refs. [DiSalvo74, Wilson75]). In order to exclude this possibility also for the sur-
face, LEED measurements were performed in the temperature interval from 100K to
300K with a primary electron energy of 60 eV and 100 eV, respectively. In accordance
with Ref. [Perfetti03] the LEED patterns demonstrate the identical surface symmetry
of the metallic and insulating phase (not shown). Finally it is added that the scanning
tunnelling microscopy (STM) results of Colonna et al. do not display signs of structural
changes at the surface, either [Colonna05].

The observed spectral changes must thus be attributed to an electronic transition. In
the following it will be argued that the appearance of a gap is the signature of a first-
order Mott transition, which is driven by a CDW-induced reduction of the electronic
bandwidth. The spectral form of the angle-integrated photoemission signal is suited to
support this interpretation. From DMFT calculations it is known that a Mott metal-
insulator transition is characterized by the disappearance of the quasiparticle peak in
favor of the lower and upper Hubbard bands. Indeed, such a behavior can be found in
the experimental data, albeit obscured by the effect of the Fermi distribution, since the
photoemission signal is proportional to the product of the spectral function A(E) and
the Fermi distribution f(E). The perturbing effect of f(E) can be removed by a sym-
metrization procedure: Assuming that particle-hole symmetry holds sufficiently close to
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the Fermi energy, i.e., A(E) = A(−E), one can utilize the relation f(E) + f(−E) = 1
by considering the symmetrized photoemission intensity Is(E) = I(E) + I(−E). Then
the Fermi distribution cancels out. The photoemission signal symmetrized in this way
is plotted in Fig. 4.10 (c) for different temperatures. It is explicitly pointed out, how-
ever, that these spectra are not intended for a discussion outside a small energy window
around EF . The result of this procedure is certainly not valid far away from the Fermi
level due to the absence of electron-hole symmetry in 1T -TaSe2. The symmetrization
shall merely serve as a tool to illustrate the evolution of the spectra close to EF . In
the spectrum measured above the transition the typical three-peak structure is recog-
nized with a quasiparticle peak at the Fermi energy. For the emergence of this feature
in the symmetrization procedure the exact position of the Fermi level is crucial. The
Fermi energy was therefore determined very carefully by measuring a silver foil at the
same experimental conditions. Lowering the temperature leads to a disappearance of
the quasiparticle feature in the insulating phase and a transfer of spectral weight to the
side bands, which are interpreted as lower and upper Hubbard bands in the Mott pic-
ture. Overall, a qualitative agreement with the theoretical DMFT predictions for a Mott
transition presented in Section 2.1 is found, albeit with a rather weakly developed quasi-
particle peak. This not surprising though, considering the large value of the resistivity
of bulk 1T -TaSe2 at room temperature of 2 × 10−3 Ωcm [DiSalvo74] — approximately
three orders of magnitude higher than copper.

From the distance of the upper and lower Hubbard bands, the value of 0.6 eV for the
onsite Coulomb repulsion can be estimated very crudely, keeping in mind that only the
occupied part of the density of states can be measured. A recent scanning tunnelling
study, which has the advantage that both the occupied and the unoccupied states can
be probed, obtains a value of 0.38 eV for this distance. In contradiction to electron-hole
symmetry, it finds the upper Hubbard band to lie much closer to the Fermi level than
the lower one [Colonna05].

The question that remains to be answered is: What mechanism triggers the Mott
transition at the surface of 1T -TaSe2 — but obviously leaves the bulk in a metallic
state? First of all it is pointed out that a Mott transition is usually expected in systems
involving 4f , 5f , or 3d electrons, systems which are characterized by a strong electronic
confinement in space and therefore a large onsite Coulomb repulsion. Famous exam-
ples for Mott insulators among the 3d transition metal compounds are V2O3, NiO, or
La2CuO4 [Mott49, Fulde91, Fazekas99a]. Also the material discussed in the following
chapter, TiOCl, falls into this category. In 1T -TaSe2 with its 5d electron system the
Coulomb repulsion is much weaker. As discussed above, the Hubbard U was estimated
as 0.38 eV, which is almost an order of magnitude smaller than the corresponding value
of TiOCl. Nevertheless, a ratio U/W large enough to induce a Mott transition is pos-
sible in TaSe2 due to the reduction of the electronic bandwidth caused by the charge
density wave. The magnitude of this effect can be appreciated by inspecting the DFT
calculations shown in Fig. 4.5. Whereas the unreconstructed crystal possesses a Ta 5d
band with a width of ≈ 2.3 eV, the bandwidth is reduced to only 0.3 eV taking into
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Figure 4.11: Role of the CDW in the Mott-Hubbard scenario. (a) Contributions of the inequivalent
Ta sites to the density of states at the Fermi level, indicated by the symbol size. (b) STM image of the
1T -TaSe2 surface at 300 K showing clusters with bright intensity (I = 3nA, V = −75 meV). (c) Sketch
illustrating the interpretation of the star-of-David cluster orbitals as the sites of the Hubbard model.

account the lattice distortion of the CDW. The ratio U/W is hence greater than unity
in the CDW phase of 1T -TaSe2.

In order to get an intuitive picture of this Mott-Hubbard scenario, it is helpful to take
a closer look at the separated band drawn in blue in Fig. 4.5 (d). The DFT calculations
yield that the various inequivalent Ta sites of the star-of-David structures contribute
quite differently to the density of states at the Fermi energy. If one divides the differ-
ent Ta sites roughly into three categories — the center atom, the atoms in the inner
ring, and the atoms in the outer ring —, the average respective contributions amount
to 13%, 5.5%, and 4%, respectively. The residual 30% are distributed relatively homo-
geneously among the remaining 26 Se atoms. This result is illustrated in Fig. 4.11 (a),
where the symbol size represents the DOS contribution of each Ta atom. From this
result it becomes qualitatively clear that instead of considering simple orbitals at the Ta
sites, one should rather consider “molecular” orbitals, which have to be attributed to
the star-of-David clusters. The topmost occupied band is then formed by overlapping
wavefunctions that are peaked in the center region and decrease towards the edges of
the stars. With this notion of the low-energy electronic orbital the interpretation of the
STM image depicted in Panel (b) becomes obvious. The image was recorded with an
Omicron variable temperature STM at constant tunnelling current of 3 nA and with a
sample bias of -75meV (thus probing the occupied states). Single atoms are weakly rec-
ognizable, even though the image is clearly dominated by the symmetry of the

√
13×

√
13

superstructure with bright areas that are identified as the centers of the star-of-David
clusters. A coarse analysis of the distances shows that this interpretation is consistent
with the supercell size expected from x-ray diffraction [Wiegers01].

In the Mott-Hubbard picture, the local Coulomb energy U and the hopping parameter
t must accordingly be also defined in the light of the CDW-induced modifications of the
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electronic structure: Instead of the single metal atoms which are usually identified as
the sites relevant for the Hubbard model, the whole cluster takes over this role in the
CDW phase of TaSe2. Consequently the Hubbard U is then the energy cost for double
occupancy of one cluster orbital, and the hopping parameter t measures the energy
gain associated with the hopping from one cluster to the next. Panel (c) illustrates
the underlying idea in form of two sketched cluster orbitals. This picture is able to
naturally explain why the crucial parameters U and W , the latter being proportional
to the transfer integral t, are both much lower than in typical transition metal systems
undergoing a Mott transition.

If the transfer integral t is associated with hopping from cluster to cluster, it is readily
understood that the corresponding bandwidth W changes with temperature. Upon
cooling the CDW amplitude grows (cf. Section 2.2), in other words, the star-of-David
clusters shrink, so that the wavefunction overlap of neighboring clusters is reduced. The
transfer integral thus becomes smaller, and with it the bandwidth W .

The temperature induced variation of the CDW is confirmed by the ARPES data,
which clearly demonstrate that the CDW-induced changes are more pronounced at low
temperatures, as a comparison of Panels (a) and (b) of Fig. 4.9 shows. Further evidence
can be found in measurements of Ta 4f core levels presented in Ref. [Colonna05], which
exhibit an increased energy separation at lower temperature.

In the bulk of 1T -TaSe2, the reduction of W is apparently not sufficient to reach the
critical threshold value of U/W necessary to trigger a Mott transition. At the surface,
however, the case is different, and the photoemission measurements evidence a transition
into an insulating state. One possible explanation is an enhancement of the CDW at
the surface, where the topmost Se atoms benefit from a reduced coordination so that a
lattice distortion is connected with a lower energy cost [Perfetti03]. Putting all pieces
together, it can be summarized that a surface metal-insulator transition was observed
by photoemission experiments, which is driven by a CDW-induced reduction of the
bandwidth. This effect is able to modify the balance between the local Coulomb energy
and the conduction bandwidth such that the surface of 1T -TaSe2 is driven into a Mott
insulating state when cooled below the transition temperature, whereas the bulk remains
metallic down to the lowest investigated temperatures. The insulating state is confined
to the surface and can therefore only be detected by surface-sensitive techniques such as
photoelectron spectroscopy. The extent of the insulating surface zone seems to modestly
grow with decreasing temperatures.

4.6 Conclusion and Outlook

It was already mentioned in the introduction of this chapter that the investigation of the
1T -TaSe2 electronic structure by means of photoelectron spectroscopy is the subject of
a considerable number of publications. It must be stated, however, that the CDW’s in-
fluence on the electronic structure could not be resolved experimentally to a completely
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satisfying extent. This is due to the fact that the spectral weight distribution is only
weakly affected by the CDW potential — in contrast to the band dispersions, which are
drastically deformed by the new periodicity of the superstructure. However, for a deep
understanding of the interplay between Peierls and Mott physics, it would be desirable
to get an experimental handle on the CDW-induced changes. An opportunity to extract
the concealed changes lies in polarization-dependent photoemission experiments. In this
way it can be utilized that the Ta 5d band is characterized by an even symmetry with
respect to the ΓALM plane, since it is almost exclusively comprised out of even d3z2−r2 ,
dx2−y2 and dxy states. For a suitable choice of the light polarization, the photoemission
matrix elements suppress the signal from the electronic structure generated by the intrin-
sic crystal potential. The remaining intensity should then highlight the weak changes
provoked by the CDW potential. This technique was already successfully applied by
Aiura and coworkers to 1T -TaS1.2Se0.8 [Aiura03b]. Prospective preliminary results for
1T -TaSe2, obtained in a synchrotron experiment at Elettra in Trieste, Italy, show that
it would be interesting to further pursue this idea in order to disentangle the effects of
the intrinsic crystal potential, of the CDW potential, and of the electronic correlations
leading to the metal-insulator transition.
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5 Spin-Peierls Physics in the
Titanium Oxyhalides

5.1 Motivation

After the discovery of high-Tc superconductivity by Bednorz and Müller in 1986 [Bed-
norz86] the interest in the RVB state as a possible explanation for this phenomenon
revived. However, it was clear already at that time that the realization of the RVB
state can only occur in a small region of phase space. For systems denied to adopt a
Néel ordered ground state, there is a wide range of alternative behaviors, and RVB is
certainly not the most obvious of these. In the search for the realization of the RVB
state in nature, Beynon and Wilson examined the spin-1/2 Mott insulators TiOCl and
TiOBr in 1993 [Beynon93]. Although they remained tentative in their conclusion, they
considered the oxyhalides promising candidates for the RVB state for a series of reasons.

The basic requirement is of course the spin-1/2 configuration. As laid out in Sec-
tion 2.4, the low spin is essential for the quantum spin liquid because of the amplified role
of quantum fluctuations. In TiOCl and TiOBr the orbital momentum is quenched, just
as in the other 3d transition metal compounds, and consequently their magnetic moment
corresponds to the spin-only value of S = 1/2. In this respect, they are the counterparts
of the d9 cuprate high-Tc superconductors. Further arguments are connected with the
basic crystal structure of these materials, which will be presented in the following section.
The layered titanium oxyhalides are structurally low-dimensional, which is an impor-
tant prerequisite for RVB, because this again favors quantum fluctuations. Moreover,
the triangular arrangement of spins with almost equal Ti–Ti distances resembles the
situation depicted in Fig. 2.13 with a geometric frustration of simple AFM order. Also
the magnetic susceptibility measured in the group of Wilson [Wilson87,Maule88] fitted
into the RVB picture. It showed a very flat dependency on temperature with no signs
of a phase transition at low temperatures. This was interpreted by Beynon and Wilson
as the Pauli paramagnetic behavior characteristic of the RVB state (cf. Section 2.4).

What made these systems even more attractive is the proximity to the metal-insulator
transition, since — according to mean-field theory — the metallization of an RVB sys-
tem is equivalent to the generation of superconductivity. Another interesting property
of the titanium oxyhalides is the orbital degree of freedom. In contrast to the cuprates
where the hole resides in the eg orbitals, the t2g manifold is occupied in the early transi-
tion metal compounds. These orbitals are much less Jahn-Teller active, and their near
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degeneracy provides a rich variety of interesting physics. One can thus expect that,
additional to the spin and lattice degrees of freedom, the orbital sector is involved as
well.

The question if the RVB state is realized in the undoped oxyhalides can unambiguously
be answered, as their ground state is clearly not of RVB nature. This was found in
2003 by Seidel et al. when they remeasured the magnetic susceptibility of the chloride
[Seidel03]. They discovered two phase transitions, which were hardly pronounced and
thus overseen in the data of Wilson et al. [Wilson87, Maule88], probably due to an
imperfect sample quality. Seidel and co-workers interpreted this phenomenon as the
signature of a spin-Peierls instability. Even if the scenario in TiOCl and TiOBr is not a
conventional one, it will be shown in this thesis that the titanium oxyhalides nevertheless
have to be regarded as spin-Peierls systems. Although not originally intended, Seidel
et al. discovered a spin-Peierls system with record high transition temperatures of 67K
and 91K. And as this instability was almost exclusively found in organic systems so
far, TiOCl and TiOBr are the only inorganic spin-Peierls systems besides CuGeO3. The
spin-Peierls instability has very interesting properties as outlined in Section 2.3, and it
has to be analyzed if in the oxyhalides interesting effects occur due to the orbital degree
of freedom, which could possibly come into play. This aspect was not included in the
theoretical model. Also the effects of a finite interchain coupling have to be examined for
their consequences. Even if Seidel et al. were not able to find the desired RVB state in
TiOCl, it can hardly be viewed as a failure to have uncovered the rich physics, that will
be presented in the course of this chapter. It shall be stressed, however, that despite the
obvious absence of the RVB state in the undoped compounds, the possibility remains
that this state is preferred to the spin-Peierls order when the systems are sufficiently
doped.

This chapter is organized as follows: After a brief introduction of the oxyhalides in
their normal state at room temperature, the sample preparation and characterization
will be presented. In the next section the unconventional spin-Peierls scenario with its
two phase transitions will be illuminated. The determination of the electronic structure
at room temperature by experimental and computational means is the central section
of this chapter. Before concluding with the discussion of conducted and intended dop-
ing studies, it will be shown that it is possible to trigger an insulator-metal transition
in TiOCl by applying external pressure, which strengthens the hope in the search for
superconductivity in these compounds.

5.2 Normal State

The oxyhalides TiOCl and TiOBr are characterized by the trivalency of the Ti atom in
a 3d1 configuration. Due to strongly pronounced correlation effects in the 3d transition
metals, the odd number of electrons does not lead to a metallic state as it would be ex-
pected from simple Bloch theory. Conversely, the oxyhalides are Mott insulators, and op-
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Table 5.1: Structural parameters and atomic separations of TiOCl [van Smaalen06] and TiOBr [Schner-
ing72] at room temperature. For the definitions of the Ti–Ti distances, see Fig. 5.2. Units in Å.

Unit Cell Ti–Ti Distance

a b c Ti–Tib Ti–Tiabc

TiOCl 3.779 3.355 8.027 3.355 3.172

TiOBr 3.787 3.487 8.529 3.487 3.193

tical spectroscopy observes a charge gap of ≈ 2 eV [Maule88,Rückamp05a,Kuntscher06].

As emphasized before, the details of the crystal structure are of fundamental im-
portance for the competition of the different ground states of a spin-1/2 system. For
instance, low dimensionality will weaken the tendency of the system to order antifer-
romagnetically as it favors quantum fluctuations over a static spin configuration. Also
geometrical frustration is an important aspect, as it raises the probability for the estab-
lishment of an RVB state by complicating a simple Néel ordered or spin-Peierls distorted
ground state.

The titanium oxyhalides are layered compounds, but not this structural two-dimen-
sionality is the determining factor for the question which ground state is chosen by
the system. It is rather the dimensionality of the electronic system, or more precisely,
of the low lying electronic excitations. A central point is therefore what the strongest
interaction paths are, as they can lower the effective dimensionality of the electronic sys-
tem. Indeed, Seidel et al. found that the magnetic behavior of the chloride in the room
temperature phase rather hints to a one-dimensional character [Seidel03]. Above ap-
proximately 130K the paramagnetic susceptibility can be nicely described by a Bonner-
Fisher behavior, characteristic for one-dimensional Heisenberg spin chains. Seidel and
co-workers fitted this part of their susceptibility data to the Bonner-Fisher curve, in this
way extracting a value of 660K for the nearest neighbor exchange J of the Heisenberg
Hamiltonian. The underlying reason for this one-dimensional nature will be put forward
in the following detailed description of the room temperature crystal structure.

The structural determination of TiOCl was first accomplished by Schäfer and co-
workers in 1958 [Schäfer58]. The oxyhalides TiOCl and TiOBr are both isostructural
to the quasi-two-dimensional FeOCl, which crystallizes in the orthorhombic space group
Pmmn (59) with Z = 2, i.e., a unit cell comprises two atoms of each sort. In Table 5.1
the lattice constants are summarized. One notices that they are slightly larger in the
bromide, which of course results from the larger anion radii.

The structure can be described as consisting of buckled Ti-O bilayers that are sand-
wiched between two halogen sheets and repeat themselves along the crystallographic c
axis. Two neighboring bilayers are shown in Fig. 5.1. They interact only weakly through
van der Waals forces mediated by the halogen ions. The local symmetry of each Ti site
is mm2, i.e., there exist two mirror planes perpendicular to the crystallographic a and b
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a

b

c

Ti

O

Cl

Figure 5.1: FeOCl-type crystal structure of TiOCl and TiOBr. Yellow bonds emphasize the buckled
Ti-O bilayers. A unit cell is highlighted in red together with the relative position of certain atoms with
respect to its basal plane. The coordinating octahedron of a Ti ions, formed out of four O and two Cl
ion, is indicated in blue.

axes, respectively, and the c axis is a twofold rotation axis. Each Ti ion is surrounded by
a distorted octahedron of four oxygen and two halogen ions, as indicated in the figure.
These octahedra share corners along the a axis and edges along the b axis.

In Fig. 5.2, a view of the Ti ions in a single sandwich layer is shown, omitting the O
and Cl ions for simplicity. The Ti ions are arranged in two rectangular arrays on different
levels. Note that the distance Ti–Tiabc between two adjacent Ti ions of different levels
is slightly shorter than the distance Ti–Tib along the b axis on the same level, as listed
in Table 5.1. The resulting triangular configuration of Ti sites is responsible for the
geometrical frustration of a simple AFM or spin-Peierls order.

To answer the question of dimensionality, one has to take a look at the local envi-
ronment of the relevant Ti ions, as the basis for the low lying excitations is mainly
comprised of the Ti 3d electrons. The electronic structure is thus determined by the
octahedral coordination of the Ti ion. The octahedral cages dictate the local coordinate
system for the description of the Ti 3d orbitals: As indicated in Fig. 5.2, the z axis of
the local coordinate system coincides with the a axis, and the x and y axis are rotated
by 45◦ with respect to the b and c axes, so that they roughly point in the direction of
the surrounding ligands.

The single 3d electron will reside in the t2g triplet, as these orbitals point midway
between the repelling ligands. The direct cation–cation overlap is promoted in the
oxyhalides by the t2g orbitals’ orientation, in contrast to the late transition metal com-
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Figure 5.2: Rectangular arrangement of Ti sites in two adjacent sheets parallel to the (a,b) plane.
For simplicity O and Cl ions are not shown. The direct connection Ti–Tib between two sites along the
b direction (yellow) and the slightly shorter Ti–Tiabc connections (blue) are highlighted. Linear chains
are formed along the b direction by Ti 3dxy orbitals, indicated in green. Note that the local coordinate
system (x,y,z) does not coincide with the global reference frame (a,b,c).

pounds, where superexchange plays a larger role. The greater size at given valence of
the titanium ion compared to a copper ion, for instance, intensifies this effect. As a
further consequence of the orientational aspect, the t2g electrons are generally less sus-
ceptible to Jahn-Teller distortions than the eg subshell relevant for the late transition
metal compounds. From this point of view, orbital degeneracy is generally more likely
in the Ti d1 systems than in the d9 cuprate systems. However, one has to keep in mind
that in TiOCl and TiOBr the coordinating octahedra are strongly distorted, so that a
non-negligible splitting of the t2g manifold can be expected. Indeed, LDA+U calcula-
tions identified the dxy derived band as slightly split off from the bands with dxz and
dyz character [Seidel03, Saha-Dasgupta04]. According to these calculations, the single
Ti 3d electron will therefore occupy the dxy orbitals, which point in the direction of the
next Ti site along the crystallographic b direction. The resulting chains of overlapping
orbitals are illustrated in Fig. 5.2. Note that the lobes perpendicular to the chain do
not point at any of the neighboring atoms. From this, it is clear that the predominant
hopping path will involve only the Ti sites along the one-dimensional chain direction.

Saha-Dasgupta et al. quantified this statement by means of a tight-binding down-
folding procedure [Saha-Dasgupta04]. They showed that the transfer integral t is much
larger along the b direction than, for example, along the slightly shorter connection of
two Ti sites in adjacent Ti-O sheets. However, the latter hopping parameter, which
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Figure 5.3: Sketch of the chemical vapor transport setup. A quartz tube with the reactants at one
end is exposed to the temperature gradient of a multi-zone furnace.

connects sites on different chains, is nonzero and therefore responsible for a coupling
between the chains. In Section 5.4.3 it will be laid out, that this coupling can be the
origin of interesting physics. The experimental determination of the dimensionality of
TiOCl and TiOBr is one of the central points treated in Section 5.5.

5.3 Sample Preparation and Characterization

Single crystals of TiOCl were grown by the chemical vapor transport method [Schäfer62,
Nitzsche67], as sketched in Fig. 5.3. A closed quartz tube is brought into a temperature
gradient with the reactants at the hot end. TiOCl single crystals will then grow at the
colder end of the quartz tube. The origin of the transport lies in the dependence of
the chemical equilibrium on temperature. In the hotter dissolution zone, the reactants
will preferably go into the gas phase, whereas in the growth region, the equilibrium is
shifted to the side of the solid phase. However, one has to keep in mind that this is a
reversible process — dissolution and growth will always take place in both zones. In
the pressure regime of several bar, which is a realistic pressure for the typical amount of
reactants in the quartz tube, the transport is governed by thermal convection. This is
aided by a slight inclination of the quartz ampoule. In the growth zone, the gas phase
is supersaturated and spontaneous nucleation will set in. Statistical density fluctuations
lead to aggregation, but the aggregates will in general dissolve again. Only when they
have reached a certain size they are energetically stable. Then the resulting seeds can
grow in the supersaturated ambience and develop into macroscopic crystals. The tem-
perature gradient and the concentrations have to be chosen such that on one hand, the
probability of seed creation stays low enough for an unperturbed growth of separated
single crystals, and on the other hand, the growth rate does not become too small.

Based on the procedure described by Schäfer et al. [Schäfer58], the parameters were
optimized over a period of more than two years. In this process, approximately 40
batches of TiOCl crystals were produced from different reactants and with different
parameters. Initially TiOCl was synthesized from TiCl3 and TiO2 according to the
reaction equation

2TiCl3 + TiO2 ⇀↽ 2TiOCl + TiCl4. (5.1)
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Table 5.2: Durations and temperature gradients of the TiOCl crystal growth phases.

Duration Temperature (◦C)

Dissolution Zone Growth Zone

4 h 450 800

3 d 650 550

1 d 300 550

3 d 650 550

1 d 300 550

3 d 650 550

1 d 300 550

14 d 650 550

4 h 300 550

However, it was found that sightly better results can be achieved using the starting
materials of the reaction

TiCl4 + Ti + 2TiO2 ⇀↽ 4TiOCl, (5.2)

with the constraint that the liquid TiCl4 is more complicated to handle than the TiCl3
powder.

The disadvantage of the chemical reaction described in Equation 5.1 is that besides
TiOCl also TiCl4 is produced, which is a very reactive fluid at room temperature. The
experience was often made that the TiOCl crystals were wetted with a thin film of TiCl4.
At the first contact with air this film heavily reacted and thus spoiled the surface of the
TiOCl crystals.

In the following the crystal growth procedure will be described, giving a detailed
account of the parameters that resulted from the optimization process: Quartz ampoules
of 180mm length and with an inner diameter of 12mm were degassed for several hours at
1000 ◦C. They were then filled with the reactants TiCl4, Ti, and TiO2 (baked beforehand
under vacuum at 300◦C for several hours) in an Argon glove box and sealed under
vacuum (p < 10−4 mbar). TiCl4, whose boiling point is at 135 ◦C, acts as a transport
agent for this reaction. A slight deviation of -5% to -10% of the TiCl4 mass from the
stoichiometric value was used in order to slow down the transport and thus improve the
crystal quality. The growth regions of the ampoules were then baked free of residues of
the filling process by exposing them to a temperature of 800 ◦C in a three-zone or ten-
zone furnace for several hours, while keeping the dissolution region at a temperature of
450 ◦C. This treatment was followed by a phase where the direction of the temperature
gradient was repeatedly switched forth and back. Periods with a “forward” temperature
gradient of 650◦C at the dissolution zone to 550◦C at the growth zone were followed by
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b axis

Figure 5.4: TiOCl crystal grown with the CVT method. The direction of the b axis is indicated. The
scale units on the right hand side correspond to .5 mm.

an inverse “backward” temperature gradient at a lower base temperature. The aim was
to dissolve the smallest of the developing crystals in each cycle, so that only the larger
ones survive. Instead of many small crystals, that will eventually grow together in a
single large structure, separated crystals are generated by this procedure, that can grow
without disturbing each other. This is followed by a stage of transport with a “forward”
temperature gradient of approximately two weeks. Before the ampoules are taken out
of the furnace, the gradient is switched again to the “backward” direction, so that
remaining reactants in the gas phase condense in the dissolution zone. The durations and
temperature profiles of the different stages described above are summarized in Table 5.2.

Figure 5.4 shows a photography of a TiOCl crystal that was obtained by this method.
Typical crystal dimensions are 4mm× 2mm× 0.1mm. Very thin TiOCl crystals have
a red color, whereas thicker ones appear black. The red color can be explained by the
optical gap of ≈ 2 eV [Maule88,Rückamp05a,Kuntscher06].

TiOBr samples were courteously supplied by Prof. van Smaalen, synthesized in an
analogous manner as described in Ref. [Palatinus05].

The TiOCl crystals were characterized with various experimental techniques, of which
XRD, scanning electron microscopy (SEM), and energy dispersive x-ray analysis (EDX)
will only be listed. The results of Laue diffraction and dielectric measurements will
be briefly presented. Laue diffraction is a very helpful instrument to judge the crystal
quality of TiOCl crystals. In Fig. 5.5 (a) a typical Laue diffractogram of a relatively good
crystal is shown. From the Laue pattern the orientation of the crystal can be deduced.
The directions of the crystallographic axes a and b are parallel to the two orthogonal
lines of the (1, 0, l) and (0, 1, l) reflections, respectively. They can be discriminated easily
using the line of the (1, 1, l) reflections, which encloses an angle θ = arctan b/a = 41.6◦

with the line of the (0, 1, l) reflections. In many cases one can also infer the orientation of
the crystal just by eye. Often the crystals possess a needle-like shape, with the b direction
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Figure 5.5: (a) Laue photography of a TiOCl crystal (UA = 25 kV). (b) Temperature dependence
of the conductivity of a TiOCl single crystal measured by dielectric spectroscopy at a frequency of
1.08MHz. The conductivity is plotted logarithmically vs. T−1/3.

parallel to the needle axis. Another indicator of the crystal orientation is the texturing
of the surface parallel to the b axis that can frequently be observed (cf. Fig. 5.4).

DC transport measurements were carried out by Dr. Obermeier at Prof. Horn’s chair.
Due to the highly insulating character of TiOCl, only a lower bound of 106 Ωcm for the
resistivity along the b axis at room temperature could be estimated. More success in
determining the charge transport properties of TiOCl was achieved by dielectric mea-
surements, performed by Dr. Lunkenheimer at Prof. Loidl’s chair. The conductivity at
1.08MHz, which should not deviate substantially from the dc conductivity, is displayed
in Fig. 5.5 (b). In this graph, the conductivity is plotted logarithmically vs. T−1/3. The
resulting linear curve is indicative for variable range hopping [Madelung78], a mecha-
nism of charge transport via localized impurity states in a two-dimensional insulator.
This model predicts a conductivity proportional to exp[−(T0/T )1/3], where T0 is a con-
stant containing basically the density of impurity states at the chemical potential. Note,
however, that fitting the conductivity with exp[−(T/T0)

1/4], corresponding to variable
range hopping in three dimensions, matches comparably well. The temperature range
of 300K to 500K covered by the measurement does not allow to determine the concrete
nature of charge transport. The absolute value of ≈ 108 Ωcm for the resistivity at 300K
is consistent with the estimate of the dc measurements.

Furthermore, the TiOCl crystals’ high quality was demonstrated by measurements of
the magnetic susceptibility, as will be described in detail in the following section.
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5.4 The Spin-Peierls Scenario

5.4.1 Phase Transitions

Evidence from the Magnetic Susceptibility: Two Phase Transitions

In 2003 Seidel et al. discovered two successive phase transitions when they measured
the magnetic susceptibility of TiOCl. Figure 5.6 shows the result of a measurement
performed by Dr. Klemm with a SQUID magnetometer on TiOCl crystals grown in
Augsburg [Hoinkis05].

In Panel (a) the susceptibility data are plotted versus temperature in the range from
2K to 400K. The magnetic behavior can be outlined as follows: In the high temperature
range the susceptibility displays a rather flat and isotropic behavior that can be described
by the Bonner-Fisher curve of a one-dimensional Heisenberg spin chain. A deviation from
this smooth progression is clearly noticeable at Tc2 = 91K, where a kink appears in the
susceptibility. Even more pronounced is the anomaly at Tc1 = 67K, that expresses itself
as a sharp drop of the magnetization.

Panel (b) shows a blow-up of the data in a reduced temperature region around the
transition temperatures. The cooling and heating curves are plotted, revealing the nature
of the anomaly at Tc1 : The thermal hysteresis of ≈ 1.5K is indicative of a first-order
phase transition. Directly below Tc1 the curve is flat, until a Curie tail caused by
magnetic impurities begins to dominate the susceptibility at lower temperatures. Below
60K the curve can be fitted nicely with a Curie term χCurie = C/T and a constant offset
χ0, as shown in Panel (a). After subtraction of χCurie, the susceptibility is basically
temperature independent below Tc1 .

The concentration of paramagnetic impurities can be estimated using the fit of the
Curie tail. Under the assumption of S = 1/2 defects (e.g., Ti3+ in structural defects),
a value of 0.3 % is obtained. This is an upper bound for the impurity concentration,
as the Curie tail is a measure of the concentration of unpaired spins and any defects or
impurities are likely to create more than one unpaired spin. In the literature only Ref.
[Kataev03] gives a number for the impurity concentration in TiOCl, which is higher than
the above result by a factor of two. Moreover, the constant offset χ0 of the displayed data
is a factor 2 to 4 smaller compared to other results published in the literature [Seidel03,
Kataev03, Rückamp05a]. The small concentration of paramagnetic impurities and the
low constant offset, together with the hysteretic behavior of χ(T ) at Tc1 , which was not
found in the published susceptibility data so far, can be taken as further arguments for
the excellent quality of the TiOCl crystals.

On the basis of the susceptibility data, Seidel et al. interpreted TiOCl as a non canon-
ical spin-Peierls system. The drop of the susceptibility at Tc1 was interpreted as the
opening of a spin gap, connected with a dimerization of Ti sites and formation of singlet
pairs. However, for a canonical spin-Peierls system only one phase transition is expected.
Furthermore, this transition should be of second order. This is in clear contrast to the
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Figure 5.6: Temperature dependence of the magnetic susceptibility of TiOCl measured by SQUID
magnetometry. The three phases are highlighted by different background colors. (a) Raw data and data
after subtraction of a constant offset and a Curie contribution. (b) Cooling and heating curve without
Curie subtraction in a reduced temperature range.

susceptibility data, which exhibit a first-order phase transition at Tc1 and a second-order
phase transition at Tc2 . The natural question if TiOCl and TiOBr can be classified as
spin-Peierls systems in spite of these inconsistencies with a conventional spin-Peierls sce-
nario was answered by x-ray diffraction studies: They demonstrated that the anomaly
at Tc1 must indeed be interpreted as a spin-Peierls transition, yet one of non-canonical
nature. This was achieved by finding a dimerization of the Ti sites that accompanies
a spin-Peierls transition, as will be laid out in the following section. The nature of the
second phase transition observed, which could not be interpreted by the susceptibility
measurement alone and was speculatively attributed to orbital ordering [Imai03], was
also unravelled by x-ray measurements: In Section 5.4.3 it will be shown that the inter-
mediate phase between Tc1 and Tc2 is characterized by an incommensurate modulation
of the atomic positions. Coming from the high temperature regime, this incommensu-
rability sets in at Tc2 , before the modulation locks in a periodicity commensurate with
the crystal lattice below Tc1 .

The magnetic susceptibility of TiOBr displays a behavior very similar to that of TiOCl
[Lemmens05]. Also two phase transitions are observed. They are interpreted as spin-
Peierls transitions of the same nature as those described above in the case of TiOCl.
Although the focus in the following sections lies on the compound TiOCl, it will become
clear that the low temperature and the intermediate state of TiOBr are analogous to
TiOCl, however, with lower transition temperatures. Table 5.3 compares the transition
temperatures and exchange constants of the two compounds. It is worthy to repeat that
the energy scales of TiOCl are the highest of any known inorganic or organic spin-Peierls
compound.
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Table 5.3: Transition temperatures and nearest neighbor exchange constants of TiOCl [Hemberger05,
Seidel03] and TiOBr [Rückamp05a].

Tc2 Tc2 J

TiOCl 67K 91K 660K

TiOBr 28K 48K 375K

Evidence from Heat Capacity Measurements: The Role of Fluctuations

More information about the two phase transitions comes from measurements of the heat
capacity of TiOCl [Hemberger05]. All the microscopic degrees of freedom that come into
consideration as competitors on going through the phase transitions can contribute to
the specific heat. For TiOCl and TiOBr, the lattice, magnetic, and orbital degrees of
freedom have to be named in this context.

Experiments with a commercial measurement system (PPMS) manufactured by Quan-
tum Design were performed by Dr. Hemberger at Prof. Loidl’s chair. The temperature
range from 2K to 300K was covered. In Fig. 5.7 the results of this investigation are dis-
played. Panel (a) shows the specific heat of TiOCl, plotted as C/T versus T . The heat
capacity is characteristic for a three-dimensional solid with a Debye temperature of ap-
proximately 200K. Superimposed, the footprints of the structural instabilities are visible
at Tc1 and Tc2 . The effects of the phase transitions on the specific heat are remarkably
weak and are almost lost under the large phonon-derived heat capacity contributions. It
is clear that the entropy covered by the two anomalies is comparably small. Applying an
external magnetic field of up to 5T did not lead to any observable effect at temperatures
considerably higher than 5K. The moderate magnetic fields used here neither shift the
transition temperatures, nor do they seem to affect the entropies involved in the phase
transitions. This is not surprising given that the energy of a 5T magnetic field is of
order 5 T× µB ≈ 3 K, which is negligibly small compared to the intrinsic magnetic en-
ergy scale of TiOCl as estimated from Tc1,2 or the exchange constant J . The mean-field
critical field for example, which is necessary to destroy the spin-Peierls order, was stated
in Section 2.3 to be µBHc ≈ 0.75 kBTc.

In order to analyze the nature of the detected anomalies in terms of first- or second-
order phase transitions, heating/cooling cycles across the phase transitions were per-
formed. As the experimental setup utilizes a relaxation method, each data point is
related to the average over a temperature interval above the initially stabilized temper-
ature rather than to an exact temperature [Lashley03]. This means that for the cooling
sequence the temperature is decreased between the data acquisition and increased during
the acquisition process itself. Thus, in the case of hysteretic, i.e., first-order behavior,
the actual transition, together with the corresponding release of latent heat, is fully
captured only in the heating branch of the measuring sequence. Around Tc1 a signifi-
cant difference between heating and cooling can be detected, as shown in Fig. 5.7 (b).
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Figure 5.7: Heat capacity of TiOCl, plotted as C/T versus T. (a) Experimental data and fit of
specific heat, decomposed in spin- and phonon contributions. The vertical bars indicate experimental
uncertainties and reveal the scatter of C/T in different measuring cycles with different temperature
stimuli on different samples. (b) Temperature region around Tc1 remeasured with a reduced relaxation
amplitude of δT = 0.5 K in a heating and subsequent cooling cycle. (c) Difference between calculated
and measured heat capacities. The area under the curve corresponds to the released entropy.

This again points to a first-order phase transition, in accordance with the susceptibility
results. No such feature could be found for the upper instability at Tc2 .

In the following analysis, the experimental data will be fitted with a theoretical model
consisting of two parts: A phonon-derived and a spin-derived component. The lat-
ter one is dominated by the phonon contribution for all temperatures. Nevertheless,
a straightforward analysis of the thermal properties of TiOCl is possible. The spin
part is split in two temperature regimes: Above Tc1 it is modelled by a Bonner-Fisher
type of behavior taking into account an exchange coupling J = 660K; for the low-
temperature regime, i.e., below the spin-Peierls transition at Tc1 , the expected exponen-
tial decrease of the spin part of the heat capacity is simulated according to a BCS-like
mean-field treatment [Mühlschlegel59] with an activated behavior and an energy gap
2∆ = 3.52 kBTc1 = 236K. These two regimes were connected by a heat capacity jump of
1.43 times the contribution of the spin chain directly at Tc1 , as described in Section 2.3.
The spin-derived heat capacity, plotted in Fig. 5.7 (a), is thus modelled without any free
parameter. It is clear, that this can only be a very rough analysis, specifically having
in mind that the actual gap in TiOCl seems to be much larger. It will be described in
Section 5.4.4 that the spin gap was estimated as 2∆ ≈ 430K by means of NMR mea-
surements [Imai03]. As another shortcoming of the above description, the transition is
actually of first order. The disregard of these experimental facts gives an underestima-
tion of the jump height of the magnetic specific heat at the spin-Peierls transition and a
decay too broad below, leading indeed to observable differences between the measured
data and the calculation closely below Tc1 . However, the overall entropy balance is not
affected by the shortcomings of this simple model.

83



5 Spin-Peierls Physics in the Titanium Oxyhalides

The phonon system was fitted assuming one Debye and two Einstein-type contribu-
tions, yielding a total of five free parameters, namely, the mean Debye (ΘD) and two
Einstein temperatures (ΘE1,2), and the ratio of Debye to Einstein modes RD/E, as well as
the ratio between the Einstein modes RE1/E2 . The number of degrees of freedom, which
of course should be nine per formula unit of TiOCl, was kept fixed. The experimentally
determined heat-capacity values for T < 65K and T > 130K were used for the fit of the
heat capacity, and the parameter-free spin contributions were included. The total heat
capacity, spin, and phonon contributions are plotted in Fig. 5.7 (a). Despite the oversim-
plifications mentioned, the model describes the experimental heat capacity astonishingly
well. The parameters as determined by the best fit seem to be realistic: The charac-
teristic temperatures, ΘD = 188K, ΘE1 = 352K, and ΘE2 = 614K, with the ratios
RD/E = 0.30 and RE1/E2 = 0.51 determining the relative weight of Debye and Einstein
modes, are reliable keeping in mind that the optical-phonon modes in TiOCl range from
approximately 100K to 700K, with dominant modes close to the values obtained for
ΘE1,2 in References [Caimi04,Lemmens04]. Comparing the model heat capacity to the
measured one in Fig. 5.7, good agreement is found for the smooth temperature evolution
at low (T < Tc1) and high (T > Tc2) temperatures. As clearly seen, the main deviations
arise in the temperature region between the two instabilities. The good agreement con-
cerning the smooth part of the heat capacity may seem surprising in the light of this
simplified model. On the other hand, the phonon part is reasonably close to a realistic
description involving the true phonon spectrum, and the spin part of the heat capacity
bears only a small weight. This model can therefore be regarded as a reliable estimate
of the regular part of the specific heat and the anomalous contribution due to the phase
transitions at Tc1 and Tc2 can be separated out.

Panel (c) of Fig. 5.7 displays this extra heat capacity in a limited temperature range
from 50K to 150K. The integral over this region gives an estimate of the entropy ∆S
being released when going through both transitions. ∆S is with 0.12R (±0.02R) van-
ishingly small compared to R ln 2 expected for a spin-1/2 system or an orbital doubly
degenerate state. In the present case even a R ln 3 contribution could be expected for
an order-disorder transition of the degenerate orbitals within the t2g triplet. The small
value of the entropy change suggests that the orbital degrees of freedom do not play a
part in the phase transitions in addition to the considered lattice and spin contributions.
Comparing the narrow peak at Tc1 with the anomaly at Tc2 , it can be seen that the larger
fraction of the entropy is covered under the latter instability. As the entropy measures
the degree of disorder in a system, this experimental observation shows that the amount
of order that is created upon cooling through Tc2 outweighs the corresponding amount
at Tc1 . The origin of this behavior cannot be understood at this point, as the structural
changes that accompany the phase transitions were not discussed yet. It will become
clear in the following sections, however, that the periodic lattice distortion connected
with a spin-Peierls transition sets in at Tc2 , which explains the large entropy change. At
Tc1 , where the periodicity changes from an incommensurate to a commensurate value,
the arising order is obviously relatively small.

84



5.4 The Spin-Peierls Scenario

As an interesting result of this investigation, the area under the curve ∆C/T in
Panel (c) extends up to considerably higher temperatures. This is a manifestation of the
fact that a great portion of the entropy is not released until much higher temperatures
than Tc2 are reached. In this temperature regime, apparently a form of short-range
order is maintained. The occurrence of a fluctuation regime in the titanium oxyhalides
is not surprising, having in mind that quantum fluctuations are especially important in
quasi-one-dimensional systems and in systems with spin-1/2.

This experimental finding is in line with nuclear magnetic resonance (NMR) and ESR
measurements [Imai03,Kataev03], which exhibit also fluctuation effects up to 135K. A
decrease of low frequency spin excitations by two orders of magnitude between 135K
and Tc2 lead Imai et al. to interpret this temperature interval as a pseudogap regime. In
the ESR data the suppression of magnetic excitations is expressed in form of a dimin-
ished linewidth. Also from Raman and infrared spectroscopy indications of a fluctuation
regime of TiOCl were reported [Lemmens04,Caimi04]. Lemmens et al. notice a soften-
ing of phonon modes in this temperature regime. The infrared spectra of Caimi and
co-workers display a narrowing of phonon modes at low temperatures that can be ex-
plained by a suppression of spin excitations due to the forming of spin dimers. Also
the asymmetric shape of phonon modes is lost when this process sets in. Again the
temperature borderline of these changes is not given by Tc1,2 , but is rather connected to
the higher temperature scale of the fluctuation regime.

A further fingerprint of fluctuations was observed in an EXAFS experiment, carried
out by Dr. Pfalzer at the ANKA–XAS beamline in Karlsruhe. From Ti K-edge spectra
taken at various temperatures in the range from 15K to 300K it can be concluded that
the short-range symmetry of the Ti sites’ environment remains distorted above the pase
transitions [Pfalzer05]. The signatures of short-range structural distortions, so to say
spin-Peierls fluctuations, were found even up to room temperature.

From the results presented so far, it is evident that the lattice degrees of freedom
plays an important role for the described fluctuations. However, one cannot decide
on the precise microscopic nature of the fluctuations from these measurements alone;
specifically the question to what extent the orbital degree of freedom is involved cannot
be answered. Orbital fluctuations were at least considered compatible with observations
of Raman scattering [Lemmens04] and with the results of density-functional calculations
[Saha-Dasgupta04]. On the other hand, recently Rückamp and co-workers [Rückamp05a]
concluded from cluster calculations that the orbital ground state is determined by a
crystal-field splitting of approximately 0.25 eV, stabilizing the occupation of the dxy

levels1 and thus strongly suppressing orbital fluctuations in the examined temperature
range. This issue will be examined in detail in Section 5.5.3, where first experimental
information that confirm the predictions of Rückamp et al. is presented.

1Note that Rückamp et al. choose the crystallographic axes as a basis for the local coordinate system,
instead of orienting it along the axes of the TiO4Cl2 octahedron, as it is practiced widely in the
literature and in this thesis. In Rückamp’s notation the dx2−y2 orbitals are occupied in the ground
state.
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Figure 5.8: (2, 1.5,−1) superlattice reflection of TiOCl observed by x-ray diffraction. (a) Scan along
the (2, k,−1) line in reciprocal space slightly below and above Tc1 . The T = 63 K data are shifted by 10
counts/s for clarity. (b) Temperature dependence of the integrated intensity of the (2, 1.5,−1) reflection.
At T = 67K the intensity was determined as less than zero (zero within standard uncertainty).

5.4.2 Spin-Peierls Phase

Even though the suppression of spin fluctuations in the low temperature phase cor-
roborates a spin-Peierls scenario in the oxyhalides, it must be clearly stated that the
occurrence of a first-order phase transition followed by a second instability stands in
the way of interpreting TiOCl and TiOBr as conventional spin-Peierls systems. It was
the success of x-ray experiments to give doubtless evidence for the spin-Peierls nature
of these compounds. In a collaboration with Prof. van Smaalen, x-ray diffraction stud-
ies were carried out on TiOCl single crystals, revealing the lattice dimerization that
accompanies the formation of spin singlets [Shaz05].

The experiments were performed by Dr. Shaz with synchrotron radiation at beamline
D3 of Hasylab (DESY, Hamburg) employing monochromatized radiation of wavelength
0.5000 Å. A single crystal of dimensions 0.05×0.11×0.01 mm3 was mounted on a carbon
fiber attached to a closed-cycle helium cryostat on a four-circle diffractometer. X-ray
diffraction was measured by a point detector.

In a first experiment, scans in reciprocal space were performed at T = 10K along
various high symmetry lines. Superlattice reflections were only found at (h,k + 1/2,l)
positions, indicating a doubling of the unit cell along b. A few of the strongest super-
lattice reflections were selected for temperature-dependent measurements. The scans
established that the relative positions of these reflections are independent of tempera-
ture. Figure 5.8 (a) displays scans along the (2, k,−l) line, where the appearance of a
superstructure below Tc1 can clearly be seen.

The integrated intensities of the superlattice reflections were found to be independent
of temperature at low temperatures, but then they dropped suddenly to zero at 67K,
as it is shown for the (2, 1.5,−1) reflection in Fig. 5.8 (b).

In order to perform structure refinements, the integrated intensities of all experi-
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5.4 The Spin-Peierls Scenario

Table 5.4: Structural data of TiOCl determined by single crystal XRD in the low temperature phase
and at room temperature. Crystallographically independent atoms are labelled with arabic numbers.

T = 10K T = 395K

space group P21/m Pmmn

cell parameters (Å) a 3.783 a 3.779

b 6.683 b 3.355

c 8.031 c 8.027

symmetry operators x y z x y z
1
2

+ x 3
4
− y −z 1

2
+ x 1

2
− y −z

1
2
− x 3

4
− y −z 1

2
− x 1

2
+ y −z

−x y z −x −y z
1
2
− x 1

2
− y −z

−x y z

x −y z
1
2

+ x 1
2

+ y −z

atomic coordinates Ti1 0.000 0.257 0.123 Ti 0.000 0.500 0.119

(fractions of unit cell) Ti2 0.000 0.743 0.117 O 0.000 0.000 -0.055

O1 0.000 0.004 -0.054 Cl 0.000 0.000 0.332

O2 0.000 0.496 -0.061

Cl1 0.000 -0.002 0.330

Cl2 0.000 0.502 0.338

mentally accessible Bragg reflections were measured at T = 10K. The best fit to the
diffraction data was obtained for a supercell with monoclinic symmetry and space group
P21/m. A fit to a completely different structure model with acentric orthorhombic
symmetry converged with only marginally smaller reliability, but involves three crystal-
lographically independent Ti and Cl sites. This contradicts the NMR observation of only
two inequivalent Ti and Cl sites below Tc1 [Imai03] and can therefore be discarded in
favor of the structure with P21/m symmetry. This model correctly predicts two crystal-
lographically independent Ti and Cl sites. The structural data of the low temperature
state according to this model are listed in Tab. 5.4 together with those for the room
temperature structure.

The point group in the low temperature phase contains only the reflection in the (b,c)
mirror plane, whereas the (a,c) mirror plane and the twofold rotation around c are lost.
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Figure 5.9: Lattice distortion within a single ribbon in the spin-Peierls state of TiOCl. Arrows indicate
the atomic displacements, which are exaggerated by a factor of 20.

One ribbon parallel to b contains the six crystallographically independent atoms, all of
which are in the mirror plane. Accordingly, the displacements of the atoms are restricted
to the (b,c) plane. Such a ribbon is displayed in Fig. 5.9 with arrows indicating the shifts
of the atomic positions. The pattern of displacements clearly shows a dimerization of the
chain of Ti atoms, while the displacements of O and Cl atoms are such as to minimize
the elastic strain of the structure. This interpretation is supported by comparing the
interatomic distances in the superstructure and the basic structure. The largest variation
of 0.18 Å is found for the alternating distances on the Ti chains along b, indicating the
formation of Ti–Ti pairs on these chains. The shortest Ti–Ti distance is between chains,
but its variation in the superstructure is much less than the variation of distances along
the chains, thus supporting the model of pair building on the chains as opposed to the
formation of singlet pairs between electrons on neighboring chains. The variation of Ti–O
distances (0.049 Å) and of Ti–Cl distances (0.024 Å) are much smaller than the variation
of Ti–Ti distances along the chains, showing that the dimerization is indeed triggered
by the magnetic exchange along b. In a recent publication Schönleber et al. provide a
simple argument why the displacements of the Ti sites are not simply parallel to the b
axis [Schönleber06]: This kind of displacement would lead to an unfavorable variation of
Ti–O bonds of neighboring ribbons. This is resolved by the introduction of a component
along the c axis, such that Ti and O displacements in neighboring ribbons are almost
parallel and the corresponding Ti–O bonds do not change in length. Summarizing, the
superstructure that develops below Tc1 is a surprisingly simple dimerization of Ti sites
on chains along the b axis. It is indeed justified to speak of a spin-Peierls state where
spins pair on chains of Ti atoms via direct exchange.

Analogously, TiOBr adopts a spin-Peierls state upon cooling, as well. Palatinus and
co-workers determined the structure of TiOBr below Tc1 and came to a result very similar
to that described above for the TiOCl case, but with modulations only about half the
size [Palatinus05]. From this, they deduce that also the relevant interactions are smaller
in TiOBr, in accordance with the lower transition temperatures.
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5.4 The Spin-Peierls Scenario

5.4.3 Intermediate Phase

In contrast to the spin-Peierls phase, for which the interpretation could already be found
from the susceptibility data by Seidel et al. [Seidel03], it was much harder to figure out
the nature of the intermediate state between Tc1 and Tc2 . Also the phase transition
scheme with a second order transition followed by a first order transition upon cooling
could not be explained by a simple spin-Peierls picture. In Ref. [Rückamp05a] the au-
thors presented Ginzburg-Landau arguments that are able to give a plausible answer
to these questions. Under the assumption of a non-vanishing interchain coupling, they
showed that minimizing the free energy involves an incommensurate order of Ti sites.
This order is not constricted within the chain direction. Rückamp et al. in fact argued
that the formation of a dimer on one chain will push away Ti ions on neighboring chains
in the directions perpendicular to the chains. In this way, displacements along the b
direction couple to displacements along a and c. From the resulting effective interchain
coupling the authors deduce an incommensurate component perpendicular to the chains.
Furthermore, the incommensurability is predicted to decrease with temperature. Mini-
mizing the Ginzburg-Landau free energy leads to a lock-in transition into a state with
a commensurate order when the incommensurate component is sufficiently small at low
temperatures.

From the experimental side, first hints towards the formation of an incommensurate
order in the intermediate phase came from NMR experiments [Imai03]. The local elec-
tric field gradient, probed in the NMR measurement, suggests the existence of numerous
inequivalent Ti and Cl sites in the TiOCl lattice. However, from this observation one can-
not decide which microscopic degree of freedom is the origin of the incommensurability.
A first proof of incommensurability was given for the bromide by x-ray diffraction, show-
ing that it is the lattice that is modulated in the intermediate state [van Smaalen05].
In the following an x-ray diffraction experiment carried out by Dr. Krimmel will be
described that was able to resolve the lattice distortion in the intermediate phase of
TiOCl [Krimmel06]. The only remaining piece of the puzzle was thus revealed, showing
that the two compounds TiOCl and TiOBr possess analogous phases and instabilities.

The experiments were conducted at the beamline BW5 of Hasylab (DESY, Hamburg).
An incident photon energy of 100 keV was used. The sample was mounted in a cryomag-
net allowing for temperatures from 1.6K to 300K in horizontal fields up to B = 10T.
The sample with a size of 1 × 1 × 0.01 mm3 was oriented with the (b,c) plane in the
horizontal scattering plane.

The central result of this investigation – the peak splitting of the superlattice re-
flections in the intermediate phase – is presented in Fig. 5.10. At Tc1 the superstruc-
ture reflections split into four incommensurate satellites with an incommensurate h-
component ±δ and a smaller k-component ±ε, as sketched in Fig. 5.10 (a). The re-
flections (±δ, 0.5 − ε, 0), (±δ, 1.5 + ε, 0), and (±δ, 2.5 − ε, 0) were observed, consistent
with space group Pmmn. They were missed in the XRD experiment described in the
previous section due to the choice of measurement paths in reciprocal space. The coor-
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Figure 5.10: Commensurate and incommensurate superstructure reflections of TiOCl observed by x-
ray diffraction. (a) Sketch of the (a∗, b∗) plane in reciprocal space with the positions of the superstructure
reflections in the spin-Peierls phase and in the intermediate phase. (b) Evolution of the (0, 1.5, 0)
reflection on passing through the first phase transition at Tc1 . The k value for each h scan along the a∗

direction was optimized and hence slightly deviates from k = 1.5. The peak splitting is indicative of an
incommensurate modulation in the intermediate phase. (c) Intensities of both the commensurate and
the incommensurate reflections. The line represents a fit with the function I(T ) = I0

√
1− T/Tc2 with

Tc2 = 92.5 K.

dinates δ and ε of the incommensurate reflections were found to be 0 ≤ δ ≤ 0.078 and
0 ≤ ε ≤ 0.0143. Due to the small value of ε it is hard to resolve the double peaks at
(h, 0.5± ε, 0).

In Panel (b) scans in reciprocal space along the a∗ direction are shown, clearly demon-
strating the peak splitting of the original (0, 1.5, 0) reflection. The intensities of the
superstructure reflections are plotted vs. temperature in Panel (c). The temperature
dependence of the commensurate reflection was already obtained in the experiment of
the previous section (cf. Fig. 5.8), and a comparison yields no significant differences.
The abrupt decrease of the intensity and a thermal hysteresis evidenced upon cycling
the temperature confirms the first order of the phase transition between the spin-Peierls
and the intermediate phase. As a new result, also the temperature dependence of the
incommensurate peaks is shown. The gradual decrease of intensity on approaching Tc2

is indicative of a second order phase transition. Motivated by the BCS description of
the spin-Peierls transition, the intensities of the incommensurate reflections were fitted
by the function I(T ) = I0

√
1− T/Tc2 with Tc2 = 92.5K, yielding a good match with

the data.

A further indication for the first order character of the phase transition between the
dimerized and the incommensurate phase is the jump-like behavior of the incommensu-
rate components δ and ε shown in Fig. 5.11. From Panels (a) and (b) it can be seen
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Figure 5.11: Incommensurate components ε and δ of the (±δ, 1.5 + ε, 0) reflection of TiOCl in the
intermediate phase. (a,b) Temperature dependence of δ and ε in zero magnetic field over the whole
temperature range of the intermediate phase. (c,d) Comparison of the incommensurate positions in
zero magnetic field and in an external field of B = 10T in more detail around Tc1 .

that the peak splitting takes place abruptly at Tc1 . The incommensurate components in-
crease monotonically until the satellites disappear at 92.5K and the orthorhombic room
temperature structure is recovered.

The results for the bromide are almost identical to those of TiOCl. Complete structure
determinations of the chloride [Schönleber06] and of the bromide [van Smaalen05] show
that the modulation can be described by a single propagation vector q = (δ, 0.5 + ε, 0).
The displacements correspond basically to an incommensurate version of the Ti site
dimerization in the spin-Peierls phase. The components in the b direction are much
larger than those along a.

In order to investigate possible field effects, the incommensurate components in zero
magnetic field and in an applied field of B = 10T are compared in Panels (c) and (d)
in an expanded view around Tc1 . For both δ and ε, a small, but significant shift
∆Tc1 = −0.13K of the phase transition temperature is observed in the external field
of 10T along the chain direction. The direction of the shift towards lower tempera-
tures is in line with the theoretic expectation for a spin-Peierls transition described in
Section 2.3. The magnetic field has the effect of lowering the Fermi energy of the pseudo-
fermions and drives the propagation vector away from commensurability. Even though
the field strength is not sufficient to induce an incommensurate state at zero temperature,
because the benefit from a commensurate modulation is too great, the field influences
the equilibrium position of the interactions and thus lowers the transition temperature.

Moreover, also the intensities of the satellite reflections exhibit slight changes, thus
confirming a small field induced modification of the incommensurate crystal structure.

One can summarize that the experimental observations are in line with the predictions
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of Rückamp et al. described above: The modulations possess incommensurate compo-
nents both along the b and the a axis, which is due to the coupling of Ti sites in different
chains. These components become smaller upon cooling, shown in Fig. 5.11 (a,b), and
therefore a lock-in phase transition of first order leads to a state with commensurate
order below Tc1 . Also the dependence on an external magnetic field corroborates this
scenario. Even though the energy scale of the applied field is small compared to the in-
trinsic magnetic energy scale of TiOCl, as already mentioned before, an effect could be
observed. The external field leads to a shift of the transition temperature Tc1 towards
lower temperatures, which indicates a stabilization of the incommensurate structure.
From the Ginzburg-Landau free energy it can be seen that the phase transition at Tc1 is
governed by the competition of intrachain and interchain exchange. The application of
an external magnetic field then slightly shifts the equilibrium position of these competing
interactions. Note however, that the authors of Ref. [Schönleber06] recently suggested a
slightly different origin of the incommensurate modulation. They argued that it is not
necessary to assume magnetic interchain interactions to explain the incommensurate
order, but that also the elastic coupling of atoms in neighboring chains can be made
responsible for this phenomenon.

5.4.4 The Spin Gap

It was already concluded by Seidel et al. that the low-temperature state is characterized
by a spin gap: A drop of the magnetic susceptibility at Tc1 is observed in SQUID and
ESR measurements [Seidel03,Kataev03,Zakharov06]; Raman and infrared spectroscopy
find a suppression of spin excitations, which is interpreted as a consequence of the spin
gap [Imai03,Lemmens04,Caimi04]. Whereas these observations are qualitatively in line
with the interpretation of the titanium oxyhalides as spin-Peierls systems, the obvious
proceeding is then to check also the quantitative agreement of experiment and theory.
The mean field theory for a conventional spin-Peierls system predicts the BCS value of
2∆ = 3.5kBTc for the spin gap, where the question remains, which transition temperature
has to be chosen in this non-canonical case with two phase transitions.

On the experimental side, it is in principle possible to extract the gap size from a fit of
several experimentally accessible quantities that show activated behavior. For example,
the magnetic susceptibility displayed in Fig. 5.6 is exponentially suppressed by the spin
gap in the low temperature phase. However, the details of the fitting procedure are far
from trivial due to the temperature dependence of the spin gap. Under the assumption
that the gap size is proportional to the amplitude of the spin-Peierls distortion, its tem-
perature variation will be similar to that displayed in Fig. 5.10 (c), where the intensity
of the superstructure reflections is plotted versus temperature. It is thus essential for
any fit that — without further knowledge of the temperature dependence of ∆ — only
data points at temperatures sufficiently below Tc1 are considered. In the interesting tem-
perature range, where the spin gap can be reasonably assumed as constant, the SQUID
data are dominated by the Curie tail, and a meaningful fit to an exponential law is thus
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not possible. This perturbing effect is absent in the NMR data of Imai et al., who were
able to perform an exponential fit of the spin-lattice relaxation time in the tempera-
ture interval from 40K to Tc1 [Imai03]. They obtained a value of 2∆ = 430 ± 60K for
the activation energy. It is pointed out however, that the underlying assumption of a
constant spin gap is not well satisfied in this temperature range. Hence, the extracted
value is likely to overestimate the true value of ∆ at T = 0. Comparing the activation
energy to Tc2 , i.e., the transition temperature where the spin-Peierls order sets in, a
ratio of 2∆/kBTc2 ≈ 4.7 is obtained.2 A possible explanation for this deviation from
the mean field result can be found in the importance of fluctuations described in the
previous chapter, e.g., evidenced in the measurement of the heat capacity. For an ide-
ally one- or two-dimensional system, a transition into a state with broken symmetry at
finite temperatures is forbidden by the Mermin-Wagner theorem. In the real system, the
Ti chains are coupled three-dimensionally, and therefore this theorem does not strictly
apply. However, the fluctuations will have the effect of lowering the transition temper-
atures. Moreover, the geometric frustration of Ti dimerization in the TiOCl lattice can
lead to a downshift of the transition temperatures. In this light the high ratio 2∆/kBTc2

does not seem surprising.

A possibility to circumvent the problem of an exponentially small signal in the tem-
perature range below Tc1 lies in µSR measurements, where the experimentally accessible
quantity — the electronic relaxation rate λ — is inversely proportional to the sup-
pressed spin fluctuation rate. µSR experiments were carried out in collaboration with
Prof. Blundell’s group, using the MuSR and ARGUS spectrometers at the ISIS facility
near Oxford, United Kingdom. Unfortunately, it was observed that the relaxation rate
saturates below 55K due to an effect inherent to this technique, and so the data are not
well suited for a fit to obtain the zero temperature value of the spin gap, either.

An opportunity to determine the spin gap more directly can be seen in neutron scat-
tering experiments. By means of inelastic neutron scattering (INS), it should be possible
to directly measure not only the magnitude of the spin gap, but also its temperature
and q-dependence. Similarly to the µSR measurements, an experimental difficulty must
be seen in the required sample mass of the order of 1 g, given the mass of approximately
1mg for a typical TiOCl single crystal. For an INS experiment in collaboration with
Dr. Krimmel at the Institute Laue-Langevin in Grenoble, France, a sample of approxi-
mately 1 g of co-aligned crystals was provided. However, due to technical problems the
experiment could not be performed, and therefore the plans to study the spin gap via
INS had to be rescheduled to a future measurement shift.

2Note that the authors of Ref. [Imai03] obtained twice as large a ratio, as they seemed to have
mistakenly included an additional factor 2. For a rigorous derivation of the correct connection
between the spin gap and the activation energy, cf. Ref [Ehrenfreund77].
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5.5 Electronic Structure

In the preceding sections the properties of the spin-Peierls state and of the intermediate
state were discussed in detail. It was argued that fluctuations play an important role
in an extended temperature range, but the microscopic nature of the fluctuations could
not be identified on the basis of the experimental evidence described. In particular,
it is of interest if the orbital degree of freedom is involved, as suggested by the small
Jahn-Teller susceptibility of the t2g orbitals. This question can be answered by an
analysis of the electronic properties. A further interesting point addressed in this way
is the electronic dimensionality. As reported in Sec. 5.2, the magnetic susceptibility
shows a one-dimensional behavior in the paramagnetic phase, but only an analysis of
the electronic structure can determine the interaction paths and the ratio of intrachain
and interchain coupling.

In this chapter a thorough investigation of TiOCl and TiOBr in the normal state,
both by theoretical and experimental means, is presented. Photoelectron spectroscopy
(PES) was performed at room-temperature and slightly above. The experiments are
complemented by LDA+U and Hubbard model calculations. Before the angle-resolved
measurements are discussed, which provide momentum-resolved information on the elec-
tronic structure, the valence density of states will be examined in the following section.
The last section focusses on polarization-dependent measurements that allow to deter-
mine the symmetry of the occupied orbitals.

5.5.1 Valence Density of States

The electronic structure of TiOCl and TiOBr were determined theoretically by DFT cal-
culations in the group of Prof. Valent́ı. The generalized gradient approximation (GGA)
[Perdew96] and the so-called LDA (GGA)+U approximation [Anisimov93] were em-
ployed using the full-potential linearized augmented plane-wave code WIEN2k [Blaha01].
Since the LDA+U calculations are performed on a spin-polarized state, both a ferro-
magnetic and an antiferromagnetic alignment of the Ti spins along the b direction were
considered. The latter was found to be lower in total energy compared to the FM
state [Saha-Dasgupta04]. In all calculations RKmax = 6 and 56 k irreducible points were
used for Brillouin-zone integrations. The values for the onsite Coulomb repulsion U and
onsite exchange J0 were taken to be 3.3 eV and 1 eV, respectively, which accounts well
for the intersite chain exchange constant derived from the magnetic susceptibility.

In Fig. 5.12 (a) the atomically-resolved GGA density of states of TiOCl is presented
[Saha-Dasgupta04]. The calculation yields a clear separation of states with predominant
Ti 3d character at the Fermi energy and states derived mainly from O and Cl p levels
at higher binding energies. As expected for the octahedral environment of Ti sites,
the d band is split into t2g and eg subshells, with the single electron residing in one of
the t2g orbitals, which point between the O and Cl ligands and are therefore lower in
energy. The GGA calculation incorrectly suggests a metallic behavior. This is an artefact
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Figure 5.12: TiOCl density of states obtained from DFT calculations. (a) GGA density of states
decomposed into Ti, O, and Cl contributions. The Ti 3d states are split by the crystal field in t2g levels
below ≈ 1.5 eV and eg levels above this energy. (b) Orbitally-resolved Ti d contribution to the density
of states, calculated in the LDA+UFM approximation. Additional to the t2g-eg splitting a correlation
gap has opened up.

caused by the inadequate treatment of the Coulomb term in this approximation [Saha-
Dasgupta04] and not surprising, having in mind that TiOCl is a system with an odd
number of valence electrons — a situation that automatically leads to a metallic state
when electronic correlations are neglected, as for instance in the single-particle Bloch
theory. A better description of the electron–electron interaction is obtained by the
LDA(GGA)+U approach, which is carried out on a spin-polarized state. Focussing on
the interesting low energy part of the DOS, in Panel (b) the Ti density of states is
projected onto states with different orbital character. For the calculation a FM spin
arrangement was assumed. It can be seen that additional to the t2g-eg separation, the
3dxy band is split off, and a gap at the Fermi energy appears in accordance with the
insulating nature of TiOCl. Remarkably, the Ti DOS below the Fermi energy has almost
zero admixture of states with dxz, dyz, or eg symmetry.

These theoretical results can be checked experimentally by angle-integrated photo-
emission. To this end measurements were performed, mainly in the homelab using He i
(21.2 eV) and AlKα (1486.6 eV) radiation and an Omicron EA 125 HR electron energy
analyzer. Additionally, synchrotron radiation experiments were carried out at the SIS
beamline of the Swiss Light Source (SLS) at the Paul-Scherrer-Institute in Villigen,
Switzerland, using a Scienta SES 100 analyzer and a photon energy of 60 eV. The lay-
ered structure of the oxyhalides facilitates easy surface preparation by in situ crystal
cleavage. The long-range order of the resulting surfaces can be inferred from the LEED
pattern in Fig. 5.13 (a). XPS measurements show that the cleaved surfaces are clean,
as only titanium, chlorine and oxygen core levels were detected. In particular, it can be
concluded from the data plotted in Panel (b) that the surfaces are not contaminated by
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Figure 5.13: (a) LEED pattern obtained from a cleaved surface of a TiOCl crystal at a primary
electron energy of ≈ 60 eV. A unit cell of the primitive rectangular surface lattice with axes a and b is
indicated. (b) TiOCl XPS spectrum. Note the absence of carbon contamination, as no indication of a
C 1s peak, which would be expected at a binding energy of 285 eV, can be found.

carbon. Because of the high electrical resistivity of the samples, all photoemission data
were taken at room temperature or above in order to minimize sample charging.

Figure 5.14 shows angle-integrated photoemission spectra measured with 21.2 eV,
60 eV, and 1486.6 eV photons [Hoinkis05]. The data of Panels (a) and (b) were recorded
in an angle-resolved mode with an energy resolution of 60meV and 80meV, respectively,
in steps of 1◦ along the crystallographic b direction and summed up to an angle-integrated
result. Note, however, that the angle integration thus only extends over a single path
in reciprocal space. For the Ti d band, this is a good approximation to an integra-
tion over the entire Brillouin zone for the following reason: From LDA and LDA+U
studies [Seidel03, Saha-Dasgupta04] the dispersion along the a and c axes is expected
to be negligible compared to the b-axis dispersion. An experimental confirmation, at
least for the chloride, is given in the following section. For the O/Cl p manifold, the
situation is different. While the dispersion along the c direction will be certainly small
due to the layered crystal structure, the dispersion turns out to be comparable for the
orthogonal directions a and b within the layers. The above method therefore yields only
a limited representation of a complete integration in momentum space for these bands.
The spectrum of Panel (c) was measured in the angle-integrated mode of the analyzer,
i.e., with an acceptance angle of ±8◦. The spectrum thus integrates amply over the
Brillouin zone, whose edges correspond to an angle of less than 3◦ at these high kinetic
energies. The energy resolution is dominated by the line width of the monochromated
x-ray source and amounts to about 350meV.

All three experimental spectra consist of two well separated regions. From the com-
parison of theory and experiment one can identify the low-binding-energy peak as Ti
3d-like, whereas the states between −9 eV and −4 eV are predominantly derived from
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Figure 5.14: Photon energy and temperature dependence of TiOCl photoemission. (a,b,c) Angle-
integrated photoemission spectra recorded with different photon energies compared to the GGA+UFM

density of states weighted with photoemission cross sections. (d) Evolution of the Ti 3d peak as a
function of temperature. (e) Temperature dependent shift of the Ti 3d peak maximum caused by
charging effects.

Cl 3p and O 2p levels. The differences between the spectra measured at different photon
energies, normalized to the same integrated area, can be traced back to matrix element
effects. One observes that the Ti 3d band is most strongly pronounced in the synchrotron
data with a photon energy of 60 eV, whereas the relative Ti signal is much weaker in
the x-ray induced experiment. The 3d peaks of the three measurements are compared
in the inset. They are essentially of identical shape, only the hν = 1487 eV spectrum
shows slight deviations, as it was measured with a significantly larger energy resolution
and sits on a higher constant background. This experimental observation confirms the
GGA result that the admixture of O and Cl p states to this peak is vanishingly small.
Otherwise, the superposition of d and p orbitals would produce different shapes at the
various excitation energies due to matrix elements effects. It can be seen very clearly
how such effects influence the spectral form of composite bands when considering the
Cl/O manifold. While the energetic position and the width are the same, the shape
strongly differs between the three measurements. This is not surprising, given that this
broad structure is comprised out of 12 bands carrying two electrons each. Consequently,
cross section effects will lead to different spectral shapes of the total sum of these bands.

Before the experimental spectra can be compared to theoretical results, a few remarks
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concerning the energetic alignment are necessary. Due to the high resistivity of the
oxyhalides, charging effects were observed that grew in extent with decreasing temper-
ature. In Fig. 5.14 (d) angle-resolved photoemission spectra (hν = 21.2 eV) are plotted
for various temperatures. Upon cooling the spectra progressively shift to higher binding
energies, with the effect that it is not possible to conduct photoemission experiments
significantly below room temperature. In particular, the temperature region of the phase
transitions is not accessible for this technique.

From the temperature dependence of the Ti 3d peak, depicted in Panel (e), it can be
seen that the charging is almost negligible at and above ≈ 370K. In this situation the
maximum of this peak is located at 1.45 eV below the experimental chemical potential
µexp, which corresponds to the Fermi edge position of a silver foil. Based on this result,
all TiOCl photoemission spectra are aligned accordingly. The energy position of the
Ti 3d-peak in TiOBr depends on temperature in a very similar way. It was aligned to
the same value of 1.45 eV below µexp.

In order to simplify a comparison with the experiment, the theoretically obtained
spectra discussed in the following were also shifted in energy to match the experimental
data. In Panels (a–c) the photoemission spectra are compared to GGA+U results that
were generated by weighting the atomic contributions of the density of states with the
according photoemission cross sections [Yeh85] for the different photon energies. The
overall shape of the theoretical DOS and the experimental spectra are rather similar.
With the chosen energy alignment the relative separation between Ti 3d and the ligand
p states still appears ≈ 0.5 eV too small in the calculations. The value of 2 eV for
the correlation gap as determined from optical spectroscopy [Maule88, Rückamp05a,
Kuntscher06] is in reasonable agreement with the photoemission data and the LDA+U
calculations (not seen here, as the figure displays only the occupied DOS).

Concerning the p bands, it is clear that a detailed match of the spectral form cannot
be expected. As pointed out above, the photoemission spectra of Panels (a) and (b) do
not represent a complete integration over the Brillouin zone. Furthermore, the weighted
GGA+U DOS is a very simplified approach to model the matrix element effects in
photoemission. Nevertheless, one notices that the general trend of the photon energy
dependence is reproduced. In particular, the Ti weight is strongest for hν = 60 eV,
in accordance with the experimental observation. For this excitation energy, the cross
section of Cl states is suppressed in relation to Ti and O states. Consequently both the
experimental and theoretical hν = 60 eV spectra display a comparably small weight at
the low-binding-energy onset of the p bands. Before discussing the shape of the Ti 3d
band — as obtained from theory and experiment —, the differences in the TiOCl and
TiOBr valence densities of states will be analyzed.

Figure 5.15 shows angle-integrated photoemission spectra and GGA+U densities of
states for both compounds. In contrast to the above discussion, which focussed on the
excitation energy dependence, no weighting with cross sections was conducted. The
measurements were performed with 21.2 eV photons and with a resolution of 60 meV
(TiOCl) and 110 meV (TiOBr), respectively. Comparing the Ti 3d peak of TiOCl
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Figure 5.15: Comparison of the TiOCl and TiOBr valence density of states. (a) Angle-integrated
photoemission spectrum and GGA+U density of states of TiOCl. (b) Angle-integrated photoemission
spectrum of TiOBr compared to two GGA+UFM results. The first one is the density of states of a
regular TiOBr crystal, whereas the second one is calculated for a fictitious hybrid compound, viz.,
TiOCl with the crystal structure of the bromide.

and TiOBr, one notices that the experimental results as well as the GGA+U densities
of states are almost identical for the two compounds. Consequently, an equally poor
match between theory and experiment is found for each compound. A better agreement
between the calculated and the experimental spectra is found as far as the width of the
p bands is concerned. In the bromide this width is considerably larger, which results
in a smaller d–p separation. In order to address the question whether this difference
is caused by the change in chemistry or rather related to the structural expansion, a
third calculation was performed. There a hypothetical compound was assumed with the
crystal structure of TiOBr, but with Br substituted by Cl. In Panel (b) the resulting
density of states is plotted. From the comparison to the TiOBr DOS it can be deduced
that the size of the d–p gap decreases from the Cl to the Br system mainly due to the
expanded unit cell of TiOBr.

In the following the focus lies on the Ti 3d part near the chemical potential, which
is shown as a blow-up in Fig. 5.16. In Panel (a) the experimental data are compared
to two LDA+U calculations. The weighting with cross sections for the atomic species
is not necessary for this band, as it consist almost exclusively of Ti states. It would
therefore not change its spectral form by this procedure (cf. Fig. 5.14 (a–c)). Beginning
with the LDA+U DOS assuming a ferromagnetic spin arrangement, one sees that the
experimental 3d spectrum has a similar asymmetry as the LDA+UFM DOS, but is much
broader. It is emphasized that the experimental width is perfectly reproducible and
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Figure 5.16: Ti 3d part of the angle-integrated photoemission spectrum of TiOCl (hν = 21.2 eV)
compared to the density of states obtained from various calculations. (a) LDA+U with ferromagnetic
and antiferromagnetic spin order (U = 3.3 eV). (b) 1D Hubbard model, LDA+DMFT using itera-
tive perturbation theory (Ref. [Craco04]), and LDA+DMFT using quantum Monte Carlo (Ref. [Saha-
Dasgupta05]). All spectra are normalized to the same integrated area.

not due to instrumental broadening, which is much smaller. In the above analysis of
LDA(GGA)+U spectra, always the FM configuration was assumed. This is not well
justified, one would rather like to approximate the system by an AFM configuration,
which seems the more natural choice considering the Bonner-Fisher-type susceptibility.
Remarkably, in this case the comparison to the LDA+U DOS yields an even stronger
disagreement — the Ti band is significantly reduced in width. This is in contrast to
the naive assumption that antiferromagnetically aligned spins allow for an increased
hopping probability of neighboring sites compared to ferromagnetic spins, which cannot
itinerate due to the Pauli exclusion principle. Therefore the AFM configuration would
be expected to lead to an increased band width, opposite to the GGA+U result.

Note that LDA+U accounts for the onsite Coulomb interaction only in a mean-field
way and is thus effectively still a one-electron theory for statically ordered systems.
One may thus speculate that the origin for the conflicting 3d widths lies in pronounced
electronic correlation effects and/or fluctuations of spin-Peierls or orbital nature beyond
the scope of LDA+U. Electronic correlation effects can in principle be accounted for by
a combination of LDA and dynamical mean field theory (LDA+DMFT) or by suitable
many-body models. Panel (b) shows a comparison of the experimental Ti 3d spectrum to
two different LDA+DMFT calculations. They are taken from Refs. [Craco04] and [Saha-
Dasgupta05] and used different impurity solvers and basis sets. While the LDA+DMFT
curves indeed display a broadening much closer to that of the experiment, none of
these curves can sufficiently explain the shape of the experimental data. The striking
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Figure 5.17: Angle-resolved photoemission of TiOCl single crystals. (a) Orthorombic Brillouin zone
with the high-symmetry points Γ , X, Y, and Z. (b,c) ARPES intensity plots I(k, E) and EDCs along
the crystallographic axes a and b, corresponding to the XΓX and YΓY lines in the Brillouin zone.

disagreement between the two LDA+DMFT calculations should probably be traced
back to the fact that, contrary to the multi-orbital QMC solver, the IPT solver is quite
uncertain for anisotropic multi-band problems [Lichtenstein98].

As a further approach to explain the experimental findings, the one-particle spectral
function of the 1D Hubbard model at half band-filling was determined by Prof. Jeck-
elmann and Dr. Benthien using the dynamical density-matrix renormalisation group
(DDMRG) method [Jeckelmann02, Benthien04]. The calculations were performed on
32-site chains with open boundaries, and up to 200 density-matrix eigenstates were
kept. The parameters U = 3.3 eV and t = 0.23 eV were chosen in accordance with the
DFT calculations, the broadening of the spectra is η/t=0.2. The resulting density of
states is also shown in Fig. 5.16 (b), but it is found again that the bandwidth and the
detailed spectral shape of the photoemission data are not reproduced.

It must be thus concluded that the experimentally determined valence density of states
in the paramagnetic phase of TiOCl is far from being understood.

5.5.2 Electronic Dispersion and Dimensionality

Turning now to the angle-resolved photoemission data, the electronic dispersions of
TiOCl and TiOBr will be discussed [Hoinkis05]. The photoemission experiments were
performed with He i radiation using an Omicron EA 125 HR electron energy analyzer
with the resolution set to 60meV for the TiOCl and 110meV for the TiOBr measure-
ments. The angular acceptance was ±1◦ in both cases.

In Fig. 5.17 the chloride data are presented as intensity plots I(k, E) in a broad energy
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Figure 5.18: (a,b) ARPES EDCs of the full TiOCl valence band along the crystallographic axes a
and b. (c,d) Ti 3d part of the EDCs.

range. In Panel (a) the orthorhombic Brillouin zone is sketched together with the high-
symmetry points conventionally used to describe the measurement paths in reciprocal
space. In this thesis measurements along the crystallographic directions a and b are
labelled with the paths ΓX and ΓY, although strictly speaking, this is only true for a
vanishing k-component along the c axis, which is perpendicular to the crystal surface.
The matter is complicated by the fact that this component k⊥ is not conserved in the
photoemission process and therefore not easily determined. However, for quasi-two-
dimensional compounds it is justified to neglect the perpendicular dispersion, and so the
value of k⊥ becomes irrelevant, as discussed in Chapter 3.

For a presentation of photoemission data in a broad energy range, it is important to
consider the energy dependence of the wave vector k‖ according to Equation 3.4. As an
example to illustrate this effect, the emission angle of 27.6◦ corresponds approximately
to the Y-point for He i excited electrons stemming from the Ti 3d band. An electron
with a binding energy of 8 eV emitted under the same angle possesses a 26% smaller
momentum k‖. Panels (b) and (c) show measurements along the two crystallographic
directions a and b. The energy dependence of the wave number described above was
accounted for in this plot, leading to the white space in the lower corners of the images.3

As can be seen, there is well-pronounced dispersion particularly in the Cl 3p/O 2p part
of the spectra between −9 eV and −4 eV. This view is particularly suited to reveal the
clear symmetry of the dispersions with respect to the Γ-point.

An alternative presentation of the same data is given in Fig. 5.18, where the energy

3Note that this effect is not taken account of in the ARPES intensity plots of this thesis apart from
Fig. 5.17, since the effect can be neglected when the energy range shown is small compared to the
excitation energy.
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distribution curves (EDCs) are plotted. Panels (a) and (b) show the spectra in the
same energy window, and again the vigorous dispersion in the O/Cl manifold becomes
apparent. This behavior and the clear symmetry of the dispersions are indicative of the
good crystal surface quality.

Panels (c) and (d) show an enlargement of the Ti 3d part of the ARPES spectra.
From a comparison of the bare EDCs one can easily see that the spectral changes along
the b axis are considerably stronger than along the a axis. This observation confirms
the quasi-one-dimensional electronic (and magnetic) nature of TiOCl and corroborates
the LDA+U prediction that 1D chains are formed by direct hopping via Ti 3dxy orbitals
along the b direction. Note, however, that the dispersion along the a axis is still finite as
seen from a closer inspection of the k-dependence of the peak maximum, which moves to
slightly higher binding energy from Γ to X. The size of the a axis dispersion is directly
related to the interchain coupling, which plays an important role for the complex spin-
Peierls transition behavior, as outlined in Section 5.4.3.

The Ti 3d spectra of the a-axis ARPES data are all of a rather similar asymmetric
shape. Starting from Γ, the band initially changes its binding energy only slightly,
reaches a maximum at about 1

2
ΓX, and then disperses downwards until the X-point.

The spectral changes in the b-axis data, depicted in Panel (b), are somewhat more
complex. They start out at Γ with a single peak at≈ 1.5 eV below the chemical potential.
With increasing momentum the peak shifts clearly towards µexp and reaches its smallest
binding energy about halfway between Γ and the zone edge. For even larger momentum
the peak rapidly drops in intensity and seems to move back to slightly higher binding
energy. At the same time a new feature appears at ≈ −2.5 eV until at the zone boundary
(Y) the spectral shape has evolved into a broad hump. This behavior and the relatively
large broadening of these structures have been reproducibly observed on many different
samples and is hence to be taken as intrinsic.

A comparison of the experimental a-axis dispersion to that of the LDA+UFM calcula-
tion is displayed in Fig. 5.19 (a,b) and yields qualitative agreement concerning size and
direction of the dispersion. Note again, however, that the LDA+U bands had to be
shifted in energy to give a good match to the ARPES data.

The lower panels of Fig. 5.19 show the experimental b-axis dispersion as ARPES
intensity plot in comparison with various theoretical calculations. Starting with the
theoretical LDA+UFM dispersion calculated for the high-temperature (non-dimerized)
structure, a pronounced disagreement with the experiment is found, particularly in the
second half of the ΓY direction: Here the theoretical bands continue to disperse upwards,
whereas the experimental dispersion turns over and bends downwards until at the Y-
point the spectral weight distribution is strongly broadened and reaches down further
to higher binding energies than at Γ. Assuming an antiferromagnetic spin alignment
in the LDA+U approach doubles the unit cell and hence results in a dispersion sym-
metric about 1

2
ΓY (Panel (e)). Although LDA+UAFM thus reproduces the dispersion

maximum halfway along ΓY, it does clearly not account for the asymmetric experimen-
tal behavior. Motivated by speculations that the unusual high-temperature behavior of
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Figure 5.19: Experimentally determined Ti 3d dispersion of TiOCl compared to various calcula-
tions. (a) ARPES intensity plot I(k, E) of the a-axis dispersion. (b) Corresponding LDA+UFM bands.
(c) ARPES intensity plot I(k, E) of the b-axis dispersion. (d,e) Corresponding LDA+UFM/AFM bands
calculated for the high-temperature structure (U = 3.3 eV, J0 = 1 eV). (f) LDA+UAFM bands calcu-
lated for the dimerized low-temperature structure. (g) One-particle spectral function of the Hubbard
model calculated by the DDMRG method (U = 3.3 eV, t = 0.23 eV).

TiOCl could be caused by fluctuations of the spin-Peierls order parameter, Panel (f)
shows LDA+UAFM dispersions for the dimerized low-temperature phase. Note that such
fluctuation effects have been observed in charge-Peierls systems well above the actual
transition temperature [Schäfer01]. However, as evident from the figure, the effect of
(fluctuating) dimerization results in band doubling but is otherwise rather small and
hence cannot explain the phenomenology of the ARPES data.

Panel (g) finally displays the momentum-resolved spectral weight distribution of the
1D single-band Hubbard model, calculated within DDMRG for the U and t parameters
of the LDA+U calculations. In this case the spectra are entirely of incoherent nature and
correspond to momentum-dependent continua. They are structured in intensity due to
the phase space available for decomposition of a real (photo-)hole into separate collective
spinon and holon excitations, which were introduced in Section 2.4. Lines of singularities
are found dominating the excitation continuum. For example, the low binding energy

104
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singularity in the first half of the Brillouin zone arises from hole fractionalization in
which the spinon propagates with the entire excitation energy, leaving zero energy for
the holon channel. It therefore reflects the dispersion of a bare spinon, whose bandwidth
scales with the exchange integral J , and is referred to as the spinon branch. The holon
branch is characterized by the opposite energy partitioning, i.e., completely in favor
of the holon channel. Two holon branches cross exactly in the center of the Brillouin
zone, at a lower energy than the minimum of the spinon branch. From there a branch
with stronger intensity disperses upwards, reaching a maximum at 1

2
ΓY, where it meets

the spinon branch. The weaker pronounced branch, also referred to as “shadow band”,
disperses downwards from Γ. The dispersion of the holon branches is expected to scale
with the transfer integral t.

Comparing the DDMRG result with the ARPES data, several corresponding features
are found such as the initial upward dispersion (due to spin and charge branches in the
Hubbard model [Benthien04]), the dispersion maximum at 1

2
ΓY, and the asymmetric

shift of weight to larger binding energy towards the Y-point. Also the overall energy
width of the spectral weight distribution is greater than in the LDA+U calculations.
On the other hand, the experiment does not show the pronounced spin-charge splitting
between Γ and 1

2
ΓY predicted by DDMRG, nor the holon “shadow band” [Benthien04].

In addition, the spectral functions of two closely related Hubbard-type models in the
Mott-insulating phase were calculated: An extended Hubbard model including a nearest-
neighbor Coulomb repulsion V , and the t-t′-U model [Daul00] that takes into account
a next-nearest-neighbor hopping t′. The resulting spectral functions (not shown) for
V/t < 2 and t′/t < 0.5, respectively, display no qualitative differences compared to the
simple Hubbard model spectral function. However, the spectral weight of the spin branch
in the t-t′-U model is significantly reduced for appropriate parameters (U/t = 15.7,
t′/t = 0.14) [Saha-Dasgupta04]. This may indicate why the spin-charge splitting is not
resolved experimentally.

Overall, the agreement is much better for the Hubbard model calculations than for
the LDA+U band dispersions, suggesting that the experimental spectra are indeed dom-
inated by electronic correlation effects. However, the following two arguments can be
brought forward suggesting that the 1D single-band Hubbard model cannot really be
expected to account fully for the photoemission spectra. First of all, this model com-
pletely ignores the orbital degrees of freedom. The crystal-field splitting between the dxy

ground state and the excited dxz,yz states is only a few 100meV [Seidel03,Rückamp05b]
and hence virtual excitations into these states will be even more important than the
double occupations on the same site (with energy scale U = 3.3 eV) already contained in
the single-band model. Therefore, it would be highly desirable to compare the ARPES
spectra to that of a suitable multi-orbital Hubbard model, which however is still out of
reach for the DDMRG.

As second argument, it is pointed out that interchain interactions were found to play
an important role for the spin-Peierls physics of TiOCl, as discussed in Sec. 5.4.3. It
must thus be examined carefully if neglecting the two-dimensional coupling in the 1D
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Figure 5.20: ARPES intensity plots I(k, E) of TiOBr and TiOCl along the crystallographic axes a
and b, corresponding to the XΓX and YΓY lines in the orthorhombic Brillouin zone. Blue lines indicate
the peak positions of the EDCs. The blue crosses mark the first moment of the EDCs at the Y-points.

Hubbard model can be responsible for the disagreement between experiment and model
calculation.

A comparison between the isostructural compounds TiOBr and TiOCl now opens the
possibility to further explore the possible reasons for this discrepancy [Hoinkis06]. In
Fig. 5.20 the spectral weight distributions of the Ti 3d-band of both compounds are pre-
sented. The four panels show ARPES intensity plots I(k, E) along the crystallographic
axes a and b, together with lines and markers that serve as a guide-to-the-eye for the
spectral dispersions. The lines indicate EDC peak maxima obtained by a peak fitting
procedure. For both compounds, this works well along the a direction and in the first
half of the path from Γ to Y, i.e., along b in direct space. In the second half, however, the
EDCs lose their single-peak-like shape: An additional feature at higher binding energies
appears and thereby the spectra gradually change their form to end up in a broad hump,
as described above. Thus, a fit with a single peak is not adequate here. Instead, the
first order moment of the EDCs at the Y-point (indicated by crosses in Fig. 5.20) was
taken as a measure.

The dispersions of the bromide both along the crystallographic a and b axes show
a strong qualitative resemblance to the chloride. For a quantitative comparison of the
electronic dispersions between the two compounds, the parameters wa, wb, and w′

b are
listed in Table 5.5. The unprimed quantities refer to the overall dispersion widths, while
w′

b measures the width of only the inner part of the dispersion in the region from Γ
to about 1

2
ΓY. These widths are determined either from the difference of the maximal

and minimal peak energies along the corresponding paths in k-space as obtained by the
fitting procedure (see lines in Fig. 5.20), or the difference between the maximum peak
energy and the first order moment at the Y-point in case of wb (see markers in Fig. 5.20).
The errors indicated reflect the scatter from several samples and measurements.

As is immediately read off from Table 5.5 the overall dispersion width along b is
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Table 5.5: Dispersions wa, wb, and w′
b of the Ti 3d-band in TiOBr and TiOCl, measured from the

maximum to the minimum energy of the peak for the a direction, and from the maximum energy of the
peak to the first moment of the Y-point EDC for the b direction, respectively.

TiOBr TiOCl

wa 0.27(3) eV 0.12(3) eV

wb 0.26(5) eV 0.47(5) eV

w′
b 0.13(1) eV 0.17(1) eV

significantly smaller in TiOBr with respect to TiOCl — contrary to the a direction,
where the dispersion width is larger in TiOBr. Given that both systems and in particular
their electronic structures are governed by the same physics we hence conclude that
the anisotropy of TiOBr is less pronounced than in TiOCl. This is in line with the
trend in the relevant hopping integrals as derived from downfolding LDA+U results.
Furthermore, it was observed that the Bonner-Fisher curve indicative for 1D Heisenberg
chains does not provide a good fit for the high-temperature magnetic susceptibility of
TiOBr in contrast to TiOCl [Lemmens05]. Without knowledge of the precise origin of
the observed dispersions one has to be careful to take the ratio wb/wa ∼ 1 in TiOBr
as evidence that this system actually is almost ideally two-dimensional or at least close
to one. Nevertheless the non-negligible interchain coupling can not be discarded on the
basis of these data.

Focussing now on the central part of the dispersion along the b axis marked by lines in
Panels (c) and (d), it is pointed out that within the single-band 1D Hubbard model this
part corresponds to the (ω, k) region of the spinon and holon branches (see Fig. 5.19 (g)).
Hence, depending on a dominating spinon or holon character of the experimental dis-
persion, the width w′

b should scale linearly either with the exchange constant J or with
the hopping integral t, as outlined above. The value of J can be extracted from mag-
netic susceptibility measurements [Seidel03, Rückamp05a]. The transfer integral t can
be inferred from the Hubbard model perturbation expression for the exchange constant,
J = 4t2/U (cf. Equation 2.31), and should thus scale as t ∝

√
J . Alternatively it can be

deduced from an appropriate downfolding procedure of LDA+U band calculations [Lem-
mens05]. An account of these quantities is given in Table 5.6. The values of J for TiOBr
and TiOCl differ by −45% (with respect to the value in TiOCl), whereas the experi-
mental dispersion width is smaller in TiOBr by only 23%. Hence, an interpretation of
the observed dispersion as spinon branch is clearly not suggested by this comparison.

On the contrary, the experimental width w′
b nicely matches the transfer integral as

obtained from t =
√
JU/2 which is smaller in the bromide by 26% compared to the

chloride. A similarly fair agreement is achieved with t from the LDA+U downfolding
studies [Lemmens05] where the effective dxy-dxy hopping parameter along the b axis is
smaller in TiOBr by 19% with respect to TiOCl. From this analysis it follows that the
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Table 5.6: Comparison of TiOBr and TiOCl with respect to various parameters possibly relevant for
the observed dispersions: Width of the central part of the Ti 3d-band dispersion along b (w′

b), exchange
constant J obtained from the magnetic susceptibility [Rückamp05a], transfer integral t derived from J ,
and the transfer integral t of downfolding LDA+U studies [Lemmens05].

TiOBr TiOCl ∆x/x

1D dispersion w′
b 0.13 eV 0.17 eV -23%

J from magnetic susceptibility 32meV 58meV -45%

t =
√
JU/2 0.16 eV 0.22 eV -26%

t from LDA+U 0.17 eV 0.21 eV -19%

experimentally observed dispersions scale with t, not with J and thus can clearly be
identified as charge excitations. In this light, it seems unlikely that the experimentally
observed spectral dispersion is a superposition of both holon and spinon excitations.

Turning back to the starting point, i.e., the single-band 1D Hubbard model, a simple
explanation for the lack of a spinon branch and shadow band would be that the two-
dimensional coupling in these compounds under the particularities of a triangular lattice
is already large enough so that generic 1D features of the spectral weight distribution can
not persist. One would be then left with a lower Hubbard band that — though incoherent
in nature — could still display sizable dispersion alike to the experimental observation.
Clearly, this issue demands for a more detailed theoretical investigation. Alternatively,
one could stick to the 1D Hubbard model and cite the coupling of phonons, multiorbital
or spin-Peierls fluctuation effects as possible causes for the complete suppression of the
generic 1D phenomenology. However, from the organic quasi-one-dimensional conductor
TTF-TCNQ it is known that the phonons, which should couple equally strong to the
electrons in this CDW system and are of even higher energy, do not suppress or smear
out the spectral features of spin-charge separation and shadow band [Claessen02,Sing03].
Moreover, as already stated the orbital degrees of freedom are quenched in the oxyhalides
and spin-Peierls fluctuations should not be very important so far above the transition
temperatures. Therefore these two effects are probably not very effective.

In view of the above results one is thus left in a situation where on the one hand the
spin-Peierls ground state of both oxyhalides studied here is dominated by 1D interac-
tions while the analysis and discussion of the electronic dispersions at room temperature
as well as the incommensurate order in the intermediate phase point to the importance
of 2D (frustrated) interchain interactions. It remains interesting to see whether or not
an anisotropic Hubbard model type description taking account of the magnetic inter-
chain frustrations on the underlying triangular lattice is capable of better describing the
electronic properties of this class of materials positioned in the regime between 1D and
2D correlations.
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5.5.3 The Orbital Degrees of Freedom

As already pointed out in Section 5.4.1, fluctuations play an important role in the
paramagnetic phase of the oxyhalides. This expresses itself, for instance, in an anomalous
broadening of the TiOCl phonon lines in Raman and infrared spectroscopy [Lemmens04,
Caimi04], indicating strong coupling of the lattice to the electronic (spin or orbital)
degrees of freedom. In order to decide, if the orbital degree of freedom is indeed involved,
it is important to evaluate the energy of a local excitation within the t2g subshell. The
LDA calculations yield that the dxy state is lowest in energy, but a precise quantitative
statement concerning the excitation energy to the higher lying dxz and dyz states is not
possible on the LDA basis.4

While on one hand Jahn-Teller effects are generally less pronounced in t2g orbitals and
one would thus expect that the orbital degeneracy is lifted by a rather small crystal-
field splitting, it must be noticed on the other hand that the coordinating octahedra
are strongly distorted. The question naturally arises if the size of the energetic splitting
allows for orbital fluctuations, or if this degree of freedom is quenched in the oxyhalides.

As a first theoretical answer, LDA+U calculations for frozen lattice distortions cor-
responding to the relevant phonon modes have shown that the orbital ground state
may switch from 3dxy to 3dxz,yz for a sufficiently large amplitude [Saha-Dasgupta04].
Such a dynamical Jahn-Teller effect would lead to an orbitally mixed character of the
time-averaged ground state. In contradiction to this result, recent cluster calculations
combined with polarization-dependent optical data predict an energy value of ≈ 0.25 eV
for the transition to the first excited state [Rückamp05a]. This result — much larger
than the energy scale available through thermal fluctuations — certainly rules out or-
bital fluctuations. Unfortunately, this transition is not directly infrared active in the
high-temperature structure and was therefore not observed in the optical transmittance
measurements.

An experimental confirmation of this value for the smallest orbital excitation energy
comes from ESR measurements. In a collaboration with Prof. Loidl’s chair, ESR mea-
surements were performed on TiOCl single crystals [Zakharov06]. From an analysis of
the experimentally obtained g-factor it was possible to extract a value of 0.3 ± 0.1 eV
for the energy of the first excited state, in good agreement with the cluster calculations.

A more direct way to determine the orbital character of the occupied Ti 3d states ex-
perimentally will be presented in the remainder of this section [Hoinkis05]. Polarization-
dependent photoemission measurements were carried out utilizing an Omicron AR 65
spectrometer equipped with a He discharge lamp and a rotatable polarizer. Additional
polarization experiments with linearly polarized synchrotron light were performed at the
SIS beamline of the Swiss Light Source using a Scienta SES 100 analyzer.

Experimental information on orbital symmetry can be obtained from these exper-
iments making use of selection rules realized for special experimental geometries, as

4Note that the local excitation is not connected with charge transport, hence it should not be confused
with the Mott gap of the LDA+U calculation depicted in Fig. 5.12 (b).
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Figure 5.21: Polarization-dependent photoemission experiment on TiOCl. (a) Sketch of the exper-
imental setup. (b) Photoemission spectra measured at the Γ -point with parallel and perpendicular
light polarization, respectively (T = 300K). The inset shows the corresponding photoemission spectra
measured at another photon energy (T = 365 K).

outlined in Chapter 3. Assume the direction of the incident linearly polarized light and
the emission direction of the photoelectrons lie within the same crystal mirror plane,
as sketched in Fig. 5.21 (a). Then, with the polarization vector within (εp) and per-
pendicular (εs) to the mirror plane, the ejected electrons can stem only from states
with well-defined even or odd parity with respect to this plane, respectively [Damas-
celli03]. The dxy-derived band states of TiOCl are even with respect to the (b,c) mirror
plane while the dxz,yz states are odd (cf. Fig. 3.2). Photoemission from dxy states is
hence dipole-allowed only for parallel light polarization εp, whereas dxz,yz-emission can
be observed for perpendicular polarization εs only.

Figure 5.21 (b) displays the results of such an ARPES experiment obtained with
21.2 eV photons at room temperature. The spectra were recorded at normal emission
(i.e., at the Γ-point) with parallel (blue) and perpendicular (red) polarization, respec-
tively. Since a laboratory He lamp with a rotatable polarizer was used, the photon flux
is not changed by switching the polarization, and the spectra can be normalized to equal
integration times per channel. At first glance, one can see that the intensity distribution
over the whole valence band indeed is strongly affected by polarization effects. Focussing
on the Ti 3d states reaching down to about 3.5 eV below µexp, their spectral weight is sig-
nificantly reduced but not completely suppressed upon switching the polarization from
parallel to perpendicular, indicating the dominance of dxy emission. The residual 1 : 4.8
weight for perpendicular polarization can be quantitatively accounted for by the finite
degree of light polarization (≈ 85%), a possible small sample misalignment, and the
effect of thermally activated symmetry-breaking phonons.5 Similar data for the Ti 3d
derived part of the electronic structure using polarized synchrotron radiation is depicted

5Note that the phonons involved in the dynamical Jahn-Teller effect discussed in Ref. [Saha-
Dasgupta04] do not break the mirror symmetry of the (b,c)-plane.
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in the inset of Panel (b). These spectra were recorded at a photon energy of 110 eV
and a temperature T = 365K and normalized to equal photon flux. Due to the higher
polarization degree of the synchrotron radiation the residual relative weight for perpen-
dicular polarization is even further reduced. It is emphasized that this contribution does
not vary down to room temperature within experimental accuracy, again indicating that
phonon-induced orbital fluctuations are not important in this temperature range.

The photoemission data hence constitute direct experimental evidence that there is
no sizable dynamical Jahn-Teller admixture of dxz and dyz states to the dxy ground
state at room temperature. This implies that orbital fluctuations play no role for the
low-temperature physics of TiOCl.

5.6 Pressure-Induced Insulator-Metal Transition

The prospects of RVB superconductivity are the motivation for the efforts to metallize
the Mott insulator TiOCl. For this purpose two different approaches come into consid-
eration: A Mott insulator can in principle be driven into a metallic phase by shifting
the chemical potential away from half-filling. Alternatively, tuning the crucial parameter
U/W will also result in an insulator-metal transition once a critical threshold is overcome.
Whereas the first route based on changing the band-filling of the system will be described
in the next section, the pressure-induced insulator-metal transition [Kuntscher06] pre-
sented in the following is possibly an example for a bandwidth-controlled Mott transition.

Pressure-dependent measurements of both the optical transmittance and reflectance
were performed by Prof. Kuntscher’s group at room temperature using a Bruker IFS
66v/S FT-IR spectrometer with an infrared microscope (Bruker IRscope ii). A diamond
anvil cell (DAC) was used for the generation of pressures up to 18GPa. The pres-
sure was determined by the ruby luminescence method [Mao86]. For the transmission
measurements various pressure transmitting media were used [CsI, methanol:ethanol
(4:1)-mixture, argon]. The results qualitatively agree, but the pressure-induced effects
occur at lower pressure (∆P ≈ 4GPa) for CsI powder due to less hydrostatic conditions,
as expected [Loa99]. For the reflectance measurements finely ground CsI powder was
used as pressure transmitting medium to ensure direct contact of the sample with the
diamond window. For each transmittance and reflectance measurement a small piece
(about 80µm × 80µm) was cut from a single crystal with a thickness of ≤ 5µm and
placed in the hole of a steel gasket. The reproducibility of the results was ensured by
several experimental runs on different pieces of eight crystals.

The pressure-dependent transmittance was studied in a wide frequency range (2000–
22000 cm−1) for the polarization directions ε ‖ a,b. The intensity Is(E) of the radiation
transmitting the sample was measured and normalized by a reference intensity Ir(E).
The latter was obtained focussing the incident radiation spot on the empty space in the
gasket hole next to the sample for each pressure. The ratio T (E) = Is(E)/Ir(E) is a
measure of the transmittance of the sample.
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Figure 5.22: Pressure-dependent optical measurements on TiOCl. (a,b) Pressure dependence of the
transmittance T (E) for the polarizations ε ‖ a and ε ‖ b. (c) Charge gap, estimated from a linear
extrapolation of the absorption edge, as a function of pressure. The full line corresponds to a linear fit
to the data for p ≤ 8 GPa. (d) View inside the diamond unit cell during the pressure-dependent optical
measurements.

Reflectance measurements were carried out in the frequency range 2000–11000 cm−1,
using the intensity reflected from the inner diamond-air interface of the empty DAC as
a reference.

Figure 5.22 (a) shows the pressure-dependent transmittance spectra of TiOCl for
pressures up to 13.9GPa . Above 13.9GPa the transmitted signal is zero. For the
lowest applied pressure, pronounced absorption features are observed at around 0.66 eV
and 1.53 eV in the ε ‖ a and ε ‖ b transmittance spectra, respectively. These two features
can be attributed to excitations between the Ti 3d energy levels, whose degeneracy is
lifted by the crystal field. As pointed out before, the transition to the first excited
state is not infrared active. The observed features thus correspond to transitions from
the dxy ground state into the second excited state still in the t2g subshell, and into
the third excited state in the eg subshell. Since the transmittance measurements were
carried out on very thin samples (thickness ≤ 5µm), a precise determination of the
positions of the two orbital excitations was possible. The values at zero pressure are in
agreement with previously published results [Rückamp05a, Rückamp05b]. The crystal
field splitting grows in amplitude with increasing pressure, indicated by the shift of
the orbital excitations to higher frequencies. Apparently slight changes of the crystal
structure, like modifications of the strong distortions of the TiO4Cl2 octahedra, are
induced by the applied pressure.

For the lowest applied pressure, the transmittance is suppressed by excitations across
the charge gap of approximately 2 eV [Rückamp05a]. The gap width can be estimated
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by a linear extrapolation of the absorption edge. The results of this analysis, shown
in Panel (c), yield a slow linear decay with increasing pressure up to ≈ 8GPa. Upon
further increasing the pressure, the absorption edge rapidly shifts to lower energies, until
at≈12GPa the transmittance is suppressed over the whole studied frequency range. This
abrupt closure of the charge gap must be interpreted as the spectroscopic fingerprint of
an insulator-metal transition.

The shift of the absorption edge out of the visible frequency range below 13000 cm−1

or 1.6 eV can be directly observed in form of a change in sample color. Panel (d) shows
views inside the DAC at different pressures. At ambient pressure the thin sample is of
a partly transparent, red appearance. Upon increasing the pressure above 8GPa the
sample becomes progressively opaque, as the visible fraction of the transmitted light
rapidly shrinks. For p > 12GPa the sample is black. It must be noted, however, that
the pressure-induced closure of the charge gap does not seem to be completely reversible,
as parts of the sample do not recover their original color upon pressure release.

Also the reflectance measurements deliver indications for a pressure induced metal-
insulator transition [Kuntscher06]. These experiments can be viewed as being comple-
mentary to the transmittance measurements, as they yield a significant signal only in
the pressure regime where the samples’ transmittance is small. At ≈ 12GPa the re-
flectance abruptly increases in the whole energy range (not shown), demonstrating the
transition-like character of the pressure-induced changes in the optical response.

These results — the suppression of the transmittance accompanied by a change of sam-
ple color and the increase of the reflectance — clearly indicate that a metallic state is in-
duced in TiOCl at high pressure. The interpretation of this phenomenon as a bandwidth-
controlled Mott transition is based on the well-established observation of insulator-metal
transitions induced by chemical pressure in various inorganic and organic compounds.
The spectroscopic signatures were demonstrated just recently in measurements of the
dc and optical conductivity of pyrochlore-type molybdates [Kézsmárki04,Kézsmárki06].
The application of pressure (either external or chemical, i.e., by modifying the chem-
ical composition) in general influences the bond lengths and bond angles, and hence
modifies the width of the electronic bands near the Fermi energy. Assuming that the
crystal-structure symmetry is not changed upon pressure application, this would be the
first spectroscopic study of a bandwidth-controlled insulator-to-metal transition induced
by external pressure.

However, the possibility of the transition being driven by a lattice-deformation instead
of the bandwidth-reduction cannot be ruled out on the basis of the optical data. Such a
scenario is suggested by the non-reversible character of the transition. This issue could
be cleared up by a pressure dependent crystal-structure study, which is intended for the
future.

In any case, the proximity to the metallic state in TiOCl is demonstrated by this
experiment, thus founding the hope in the search for unconventional superconductivity.

113



5 Spin-Peierls Physics in the Titanium Oxyhalides

5.7 Conclusion and Outlook

Even though it was shown in detail in this chapter that the undoped titanium oxyhalides
adopt a spin-Peierls ground state, i.e., a state which can rather be described as a valence
band solid than as a valence band liquid, it is not unlikely that upon doping the RVB
state is favored. As pointed out in Section 2.4, mobile holes created by doping have the
effect of stabilizing the RVB state.

Motivated by this prospect, several routes to dope TiOCl have been attempted. In
a first doping study, titanium atoms were substituted by scandium or vanadium in the
crystal growth process. Sc substitution corresponds to hole doping, as Sc is the adjacent
transition metal with one electron less than Ti, whereas doping with V adds one extra
electron per dopant to the system. Various doping concentrations were tested, ranging
from 1% up to 50%. Unfortunately this did not lead to the anticipated metallization of
the system. It seems that delocalization is more difficult to achieve for this inhomoge-
neous d1/d0 or d1/d2 electron count on the cation array compared to the d9/d8 mix in the
cuprates created by anion substitution. The introduced disorder being associated with
the change of the primary cations is obviously too large, so that doped charge carriers
become Anderson-localized. This hypothesis is corroborated by ARPES measurements
that showed a complete absence of electronic dispersion in the d band of the materials
doped in this way. A similar effect was evidenced by ARPES on TiOCl samples sput-
tered in situ. The idea behind this experiment was to remove oxygen or chlorine atoms
from the top layer, which corresponds to an effective electron doping. An XPS analysis
showed that largely the Cl species is affected by the sputtering, which is not surprising
as these atoms comprise the top-most surface layer. A series of sputter experiments was
conducted, each of which consisted of several sputtering cycles with subsequent photo-
emission measurements to inspect the changes in the electronic structure. As a result,
the conductivity of the TiOCl crystals was enhanced significantly, so that it was possible
to measure down to 14K without excessive charging up of the sample. However, the
electronic dispersion vanished completely long before a change in the conductivity was
detectable. The induced disorder seemed to dominate the spectra, just as in the V and
Sc doping experiments.

From these lessons the conclusion has to be drawn that doping should be conducted in
a more gentle way, without disturbing the system too much. One possible solution would
be to substitute the anions, and the most obvious choice for this is to replace oxygen
by nitrogen, motivated by the existence of the isostructural nitride halides ZrNCl and
HfNCl. Unfortunately, up to date it was not accomplished to substitute a relevant
amount of oxygen by nitrogen, neither by partly replacing the crystal growth reactants
by NH4Cl, nor by directly trying to introduce the nitrogen in the crystals under high
pressure and high temperatures in an autoclave. However, these experiments are still in
an early stage, and one cannot rule out a success along this route in the future.

The most promising way appears to be the in situ evaporation of alkali metal atoms.
Ideally they intercalate and donate their valence electrons without introducing a great
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amount of disorder. First photoemission results, collected by S. Glawion in Würzburg,
are very promising in the sense that the electronic dispersion of the Ti d band has not
yet vanished, but it is significantly altered without changing the size of the charge gap.
The spectra are not shown in this thesis as this is a very preliminary result. The in
situ evaporation — in this case of Sodium atoms — has so far only been attempted
once, and it is clear that these findings have to be validated and analyzed in more
detail. Specifically, it must be examined if the sodium atoms really intercalate or simply
stay at the surface and possibly oxidize there, and it is not clear yet how to interpret
the observed band dispersions. Nevertheless, it was shown that it is possible to gently
dope a TiOCl crystal without destroying its crystal structure to such an extent that the
electronic dispersion is lost. Summarizing, the alkali metal intercalation seems to be a
very promising candidate for doping the oxyhalides.

Even though the outlined doping attempts did not result in a metallization as antici-
pated, the prospects of success should not be underestimated, as the following arguments
show. First of all, the insulator-metal transition under pressure presented in the pre-
vious section is named in this context, as it proves the proximity to a metallic state
in TiOCl. Second, the LDA+DMFT study by Craco et al. is quoted [Craco04], which
predicts the possibility of a band-filling induced insulator-metal transition with multi-
orbital correlations. The authors even tentatively suggest that electron doped TiOCl
may exhibit unconventional superconductivity if a metallic state is reached, in accor-
dance with the mean-field results presented in Section 2.4. However, these results have
to be handled carefully, as the choice of the iterative perturbation theory (IPT) for the
impurity solver is debated for the multi-orbital case [Saha-Dasgupta05]. Last but not
least, it was already successfully demonstrated that the isostructural compounds ZrNCl
and HfNCl can be effectively doped by alkali metal intercalation. Remarkably, it was
possible to drive the nitride halides into a superconducting state, however mediated by
conventional electron-phonon coupling.

The prospect of a possible superconducting phase based on the RVB state is espe-
cially exciting due to the predictions of Anderson in his pioneering paper of 1987 [An-
derson87a]. For an optimal doping level of x = U/t, which yields the realistic value of
6% for the case of TiOCl, from his theory a superconducting transition temperature of
up to the order of J is expected. It need not be overly emphasized, that this energy
scale of 660K for the chloride is enough motivation to search for ways to suitably dope
these compounds and achieve a state that exhibits superconductivity.
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6 Summary

The materials in the scope of this dissertation belong to the domain where Peierls and
Mott physics meet — in other words both electron-phonon coupling and electronic corre-
lations play an essential role in these systems. With 1T -TaSe2 a layered transition metal
compound was investigated that can be regarded as a paradigm quasi-two-dimensional
CDW system. The appeal of this material certainly lies in the occurrence of a sur-
face Mott metal-insulator transition, which is driven by CDW-induced changes of the
electronic bandwidth and can thus be controlled simply by varying the temperature.
In Chapter 4, a detailed examination of the electronic structure in the presence of the
CDW was presented. The results of DFT calculations make it possible to identify a
separated conduction band with a strongly reduced width compared to the undistorted
state, which explains the rather unusual appearance of Mott physics in a 5d transi-
tion metal compound. This observation corroborates the Mott-Hubbard scenario with
star-of-David clusters as relevant sites of the corresponding Hubbard picture. The Mott
transition at the surface of 1T -TaSe2, for which clear evidence was presented in form
of angle-resolved photoemission data, is one of the few examples where one is able to
observe the evolution of the spectral function while going through the transition by
tuning the crucial ration U/W within the same single crystal. In the metallic phase,
the photoemission spectra directly exhibit the occupied part of the three-peak structure
as it is expected from DMFT predictions for a correlated metal, i.e., a lower Hubbard
band and a quasiparticle peak at the Fermi level. Upon cooling a drastic rearrangement
of spectral weight towards higher binding energies takes place, which is interpreted as
spectral signature of a Mott-Hubbard transition: The quasiparticle peak vanishes in
favor of the Hubbard subbands.

Compared to the charge-Peierls transition, its counterpart involving the spin degree
of freedom — i.e., the spin-Peierls transition — must be considered a much rarer phe-
nomenon. The compounds TiOCl and TiOBr studied in the course of this dissertation
are, together with CuGeO3, the only known inorganic materials to exhibit this insta-
bility. Furthermore, the record-high transition temperatures and interaction strengths
found the particular interest in these systems. After the Mott insulator TiOCl was in-
terpreted as spin-Peierls system for the first time in 2003 by Seidel et al. on the basis
of magnetization measurements [Seidel03], it was the success of XRD experiments pre-
sented in Chapter 5 to provide direct evidence for the spin-Peierls nature of the TiOCl
low-temperature phase. Also the nature of the intermediate state of TiOCl as incom-
mensurately modulated spin-Peierls state could be revealed by XRD measurements, thus
completing a coherent spin-Peierls picture of the oxyhalides TiOCl and TiOBr with two
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successive phase transitions. The existence of an extended fluctuation regime above the
intermediate phase is confirmed by measurements of the heat capacity, which show a
strongly delayed release of entropy and thus hint towards the major role played by fluc-
tuations. The orbital sector as possible origin of these fluctuations can be ruled out on
the basis of photoemission experiments utilizing selection rules for polarized radiation.

In a comprehensive study focussing on the normal state electronic structure, both
the momentum-integrated and momentum resolved spectral function was determined
experimentally by means of photoelectron spectroscopy. Complemented by various DFT
and model calculations, these measurements show that the electronic structure of TiOCl
and TiOBr cannot be understood in a one-particle picture. The best fit to the data was
accomplished by DDMRG calculations for the single-band 1D Hubbard model. However,
a comparison of the two compounds, which reveals the much greater importance of
interchain coupling in the bromide, leads to the conclusion that multi-band effects and/or
the magnetic interchain interaction on the triangular lattice have to be taken into account
in order to arrive at a realistic theoretic modelling of these systems.

It is exactly this triangular lattice with its geometric frustration of magnetic inter-
actions that fuels the expectations that another fascinating phenomenon — the RVB
state — is not far from being realized in the titanium oxyhalides. In this regard the re-
sults of pressure-dependent optical transmittance and reflectance measurements appear
particularly intriguing: The observed closure of the correlation gap at about 12GPa is
clear evidence for an insulator-metal transition. Assuming that changes of the crystal-
structure symmetry are not involved, this would be the first observation of a bandwidth-
controlled Mott transition induced by external pressure. The interesting point concern-
ing this experimental discovery is that according to RVB theory the proximity to a
metallic state gives reason to anticipate promising chances for finding a novel, RVB-
type superconductivity realized in suitably doped oxyhalides.
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[Grüner88] G. Grüner. “The dynamics of charge-density waves”. Reviews of Modern
Physics 60, 1129, 1988.
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[Kataev03] V. Kataev, J. Baier, A. Möller, L. Jongen, G. Meyer, and A. Freimuth.
“Orbital orderin the low-dimensional quantum spin system TiOCl probed
by ESR”. Physical Review B 68, 140405(R), 2003.

[Kevan92] S. Kevan, editor. Angle-Resolved Photoemission — Theory and Current
Applications. Elsevier, 1992.
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