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Summary: Stationary multiplier methods are procedures for rounding real probabilities into
rational proportions, while the Sainte-Laguë divergence is a reasonable measure for the cumulative
error resulting from this rounding step. Assuming the given probabilities to be uniformly distributed,
we show that the Sainte-Laguë divergences converge to the Lévy-stable distribution that obtains
for the multiplier method with standard rounding. The norming constants to achieve convergence
depend in a subtle way on the stationary method used.

1 Introduction
For a fixed number of categories c, let the vector (W1, . . . , Wc) be uniformly distributed
on the probability simplex Sc = {(w1, . . . , wc) ∈ [0, 1]c : ∑ j≤c w j = 1}. We consider
the problem of rounding the real weights Wj to rational proportions Nj/n, for some
prespecified accuracy n, with nonnegative integer numerators N1, . . . , Nc summing to n.
There are various ways to obtain the numerators Nj . Heinrich, Pukelsheim and Schwin-
genschlögl (2004; henceforth quoted as HPS) treat the multiplier method with standard
rounding. This method generates the numerators Nj by rounding the scaled weights
µWj in a standard fashion, where the multiplier µ > 0 is adjusted so as to achieve∑

j≤c Nj = n.
In the present note we discuss the wider class of stationary multiplier methods depend-

ing on a stationarity parameter q ∈ [0, 1], as reviewed in Section 2. In order to measure
the error that comes with discretizing the continuous weights Wj into rational proportions
Nq, j/n, Sainte-Laguë (1910) proposed a chi-square-type goodness-of-fit criterion,

Sq,c,n =
∑
j≤c

(Nq, j − nWj )
2

Wj
,
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118 Heinrich -- Pukelsheim -- Schwingenschlögl

which we call the Sainte-Laguë divergence. The subscript q indicates that the numerators
Nq, j are generated by the q-stationary multiplier method. The case q = 1/2 retrieves the
multiplier method with standard rounding, considered in HPS.

We generalize the limiting results of HPS to all q-stationary multiplier methods.
In Section 3 we let the accuracy n tend to infinity, and show that the Sainte-Laguë
divergences Sq,c,n converge in distribution to a limiting variable Sq,c. In Section 4 the
number of categories c grows large, and we exhibit constants aq and bq to again achieve
convergence in distribution,

aq

c2
Sq,c − bq − log c

d−−−−−−→
c→∞ S∗,

where the random variable S∗ has the Lévy-stable distribution (not depending on q) that
appeared in HPS for the multiplier method with standard rounding.

2 Stationary multiplier methods
Let the stationarity parameter q ∈ [0, 1] be fixed. The essential ingredient is the q-
stationary rounding function [x]q, defined through [0]q = 0 and, for x > 0, through

[x]q =
{

IntegerPart(x) + 1 for FractionalPart(x) > q,

IntegerPart(x) for FractionalPart(x) < q.

That is, a value x is rounded down when the fractional part of x is smaller than q, while
it is rounded up when the fractional part is larger than q. In view of our distributional
assumptions the events when x = k + q, where k is an integer, form Lebesgue nullsets,
whence in these points we may leave the rounding function [x]q undefined.

In fact, there is no general agreement of how to extend the definition of [x]q at
the jump points k + q, except for making sure that the ensuing function is increasing.
When q = 0, the rounding function [x]q rounds up, which is suggestive for extending
it to the (left continuous) ceiling function �x�, the smallest integer larger than or equal
to x. When q = 1, the function [x]q rounds down, whence the natural extension is the
(right continuous) floor function 	x
, the largest integer smaller than or equal to x. When
q = 1/2, the function [x]q yields standard rounding 〈x〉 which, at the points of jump,
HPS (p. 46) define to round down. However, business people prefer to round k + 0.5 up
to k + 1, while statisticians are advised to round to the nearest even integer, see Wallis
and Roberts (1956, p. 175).

The q-stationary multiplier method approximates the real weights Wj by rational
proportions of the form Nq, j/n with numerators Nq, j = [µWj ]q , where [x]q is the
q-stationary rounding function and n is the prespecified accuracy, while the multiplier
µ > 0 is adjusted so as to achieve

∑
j≤c Nq, j = n. Stationary multiplier methods

lend themselves to rather complete mathematical results, see Oyama (1991, p. 201),
Balinski and Rachev (1993, p. 479), Oyama and Ichimori (1995, p. 305), Balinski and
Rachev (1997, p. 13), Ramı́rez, Márquez and Pérez (1999, p. 475), Marshall, Olkin and
Pukelsheim (2002, p. 892), Palomares and Ramı́rez (2003, p. 406), Schuster, Pukelsheim,
Drton and Draper (2003, p. 669). Moreover, they permit a continous transition between the
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Stationary multiplier methods and the Sainte-Laguë divergence 119

three apportionment methods that are most widely known: the method based on rounding
up (q = 0), the method using standard rounding (q = 1/2), and the method obtained
from rounding down (q = 1).

No closed formula is known how the input weights W1, . . . , Wc determine a “local”,
stochastic multiplier µ = µ(W1, . . . , Wc) satisfying

∑
j≤c[µWj ]q = n. Instead, we

start out with a “global”, deterministic multiplier ν close to n and, in a second step, take
some corrective action to arrive at the desired numerators Nq,1, . . . , Nq,c. Lemma 2.1
casts the Adjustment Algorithm of HPS (p. 46) into a more generic format. We define
sgn(x) = −1, 0, 1 according to whether x is negative, zero, or positive.

Lemma 2.1 (Generic Algorithm) Let the stationarity parameter q ∈ [0, 1], the accu-
racy n ∈ {1, 2, . . . }, and a global multiplier ν ≥ 0 be fixed. For Lebesgue almost all
weight vectors (W1, . . . , Wc) the q-stationary multiplier method yields a unique appor-
tionment vector (Nq,1, . . . , Nq,c) that is obtained as follows. Firstly, we calculate the
discrepancy

D =
∑

j≤c

[νWj ]q

− n,

a random variable with integer values in the interval
(
ν − n − cq, ν − n + c(1 − q)

)
.

Secondly, for j = 1, . . . , c, we adjust the initial assignment [νWj ]q to obtain the final
numerators

Nq, j = [νWj ]q − sgn(D)m j,n(D),

where m j,n(D) is the count of how often index j appears among the |D|-smallest quo-
tients

k − νWi + [νWi]q + q − 1

Wi
for i = 1, . . . , c and k = 1, . . . ,−D, when D < 0;

k + νWi − [νWi]q − q

Wi
for i = 1, . . . , c and k = 1, . . . , D, when D > 0.

Proof: The terms ∓νWi/Wi = ∓ν are included in anticipation of Theorem 3.1, the
constant shift ∓ν does not affect the ordering of the quotients from smallest to largest.
The assertion thus follows as in HPS (p. 47). �

The Generic Algorithm comprises a variety of algorithms, by starting out from dif-
ferent global multipliers ν. For instance, with ν = 0 all initial assignments vanish,
[νWj ]q = 0, and the discrepancy is as negative as can be, D = −n. The adjustment terms
m j,n(D) augment the initial assignment 0 until the final apportionment Nq, j is reached;
they are found by counting the appearance of the index j among the n-smallest quotients
(k−1+q)/Wi, or equivalently, among the n-largest quotients Wi/(k−1+q). This yields
the recursive algorithm that is known best, see Balinski and Young (1982, p. 100).
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120 Heinrich -- Pukelsheim -- Schwingenschlögl

In fact, as long as the initial multiplier ν stays below n − c(1 − q) the discrepancy
is negative, D < 0, and all adjustment terms increment the initial assignments [νWj ]q.
On the other hand, when the initial multiplier ν lies above n + cq the discrepancy is
positive, D > 0, and all adjustment terms decrement the initial assignment [νWj ]q . In
the field of political science, decrementation comes with the bad flavor that participants
must give back what they have been assigned already. Mathematically, this objection
is unsubstantiated because the important outcome is the final apportionment Nq, j , not
a transient state during the algorithmic calculations.

The most convenient choice for the global multiplier is such that the support interval
of the discrepancy is centered around zero, which is achieved by

νn = n + c

(
q − 1

2

)
.

The multiplier νn minimizes the computational complexity of the Generic Algorithm, see
Happacher and Pukelsheim (2000, p. 154). The resulting algorithm is considered in Hap-
pacher and Pukelsheim (1996, p. 378), and Dorfleitner and Klein (1999, p. 147). For the
1-stationary multiplier method, that is the multiplier method with rounding down, the mul-
tiplier νn = n +c/2 was proposed already by Gfeller (1890, p. 130). Hagenbach-Bischoff
(1905, p. 15) advocated ν = n + 1 which, with the discrepancy D necessarily coming
out negative, makes do with incrementation only. The distribution of the discrepancy is
investigated by Happacher (1996, 2001).

The minimum complexity multiplier νn is also instrumental for carrying out the
asymptotical analysis, as is the accompanying discrepancy

Dq,c,n =
∑

j≤c

[νnWj ]q

− n,

attaining the integer values −⌊ c−1
2

⌋
, . . . ,

⌊ c−1
2

⌋
.

This discrepancy version permits various reformulations, emphasizing its distinct
aspects. While the discrepancy identities are implicit in HPS, it is worth the space to
single them out more explicitly. Insertion of n = νn − c(q − 1/2) and νn =∑ j≤c νnWj

yields

Dq,c,n = c

(
q − 1

2

)
−
∑
j≤c

(
νn Wj − [νn Wj ]q

)
,

exhibiting the discrepancy as a function of the q-stationary residuals νnWj − [νnWj ]q .
For a study of the rounding residuals a passage to standard rounding transpires to be

helpful, via [x]q = 〈x − q + 1/2
〉
, which follows instantly from the equivalences

[x]q = k ⇐⇒ x ∈ (k + q − 1, k + q)

⇐⇒ x − q + 1

2
∈
(

k − 1

2
, k + 1

2

)
⇐⇒

〈
x − q + 1

2

〉
= k.

Upon introducing the centering residual function uq(x) = x − q + 1/2 − 〈
x − q +

1/2
〉 ∈ [−1/2, 1/2], the q-stationary residuals become x − [x]q = uq(x) + q − 1/2. This
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Stationary multiplier methods and the Sainte-Laguë divergence 121

establishes the first of the two identities

Dq,c,n = −
∑
j≤c

uq(νn Wj) = −
〈∑

j<c

uq(νn Wj )

〉
.

The second identity follows from
∑

j<c uq(νn Wj ) = −Dq,c,n − uq(νn Wc) ∈ (−Dq,c,n −
1/2, −Dq,c,n + 1/2). We are now prepared to turn to asymptotic considerations.

3 Infinite rounding accuracy
In this section we assume that the truncated vector (W1, . . . , Wc−1) has a Riemann inte-
grable Lebesgue density on its domain Tc = {(w1, . . . , wc−1) ∈ [0, 1]c−1 :∑ j<c w j < 1},
as in HPS (p. 50). We consider the q-stationary multiplier method, for some fixed
q ∈ [0, 1]. As the accuracy n tends to infinity, so does the multiplier νn = n +c(q −1/2).

Theorem 3.1 (i) For j < c, the q-stationary residuals νnWj − [νnWj ]q converge
in distribution to Uj + q − 1/2, where the random variables U1, . . . , Uc−1 are
uniformly distributed on (−1/2, 1/2), and are independent of each other as well as
of W1, . . . , Wc−1.

(ii) Moreover, upon setting Dc = −〈∑ j<c Uj
〉

and Uc = −Dc −∑ j<c Uj , the Sainte-
Laguë divergences Sq,c,n converge in distribution to

Sq,c = −c2
(

q − 1

2

)2

+
∑
j≤c

(
Uj + q − 1

2 + sgn(Dc)m j(Dc)
)2

Wj
,

where m j(Dc) is the count of how often index j appears among the
∣∣Dc
∣∣-smallest

quotients

k + sgn(Dc)Ui − 1
2

Wi
for i = 1, . . . , c and k = 1, . . . , |Dc|.

Proof:

(i) Fix j < c. We start with the representation νn Wj −[νnWj ]q = uq(νnWj )+ q − 1/2
introduced above. With some constants α, β ∈ R, the random variables uq(νnWj )

are of the form (n + α)Wj + β − 〈(n + α)Wj + β
〉

and hence converge to Uj . In
case α = β = 0 this is shown in HPS (p. 48), but their Fourier transform argument
is easily seen to extend to arbitrary values α, β ∈ R.

(ii) It follows from the Continuous Mapping Theorem that the discrepancies Dq,c,n =
−〈∑ j<c uq(νn Wj )

〉
converge to Dc = −〈∑ j<c Uj

〉
. The terminal residuals

uq(νnWc) = −Dq,c,n −∑ j<c uq(νn Wj ) then converge to Uc = −Dc −∑ j<c Uj .
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122 Heinrich -- Pukelsheim -- Schwingenschlögl

As for the Sainte-Laguë divergences, we insert nWj = νnWj − c(q − 1/2)Wj to
obtain

Sq,c,n =
∑
j≤c

(
c
(
q − 1

2

)
Wj + Nq, j − νnWj

)2

Wj

= −c2
(

q − 1

2

)2

+
∑
j≤c

(
νn Wj − Nq, j

)2
Wj

,

since
∑

j≤c c2(q − 1/2)2Wj = c2(q − 1/2)2, and since 2c(q − 1/2)
∑

j≤c(Nq, j −
νn Wj ) = −2c2(q − 1/2)2. In the sum of squares we write νn Wj − Nq, j = νnWj −
[νn Wj ]q + sgn(Dq,c,n)m j,n(Dq,c,n). These terms converge to Uj + q − 1/2 +
sgn(Dc)m j(Dc), provided the counts m j,n(Dq,c,n) behave appropriately. Indeed,
in the augmentation case Dc < 0, we have (k − νn Wi + [νnWi ]q + q − 1)/Wi con-
verging to (k − Ui − 1/2)/Wi . In the reduction case (k + νn Wi − [νnWi ]q − q)/Wi

converge to (k + Ui − 1/2)/Wi . Either way, the limiting quotients to be sorted
from smallest to largest are

(
k + sgn(Dc)Ui − 1/2

)/
Wi for i = 1, . . . , c and

k = 1, . . . ,
∣∣Dc
∣∣. The proof is complete. �

As remarked by a referee, convergence in distribution in Theorem 3.1.i may be
sharpened to convergence in total variation. To this end let f denote the probability
density of (W1, ..., Wc−1), which vanishes outside the domain Tc. Then the vector of
residuals (νn W1 − [νn W1]q], . . . , νn Wc−1 − [νnWc−1]q) has the density function

pq,c,n(x1, ..., xc−1) = 1

νc−1
n

	νn
+1∑
k1=0

· · ·
	νn
+1∑
kc−1=0

f

(
k1 + x1

νn
, . . . ,

kc−1 + xc−1

νn

)
.

With (x1, ..., xc−1) ∈ (q − 1, q)c−1 fixed, this is a Riemann sum of the density f over
[0, 1]c−1, whence Riemann integrability of f entails

lim
n→∞ pq,c,n(x1, ..., xc−1) =

∫
Tc

f(w1, ..., wc−1) d(w1, ..., wc−1) = 1.

But then the densities pq,c,n are uniformly bounded, since f is Riemann integrable and
hence bounded. Finally the Dominated Convergence Theorem is seen to yield convergence
in variation,

lim
n→∞

∫
(q−1,q)c−1

∣∣pq,c,n(x1, ..., xc−1) − 1
∣∣ d(x1, ..., xc−1) = 0.

These arguments are closely related to the concept of asymptotically uniformly distributed
sequences of probability measures on locally compact Abelian groups, as developed in
Kerstan and Matthes (1968). By exploiting the depth of this more general approach the
smoothness assumptions underlying Theorem 3.1 may be weakened.

Sainte-Laguë (1910) showed that, for a fixed accuracy n, the divergence Sq,c,n is
pointwise minimized at q = 1/2. Hence the limiting variables Sq,c, for q �= 1/2, are
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Stationary multiplier methods and the Sainte-Laguë divergence 123

stochastically larger than S1/2,c. Furthermore the limiting Sainte-Laguë divergences Sq,c
and S1−q,c have the same distribution, that is, the parametrization by the stationarity
parameter q is symmetric about the point 1/2.

Theorem 3.1 entails some general formulas for biases, that is, for the expected absolute
error, or for the expected relative error. Specifically, the seat bias of the k-th largest party
is defined to be

B(q)
k (n, t) = E

(
Nq,k − nWk

∣∣W1 ≥ · · · ≥ Wc ≥ t
)
.

In other words, the seat bias is the expected difference between the actually allocated
numerators Nq,k and the corresponding ideal shares nWk , under the condition that the
weights are ordered from largest to smallest and that the smallest weight lies above
a prespecified threshold t ∈ [0, 1/c]. Note that all seat biases together always sum to
zero,

∑
k≤c B(q)

k (n, t) = 0.
The terminology alludes to the situation where in a political body n designates the

total number of seats to be apportioned, Nq,k is the number of seats that the q-stationary
multiplier method allocates to the k-th largest party, and t is the threshold that parties
must pass in order to be eligible to participate in the apportionment process.

Corollary 3.2 Let k = 1, . . . , c be fixed, and let t ∈ [0, 1/c] be a prespecified threshold.
(i) With the assumptions and notions of Theorem 3.1 the asymptotic seat bias of the

k-th largest party is

lim
n→∞ B(q)

k (n, t) =
(

q − 1

2

){
c E
(
Wk
∣∣W1 ≥ · · · ≥ Wc ≥ t

)− 1
}
.

(ii) In particular, if the weights W1, . . . , Wc are uniformly distributed on the probability
simplex Sc then

lim
n→∞ B(q)

k (n, t) =
(

q − 1

2

)
 c∑

j=k

1

j

− 1

 (1 − ct).

Proof:

(i) Denoting the conditional expectation by E(t)(·) = E ( · |W1 ≥ · · · ≥ Wc ≥ t), we
need to determine the limit of B(q)

k (n, t) = E(t)
(
Nq,k − nWk

)
. Insertion of Nq,k =

[νn Wk]q − sgn
(
Dq,c,n

)
mk,n

(
Dq,c,n

)
and nWk = νn Wk − c (q − 1/2) Wk, and

substitution of [νnWk]q − νn Wk = − uq(νn Wk) − (q − 1/2) yield

E(t) (Nq,k − nWk
) =

(
q − 1

2

){
c E(t)(Wk) − 1

}
− E(t)(uq(νn Wk) + sgn(Dq,c,n)mk,n(Dq,c,n)

)
.

The integrands in the last expectation are bounded. Hence convergence in distribu-
tion implies that they converge to − E(t)

(
Uk + sgn(Dc)mk(Dc)

)
. Since the limiting

Bereitgestellt von | Universitaetsbibliothek Augsburg
Angemeldet

Heruntergeladen am | 06.05.19 10:28
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variables Uk and Dc are independent of the conditioning variables W1, . . . , Wc,
the expectation is actually unconditional. Clearly we have E(Uk) = 0. As Dc =∑

j<c Uj is distributed symmetrically around zero, so is sgn(Dc)mk(Dc), which

yields E
(
sgn(Dc)mk(Dc)

) = 0. In summary we obtain limn→∞ B(q)

k (n, t) =
(q − 1/2)

{
c E(t)(Wk) − 1

}
.

(ii) On the conditioning event {W1 ≥ · · · ≥ Wc ≥ t}, the transformed variables
W∗

j = (Wj − t)/(1 − ct), for j ≤ c, are nonnegative and sum to unity, and

hence inherit the uniform distribution from W1, . . . , Wc. Thus we get E(t)(Wk) =
E
(
W∗

k |W∗
1 ≥ · · · ≥ W∗

c

)
(1 − ct) + t = E(0)(Wk)(1 − ct) + t. From Drton

and Schwingenschlögl (2004, p. 90) or Johnson, Kotz and Balakrishnan (1994,
p. 500) we know that E(0)(Wk) = c−1∑c

j=k j−1, leading to c E(t)(Wk) − 1 =
{(∑c

j=k j−1) − 1}(1 − ct). The proof is complete. �

An alternate proof of Corollary 3.2.ii is given by Schwingenschlögl and Pukelsheim
(2005), based on the geometric combinatorial results of Schwingenschlögl and Drton
(2004). Comparisons of empirical data with the abstract formulas are rather encouraging
in that, practically, the asymptotic formulas are perfectly acceptable for finite accuracy n
provided the accuracy is at least twice as large as the number of categories, n ≥ 2c, see
Schuster, Pukelsheim, Drton and Draper (2003, p. 668) who first conjectured Corollary
3.2.ii when t = 0, which then was rigorously proved by Drton and Schwingenschlögl
(2005, Theorem 1). Corollary 3.2.i indicates what happens under general distributional
assumptions.

There is another notion of bias that is more relevant from the viewpoint of constitu-
tional law. This is the average relative deviation between realized and ideal allocations.
We call

A(q)
k (n, t) = E

(
Nq,k − nWk

Wk

∣∣∣W1 ≥ · · · ≥ Wc ≥ t

)
the success-value bias of the voters of the k-th largest party. In fact, the decisions of the
German Federal Constitutional Court center around the success value of a voter’s ballot
(Erfolgswert einer Wählerstimme), which numerically corresponds to the likelihood ratio(
Nq,k/n

)
/Wk, see Pukelsheim (2000, p. 450). The ideal success value equals unity. Hence

n−1 A(q)
k (n, t) measures the expected difference between realized and ideal success values.

Corollary 3.3 Let k = 1, . . . , c be fixed, and let the threshold t ∈ (0, 1/c] be nonzero.
With the assumptions and notions of Theorem 3.1 the asymptotic success-value bias of
the voters of the k-th largest party is

lim
n→∞ A(q)

k (n, t) =
(

q − 1

2

){
c − E

(
1

Wk

∣∣∣W1 ≥ · · · ≥ Wc ≥ t

)}
.

Proof: With the threshold assumed positive all inverse weights remain bounded, 1/Wk ≤
1/t < ∞. Hence the proof of Corollary 3.2.i carries over. �
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Stationary multiplier methods and the Sainte-Laguë divergence 125

A neat formula paralleling Corollary 3.2.ii would be desirable, but evaded our assaults.
We next approach the question what happens for a large number of categories, c → ∞.
For approximating the limiting Sainte-Laguë divergences Sq,c through terms of which the
distribution is handled more easily we provide the following bounds.

Corollary 3.4 With the assumptions and notions of Theorem 3.1 we have

0 ≤ Sq,c + c2
(
q − 1

2

)2

−
∑
j≤c


(

Uj + q − 1
2

)2

Wj
+ 2
(
q − 1

2

)
sgn(Dc)m j(Dc)

Wj

≤ c
∣∣Dc
∣∣.

Proof: Expanding the squares in the sum of Theorem 3.1.ii, the center expression is
seen to be the sum, over j ≤ c, of the terms

(
2sgn(Dc)Uj + m j(Dc)

)
m j(Dc)

/
Wj , which

HPS (p. 52) show to lie between 0 and c m j(Dc). Now c
∑

j≤c m j(Dc) = c
∣∣Dc
∣∣ completes

the proof. �

The law of large numbers makes c−1|Dc| converge to zero as c tends to infinity.
Hence c−2Sq,c is approximated by the other terms that are appearing in Corollary 3.4.
For determining their limiting distribution the rather generous distributional assumptions
of Theorem 3.1 are narrowed down.

4 Infinitely many categories
The behavior of the limiting Sainte-Laguë divergences Sq,c for a growing number of cate-
gories c is studied under the assumption that, for c fixed, the weight vector (W1, . . . , Wc)

is uniformly distributed on the probability simplex Sc. Then the weights may be taken to
be generated from exponentially distributed random variables E j , via Wj = E j/

∑
i≤c Ei ,

and the terminal variable Uc – which depends on U1, . . . , Uc−1 – may be replaced by an
independent copy, see HPS (p. 53).

Lemma 4.1 Let the random variables V1, E1, V2, E2, . . . be independent such that every
Vj is uniformly distributed on (−1/2, 1/2) and every E j is exponentially distributed with
mean one. Then the vector (W1, . . . , Wc) with components defined by Wj = E j/

∑
i≤c Ei

( j = 1, . . . , c) is uniformly distributed on Sc, for every c, and

1

c2
Sq,c +

(
q − 1

2

)2

− 1

c

∑
j≤c

(
Vj + q − 1

2

)2

E j

converge in probability to zero, as c tends to infinity.

Proof: The crucial point is that the sums c−2∑
j≤c sgn(Dc)m j(Dc)/Wj from Corol-

lary 3.4 converge in probability to zero, which is proved in Heinrich and Schwingenschlögl
(2006). The remaining steps are as in HPS (p. 53). �
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Upon setting p = min{q, 1 − q}, the terms (Vj + q − 1/2)2 turn out to have den-
sity g(x) = 1√

x
1(0,p2](x) + 1

2
√

x
1(p2,(1−p)2](x). The common density fq of the random

variables Z j = (Vj + q − 1/2)2/E j is now found to be

fq(z) =
∫ (1−p)2/z

0
g(zx)e−x|x| dx

= 1

2
√

z

∫ p2/z

0
e−x√x dx + 1

2
√

z

∫ (1−p)2/z

0
e−x√x dx

= q3 + (1 − q)3

3z2
− q5 + (1 − q)5

5z3
+ q7 + (1 − q)7

14z4
∓ · · · ,

for z > 0. We have fq(z) = f1−q(z), for q ∈ [0, 1] .
Let S∗ be a random variable with characteristic function

EeitS∗ = exp
(
−π

2
|t| − it log |t|

)
for t ∈ R ,

that is, S∗ has a Lévy-stable distribution. As compared to the random variable S of HPS
(p. 53) we have S∗ = (π/2)S + log(π/2); we find S∗ slightly more convenient to work
with, for our present purposes. Furthermore let γ = limk→∞(1 + 1/2 + · · · + 1/k −
log k) � 0.5772 denote the Euler–Mascheroni constant. Now we are in a position to
formulate the asymptotic behavior of the limiting Sainte-Laguë divergences Sq,c when
they are suitably scaled and shifted.

Theorem 4.2 Suppose that the weight vector (W1, . . . , Wc) is uniformly distributed on
the probability simplex Sc, and let q ∈ [0, 1] be fixed. Then we have

aq

c2
Sq,c − bq − log c

d−−−−−−→
c→∞ S∗ ,

with constants aq and bq given by

aq = 3

q3 + (1 − q)3 ,

bq = 2

3
− 2 γ + log

q3 + (1 − q)3

3 q (1 − q)
+ 1 + 4 (q3 − (1 − q)3) log 1−q

q

4 (q3 + (1 − q)3)
.

The constants aq and bq are symmetric about 1/2, and we have b0 = b1 = 11/12 −2γ −
log 3.

Proof: In view of Lemma 4.1 it suffices to show that the random variables

S̃q,c = aq

c

∑
j≤c

Z j

− log c − bq − aq

(
q − 1

2

)2
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converge in distribution to S∗ as c → ∞. To this end we show that for any fixed t ∈ R
the characteristic functions

Eeit S̃q,c =
(

E exp
{

iaqt

c
Z1 − it

c

(
log c + bq + aq

(
q − 1

2

)2)})c

converge to the characteristic function of S∗. This follows from the approximation

EeisZ1 = 1−π|s|
2aq

+ is

aq

(
5

3
−2γ − log |s| − 2

(
q3 log q + (1 − q)3 log(1 − q)

)
q3 + (1 − q)3

)
+ o(|s|)

= 1−π|s|
2aq

+ is

aq

(
− log |s| + log aq + bq + aq

(
q − 1

2

)2
)

+ o(|s|),

for s = aqt/c → 0, which we obtain from a careful analysis of the Fourier transforms∫∞
0 eisz fq(z) dz, quite similar to the case of standard rounding in HPS (p. 54–55). �
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extensive simulations in the course of this research. We thank the referees for pointing
out the relations of Theorem 3.1 to the theory of asymptotically uniformly distributed
sequences.

References
[1] M.L. Balinski and S.T. Rachev. Rounding proportions: Rules of rounding. Numerical

Functional Analysis and Optimization, 14:475–501, 1993.

[2] M.L. Balinski and S.T. Rachev. Rounding proportions: Methods of rounding. Math-
ematical Scientist, 22:1–26, 1997.

[3] M.L. Balinski and H.P. Young. Fair Representation – Meeting the Ideal of One
Man, One Vote. New Haven CT: Yale University Press, 1982. [Second Edition (with
identical pagination): Washington DC: Brookings Institution Press, 2001.]

[4] G. Dorfleitner and T. Klein. Rounding with multiplier methods: An efficient algo-
rithm and applications in statistics. Statistical Papers, 40:143–157, 1999.
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