Management decision support using long-term market
simulation

Clemens Czernohous!, Wolf Fichtner?, Daniel J. Veit', Christof Weinhardt'

! Information Management and Systems (IW), University of Karlsruhe, Englerstr. 14,
D-76131 Karlsruhe, Germany (e-mail: {czernohous,veit,weinhardt}@iw.uka.de)

2 Institute for Industrial Production (IIP), University of Karlsruhe, Hertzstr. 16,
D-76187 Karlsruhe, Germany (e-mail: wolf.fichtner@wiwi.uni-karlsruhe.de)

Abstract. In recent years Agent-based Computational Economics (ACE) has
become an increasingly important method in market simulation. After
liberalization of many former governmental owned or controlled industries
the used operations research models are not longer sufficient to simulate
market behavior due to individual action and increasing competition. Agent-
based simulation appears to be an alternative approach considering also
individual behavior and competition. Some short-term simulation
approaches have shown promising results for the simulation in the domain
of electricity markets. Picking up the desire for a long-term oriented
simulation, this paper presents a basic agent-based model considering the
investment decision within long-term planning of electricity markets.
Additionally, regulatory agents are introduced as a third side in the market
simulation to represent governmental decisions. This results in the definition
of three types of agents representing electricity generating companies,
consumers and governmental instances.
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1 Introduction

The deregulation of formerly governmental controlled markets and the
economic integration of national markets leads to an increasing competition.
Individual market participants need to assess the market to learn advanta-
geous behavior. Managers benefit from basic information about markets and
market behavior to estimate the influence of their decisions on the
development of the market. Consumers on the one hand can use their
knowledge about market behavior to optimize their buying decisions.
Governments set rules, enact laws and raise taxes to affect market behavior
in a desired way. Small changes in regulations might have a large impact on
the market. Therefore, tools for market simulation help to understand the
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development of the market, help to assess the impact of individual actions,
and consequently help to improve market participants’ decisions.

Agents representing individual behavior within an agent-based market
simulation show promising results in studying markets as evolving systems.
Electricity markets have gained tremendous interest in agent-based simula-
tion. The existing models focus on a short-term view, especially on the price
movements. Changes in production technologies and environmental restric-
tions are ignored. This paper overcomes these limitations by introducing
regulatory agents representing governmental decisions and additionally
enhancing the suppliers’ decision making framework to a longer-term view
by considering the investment decision on specific production techniques. We
adapt the described model for the use in electricity market simulation as one
domain of application for an agent-based market simulation model. There-
fore, in the following we describe characteristics of electricity. Electricity is not
an ordinary commodity. On the one hand it has specific characteristics in
production, distribution and consumption. This is because of very short
temporal differences between production and consumption. Storage is strictly
limited and linked with high loss of energy, so that production has to be
adjusted to consumption at any time. Consumption however depends on
many temporally varying parameters and is not easy to anticipate. On the
other hand electricity is a basic and major resource for industrial countries,
which has to be available at any time. Even short interruptions might disturb
economic production, as it can be seen in California within recent years.
Consequently, a reliable anticipation and analysis of future electricity
consumption is necessary for effective planning.

Decentralized approaches such as Multi Agent Systems (MAS) promise
potential to reproduce individual behavior and characteristics of different
market participants.

Section 2 introduces software agents and gives a brief overview on Multi
Agent-based Simulation (MABS). Several multi agent-based models for
electricity market simulation have been proposed and will be summarized in
Section 3. These models have in common to simulate short-term price
development in electricity markets without considering long-term decisions
as for example investment planning. We suggest mechanisms to integrate
long-term planning into an agent-based approach for electricity market
simulation. Section 4 describes the model in more detail. The concluding
Section 5 summarizes the proposed model and discusses its compatibility to
existing models.

2 Multi Agent-based Simulation

Weiss (1999, p.1) characterizes intelligent software agents as ““computational
entity [..] that can be viewed as perceiving and acting upon its environment
and that is autonomous in that its behavior at least partially depends on its
own experience.” Jennings and Wooldridge (1998) point out that the
capability of flexible autonomous acting in different environments constitutes
the intelligence of software agents. Many characteristics of intelligent agents
are described in literature mentioning reactivity and proactivity (Wooldridge
and Ciancarini 2001) and rationality (Rosenschein and Genesereth 1985) as
other main features. Adaptive behavior comprehends the ability of learning
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within the agents environment (Brenner et al. 1998). Two or more intelligent
agents acting in one system constitute a MAS and necessitate communication
and interaction amongst the agents (Huhns and Stephens 1999). To ensure
reasonable interaction and communication in a MAS agents need to consider
not only their own actions but also need to anticipate future actions of other
agents to coordinate their actions (Jennings 1996).

Multi Agent-Based Simulation (M ABS) is an intensive field of research for
example in computer science, social science, mathematics or economics. The
study of economic systems with MABS have become known as Agent-based
Computational Economics (ACE). Economies are modelled as independent
evolving systems of autonomous interacting intelligent agents. Mizuta and
Yamagata (2001) enhanced the gold-food-market model of Steiglitz et al.
(1996) to simulate the Kyoto-protocol green house emission trading. Goal of
market simulations is to asses the market behavior and its development over
time. Therefore, autonomous agents represent market participants, but
cannot copy the behavior of real market participants in all detail. Agents
applied in simulations normally use simple decision rules, learning algo-
rithms, or statistical analysis to adapt their strategies. Tesfatsion (2002)
provides a detailed overview on ACE research and describes studies of
market simulations in electricity and financial markets.

In the following section existing agent-based models for the simulation of
electricity markets are summarized.

3 Simulation of electricity markets

Since the two oil crises in the seventies, a growing number of models of
energy systems have been developed and used to analyze the energy sector.
The conceptual structure of energy models can be found in Hafkamp (1984)
and in Lev (1983) different energy models are presented. In the Eighties,
some energy models were extended by environmental modules in order to
address environmental problems related to energy conversion, such as
acidification and eutrophication. Since the early Nineties, energy system
models have also been used for the elaboration of greenhouse gas emission
reduction strategies in the context of the global warming discussion. In the
context of energy planning the investment and production planning of
electric utilities in particular has received considerable attention and many
formulations of the problem have been proposed over the last decades (see
e.g. Anderson 1972; Caramanis 1983; International Atomic Energy Agency
1995). Therefore, the use of mathematical programming in the context of
electricity market simulation is a well-known field of research (Gately 1970),
that is still of great interest (see e.g. Gonzalez-Monroy and Cordoba 2002;
Song 1999) due to the new situation in liberalized energy markets. However,
the existing electricity models, which are based on Operations Research
methods, can hardly be used to reproduce individual behavior and
characteristics of different market participants in a liberalized market.
Consequently, to better represent the individual behavior of market
participants MABS became more important for simulation of electricity
markets. ACE studies markets as evolving systems. Much work has been
done in the short-term simulation of electricity markets especially of the



408

electricity markets of England and Wales. In the following we discuss some
of these approaches.

Bower and Bunn (2000) studied the impact of the Revised Electricity
Trading Arrangements of England and Wales (RETA) on pricing and
strategy. Each agent of the Multi Agent System represents an electricity
generating company and has the goal to increase overall profitability and to
reach a target utilization rate on its plant portfolio. A simple reinforcement-
learning algorithm enables the agents to learn the best bidding strategy. The
agents on the demand side are implemented as price takers and have no
ability to influence the market through strategic behavior. The application of
four different combinations of auction mechanisms allows a comparison of
the market development and a valuation of RETA. Quantitative results are
not obtained from this model, but it is applicable to anticipate market trends.
Bower et al. (2001) developed a model for the simulation of the German
electricity market based on the model of Bower and Bunn (2000) to
understand the strategic consolidation of the German electricity market.
Agents represent the main electricity companies on the German market,
whereas smaller companies are aggregated in one agent. Customers have no
strategic influence on the market behavior, their demand is implemented as
an aggregated demand curve. Agents knowledge is just linked to their
internal state and the agents do not posses information about the
environment or other agents behavior. The authors use auction mechanisms
for the simulation and each agent submits 24 bids per day for each plant.
Simulations under different starting conditions are realized to study market
development after merger of two or more companies. Due to many
assumptions the model is not suited for quantitative conclusions but it helps
understanding the market development under different initial strategies.

For the simulation of the New Electricity Trading Arrangements of
England and Wales (NETA) Bunn and Oliveira (2002) suggest an agent-
based approach and use it for evolutionary computation. In contrast to
Bower and Bunn (2000) who simplified the market by means of a
discriminatory double auction, Bunn and Oliveira (2002) present a new
model containing two markets, the bilateral market and a so called balancing
mechanism. Demand side is implemented actively by merchants. Demand
and supply agents trade energy for every hour of the following day. By
closing time every agent knows exactly how much energy it traded itself and
submits this information to the systems operator, who compares forecasted
and effectively traded amount of electricity to balance the system through
direct trade with suppliers and customers. Agents optimize their behavior
using a reinforcement learning algorithm. A reinforcement learning algo-
rithm uses feedback to assess the value of the action performed (Sen and
Weiss 1999). The results indicate a higher risk for the demand side because
customers depend on forecast accuracy of the industry.

Nicolaisen et al. (2001) study market power effects of electricity markets.
To distinguish between the influence of market structure and buyer and
seller learning on market power they use an agent-based electricity market
framework. They conduct experiments under different starting conditions.
The MAS consists of two different types of agents, which represent demand
and supply side. Trading is realized by a discriminatory double auction. A
reinforcement learning algorithm is used for learning new prices of the
following auction round. Experiments could not bring empirical evidence
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about the influence of market structure and buyer and seller learning. A
comparison of the learning algorithm used to the results of a genetic
algorithm produces no differences. Market efficiency of the tested agent-
based framework appears to perform very close to efficiency of perfect
competition.

The described approaches for agent-based simulation of electricity markets
have in common to simulate price development in a short term. The
simulations base on the assumption that the plant capacity of each Supply
Agent is fix from the start. In the following section we present a model for the
long term simulation of electricity markets, considering capacity planning
and investment decisions.

4 Agent-based market simulation model

This section describes the concept of a market model for a MAS simulating
long-term development in the domain of a liberalized electricity market.
Following the approaches of short-term simulation discussed in Sect. 2 the
described model provides additionally long-term decision making, especially
investment decisions of electricity generating companies.

Basically a market consists of three different groups of market participants:
suppliers, customers and a neutral regulatory authority. Each of the three
types of market participants is interested in different aspects of a long-term
market simulation. Suppliers for example want to increase the overall profit
and therefore need efficient production technology. Customers mainly focus
on the price of electricity, whereas governmental organizations are interested
in the influence of political decisions not only on the price development, but
also on long-term market development. Hence, three types of agents are
built, Electricity Supply Agents (ESA), Electricity Consuming Agents
(ECA), and Regulatory Agents (RA). Each agent participating in the
market is an instance of one of these agent types differing in the initial values
of characterizing parameters.

In each period ¢+ ESA and ECA negotiate prices for certain amounts of
electricity. To reproduce the oscillating electricity demand, which depends
both on seasonal effects and on daily characteristics, electricity demand of a
working day of the actual period ¢ is reproduced exemplarily for each hour of
this day. One period represents a week. Based on the results of this
negotiation agents plan their further actions and make long-term decisions.
The environment is dynamic due to competing goals of the individual agents,
which complicates the forecast of the market development. For simplification
reasons the transmission grid is not considered in this model, although it is
an important component on real electricity markets.

The following sections describe the model and the agents in more detail,
starting with overall coordination and communication mechanisms in
Sect. 4.1. In Sect. 4.2 we describe the agent model types and their
characteristic mechanisms.

4.1 Coordination and communication

Coordination of the market can be achieved by different market mechanisms.
Auctions are often used in liberalized electricity markets to coordinate daily
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electricity trade. Consumers in general conclude bilateral contracts with
electricity generating companies or electricity traders. In our model ECA
represent aggregated groups of consumers which take part in a centralized
discriminatory double auction. Discriminatory double auctions are charac-
terized by setting individual prices for each matched pair of offer and bid.
The coordination of the auction in the model is accomplished by a central
auctioneer-agent who receives bids from both ECA and ESA. Agent
communication has been formalized. Table 1 describes the structure and
possible types of messages.

Communication converges in case of central coordination by auction at the
auctioneer-agent which might produce a bottleneck for the communication
process. The sequence of the communication process is shown in Fig. 1 in
more detail.

At the beginning of each period the ESA computes electricity prices
exemplarily for a working day of the period on basis of the result of the
preceding periods, governmental rules (e.g. tax on harmful substances),
seasonal characteristics and disposable capacity. The agents submit bids for
each hour of a working day specifying amount and price. Regional and
individual factors are described by intrinsic strategies of each agent.

At the same time all ECA compute the amount of electricity needed for
each hour of a normal working day in the following period. The 24 bids are
submitted to the auctioneer-agent including amount of electricity and the
price the agent is willing to pay.

The auctioneer-agent determines market equilibrium for each hour by
accomplishing a discriminatory double auction. The auctioneer-agent
examines whether total demand is matched. If total demand is not matched,
the auctioneer-agent informs all consumers who have not been matched and
suppliers about the negative result (refusal) and about the price of the
counter-offer. Additional auctions are accomplished until total demand is
satisfied. When total demand is matched all participants will be informed
about their achieved results. Based on these results all ESA compute the
actual power plant deployment and submit the achieved price and informa-
tion about produced harmful substances to the regulatory agent. The
regulatory agent examines the contracts on compliance with the defined
general framework and decides on sanctions and about taxation for harmful
substances. Any decision will be communicated to the ESA.

In the following section we discuss the agent types in more detail.

Table 1. Description of possible message types

Type Description Content

bid consumer amount-/price ask {amount [price} o, 04 nour

offer generators amount-/price offer {amount [price} ., 04 1our

agreement confirmation of agreement {amount [price} o, 04 nour

refusal refusal of a bid/offer {amount [price} .., 04 1our
counter proposal

information information (e.g., to regulatory Identifier of the kind of

authority) information (price,amount, harmful

substance, etc.), information

command compelling message of the Identifier (e.g. change of tax for

regulatory agent harmful substances, etc.) information
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regulatory agent 34 ready for computation
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Fig. 1. Communication process

4.2 Basic agent model and learning method

In this section, a description of the three agent types, Electricity Supply
Agent (ESA), Electricity Consuming Agent (ECA) and Regulatory Agent
(RA) is given. We first introduce the general agent platform as a basis for all
agent types. Different agent strategies and the long-term decision mechanism
are presented in each subsection of the agent types.

All agent types consist of different layers for communication and for
strategic planning. Figure 2 shows the general architecture of the agents. In
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Fig. 2. General agent architecture

the following we describe the process of strategy planning and the layers for
short-term and long-term strategy in more detail.

Erev and Roth (1998) developed a reinforcement learning algorithm to
reproduce human behavior. The basis of their learning algorithm are two
psychological principals, the law of effect (LOE) and the power law of
practice (LOP). Actions are reinforced or weakened (LOE) depending on
the quality of the produced results. It is assumed that learning curves are
initially steep and then flatten out (LOP). We adapt this learning algorithm
to our model. Each agent can choose out of K actions ay,...,ax. The
environment and its changes are described by N perceptions (wi, ..., wy),
e.g. wp = {electricity-price rises}. The agents can choose any action
ai,...,ag in any perceived situation w,. The goal is to decide on an
appropriate action in a particular situation. Consequently, the propensity
parameter g, (¢) assigns a propensity to perform action £ in situation » in
period ¢. The feedback for the chosen action & determines the new value of
the propensity parameter ¢,;(¢z). The likelihood for choosing action a@; in
situation w, in period ¢ is

h, _ gk (1) 1
{0 Zf:l gnj (1) 0

The basic setting of the propensity parameter determines an agent’s
individual strategy. By introducing the experimentation parameter ¢ and
the recency parameter ¢ an extension of the basic model is possible. The
experimentation parameter ¢ considers not only successful actions but also
similar actions. The recency parameter causes exponential smoothing of the
collected knowledge in order that recently collected knowledge is emphasized
more in comparison to past experience (Erev and Roth 1998). The
reinforcement function R(x) computes the enhancement of a propensity at
a received result x on the performed action a;:
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Rx)(1—¢) ifj=k

R(x) % otherwise

gnj(t+1) = (1 = P)gn; (1) + { (2)
This learning algorithm is applied to our model. In the following we describe
the architecture of the agent types and the mechanisms used in order to
illustrate how the Erev and Roth (1998) learning algorithm can be integrated
in this model.

4.3 Electricity supply agents

ESA have to decide about an efficient plant utilization in consideration of
environmental regulations, investments and profit. The decision problem can
be divided into the subproblems plant utilization and plant investment
planning. Hence two separate layers are introduced into the agent model.
One layer for the short-term planning and an other layer for long-term
planning. In the following possible strategies are determined and the
mechanisms for decision making in the particular layer will be described.

4.3.1 Strategies of ESA

The environment is specified by a non-deterministic set S of environmental
states. The agent perceives these environmental states by a set W of possible
perceptions and chooses an action a; out of the set of possible actions 4. The
function action : W — A describes the coherence between perception and
possible action and therefore characterizes the set of possible strategies. The
overall goal of the agents decisions is profit maximization. In short-term the
agents plan how much electricity to offer and at which minimum price. At a
given amount of electricity generated the minimum price at which a supplier
earns profits equals the marginal running costs of the marginal unit (Green
2000). The agent can choose either the minimum price p/i"(Q%/¢) or a higher
price p;} (Q41). O<ale is the calculated amount of electricity to offer in period ¢
in hour 4 provided by the long term planning layer. The achieved results
provide feedback to the agent for the last performed action. This feedback
creates a particular perception w; € W. Possible perceptions are shown in
Fig. 3. Independent from a particular perception each agent can increase,
decrease or maintain the amount of electricity offered within its capacity
restrictions. In combination with the normal and the higher price there exist
six possible actions:

— ay: increase the offered amount of electricity and price pi (Q%¢)
— ay: increase the offered amount of electricity and price p; ( calc)
— a3: maintain the offered amount of electricity and price p/7 (Q</¢)
— a4 maintain the offered amount of electricity and price p} ( calc
— as: decrease the offered amount of electricity and price p/"(Q</c)

— a6 decrease the offered amount of electricity and price pj, (Q5/¢)

Perception wy is shown in Fig. 3. The amount of electricity offered was too
high: less electricity than calculated was sold due to the expensive price. One
possible action is a reduction of the amount of electricity and a resulting lower
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Fig. 3. Possible perceptions of Electricity Supply Agents

price (action as or ag). On the other hand maintaining the amount of electricity,
but changing the price is an other possible strategy (action a3 or ay).

Perception w, shows the marginal case with a calculated sales volume
including capacity of plant 3 which in fact has not been utilized. This points
out that the salable amount of electricity is at least as much as capacity of
plant 1 and plant 2. The capacity of the competitors might have been
exhausted so that consumers had to buy electricity at relative high price of
this agent. If competitors expand their cheap capacities whereas the own
capacity remains constant, it appears reasonable to decrease the amount of
electricity offered and therefore lower the price (action as or ag). Assuming
that competitors maintain their capacities and the demand for electricity
increases, the supply of electricity can be maintained and the price can be
varied (action ajz or ay).

Perception wj is almost similar to perception w, because plant 3 has been
considered in supply planning, but the capacity of plant 3 has not been fully
used. One reason might be the lower price of a competitor, another possible
reason is the absence of adequate demand at this stage. One possible action is
to maintain the offer and keep the higher price (action a4) or to lower the
price (action a3) to increase sales volume. Assuming increasing demand it is
even possible to increase the offer and vary the price (action a; or ay).

The fourth chart of Fig. 3 shows perception wy. The calculated sales
volume was sold completely. Therefore, it is reasonable either to maintain
the sold amount of electricity and to keep (action a4) or to vary the price
(action a3), or to increase the amount of electricity provided and to bid the
minimum price (action a;) or to bid the maximum price (action a»).

Based on these considerations the mapping action : W — A is possible;
W = {wi,wy, w3, w4} and 4 = {a1,as,a3,a4,as,a6}:

wi — {a3,a4,as,a¢}
wy — {a3, a4, as,as}
wy — {a1, a2, a3, a4}
wy — {a1, a2, a3, a4}

To realize these actions appropriate prices and production plans have to be
determined. The short-term planning layer and the long-term planning layer
fulfil this task. Below we describe these layers at length.
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4.3.2 Planning layer

For the planning of production and investments some considerations have to
be taken. To simplify the planning process, we introduce two planning layers,
one for the short-term and one for the long-term planning. Due to the fact,
that the production planning is a complex task, we describe our consider-
ation in detail.

1. The short term planning layer

The short-term planning layer serves for calculation of an efficient plant
utilization at a particular sales volume and determines an appropriate bid
price. Consequently, the goal of this layer is to determine which plant to use
at which time and to decide on the sales price. Bower et al. (2001) solve the
problem of plant utilization in such a way that all plants offer the maximum
capacity. The suppliers decide on the price per plant per hour and therefore
the decision is left to the market. Thus the short-term planning layer just
decides on the price and not on plant utilization.

In our approach we suggest to shift the plant utilization decision back to the
agent itself. The plant utilization is a cost minimization problem for each
hour % in period ¢. This results in the following model:

min <Z(0fﬁi + b+ ZJ: Sl-jcf)q,-,h) (3)

ith "
4ith ;

subject to (s.t.):
> i = O Vh 4)

0<qgim <c;Vi (5)

b;: running costs per unit of generated electricity
p;: fixed costs per capacity of plant type i
¢;: usable capacity of plant type i in period ¢
Cf : tax per generated unit of harmful substance j
¢irm: calculated amount of electricity for plant i in hour % of period ¢
cale;  calculated sales volume in hour % of period ¢
S;;: amount of harmful substance j per generated unit of electricity of plant i

The minimum bidding price p* for the calculated sales volume Q¢ is the
maximum marginal cost of all utilized plants:

J
Pam(05) = maxi(by + Y §,C5)vy) (6)
j=1

I, qimn>0
and v = f(qlth) = {O ZttilleI'WiSe (7)

The higher price p;;(Q5¢) can be computed on basis of the minimum price
and a premium 7 > 0, which is defined at the beginning of the simulation for
each agent: p (Q5¢) = pi" + . As reinforcement learning function R(x) we
suggest to use the achieved profit. The benefit of an action is as much greater

as the profit could be increased. Hence we suggest:

_achieved profit — minimumprofit

R(x) (8)

minimum profit
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The short-term planning layer decides on the price and on optimal plant
utilization at a given target sales level, which is determined in the long-term
planning layer. This will be described in more detail below.

2. The long-term planning layer

The long-term planning layer lies above the short-term planning layer and
has to handle problems, which are not solvable in the short-term layer.
Investment decisions for power plants are accomplished. The performance of
the strategy used so far is being evaluated and compared to the defined goals
and the side conditions. A very important side condition is the liquidity of
the company. Each company has a budget B, per period ¢

Biy1 =B+ G, —I” ®)

and

Gi= 3 STIBY — b+ Y SuCHlalh — e 1o
h i J

Itges _ Z le_'nvci:nv[io (1 1)

1

" capacity unit of type i

G,: profit/loss in period ¢

Iy initial investment for one capacity unit ¢; of plant type i

I7*: total investment in period ¢ of this agent

PR4: achieved market price in hour h of period ¢ communicated by the
Regulatory Agent

qy,: produced amount of electricity of plant i in hour h of period ¢ (sales
volume)

Z™: number of capacity units of type i invested in period ¢

Total investment I is the sum of investments per plant type, whereas ¢ is
one capacity unit of the plant type i (e.g. capacity of a generator) and Z"" is
the number of capacity units built.

The accounting income is computed at the end of each period and used for
determination of the budget of the following period. The profit development
influences the choice of particular strategies. Investment decisions are
substantial decisions which have to be based on a long-term forecast of
electricity consumption and on an estimation for the development of the tax
for harmful substances. In this model we suggest a simple time series analysis
for this forecast. For estimation of the tax development we use an average
means analysis of the tax in recent periods:

Sprog S & CiSj
Ci 7 = Ci(t—l) 1 Z (CS > (12)
j=1 i(j—1)
CP%9: forecast of tax for production of harmful substances in period ¢

C%: tax for production of harmful substances in period ¢

The demand of electricity is subject to seasonal effects and therefore demand
forecast is revised by a seasonal factor. We assume that the development of
the average electricity consumption is a linear function with gradient y (trend
coefficient). We further assume that seasonal demand deviates from average
demand with factor sais,. Therefore forecast of total market demand in
periods ¢+ j (with j =0,...,T) is defined:
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fot
ot(pro h(t—1) .
;l(tt(fj)g) — {saz; 1 +(j+ DE(y,_ 1)}Sazst+j (13)
where:
E(y,.1) =0,1( hi—1) — Qifr—2)) + 0,9E(7,) (14)

E(y,;): estimation of the trend coefficient
Q;Zt total market demand at hour % in period ¢
“wrog). forecast of total market demand at hour / in period ¢

O
For the estimation of the trend coefficient we use exponential smoothing as
defined above. The forecast is based on data of all periods in the past including
period ¢ — 1. Starting with that forecast of the total market demand each agent
computes possible sales volume with consideration of the individual
market share for the periods 7 to t + T. The anticipated sales volume is used
in the planning layers and can be varied by increasing, decreasing or retaining
the forecasted value. To retain the sales volume value means to achieve

the same market share! S, = g:,, as in the previous period: 0/ = wt(pm" s,
This sales volume can be varied by adding or subtractlng the factor o > 0. For
this reason the volume used in further calculation is defined:

0 — 6  decrease

calc __ rog

e — Qf% constant (15)
0 + 6 increase

For all further calculations the agents use Q. After determination of the
calculation quantity investment decisions have to be carried out. There are
different reasons for investments: (1) Replacement investment, if a plant has
to be closed for example due to technical problems. Zépfel (1989) adduces two
other reasons for investment: (2) product differentiation and (3) price
leadership. Other potential reasons can be expressed as a combination of these
basic reasons. We assume in the following that product differentiation in the
electricity market is not possible, although electricity can be differentiated by
the generating technique as for example nuclear power versus water power.
This assumption holds due to the fact that the majority of electricity is
consumed by industry. The most important fact for industry is the price and
the permanent availability, but not the production technology. We further
assume that there exists no possibility of debts. In this case, an investment is
reasonable, if the discounted cash flow is positive during the operating time
until period 7. Consequently the investment decision can be described as
linear optimization problem acting on the maxim of profit maximization:

N T
max Y {~Loc!"Z" +> r Ry + " Z" Lirr "} (16)
i=1 =1

and

23 J
Ri=>"{(on — b — D SuCP" ) qun + q) — Biles + Ze™)y — (17)
h=0

=1

'QR is the actual achieved sales volume in hour % of period ¢.
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s.t.

i < 2 i 19
0<gm<c: Vi (19)
N

qu'th + Ty = t:lc Y (20)
i=1
N . .

ZI,-OC;"Uz;"” < By (21)

i=1

¢ newly built capacity in actual period

Ip: expenditure in actual period for investment of capacity c;"

L;7: residual value of plant type i in period T

pr: calculation price is equal to the achieved price in hour /4 of the previous
period

gi’: amount of electricity produced with the newly build plant

r: internal interest rate

Z": whole-numbered decision variable to assure only discrete values of

invested capacities

Prices are not anticipated. In this model the prices of the previous period
are used. The residual values of different plant types are defined at the
beginning of the simulation. The capacity restrictions ensure that no more
electricity can be produced than capacity is provided. Furthermore, the
constraints guarantee that the estimated sales volume can be satisfied and
that the budget constraints are fulfilled. To consider the remaining life
time of other plants within the model, further constraints have to be
introduced.

The long-term planning layer determines the target sales volume and
makes investment decisions. The value of the target production volume is
transferred to the short-term planning layer where the necessary computa-
tions are conducted. The short-term planning layer transfers the results to the
subordinate interaction layer. The communication layer submits the infor-
mation to the Regulatory Agent. The proposed model includes increased
responsibility and more capabilities for the agent. In the following section we
describe the architecture and functionality of ECA.

4.4 Electricity consuming agents

Consumers’ behavior varies depending on their preferences of electricity
consumption, e.g. there exist companies with and without electricity
generating possibilities or private customers who need just a fractional
amount of electricity compared to large energy intensive industrial compa-
nies. For the simulation of electricity consumption it is either possible to
implement consumers as price takers or to use agents for consumer
representation. An agent-based approach for the demand side promises a
more flexible and therefore dynamic reaction. Consumer agents represent
different characteristic consumer types, react dynamically on changed
circumstances, and are therefore more realistic. In the following we discuss
a possible approach for the design of ECA.
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ECA use the communication and coordination layers of the general layer
architecture. The planning layer decides about the strategy and determines
the bids. Generally consumers maximize their utility. Electricity consumption
leads to a higher utility level. Consumers try to reach a particular utility level
by consuming electricity at acceptable prices. The acceptance for a specific
price varies among the consumers. Hence we identify three general options to
achieve a special utility level. Consumer Agents either bid the same price (a;)
as they achieved in the previous period or they bid a higher (a;) or lower

price (a3).

4.4.1 Strategies of ECA

The individual electricity demand of each ECA is determined at the
beginning of the simulation. During the simulation the agents have to buy
electricity to satisfy their individual needs. Prices of previous periods are
basis for further steps. The agents have three perceptions of environmental
change: increasing (w;), stable (w,) or falling prices (w3). Depending on the
perception w; agents have to decide on the bid price for the actual period. In
case of increasing prices it appears reasonable to bid the same (a;) or a higher
price (az) as in the previous period. Perceiving stable prices all actions are
possible. If prices were falling in recent periods, it is useful to bid lower prices
(a3), but it may also be useful maintain the previous price (a;). Therefore the
following allocation results:

wy — {a1,az}
wy — {a1,az, a3}

w3 — {a17a3}

4.4.2 The planning layer

The planning layer decides on the bid price. The demand of electricity is
determined manually at the beginning of the simulation and the ECA just
decides on the bid price. The prices can be altered by the value =, which was
defined at the beginning of the simulation. The effectiveness of the chosen
strategy can be determined by the deviation of the bid price and the achieved
price:

R(x) bid price — achieved price
xX) =
bidprice

(22)
The learning algorithm as described above is used for within the architecture
of the ECA for the decision making process.

4.5 Regulatory agent

The regulatory authority defines market rules and other directives. On the

one hand, this includes the evaluation of external effects resulting for
example from emission of harmful substances during the electricity
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generating process. On the other hand, regulatory authorities have to ensure
fair competition. In the following we discuss a model for a regulatory agent
which is also based on the general layer architecture.

Goal of the RA is to maximize utility of the national economy. In the
present problem this implies reducing the emission of harmful substances and
prevent increasing electricity prices. To contain emission of harmful
substances the government can either define limits or tax these substances
per unit. Taxation has the advantage of monetary valuation of the emission
of harmful substances and therefore is used in the model. An augmentation
of taxation implies an increase of electricity costs as long as the company
does not switch to other technologies. The regulatory agent therefore must
find an appropriate balance between emission reduction and price augmen-
tation.

4.5.1 Strategies of RA

Basically three actions are possible to choose:

— increasing tax on emission (aj)

— maintain stable tax (ay)

— reduce tax on harmful substances (a3)

The agent perceives the electricity price development and the development of
harmful substances production. Hence results the perception and possible
actions as illustrated in Table 2.

4.5.2 Planning layer

RA uses the common layers for communication and coordination. The
planntinlg Zlayer assesses the reduction of harmful substance emission
d; = SS,—__IS, whereas S! specifies the amount of harmful substance emission
in period ¢. Higher prices due to tax augmentation can not be averted, so that
: X 7 AP : )

we construe, price augmentation (up, = Tmh) within a specific bandwidth
as constant prices.

At the beginning of the simulation target values for emission reduction are
defined, which the RA has to achieve within a defined period of time. An

evaluation of emission of harmful substances is necessary to facilitate a

Table 2. Possible perceptions of a regulatory agent

Perception Emission price developm. Action
wi constant constant ay,an,as
Wy constant increasing az, a3

w3 constant falling ai,a,

Wy increasing constant ai,a

ws increasing falling ap

We increasing increasing a

w7 falling constant a

wg falling falling a

Wo falling increasing ar, a3
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utility comparison of the reduction of different types of substances. A
detailed evaluation of harmful substances is not possible within the work for
this paper, hence we use general parameters for harmful substances in order
to include them within the model. The present proposition for the integration
of regulatory instances into a general market model requires further intense
studies.

5 Conclusion

This paper describes an agent-based model for long-term simulation of
electricity markets. Firstly, we described some approaches to electricity
market simulation with MABS. These models all treat short-term simulation
of electricity markets, which especially concerns price development. The
results of the simulations were used to analyze the impact of changes in the
regulatory mechanisms of the electricity markets of England and Wales as
well as to study the strategic consolidation of the German electricity market.

Due to the significant results of the discussed simulation models, our goal is
to enhance these short-term planning models for long-term simulation.
Consequently, we present mechanisms to enable electricity generating agents
for both short-term and long-term decisions. Another idea included into our
approach is to represent a governmental or regulatory unit as an autonomous
agent. Consumers have not been modelled as autonomous agents in the
presented short-term simulation models. Hence, we introduce electricity
consumer agents which try to achieve acceptable prices depending on their
preferences. The actuating variables for both ESA and ECA are the price per
unit electricity and the amount of electricity. The influence of governmental
instances is included in the model by regulatory agents affecting taxes on the
emission of harmful substances and monitoring prices. The decision of
regulatory organizations is limited to favor or to hamper certain generating
methods including the prohibition. Prohibition is realized within the model by
infinite hight costs on the emission of harmful substances and monitoring
prices.

In the years of national controlled electricity markets, operations research
(OR) methods were successfully used for plant utilization and investment
decisions. In the present paper we combine these traditional mechanisms
with the decentralized approaches such as agent-based simulation. Electricity
Supply Agents use these mechanisms for individual optimization of the plant
utilization as well as for investment planning. Consequently, individual
decision rules are based on rational behavior applying traditional OR
algorithms.

We discussed a framework for coordination and communication using a
discriminatory double auction. Suppliers optimize their plant utilization and
determine the amount and price of electricity to offer at each hour of a day.
The bids including price and volume are matched with the bids of the
customers. Suppliers inform the regulatory agent about the plants used and
the regulatory agents decide on taxes for the emission of harmful substances.
All agents use a common layered architecture with differences in the
individual planning layers. Adaptivity is accomplished by a reinforcement
learning algorithm developed by Erev and Roth (1998). Linear programming
is used for the long-term planning of supply agents assuming profit
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maximization. The present model presents a further step towards the
development of ACE in electricity markets. We kept the model as simple as
possible, because the goal is not to represent real market participants
behavior in all detail, but to build a model which represents the overall
market behavior with simple mechanisms. This approach appears promising,
because first models of short-term agent-based simulation have shown useful
results. Operation Research methods has been successfully used for long-
term planning. Consequently, the combination of both approaches appears
useful. A first computation will show if the assumptions are valid. As a next
step the calibration of the basic model is necessary before adding more
complexity as e.g. integrating the transmission grid and transmission
restrictions to study geographical characteristics. The consideration of
preferences for the production technology (e.g. electricity produced by
regenerative energy utilities) will show a more precise picture of consumers’
behavior and therefore will draw a more detailed market picture.

A central problem in agent-based models is the representation of
individual behavior. Knowledge about competitors and consumers play an
important role in decision making of suppliers or consumers. A detailed
evaluation of possible strategies and development of a decision making
framework allow the computational representation of individual behavior.
The present model presents the first steps on the way to a comprehensive
market simulation for management decision support.

The next necessary steps are to implement the proposed model and to
validate its behavior. Shortcomings have to be identified and fixed. A
calibration of the model using historic data is essential before further
evaluation.

However, the present model and further developments contribute to the
understanding of the market development and therefore will help to provide
decision making support not only for electricity companies but also for
governmental organizations or consumers. ACE appear to generate prom-
ising results, so that future scientific research and development by economist
and computer scientists will enhance market simulation and understanding
of market systems.
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