
LeapArm - Facilitating Sensory Spaces
for Mid-air Gestural Interaction

Abstract

We present the LeapArm system, which combines a

Leap Motion controller for mid-air gestural human-

computer interaction with a robotic arm. LeapArm

actuates in real-time the orientation of the controller

towards a user's hand, dynamically expanding the

sensory space for mid-air interaction. We describe

several desktop use scenarios and rapid transitions

between them, which are enabled by the LeapArm

system and discuss how actuated 3D controllers change

the design space for gestural interaction.

Author Keywords

Mid-air gestures; dynamic sensory space.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g.,

HCI): Miscellaneous.

Introduction

In the last decade, human-computer interfaces based

on optical tracking systems have gained popularity,

since they can transform “any” mid-air space into

sensory space for human-computer interaction. The

idea behind optical tracking systems is that cameras

capture images of the space in front of them and are

capable to recognize a user's body (or a specific body

part such as a hand) located in these images. Then,

This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in:
NordiCHI '16, October 23-27, 2016, Gothenburg, Sweden

© 2016 ACM. ISBN 978-1-4503-4763-1

DOI: http://dx.doi.org/10.1145/2971485.2996741

Ilhan Aslan, Julian Kraus, and

Elisabeth André

Human-Centered Multimedia

University of Augsburg

Germany

lastname@hcm-lab.de

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2971485.2996741

information about the body, such as posture and the

shape the body creates during movement within the

“digitalized” space is computed. Ultimately, the

technology allows body-based mid-air interaction with

computers, such as swipe and zoom hand gestures

performed by users in mid-air. While there are potential

benefits of mid-air interfaces for different use contexts

[8] where use of traditional human-computer interfaces

are inappropriate, the design of mid-air interaction is

an ongoing challenge with each use context having its

own peculiarities and posing different requirements for

design.

In our previous work, we have extensively explored

mid-air input as a modality for human-computer

interaction and designed its use for contexts, such as

cars [2], clean rooms in industrial settings [4], and for

retail situations [3].

There are some common and systematic constraints of

off-the shelf controllers, such as the Xbox Kinect or the

Leap Motion. As optical systems they have specific

requirements on orientation and proximity towards the

in-build sensors. Thus, they require users to perform

gestures in a limited and invisible sensory space,

causing discomfort and unintended interactions.

Figure 1: Divers examples of desktop use contexts supported by the LeapArm system. The approximate sensory space created by the

orientation and range of the optical system is marked green. With NP we refer to the non-preferred hand and with P to the preferred hand.

The user in the pictures is right handed, thus, P refers to the right hand and NP to the left hand.

The colloquial term “the gorilla arm syndrome” refers to

associated issues with fatigue and discomfort when

postures have to be maintained over long periods and

performed in a repetitive manner (e.g., [6, 8]).

Figure 2: Details of the LeapArm prototype. The

microcontroller controls the orientation of the optical system

(i.e., Leap Motion) by actuating two servos, which are

embedded in the "robotic arm" mount.

Related research (e.g., [5, 7]) has argued that allowing

users to rest their arms (e.g., on a chair armchair)

while performing hand gestures would limit the

inherent effects of gestural mid-air interfaces. However,

existing controllers, such as the Leap Motion are not

designed for use in rest positions, which might cause

bad performance in practice. Consequently Darren et

al. [6] have studied the performance of mid-air gestural

input with the Leap Motion controller in three different

rest positions, and argue that by modeling the

interaction space to fit the rest positions' characteristics

improves gesture recognition performance.

Motivated by these results in related research and our

own experiences with the Leap Motion controller we

propose a method to dynamically extend the sensory

space of the controller. We argue that doing this not

only enables users to take rest positions, but also

creates new use contexts (see Figure 1 for examples of

desktop use contexts) and allows “seamless” transitions

between them. In the following sections, we present

the details of the LeapArm prototype and discuss

conceptual consequences for gestural interaction

design.

LeapArm Prototype

The Leap Motion controller is an exemplary (and widely

used) optical tracking system. It is customized to

recognize hand and finger movement of users who are

typically in a seated position in front of a screen. The

controller is small sized and needs to be put on the

desktop beside or in front of a computer screen. The

range of the Leap Motion is limited to from

approximately 25 to 600 millimeters above the device

and a field of view of about 150 degrees with

recognition rates being worse in the borders of the

sensory space than the center of the space [1]. In

Figure 1 the approximate sensory space for gestural

interaction is marked in green and the space for non-

gestural interaction is marked in red.

Hardware and Software

Figure 2 shows hardware details of the LeapArm

system. LeapArm consists of a Leap Motion controller,

an Arduino microcontroller, two servo motors

embedded in the robotic arm, which we modeled and

printed on a state of the art 3D printer. The robotic arm

serves as a two-axis actuated mount for the controller,

allowing programmable dynamic control over the

orientation of the Leap Motion.

Figure 3: Overview of LeapArm system architecture

Figure 3 shows an overview of the system architecture.

In our implementation we accessed the Leap Motion

SDK via the Processing language.

In Processing, we use the Leap SDK to access the palm

position relative to the Leap Motion and actuate the

servos using the Firmata protocol. That is, we access

the servos remotely from Processing without using any

other code than the Firmata library on the

microcontroller.

We synchronize hand data recognition with movement

of the robotic arm when the vector at the center of the

palm moves outside a 30 degree area (see Figure 4).

We chose 30 degrees based on our own exploration and

since this value still allowed complex finger gestures

without having to continuously change the orientation

of the controller. When V moves outside the 30 degrees

area (e.g., because larger gestures are performed) the

LeapArm moves its orientation towards the center of

the palm.

Consequences of Actuated 3D Controllers for

Gestural Interaction Design

Having provided technical details about the LeapArm

system, we next discuss its consequences for gestural

interaction design.

Support of divers use contexts

We have already mentioned that many new use

contexts are enabled by the LeapArm system. In Figure

1 we have depicted a few exemplary desktop contexts,

such as one-handed or bi-manual interaction with

notebooks or touch tablets where mid-air input with the

non-preferred hand (NP) is sometimes used to

complement input (based on mouse, touch-pad,

keyboard, touch, or pen) with the preferred hand (P).

All these use contexts require the sensory spaces to be

at different (absolute) positions in space. For example,

when a user interacts with P via gestures “directly” with

a screen (see Figure 1d) the space in front of the

screen should be a sensory space and ideally the space

around the rested NP should not be a sensory space in

order to reduce unintended interaction.

Designing Context Transition Gestures

In our current implementation additional gestures (i.e.,

drag and drop) are required to move the orientation of

the controller (i.e., transition from one use context to

another). Figure 5 presents an example for a transition

between two use contexts. Depending on the concrete

application there is some potential that transition

Figure 4: Overview of logic about

when to move the robotic arm.

gestures might interfere with other large gestures. In

that case alternative mechanism are required to

introduce transitions, such as keyboard short cuts or

complex gestures, which include hand/finger postures

(e.g., pick the controller and drop it to the desired

position or send the controller to a use context with a

specific gesture).

Designing Gestures with Rest in Mind

The LeapArm system allows users to rest their arms

while performing hand gestures. Users have some

options about how they rest their arms. By designing

gestures with rest in mind designers may be able to

address discomfort associated with fatigue more

directly. For example, gestures could be designed

explicitly for rest positions, or start from rest positions,

or end in rest positions.

Support for new Gesture Types

Because the sensory space is (dynamically) expanded,

the LeapArm systems enables new types of gestures,

which complement existing capabilities of the Leap

Motion system with an additional “context” dimension

(i.e., orientation of the controller). Thus, the same Leap

Motion gestures can be used for different functions

depending on the orientation (use context).

Furthermore, large gestures (with more arm

movement) that cross over multiple use contexts (such

as transition gestures) become possible.

Designing for Non-Gestural Interaction

In Figure 1 we have explicitly highlighted sensory

spaces and non-sensory spaces. Dynamically changing

the orientation of the controller can not only be used to

expand the sensory space for gestural interaction but

also can expand the space for non-gestural interaction,

reducing unintended interaction and allowing users to

use gestures for other purposes (e.g., interpersonal

non-verbal communication during video conferencing).

Collaboration

More available space for gestural interaction is desired

in collaboration settings. The LeapArm system allows

users to handover the controller to another user, or

more precisely move the sensory space towards

another user (with a gesture) who is sitting across the

table. The LeapArm system could also be used to

detect the orientation of multiple users and orient itself

towards the (active) user. This behavior might be

beneficial when the LeapArm is, for example, attached

to the middle console of a car and used by both the

driver and the co-driver.

Feedback

When exploring gestural interaction with the LeapArm

system we experienced how the movement of the

robotic arm and its continuous orientation towards the

user's hand is perceived as an assuring feedback. When

using the system it is clear that one is within the range

of the controller. Not only for the user, but also for

observers it is very visible how the system works and

where the Leap arm is “looking” and which hand it is

observing. Some users from our own department have

argued that its behavior is very “anthropomorphic”.

When using the LeapArm system it feels as if it is trying

to keep its gaze at your hand.

Discussion and Future Work

In our current implementation, the LeapArm system

seamlessly follows a user's hand, allowing the Leap

Motion controller to recognize hand, finger, and tool

(e.g., pen) positions and motions. We have

Figure 5: Example of a transition.

User is in the beginning performing

gestures with his left hand in a rest

position. Then he moves the

controller to his right hand and

afterwards rests his right hand.

implemented a finger and hand visualization application

based on the Processing language to explore how the

LeapArm's physical movements may influence the Leap

Motion controller’s performance. We have not

experienced performance drops compared to a non-

actuated setting; however, in our future work we aim

to systematically explore the performance of the

LeapArm system. One could argue that using multiple

static Leap Motion controllers is an alternative to the

LeapArm system with better performance. However, in

our best of knowledge the Leap Motion SDK does not

(yet) support multiple controllers on one PC; and for a

desktop setting one would need five static controllers to

span a similar space as it is possible with LeapArm.

While we have demonstrated benefits of the LeapArm

system for desktop use contexts, we believe its benefits

are not limited to the desktop. We imagine that the

LeapArm system is also interesting for industrial

settings or gaming scenarios. With regard to new use

contexts, an intriguing direction of future work is the

exploration of the LeapArm system when it is used in

combination with a head-mounted display, such as the

Occulus rift. Our concrete next step is in designing an

application (i.e., a game) to explore with users in a

study the performance and user experience of gestural

interaction enabled by the LeapArm system.

Conclusion

We have presented the LeapArm system, which

dynamically expands the sensory space for mid-air

gestural interaction. We discussed both technical details

of the LeapArm system and a set of conceptual

consequences for interaction design that result when

the optical controller is actuated. Overall, we have

argued that by controlling the orientation of the Leap

Motion spaces for mid-air gestural interaction and non-

interaction are dynamically set, addressing some issues

associated with fatigue and discomfort, and enabling

new use contexts for gestural interaction.

References
[1] Adhikarla, V. K., Sodnik, J., Szolgay, P., and Jakus,
G. Exploring direct 3d interaction for full horizontal
parallax light field displays using leap motion controller.
Sensors 15, 4 (2015), 8642-8663.

[2] Aslan, I., Krischkowsky, A., Meschtscherjakov, A.,
Wuchse, M., and Tscheligi, M. A leap for touch:
proximity sensitive touch targets in cars. In Proc. of
AUI, ACM (2015), 39-46.

[3] Aslan, I., Meneweger, T., Fuchsberger, V., and
Tscheligi, M. Sharing touch interfaces: Proximity-
sensitive touch targets for tablet-mediated
collaboration. In Proc. of ICMI, ACM (2015), 279-286.

[4] Aslan, I., Uhl, A., Meschtscherjakov, A., and
Tscheligi, M. Mid-air authentication gestures: an
exploration of authentication based on palm and finger
motions. In Proc. of ICMI, ACM (2014), 311-318.

[5] Freeman, D., Vennelakanti, R., and Madhvanath, S.
Freehand pose-based gestural interaction: Studies and
implications for interface design. In Proc. of IHCI, IEEE
(2012), 1-6.

[6] Guinness, D., Jude, A., Poor, G. M., and Dover, A.
Models for rested touchless gestural interaction. In
Proc. of SUI, ACM (2015), 34-43.

[7] Guna, J., Jakus, G., Pogačnik, M., Tomažič, S., and
Sodnik, J. An analysis of the precision and reliability of
the leap motion sensor and its suitability for static and
dynamic tracking. Sensors 14, 2 (2014), 3702-3720.

[8] Wachs, J. P., Kölsch, M., Stern, H., and Edan, Y.

Vision-based hand-gesture applications. Commun.

ACM 54, 2 (Feb. 2011), 60-71.

