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Abstract In an experiment, we tested whether the gender
typicality of a human–robot interaction (HRI) task would
affect the users’ performance during HRI and the users’
evaluation, acceptance and anthropomorphism of the robot.
N = 73 participants (38 females and 35 males) performed
either a stereotypically male or a stereotypically female
task while being instructed by either a ‘male’ or a ‘female’
robot. Results revealed that gender typicality of the task
significantly affected our dependent measures: More errors
occurred when participants collaborated with the robot in the
context of a stereotypically female work domain. Moreover,
when participants performed a typically female task with the
robot they were less willing to accept help from the robot
in a future task and they anthropomorphized the robot to a
lower extent. These effects were independent of robot and
participant gender. Our findings demonstrate that the gender
typicality of HRI tasks substantially influences HRI as well
as humans’ perceptions and acceptance of a robot.
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1 Introduction

Robots have become increasingly popular in various applica-
tion areas. On the one hand, this is due to the rapidly growing
technological development in the field of robotics. On the
other hand, robotic technologies promise to be highly ben-
eficial for humans by releasing them from tasks that might
be dangerous, tedious, hard to handle or highly monotone. If
humans would actually get the opportunity to own a robot that
could provide assistance for any given task they deemed suit-
able, how should their robot ideally look like? Which name
should it have? Would people prefer a male or a female robot
prototype? Importantly, what kind of work should their robot
get done? Most people might now think about a robot that
could clean the house or do the dishes, a robot that could pro-
vide help on tasks we often find annoying or time-consuming.
Indeed, numerous already existing and newly developed
robots are supposed to assist people with tasks such as doing
daily household chores (Human Support Robot HSR, Toyota
Motor Corp.), collecting and delivering commodities or food
(e.g., Movaid [1]), serving as a social companion and com-
munication partner (e.g., iCat [2]), and providing medical
services (e.g., looking after patients; Robina, Toyota Motor
Corp.). This also seems to be in line with humans’ actual
preferences regarding robot applications. Enz et al. [3] have
demonstrated that individuals mostly prefer robots in a nurs-
ing context compared to other potential social robot roles
(e.g., robots as teachers). Interestingly, a closer look at these
application domains reveals that they are often closely asso-
ciated with prescriptive societal gender roles. That is, these
tasks can be categorized in terms of ‘stereotypically female’
versus ‘stereotypically male’ tasks (e.g.[4,5]). More specif-
ically, many robot applications seem to be associated with
traditionally female work domains (e.g., housework, health
care). Does this gender stereotypicality of robot applications
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influence how humans interact with, perceive, and evalu-
ate a specific robot prototype? To date, we are not aware of
any study that has investigated this question. In the present
research, we will address this gap in the literature.

Gender is one of the most salient and omnipresent social
categories in human societies that affects virtually every
aspect in our every-day live [6]. To a large extent, gender
determines people’s social roles, occupations, relationships,
and opportunities [7]. Importantly, our own gender as well
as the gender of others influences how we think about and
interact with each other. Interestingly, this influence is not
restricted to human–human social interactions. Gender also
largely impacts how humans perceive and interact with non-
human agents, such as computers [8,9] or robots. In the con-
text of human–robot interaction (HRI) gender effects were
investigated mostly from two different angles: The alleged
robot gender (as indicated, e.g., by its appearance, behavior,
or name) and the user’s gender.

From a user perspective, robots often do not appear
gender-neutral, but instead they are perceived in terms of
male or female prototypes. To illustrate, Eyssel and Hegel
[10] have demonstrated that a visual cue, such as a robot’s
hair length led to differential ascriptions of stereotypically
male (e.g., competence) and female traits (e.g., warmth). The
alleged robot gender also affected the perceived suitability
of the robot for stereotypically male versus female tasks.
Likewise, vocal cues (i.e., a male or female voice) indicate
a robot’s gender [11] and this, in turn, can affect the user’s
reactions toward the robot. Moreover, Powers et al. [12] have
shown that people use knowledge about gender roles when
interacting with a gendered robot. The robot’s gender was
here indicated with a male versus female voice plus different
colors (grey vs. pink) of the robot’s lips. In this study, partic-
ipants elaborated less on a typically female topic (i.e., dating
norms) when talking to an ostensibly female robot than when
talking to a ‘male’ robot.

Besides robot gender, user gender impacts the users’ eval-
uative reactions toward robots, whereas findings are incon-
sistent across studies. To illustrate, research by Siegel et al.
[13] has shown that users evaluate a robot of the opposite
gender more positively than a same-gender robot; they even
tend to behave more positively toward robots of the oppo-
site gender. In contrast, Eyssel et al. [11] have demonstrated
that participants perceived a same-gender robot significantly
more positive and felt psychologically closer to it compared
to the opposite-gender robot. To date, however, it is unclear,
which factors account for these inconsistencies across studies
and which variables might moderate whether humans prefer
same- or opposite-gender robots.

In addition, research has shown that gender not only influ-
ences humans’ evaluative reactions but also their anthropo-
morphic inferences about robots. Anthropomorphism deno-
tes the psychological process of attributing humanlike prop-

erties, characteristics, and mental states to nonhuman agents
[14]. Importantly, Epley et al. [14] have proposed that anthro-
pomorphism represents an effective strategy to increase the
ability to make sense of a nonhuman agent’s actions and
thus to reduce the uncertainty that is often associated with
human-nonhuman interactions. It “can enable a sense of effi-
cacy with these agents, a sense that actually increases one’s
apparent competence interacting with these agents” [14, p.
879]. According to this reasoning, anthropomorphism can
be considered as an important factor contributing to the
quality of HRI. Crucially, previous research has tested the
role of gender with regard to anthropomorphism. Schermer-
horn et al. [15], for instance, have investigated gender dif-
ferences in the perception of robots and found that males
compared to females showed a stronger tendency to per-
ceive a robot as humanlike. However, other research findings
indicate an opposite tendency. Siino and Hinds [16] investi-
gated how male and female hospital workers conceptualized
a mobile autonomous robot in their workplace. In their study,
male workers perceived the robot as a controllable machine,
whereas females tended to see the robot more like a human
male acting with agency. Furthermore, Eyssel et al. [11] have
demonstrated that user and robot gender together influenced
the degree to which humans anthropomorphize a robot: par-
ticipants attributed more mental capacities to a same-gender
robot than to the opposite-gender robot.

The findings reviewed here illustrate that robot and user
gender elicit complex effects in HRI that cannot easily be
put in a nutshell. In addition, not only features of the robot
and the user characterize HRIs, but also features of the task
the user and the robot collaborate on. As outlined above, the
different types of tasks a robot performs might be perceived
as being either stereotypically male or stereotypically female
(see [10]). Thus, just like robot and user gender, the percep-
tion of gender typicality of a task could shape the users’
mental model about a specific robot and therefore could
impact how people would perceive, evaluate, and interact
with the robot on the respective task. This notion is sup-
ported by Nass and colleagues. Their research in the field
of human-computer interactions [9] has shown that a gen-
der match between task and computer features resulted in
more positive perceptions of the computer. In one of their
studies, a male-voiced tutor computer was judged as more
informative about issues related to technology compared to
a female-voiced tutor, whereas the female-voiced tutor com-
puter was perceived as more informative about topics related
to interpersonal relationships compared to the male-voiced
one. Further evidence that task features along with user and
robot features differentially influence HRI and perceptions
of a robot comes from Mutlu et al. [17]. In their experi-
ment, males and females played an interactive video game
with a robot, and they did so either in a cooperative or in
a competitive way. The results showed that men based their
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evaluation of the robot to a large extent on the different fea-
tures of the tasks, whereas women were more influenced by
the characteristics of the robot. In a different set of studies
[18], participants found a robot more suitable for a task when
the degree of the robot’s humanlikeness matched the degree
of sociability required by the task. Accordingly, task char-
acteristics indeed influence humans’ perceptions of a robot
and HRI quality. However, previous research has not yet con-
sidered the gender typicality of different tasks as an impor-
tant aspect in HRI, despite the fact that many domains of
robot applications are closely associated with societal gen-
der roles.

The aim of the present exploratory experiment was to
investigate the impact of gender stereotypicality of an HRI
task on humans’ task performance during HRI, on their evalu-
ation and acceptance of the robot, and on anthropomorphiza-
tion of the robot. Moreover, we also tested the interplay of this
gender factor with user and robot gender. Given the novelty
of this research topic and the inconsistent findings regarding
user and robot gender effects in HRI across studies, we make
no specific assumptions about the differential effects of gen-
der typicality of the task as well as of user and robot gender
on the dependent measures.

2 Method

2.1 Participants and Design

N = 73 German participants (38 females, 35 males) with a
mean age of 25.04 years (SD = 4.34; age ranged from 19
to 42 years) took part in our experiment1. They were ran-
domly assigned to one of four experimental conditions that
resulted from a 2 (gender typicality of task: Male vs. female)
× 2 (robot gender: Male vs. female) between-subjects facto-
rial design: accordingly, together with an allegedly male or
female robot participants had to solve a task that constituted
either a stereotypically male or a stereotypically female task.
As the participants’ gender also was treated as an experi-
mental factor, the full experimental design was a 2 (gender
typicality of task: Male vs. female) × 2 (robot gender: Male
vs. female) × 2 (participant gender: Male vs. female) design
resulting in eight experimental groups. Each experimental
group consisted of eight to 10 participants.

1 Originally, 81 participants took part in the experiment. Eight partici-
pants, however, had to be excluded from further analyses due to techni-
cal problems during the experimental session or due to previous partic-
ipation in a similar experiment. Sensitivity power analyses conducted
with G*Power [19] revealed that given a sample size of 73 participants,
a high power of 1−β = .80, and a significance level of α = .05, effects
had to be of medium size with at least f = .33(η2 = .12) in order to
be detected.

Fig. 1 The robot shows the participant a possible position for the
selected item in the sewing kit, using speech, gaze and pointing gestures

2.2 Procedure

Participants were tested individually in a laboratory at Augs-
burg University. They were seated in front of a Microsoft
Surface2 touch-screen table opposite to the robot NAO (Aca-
demic Edition V3.2, Aldebaran Robotics, see Fig. 1). On the
touch-screen, different items (either sewing accessories or
tools) and a container (either a sewing box or a toolbox,
see Fig. 2a, b) were depicted3. Initially, the experimenter
briefly introduced the participants to the robot and men-
tioned the robot’s name to indicate robot gender (i.e., NERO
or NERA). Participants were then informed that they would
work on a sorting task together with the robot and that the
robot would instruct them on the task. The robot operated
fully autonomously during the experiment (for details see
[20]). After a short tutorial with two sample trials, partic-
ipants completed 15 critical trials of the sorting task. On
average, the interaction between participant and robot lasted
for approximately 10 min. Subsequently, the experimenter
asked participants to complete several computerized ques-
tionnaires that contained our dependent measures. Finally,
participants were reimbursed, debriefed and dismissed.

2.3 Human–Robot Interaction Task

2.3.1 Experimental Set-up

On the touch-screen table, participants were presented with a
container that included 10 compartments that were of small,

2 http://www.microsoft.com/surface/.
3 We used the Microsoft Surface instead of a real tool or sewing box
because this enabled a stable tracking of the location of the items and
logging the participants’ input without using the robot’s vision system.
The robot calculated the positions of the items with the data from the
Microsoft Surface. This way, we were able to control details of the HRI
set-up, such as the size of the items and compartments as well as the
initial item positions.
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Fig. 2 Pictures of the experimental set-up: a a sewing box with sewing accessories, b a tool box with tools

medium, and large size. Moreover, participants were pre-
sented with nine items that were already sorted into the dif-
ferent compartments of the container. Fifteen further items
were distributed around the container. These items had to be
sorted into different compartments of the container. All but
three items could be grouped into nine object categories (e.g.,
different types of scissors or water levels). Each category was
represented by at least two items. Importantly, one item of
each category was already stored in the container (see Fig.
2a, b). This was done in order to give participants guidance as
to where the remaining objects could be stored. In addition,
three remaining unsorted items did not belong to any of the
nine categories. Figures 2a, b depict the set-up of the sorting
task.

2.3.2 Instructions

In each of the 15 trials, participants received two instructions
from the robot: the first instruction was the selection instruc-
tion that concerned the choice of the object (e.g., ‘Pick the
small scissors.’). This instruction included a specific descrip-
tion of the respective item (e.g., name, size, color if applica-
ble). Moreover, following the procedure by Ishiguro et al.
[21], each selection instruction was accompanied by a point-
ing gesture and a gaze toward the object. The participant was
then supposed to select the respective item by tapping on the
touch screen. The robot verbally confirmed a correct choice
(e.g., ‘This is correct.’). In case of a wrong choice, the robot
provided respective feedback (e.g., ‘No, this is the wrong
object.’) and repeated the instruction.

The second instruction in each trial concerned the posi-
tion instruction. This instruction specified the target position
for each item (e.g., ‘Put it in the upper right small com-
partment.’). Similar to the selection instructions, the posi-
tion instructions were accompanied by gaze and pointing
behavior, as depicted in Fig. 1. However, to make the interac-

tion more realistic, natural and interesting [22], participants
not always received correct or optimal instructions by the
robot. That is, the robot used three different types of posi-
tion instructions: in six of 15 trials, the robot gave optimal
position instructions asking participants to put an item into
a compartment that already contained an object of the same
category. In six further trials, participants received subop-
timal position instructions. That is, they were instructed to
sort an item into a compartment that did not already contain
an item of the same category, although an exemplar of the
same object category was depicted in one of the other con-
tainer’s compartments. In three trials, the robot gave wrong
position instructions and asked participants to put an item
into a compartment that was too small to accommodate the
chosen item. Thus, participants were obliged to choose an
alternative compartment to store the specific item.

After each position instruction the robot commented on
the participants’ behavior with a short feedback. The robot
used up to ten different utterances differentiating between
three different types of participant behavior. First, when par-
ticipants followed the robot’s optimal or suboptimal position
instructions, the robot uttered, e.g., ‘Right, this is the correct
compartment.’ or ‘Very good, that was correct.’. Second, in
case participants did not follow the robot’s optimal or subop-
timal instructions but instead chose a correct alternative, the
robot confirmed the participants’ correct choice (e.g., ‘Right,
this fits as well.’ or ‘Yes, this is correct, too.’). Third, in case
participants chose an incorrect target position for the item
(i.e., a compartment that was too small for the item), the
robot corrected the participants with utterances such as ‘No,
you need to find a bigger compartment.’ or ‘Unfortunately the
compartment is too small.’ and repeated the original position
instruction.

The trials were realized in a fixed randomized order. The
sequence of optimal, suboptimal, and wrong instructions was
identical for all experimental conditions.
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2.4 Experimental Manipulation

2.4.1 Gender Typicality of the Task

Participants were confronted with one of two different types
of tasks. Participants were either asked to sort different tools
into a toolbox. This represented the typically male task con-
dition. In the female task condition, in contrast, participants
were asked to sort sewing equipment into a sewing box.
Accordingly, the two tasks were equal regarding the specific
actions required from the participants (i.e., sorting various
objects into different compartments). Gender typicality, how-
ever, was based on the kind of objects that had to be sorted
and that are differentially associated with gender stereotypes.
The tasks were identified as suitable for our experimental pur-
pose based on the following pretest: N = 30 participants (12
male, 18 female, age: M = 23.17, SD = 4.58) were asked
to rate 19 different tasks on bipolar 7-point scales regard-
ing the tasks’ complexity (−3 = simple, +3 = complex), the
intellectual demands (−3 = low, +3 = high), and the gender
typicality (−3 = female, +3 = male). Sorting sewing equip-
ment into a sewing box was identified as typically female
(M = −1.67, SD = 1.16, t (29) = −26.88, p < .001,
tested against 0, the neutral midpoint of the scale) whilst
sorting tools into a toolkit was rated as being typically male
(M = 1.80, SD = 1.06, t (29) = −11.33, p < .001).
Importantly, the two tasks did not differ from each other
with redard to intellectual demands (t < 1) and complex-
ity (t < 1). This was important in order to assure that the
potential effects of gender typicality are not confounded with
other factors such as task difficulty or complexity.

2.4.2 Gender of the Robot

In order to manipulate the alleged gender of the robot, we
varied two aspects of the robot: Its name and its voice. Pre-
vious research has demonstrated that the name of a robot
is a suitable indicator of the robot’s alleged membership
in social groups (e.g., ethnicity) [23]. In line with this, we
assume that giving the robot a male versus female name is a
suitable manipulation of the robot’s alleged gender. In addi-
tion, related work in the field of human–computer interaction
and HRI yielded that voice is another strong indicator of a
computer’s or robot’s perceived gender, respectively [9,11].
To identify a male versus female name, N = 30 partici-
pants (17 male, 13 female, age: M = 28.80, SD = 5.32)
were asked in a pretest to rate 12 names with regard to the
names’ gender typicality. On 7-point Likert scales, partici-
pants indicated how feminine (7) or masculine (1) they per-
ceived the respective name. Based on this, the names NERA
(M = 6.57, SD = 0.63) and NERO (M = 1.23, SD =
0.50) were chosen. Importantly, both names differed sig-
nificantly from the neutral midpoint of the scale (4) in the

expected direction (t (29) = 22.46, p < .001 for NERA;
t (29) = −30.07, p < .001 for NERO) and were thus used
to indicate female versus male gender of the robot, respec-
tively. During the experimenter’s instructions at the begin-
ning of the study, the name of the robot has been men-
tioned repeatedly. In addition, the ‘male’ robot NERO spoke
with a typically male voice (low frequency), whereas the
‘female’ robot NERA has been equipped with a more female-
type voice (high frequency). The robotic voices have been
generated by the robot’s Text-To-Speech system (Acapela
Mobility 7.0) and were selected in accordance with pretest
results: N = 41 participants (18 male, 23 female, age:
M = 26.12, SD = 1.15) listened to a neutral sentence (“Ac-
cording to my watch, it is now quarter past three”, adapted
from [11]) uttered with six different voices. For each voice,
participants had to decide whether the respective voice was a
male or a female one. Based on this, two voices were chosen:
one ‘male’ voice that 98 % of the participants perceived as
male, and one ‘female’ voice that 61 % perceived as female.

2.5 Dependent Measures

2.5.1 Manipulation Check

As a manipulation check, we asked participants to indicate
on a 7-point Likert scale (endpoints: 1 = ‘more female’ vs.
7 = ‘more male’) whether they perceived the robot as being
more female or more male. A value below 4 would indicate
that the robot was perceived as female whereas a value above
4 would show that participants perceived the robot as male.

To ensure that the two types of tasks were equally demand-
ing for the participants depending on gender typicality of the
task, participants had to indicate on a 7-point Likert scale
how difficult they perceived the task. Higher values indicate
a greater level of task difficulty.

2.5.2 Performance During HRI

We used three different behavioral indicators for participants’
performance during HRI. First, we measured the duration of
each of the 15 trials, resulting in an average duration per
trial (in seconds). Second, we counted how often partici-
pants chose a compartment that did not fit the size of the
object. This was considered as a position error, resulting on
an average error rate per trial. These two indicators repre-
sent the measures of objective task performance. That is, the
longer the average duration per trial, and the higher the aver-
age number of errors per trial, the lower the quality of task
performance.

As a third performance measure, we used the number
of alternative compartment solutions participants have cho-
sen, that is, the number of times participants did not fol-
low the robot’s position instructions. However, after receiv-
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ing wrong position instructions from the robot, participants
were obliged to choose an alternative compartment. Thus, we
only considered the number of alternatives after optimal and
suboptimal position instructions. Accordingly, we calculated
the average number of chosen compartment alternatives per
trail after optimal and suboptimal instructions. This measure
is used as an indicator of compliance with the robot.

2.5.3 Evaluation and Acceptance of the Robot

With two items, participants rated the robot’s task-related
competence (‘The robot knew exactly what I had to do in
this task.’, ‘The robot was well informed about the task.’).
The endpoints of the scales were 1 = ‘not at all’ and 7 =
‘very much’. These two items formed a reliable index of task
competence of the robot, α = .83.

To measure robot acceptance, we asked participants to
indicate how willing they would be to accept help from the
robot on a possible future task. The endpoints of the scale
ranged from 1 = ‘not at all’ to 7 = ‘very much’.

2.5.4 Anthropomorphization of the Robot

In order to measure anthropomorphic inferences about NAO,
we used two different measures. First, at a more general level,
we asked participants to what extent they perceived the robot
as a machinelike versus humanlike entity (humanlikeness).
Participants indicated their impression on a 7-point Likert
scale (1 = machinelike, 7 = humanlike), with higher values
indicating more perceived humanlikeness. Second, adapting
a scale developed by Gray et al. ([24], see also [11,25]), we
measured the extent to which participants attributed mind
to the robot (mind attribution). Participants rated NAO with
regard to 25 mental capacities (e.g., the capacity to feel pain,
to have desires, intentions, or to make plans). Items were
summed and avaraged and formed a reliable index (α = .93).
Higher values reflect a greater extent of mind attribution to
the robot.

3 Results

3.1 Manipulation Check

We first tested whether participants recognized the alleged
gender of the robot. Results of a t-test revealed that in the
female robot condition the robot was correctly identified as
female (M = 2.94, SD = 1.59), whereas in the male robot
condition the robot was correctly identified as male4 (M =
5.97, SD = 1.16), t (70) = 9.26, p < .001, d = 2.18.

4 Note that the endpoints of the 7-point Likert scale were 1 = more
female versus 7 = more male. That is, values below 4 indicate that the
robot was perceived as more female, whereas values above 4 show that
participants perceived the robot as more male.

Moreover, to make sure that participants perceived both
sorting tasks as equally demanding, we conducted a t-test
comparing the typically female and the typically male task.
Results indicate a marginally significant difference between
the typically female task (M = 1.32, SD = 0.55) and
the typically male task (M = 1.57, SD = 0.60), t (70) =
1.85, p = .07, d = 0.43, indicating that the female task
was perceived as slightly less difficult than the male task.
In order to control statistically for a potential influence of
the perceived task difficulty, this variable has been used as
a covariate in all subsequent analyses. In no case, however,
the task difficulty turned out to be a significant covariate, all
ps > .15.

3.2 Performance During HRI

3.2.1 Duration of Task Completion

Results of a 2 (gender typicality of task: Male vs. female) ×
2 (robot gender: Male vs. female) × 2 (participant gender:
Male vs. female) analysis of covariance (ANCOVA) yielded
no significant main effects on the duration of task comple-
tion (in seconds), all ps > .15. However, we obtained a
significant robot gender by participant gender interaction
effect, F(1, 62) = 5.32, p = .02, η2 = .08. In order to
inspect this pattern of results further, we conducted post-hoc
t-tests. Moreover, to control for inflated type I error rates due
to multiple testing, we tested against a Bonferroni-corrected
significance level of α = .025. Results show that female
participants completed the task equally fast, regardless of
whether they interacted with an ostensibly female or male
robot (M = 5.58 s, SD = 1.04 vs. M = 6.03 s, SD = 1.38,
respectively, see Fig. 3a), t (36) = 1.01, p = .32, d = 0.33.
In contrast, male participants were faster in completing the
task when they interacted with the male (M = 4.96 s, SD =
0.88) than with the female robot (M = 5.85 s, SD = 1.31),
t (33) = −2.37, p = .002, d = 0.80.

3.2.2 Errors

The 2 (gender typicality of task: Male vs. female) × 2 (robot
gender: Male vs. female) × 2 (participant gender: Male vs.
female) ANCOVA revealed a significant main effect of gen-
der typicality of task, F(1, 62) = 7.67, p = .01, η2 = .11.
As can be seen in Fig. 3b, c, participants chose a wrong com-
partment more often when working on a typically female
(M = 0.20, SD = 0.13) than on a typically male task
(M = 0.12, SD = 0.09). Furthermore, we obtained a sig-
nificant effect of participant gender, F(1, 62) = 4.61, p =
.04, η2 = .07, showing that female participants made less
errors in making a position decision (M = 0.14, SD = 0.11)
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Fig. 3 a Average duration per trial as a function of participant and robot gender. b Average number of errors per trial as a function of participant
gender. c Average number of errors per trial as a function of gender typicality of the task. d Average number of alternatives per trial as a function
of participant gender

than males (M = 0.19, SD = 0.12). No other main or inter-
action effects reached statistical significance, all ps > .19.

3.2.3 Alternatives

Results of a 2 (robot gender: Male vs. female) × 2 (gender
typicality of task: Male vs. female) × 2 (participant gender:
Male vs. female) ANCOVA yielded a significant main effect
of participant gender, F(1, 62) = 13.01, p < .001, η2 =
.17, indicating that female participants used alternative solu-
tions more frequently instead of following the robot’s instruc-
tions (M = 0.48, SD = 0.17) compared to male participants
(M = 0.32, SD = 0.20, see Fig. 3d). No other significant
effects were found, all ps > .24.

3.3 Evaluation and Acceptance of the Robot

3.3.1 Robot’s Task-Related Competence

A 2 (gender typicality of task: Male vs. female) × 2 (robot
gender: Male vs. female) × 2 (participant gender: Male vs.

female) ANCOVA revealed no main effects, all ps > .16,
nor significant interaction effects, all ps > .07.

3.3.2 Robot Acceptance

Results of a 2 (gender typicality of task: Male vs. female)
× 2 (robot gender: Male vs. female) × 2 (participant gen-
der: Male vs. female) ANCOVA yielded a main effect of
gender typicality of task, F(1, 61) = 7.82, p = .01, η2 =
.11. Accordingly, participants were more willing to accept
help from the robot on a future task when they previously
interacted with the robot on a typically male task (M =
5.09, SD = 1.77) than when they worked on a female task
(M = 3.69, SD = 1.91, see Fig. 4). No other main or inter-
action effect was significant, all ps > .16.

3.4 Anthropomorphization of the Robot

3.4.1 Humanlikeness

A 2 (gender typicality of task: Male vs. female) × 2 (robot
gender: Male vs. female) × 2 (participant gender: Male
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Fig. 4 Acceptance of the robot as a function of gender typicality of
the task

vs. female) ANCOVA revealed a main effect of gender
typicality of task, F(1, 62) = 4.92, p = .03, η2 = .07,
demonstrating that when the robot was the instructor for a
female task participants perceived it to be more machinelike
(M = 2.25, SD = 1.32). In contrast, when the robot gave
instructions on the male task, it has been perceived more
as a humanlike entity (M = 3.16, SD = 1.75). No other
main or interaction effects reached statistical significance,
all ps > .15.

3.4.2 Mind Attribution

Similar effects were found for mind attribution. The 2 (gen-
der typicality of task: Male vs. female) × 2 (robot gender:
Male vs. female) × 2 (participant gender: Male vs. female)
ANCOVA revealed a main effect of gender typicality of task,
F(1, 62) = 4.98, p = .03, η2 = .07. Within the context of
a male task, participants attributed more mental capacities to
the robot (M = 3.13, SD = 0.96) than within the context
of a female task (M = 2.55, SD = 0.93). The findings are
depicted in Fig. 5a, b.

4 Discussion

Take a second and think back to the issues we raised in the
introduction of this article. If humans could own a robot for
their personal use, for what kind of tasks should the robot
ideally provide assistance? According to our findings, there
is still no simple answer to this question.

In the present experiment, female and male participants
performed a stereotypically female or stereotypically male
task while interacting with an ostensibly female or male
robot. Accordingly, we tested the effects of gender typicality
of an HRI task, robot gender and user gender on participants’
performance during HRI, on their evaluation and acceptance
of the target robot and on anthropomorphic inferences about

Fig. 5 a Perceived humanlikeness of the robot as a function of gender
typicality of the task. b Mind attribution to the robot as a function gender
typicality of the task

the robot. Results show that the gender typicality of the HRI
task significantly influenced how well participants performed
the task, how they evaluated and perceived the robot: when
being instructed on a typically female versus male task, par-
ticipants made more errors, were less willing to accept help
from the robot on a future task, and anthropomorphized the
robot to a lesser extent. In addition, participant gender influ-
enced the task performance. Females compared to male par-
ticipants made less errors and were less compliant with the
robot, that is, they more often chose alternative compart-
ments. Males, in contrast, were faster when performing the
task than females, while this was only true when they inter-
acted with a same-gender robot.

With our experiment, we extended the previous li-terature
on gender effects in HRI with respect to se-veral aspects: We
were the first to test the effects of such gender typicality of
an HRI task on HRI. With this, we demonstrated that gender
typicality of the task that the user and the robot completed
together had substantial impact on the outcomes of the HRI.
Particularly, on a variety of measures ranging from objective
performance measures to participants’ evaluation and per-
ception of the robot, we found that working on a male task
was superior compared to a human–robot collaboration on
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a typically female task. Interacting with a robot in the con-
text of a typically female ‘work domain’ thus resulted in less
optimal outcomes than working on a male task. It should be
noted that participants perceived the female sewing box task
as slightly less demanding than the male toolbox task, thus,
the differences in perceived task difficulty could account for
the poorer outcomes in the female task condition. However,
the present results contradict this notion: even after statis-
tically controlling for the level of perceived task difficulty,
the typically female task showed—compared to the typically
male one—detrimental effects on HRI and the perception
of the robot. This suggests that the gender-specific stereo-
types that are attached to the different kinds of tasks might
have influenced how successfully participants dealt with the
robot and the task. Interestingly, many robots are developed
to provide assistance on every-day tasks that are generally
perceived as being typically female (e.g., providing assis-
tance in the household). Future research thus needs to address
possible measures to counteract the difficulties of human–
robot collaborations in female domains that were identified
in the present study. Moreover, prospective research should
focus on long-term effects of a task’s gender typicality on
HRI, as our findings cannot reveal whether also long-term
interactions between robots and humans would be negatively
affected in the context of stereotypically female robot appli-
cations.

In addition, our results add to previous findings that have
shown that male and female users react differently toward
robots (e.g., [11,26]). In the present study, female partici-
pants more frequently worked autonomously on the task and
made their own choices instead of following the instructions
of the robot compared to male participants. This result indi-
cates that females were less compliant with the robot than
males. This could be based on reduced trust in the robot or
on a lesser extent of willingness to cooperate with the robot.
However, this assumption needs to be tested in future stud-
ies. One might further argue that this gender difference could
explain the fact that females made less position errors than
males as female participants generally followed less often
the robot’s (wrong) instructions. In fact, the two measures
of errors and alternatives were significantly correlated with
each other (r = .63). However, when investigating task and
participant gender effects on errors while statistically con-
trolling for chosen alternatives, we still found a significant
influence of participants’ gender on position errors, at least
in the male work domain (females vs. males make less errors
in the male work domain). In addition, when testing gender
effects on chosen alternatives while controlling for average
errors per trial, we still observe that females compared to
males choose more alternatives. Thus, the participant gender
effect with regard to errors cannot be completely explained
by the fact that females generally were less influenced by the
robot and vice versa. Moreover, with respect to participant

gender we found that male participants seemed to be more
efficient (i.e., faster) when collaborating with a same-gender
than with the opposite-gender robot whereas for women the
robot’s gender did not influence their velocity in performing
the task. Interestingly, this is in line with previous research
[13] showing that men are more reactive to a robot’s gender
cues than women.

5 Critical Remarks and Future Directions

Even though the present findings are promising and hope-
fully stimulate further investiagtions of gender effects in HRI,
some limitations and future directions of this research shall
be discussed.

First, the reported experiment applied a simple and to
some extent artificial HRI task, which could decrease the
ecological validity of our findings. At the same time, how-
ever, for specific user groups (e.g., users with special needs)
such instructed sorting tasks might represent an actual and
useful robot application. Furthermore, the gender typicality
of the task was only operationalized by a contextual manip-
ulation, that is, via the different objects (tools vs. sewing
accessories) that had to be sorted. From a methodological
point of view, this was necessary in order to avoid confound-
ing of our effects with other factors such as task difficulty
or complexity. To illustrate, washing the dishes as a typi-
cally female task not only differs from repairing a car (as
a typically male task) in terms of gender typicality. These
tasks also differ regarding their intellectual and physical
demands and with regard to their complexity. However, our
manipulation also reflects the fact that the gender typical-
ity of tasks is often contextually determined (e.g., wash-
ing the dishes vs. washing a car). Moreover, as we even
found effects of this rather unobtrusive manipulation, this
supports even more the assumption that gender typicality
of HRI tasks influence HRI outcomes. Nonetheless, future
work needs to investigate more complex and ecologically
valid tasks whose gender typicality is not only defined by
the objects involved in the task. This is particularly impor-
tant in order to test how generalizable the present findings
are.

Second, one could critically argue that the measure of
position errors as one of our dependent variables does
not measure errors by the human users but only assesses
whether humans “blindly” followed the robot’s wrong (3
out of 15) instructions or not. Consequently, the error mea-
sure might be confounded with participants’ commitment
to the robot’s instructions. However, while following the
robot’s wrong instructions indeed can be seen as an indi-
cator of commitment, such commitment at the same time
is erroneous behavior. To illustrate, in other contexts, for
instance in the production sector, such highly committed
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behavior can have severe impact. When humans do not
notice errors made by robots or follow a robot’s wrong
instructions due to high commitment, this could not only
cost high amounts of money but could also be threaten-
ing and even dangerous for humans. In other words, fol-
lowing the robot’s wrong instructions constitutes a “real
error” (note: participants were free to not follow the robot’s
instructions). Nonetheless, when interpreting the signif-
icant difference between the typically female and male
work domain with regard to errors (on average 3 errors
in female task vs. 1.8 errors in male task), we need to be
aware that this difference partly reflects the fact that par-
ticipants followed more often the robot’s erroneous instruc-
tions when working on a stereotypically female versus male
task.

Third, the sample size in the present experiment was quite
small given the complex experimental design, resulting in
a low probability for detecting small effects of our experi-
mental manipulations. In fact, according to power analyses
[19], a sample size of 130 up to 780 participants would have
been necessary to detect medium to small effects ( f ranging
between .10 and .25) given a high power of 1 − β = .80,
and a significance level of α = .05. For HRI studies, how-
ever, such sample sizes are impractical and almost unattain-
able. As a consequence, however, some gender effects in the
present study might remain undetected, particularly if these
were small effects. However, the present study was not gen-
erally underpowered and medium to large effects could be
statistically detected (all η2 were between .07 and .17 and
thus were medium or large effects, see [27]), pointing also to
the practical relevance of the presented findings.

Finally, as mostly students took part in our experiment,
the age range and the professional background of our sam-
ple was to some extent homogeneous. In order to draw gen-
eral conclusions of our findings, gender effects need to be
tested with different groups of participants. For instance, as
traditional gender roles and stereotypes changed over the
last decades, age could influence the endorsement of such
stereotypes. Accordingly, older participants might react dif-
ferently towards gendered tasks than younger participants.
Future studies should therefore consider comparing differ-
ent participant groups and test whether socio-demographic
variables such as age or professions moderate gender effects
in HRI.

6 Conclusion

Our findings emphasize that besides taking into account
mental models users have about gendered robots (see [10,
11,26]), we need to consider social roles and attributes
that are related to traditionally male and female work
domains when developing and designing robot systems.

Many robot applications are related to societal gender
roles. The present findings yielded initial evidence for
the fact that such ‘gendered tasks’ substantially influ-
ence how users perform during an HRI and how they
perceive a robot’s humanlikeness. Thus, developers and
researchers should particularly pay attention to those appli-
cations that traditionally have been occupied by women.
Finally, as gender is one of the most basic social cate-
gories in human social perception that is also applied to
robots and to robot applications, and as gender seems to
elicit quite complex effects in HRI, more theory-driven test-
ing is needed to approach gender issues in robotics sys-
tematically and to integrate the various existing research
findings.

Acknowledgments This research was funded by EU (FP7-ICT-
257666) under grant agreement eCUTE and the German Research
Council (COE 277).

References

1. Dario P, Guglielmelli E, Laschi C, Teti G (1999) MOVAID: a per-
sonal robot in everyday life of disabled and elderly people. Technol.
Disabil. 10:77–93

2. Heerink M, Krose B, Evers V, Wielinga B (2006) The influence of
a robot’s social abilities on acceptance by elderly users. In: Pro-
ceedings of the 15th IEEE international symposium on robot and
human interactive communication, pp 521–526

3. Enz S, Diruf M, Spielhagen C, Zoll C, Vargas P (2011) The social
role of robots in the future—explorative measurement of hopes and
fears. Int J Soc Robot 3(3):263–271

4. Berk RA, Berk SF (1979) Labor and leisure at home: content and
organization of houshold day. Sage, San Francisco

5. Thompson L, Walker AJ (1989) Gender in families: women and
men in marriage, work, and parenthood. J Marriage Fam 51:845–
871

6. Harper M, Schoeman WJ (2003) Influences of gender as a basic-
level category in person perception on the gender belief system.
Sex Roles 49:517–526

7. Bussey K, Bandura A (1999) Social cognitive theory of gender
development and differentiation. Psychol Rev 106:676–713

8. Nass C, Moon Y (2000) Machines and mindlessness: social
responses to computers. J Soc Issues 56:81–103

9. Nass C, Moon Y, Green N (1997) Are computers gender-neutral?
Gender stereotypic responses to computers. J Appl Soc Psychol
27(10):864–876

10. Eyssel F, Hegel F (2012) (S)he’s got the look: gender-stereotyping
of social robots. J Appl Soc Psychol 42:2213–2230

11. Eyssel F, Kuchenbrandt D, Hegel F, de Ruiter L (2012) Activat-
ing elicited agent knowledge: how robot and user features shape
the perception of social robots. In: Proceedings of the 21st IEEE
international symposium on robot and human interactive commu-
nication, pp 851–857

12. Powers A, Kramer ADI, Lim S, Kuo J, Lee S-L, Kiesler S (2005)
Eliciting information from people with a gendered humanoid robot.
In: Proceedings of the 14th IEEE international symposium on robot
and human interactive communication, pp 158–163

13. Siegel M, Breazeal C, Norton MI (2009) Persuasive robotics: the
influence of robot gender on human behavior. In: Proceedings of
the IEEE/RSJ international conference on intelligent robots and
systems, pp 2563–2568

   



                                427

14. Epley N, Waytz A, Cacioppo JT (2007) On seeing human: a three-
factor theory of anthropomorphism. Psychol Rev 114:864–886

15. Schermerhorn P, Scheutz M, Crowell C (2008) Robot social pres-
ence and gender: do females view robots differently than males?.
In: The Proceedings of the 3rd ACM/IEEE conference on human–
robot interaction, pp 263–270

16. Siino R, Hinds P (2005) Robots, gender and sensemaking: sex seg-
regations impact on workers making sense of a mobile autonomous
robot. In: Proceedings of the IEEE international conference on
robotics and automation (ICRA), Barcelona, Spain

17. Mutlu B, Osman S, Forlizzi J, Hodgins J, Kiesler S (2006) Percep-
tions of Asimo: task structure and user attributes as elements of
human-robot interaction design. In: Extended abstracts of the 15th
IEEE symposium on robot and human interactive, pp 351–352

18. Goetz J, Kiesler S, Powers A (2003) Matching robot appearance
and behavior to tasks to improve human–robot cooperation. In:
Proceedings of the 12th IEEE international symposium on robot
and human interactive communication, pp 55–60

19. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a
flexible statistical power analysis program for the social, behav-
ioral, and biomedical sciences. Behav Res Methods 39:175–191

20. Häring M, Eichberg J, André E (2012) Studies on grounding with
gaze and pointing gestures in human–robot-interaction. In: Social
robotics. Lecture notes in computer science, vol 7621, pp 378–387

21. Ishiguro H, Ono T, Imai M, Maeda T, Nakatsu R, Kanda T (2001)
Robovie: an interactive humanoid robot. Int J Ind Robot 28:498–
503

22. Salem M, Eyssel F, Rohlfing K, Kopp, S, Joublin F (2011) Effects
of gesture on the perception of psychological anthropomorphism:
a case study with a humanoid robot. In: Proceedings of the inter-
national conference of social robotics, pp 31–41

23. Eyssel F, Kuchenbrandt D (2012) Social categorization of social
robots: anthropomorphism as a function of robot group member-
ship. Br J Soc Psychol 51(4):724–731

24. Gray HM, Gray K, Wegner DM (2007) Dimensions of mind per-
ception. Science 315:619

25. Eyssel F, Kuchenbrandt D (2011) Manipulating anthropomorphic
inferences about NAO: the role of situational and dispositional
aspects of effectance motivation. In: Proceedings of the 20th IEEE
international symposium in robot and human interactive commu-
nication (RO-MAN 2011), pp 467–472

26. Crowell CR, Scheutz M, Schermerhorn P, Villano M (2009) Gen-
dered voice and robot entities: perceptions and reactions of male
and female subjects. In: Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems, pp 3735–3741

27. Cohen J (1988) Statistical power analysis for the behavioral sci-
ences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

Dieta Kuchenbrandt is a post-doctoral researcher in the Group “Gen-
der and Emotion in Cognitive Interaction Technology” at the Center of
Excellence in Cognitive Interaction Technology (CITEC) in Bielefeld.
She earned her Masters degree from the University of Greifswald (Ger-
many) in 2006 and received her Ph.D. in 2010. In her research, she is
interested in intergroup processes both in human–human and human–
robot interactions as well as in interventions to reduce prejudice towards
various social groups.

Markus Häring graduated as a Master of Science in Informatics and
Multimedia from Augsburg University, Germany in 2010. As a student
researcher he worked on dialog modeling for virtual characters in the
EU project DynaLearn. Afterwards, he started his Ph.D. at the lab for
Human Centered Multimedia with a focus on collaborative human–
robot interaction. His research interests also include usability engineer-
ing, multimodal interaction, and social robotics.

Jessica Eichberg graduated in 2011 as a Master of Science in Informat-
ics and Multimedia from Augsburg University, Germany. In her Master
thesis and as a student researcher at the lab for Human Centered Multi-
media she worked on concepts and technical solutions for multimodal
human–robot interaction. In April 2012 she started as an Internal Tool
Developer at SAP in Irland and since April 2013 she is a Behavior
Architect for Special Education at the robot manufacturer Aldebaran
Robotics in Paris.

Friederike Eyssel is assistant professor and head of the Group “Gen-
der and Emotion in Cognitive Interaction Technology” at the Center
of Excellence in Cognitive Interaction Technology (CITEC) in Biele-
feld. She earned her Masters Degree in psychology from University of
Heidelberg (Germany) in 2004. She received her Ph.D. in psychology
from University of Bielefeld (Germany) in 2007. She has held interim
professorships for social psychology at the University of Muenster, the
Technical University of Dortmund, and the University of Cologne. She
is interested in various research topics ranging from social robotics and
intelligent social agents to attitudes, sexual violence, sexism, dehuman-
ization, and prejudice reduction.

Elisabeth André is a full professor of computer science at Augsburg
University and chair of the Laboratory for Human Centered Multime-
dia, Augsburg University, Augsburg, Germany. Earlier, she worked as
a principal researcher at DFKI GmbH, where she led various acad-
emic and industrial projects in the area of intelligent user interfaces.
In summer 2007, she was nominated a Fellow of the Alcatel-Lucent
Foundation for Communications Research. In 2010, she was elected a
member of the prestigious German Academy of Sciences Leopoldina
and the Academy of Europe. Her research interests include affective
computing, intelligent multimodal interfaces, and embodied agents.

   


	Keep an Eye on the Task! How Gender Typicality of Tasks Influence Human--Robot Interactions
	Abstract 
	1 Introduction
	2 Method
	2.1 Participants and Design
	2.2 Procedure
	2.3 Human--Robot Interaction Task
	2.3.1 Experimental Set-up
	2.3.2 Instructions

	2.4 Experimental Manipulation
	2.4.1 Gender Typicality of the Task
	2.4.2 Gender of the Robot

	2.5 Dependent Measures
	2.5.1 Manipulation Check
	2.5.2 Performance During HRI
	2.5.3 Evaluation and Acceptance of the Robot
	2.5.4 Anthropomorphization of the Robot


	3 Results
	3.1 Manipulation Check
	3.2 Performance During HRI
	3.2.1 Duration of Task Completion
	3.2.2 Errors
	3.2.3 Alternatives

	3.3 Evaluation and Acceptance of the Robot
	3.3.1 Robot's Task-Related Competence
	3.3.2 Robot Acceptance

	3.4 Anthropomorphization of the Robot
	3.4.1 Humanlikeness
	3.4.2 Mind Attribution


	4 Discussion
	5 Critical Remarks and Future Directions
	6 Conclusion
	Acknowledgments
	References


