A TWO-ENERGIES PRINCIPLE FOR THE BIHARMONIC EQUATION AND AN A POSTERIORI ERROR ESTIMATOR FOR AN INTERIOR PENALTY DISCONTINUOUS GALERKIN APPROXIMATION*

DIETRICH BRAESS1, R.H.W. HOPPE2,** AND CHRISTOPHER LINSENMANN3

Abstract. We consider an a posteriori error estimator for the Interior Penalty Discontinuous Galerkin (IPDG) approximation of the biharmonic equation based on the Hellan-Herrmann-Johnson (HHJ) mixed formulation. The error estimator is derived from a two-energies principle for the HHJ formulation and amounts to the construction of an equilibrated moment tensor which is done by local interpolation. The reliability estimate is a direct consequence of the two-energies principle and does not involve generic constants. The efficiency of the estimator follows by showing that it can be bounded from above by a residual-type estimator known to be efficient. A documentation of numerical results illustrates the performance of the estimator.

Mathematics Subject Classification. 35J35, 65N30, 65N50.

Received August 30, 2016. Accepted November 23, 2016.

1. INTRODUCTION

The biharmonic equation is more often solved by nonconforming or mixed methods than by conforming elements in order to avoid the computationally expensive implementation of H^2 conforming elements such as the Argyris plate elements of the TUBA family [4] or the generalizations of the Hsieh-Clough-Tocher elements from [27]. As far as mixed methods are concerned, the fourth order equation is written as a system of two second order equations, e.g.,

\[
\begin{align*}
D^2 u &= p, \\
\nabla \cdot \nabla \cdot p &= f,
\end{align*}
\]

where $D^2 u$ is the matrix of second partial derivatives of u and p stands for the moment tensor. The formulation (1.1) leads to the mixed method of Hellan–Herrmann–Johnson [38, 39, 42]. Another splitting is given

Keywords and phrases. Biharmonic equation, two-energies principle, interior penalty discontinuous Galerkin method, a posteriori error estimator, equilibration.

* The work of R.H.W. Hoppe has been supported by NSF grants DMS-1115658, DMS-1216657, DMS-1520886, and by the DFG within the Priority Program SPP 1506.

1 Faculty of Mathematics, Ruhr-University, 44780 Bochum, Germany.

2 Dept. of Math., Univ. of Houston, Houston, TX 77204-3008, U.S.A.

3 Inst. of Math., Univ. of Augsburg, 86159 Augsburg, Germany.

**Corresponding author: r.hoppe@math.uh.edu; hoppe@math.uni-augsburg.de

© EDP Sciences, SMI 2019
by
\[\Delta u = w, \]
\[\Delta w = f, \]
(1.2)

and leads to the mixed method of Ciarlet–Raviart [23]. Among nonconforming approaches, Discontinuous Galerkin (DG) methods have been studied recently in [20, 21, 25, 33–35, 37, 43, 44, 48]. The relationship between DG methods and mixed methods turns out to be useful for the biharmonic problem as it is for second order elliptic boundary value problems due to the unified analysis in [6]. Fourth order problems have been treated similarly in [34].

The biharmonic equation is often discussed in the framework of plate models. In particular, C^0 finite element approximations for Kirchhoff plates have been studied in [11] with regard to an a priori error analysis (for a documentation of numerical results see [12]). An a posteriori error analysis for the Morley plate element has been provided in [10, 13]. Local C^0 Discontinuous Galerkin methods for Kirchhoff plates have been suggested in [41]. For other fourth order problems such as the Cahn–Hilliard equation we refer to [28, 53].

The Interior Penalty DG (IPDG) methods considered in [34, 35] are fully discontinuous in the sense that globally discontinuous, piecewise polynomials of degree $k \geq 2$ are used for the approximation of the primal variable u. On the other hand, those in [20, 21, 33] are based on the Hellan–Herrmann–Johnson splitting as given by (1.1). The IPDG schemes in [20, 21, 33] feature C^0 elements of Lagrangian type. Residual-type a posteriori error estimators have been considered and analyzed in [20, 33, 35].

We will consider a posteriori error bounds by the two-energies principle, also known as the hypercircle method. It was originally developed by Prager and Synge [47, 49, 50] and more recently considered in connection with second order elliptic problems in [1, 17, 14–18, 52]. The considerations of DG methods in this direction [2, 3, 24, 29–32] were also done for equations of second order.

In this paper, we focus on the biharmonic equation in the formulation of Hellan–Herrmann–Johnson and the application of the hypercircle method to its IPDG approximation. The advantage of a posteriori error bounds based on the two-energies principle compared to standard residual-type error estimators is that the reliability estimate does not contain generic constants (see the papers mentioned above and (5.9) below). As we shall see, the implementation amounts to the construction of an equilibrated moment tensor which can be done by means of a discrete three-field mixed formulation of the IPDG approximation. The construction only requires local interpolations in a postprocessing and has not yet been considered for problems of fourth order in the literature. In fact, the analysis is much more involved than the analogous one for equations of second order. We note that a four-field mixed formulation of the biharmonic equation has been considered in [9]. We think that the a posteriori error analysis presented in this paper can be extended to this four-field formulation. However, it does not directly carry over to the C^0IPDG method considered in [20, 21]. Instead, an approach similar to that in [17] for second order elliptic boundary value problems should be followed. This will be worked out in forthcoming research.

The paper is organized as follows: Section 2 lists some notation. In Section 3, we introduce the two-energies principle for the variational formulation of the Hellan–Herrmann–Johnson mixed approach. Section 4 is devoted to the IPDG approximation and associated discrete two-field and three-field formulations. Section 5 describes how the error bounds obtained from the two-energies principle can be built into a reliable a posteriori error estimator. The construction of the equilibrated moment tensor is dealt with in Section 6. In Section 7, we prove the efficiency of the estimator by showing that it can be bounded from above by a residual-type estimator which is known to be efficient. Finally, in Section 8 we provide a documentation of numerical results illustrating the quasi-optimality of the IPDG approximation and the performance of the estimator.

2. Notation

We will use standard notation from Lebesgue and Sobolev space theory [14,19,51]. In particular, for a bounded domain $\Omega \subset \mathbb{R}^2$ and $D \subseteq \Omega$ we denote the L^2-inner product and the associated L^2-norm by $\langle \cdot , \cdot \rangle_{0,D}$ and $\| \cdot \|_{0,D}$,
respectively. We further refer to \(H^k(\Omega), k \in \mathbb{N}\), as the Sobolev spaces with inner product \((\cdot, \cdot)_{k, \Omega}\), norm \(\| \cdot \|_{k, \Omega}\), and seminorm \(| \cdot |_{k, \Omega}\), and to \(H^{k-1/2}(\Gamma), \Gamma' \subseteq \Gamma = \partial \Omega\), as the associated trace spaces. \(H^2_0(\Omega)\) stands for the closure of \(C_0^\infty(\Omega)\) in the \(H^1\)-norm. Further, \(H^{-k}(\Omega)\) refers to the dual space of \(H^k_0(\Omega)\) with \((\cdot, \cdot)_{k, \Omega}\) denoting the dual product. Sobolev spaces \(H^s(\Omega)\) with broken index \(s \in \mathbb{R}_+\) are defined by interpolation. Moreover, \(H(\text{div}, \Omega)\) is the Hilbert space of vector fields \(\mathbf{q} \in L^2(\Omega)^2\) such that \(\nabla \cdot \mathbf{q} \in L^2(\Omega)\). Matrix-valued functions in \(L^2(\Omega)^{2\times 2}\) will be denoted by \(\mathbf{q} = (q_{ij})_{i,j=1}^2\) and the inner-product is \((p, \mathbf{q})_{0, \Omega} := \int_\Omega p \cdot \mathbf{q} \, dx\), where \(p := \sum_{i,j=1}^2 p_{ij} q_{ij}\).

Further, we introduce the Hilbert space

\[
H(\text{div}, \Omega) := \left\{ \mathbf{q} \in H(\text{div}, \Omega)^2 \mid \nabla \cdot \mathbf{q} \in H(\text{div}, \Omega) \right\}.
\]

Finally, given a function \(u \in H^2(\Omega)\), we refer to \(D^2u := (\partial^2 u / \partial x_i \partial x_j)_{i,j=1}^3\) as the matrix of second partial derivatives.

Let \(T_h(\Omega)\) be a geometrically conforming, locally quasi-uniform simplicial triangulation of the computational domain. For \(D \subseteq \Omega\), we denote by \(\mathcal{E}_h(D)\) the set of edges of \(T_h(\Omega)\) in \(D\). We further denote by \(h_K, K \in T_h(\Omega)\), the diameter of \(K\), by \(h_E, E \in \mathcal{E}_h(\Omega)\), the length of \(E\), and we set \(h := \max\{h_K \mid K \in T_h(\Omega)\}\). Moreover, for \(D \subseteq K\) we refer to \(P_m(D), m \in \mathbb{N}\), as the set of polynomials of degree \(\leq m\) on \(D\). For two quantities \(A\) and \(B\) we will use the notation \(A \lesssim B\), if there exists a constant \(C > 0\), independent of \(h\), such that \(A \leq CB\).

Due to the local quasi-uniformity of the triangulation, there exist constants \(0 < c \leq C\) such that

\[
ch_E \leq h_K \leq C h_E, \quad E \in \mathcal{E}_h(\partial K).
\]

For a function \(w \in L^2(\Omega)\) with \(w|_K \in C(K), K \in T_h(\Omega)\), and an interior edge \(E = K_+ \cap K_-\), \(K_+ \in T_h(\Omega)\), we set \(w^E := w|_{E \cap K_+}\) and define the average and jump across \(E\) as usual according to

\[
\{w\}_E := \left\{ \begin{array}{ll}
\frac{1}{2} (w^+ + w^-), & E \in \mathcal{E}_h(\Omega) \\
w_E^+, & E \in \mathcal{E}_h(\Gamma),
\end{array} \right.
\]

\[
[w]_E := \left\{ \begin{array}{ll}
w^+ - w^-, & E \in \mathcal{E}_h(\Omega) \\
w_E, & E \in \mathcal{E}_h(\Gamma).
\end{array} \right.
\]

The average and jump across \(E \in \mathcal{E}_h(\partial \Omega)\) are defined analogously for vector fields \(\mathbf{w} \in L^2(\Omega)^2\) with \(\mathbf{w}|_K \in C(K)^2, K \in T_h(\Omega)\), and tensors \(p \in L^2(\Omega)^{2\times 2}\) with \(p|_K \in C(K)^{2\times 2}\), \(K \in T_h(\Omega)\). Moreover, we refer to \(n_E, E \in \mathcal{E}_h(\Omega), E = K_+ \cap K_-\), as the unit normal vector pointing from \(K_+\) to \(K_-\) and to \(n_E, E \in \mathcal{E}_h(\Gamma)\), as the exterior unit normal vector \(n_E\) on \(E \in \Gamma\). Products like

\[
[w]_E n = w^+ n_{0K_+} + w^- n_{0K_-}
\]

and other products under consideration are independent of the choice of \(K_+\) and \(K_-\) and the resulting orientation of the edge.

3. A TWO-ENERGIES PRINCIPLE FOR THE BIHARMONIC EQUATION

Given a bounded polygonal domain \(\Omega \subset \mathbb{R}^2\) with boundary \(\Gamma := \partial \Omega\) and a function \(f \in H^{-2}(\Omega)\), we consider the biharmonic equation with homogeneous Dirichlet boundary conditions

\[
\Delta^2 u = f \quad \text{in} \quad \Omega, \quad u = n_E \cdot \nabla u = 0 \quad \text{on} \quad \Gamma.
\]

We note that in the framework of IPDG approximations other boundary conditions such as Neumann or mixed Dirichlet/Neumann boundary conditions can be dealt with as well (cf., e.g. [35]).
A primal variational formulation of (3.1) amounts to the computation of \(u \in H_0^2(\Omega) \) such that for all \(v \in H_0^2(\Omega) \) it holds
\[
(D^2u, D^2v)_{0,\Omega} = (f, v)_{2,\Omega}.
\] (3.2)

It is well-known that (3.2) represents the optimality condition for the following unconstrained minimization problem: find \(u \in H_0^2(\Omega) \) such that
\[
J_p(u) = \inf_{v \in H_0^2(\Omega)} J_p(v),
\]
where the primal energy functional \(J_p : H_0^2(\Omega) \to \mathbb{R} \) is given by
\[
J_p(v) := \frac{1}{2} (D^2v, D^2v)_{0,\Omega} - (f, v)_{2,\Omega}.
\] (3.3)

In order to specify the associated dual problem, the divergence of a matrix-valued function \(q = (q_{ij})_{i,j=1}^2 \) with row vectors \(q^{(i)} = (q_{i1}, q_{i2})^T, 1 \leq i \leq 2 \), is defined as usual
\[
\nabla \cdot q := (\nabla \cdot q^{(1)}, \nabla \cdot q^{(2)})^T.
\] (3.4)

The dual or complementary energy \(J_d : L^2(\Omega)^{2 \times 2} \to \mathbb{R} \), given by
\[
J_d(q) := -\frac{1}{2} (q, q)_{0,\Omega},
\]
will be maximized subject to the constraint
\[
(q, D^2v)_{0,\Omega} = (f, v)_{2,\Omega} \quad \text{for all} \quad v \in H_0^2(\Omega).
\] (3.5)

The relation (3.5) may be understood as
\[
\nabla \cdot \nabla \cdot q = f \quad \text{in} \quad H^{-2}(\Omega)
\]
or in the distributional sense.

Theorem 3.1. Let \(J_p \) and \(J_d \) be defined as above. Then
\[
\min_{v \in H_0^2(\Omega)} J_p(v) = \max_{q \in L^2(\Omega)^{2 \times 2}} \left\{ J_d(q) \mid \nabla \cdot \nabla \cdot q = f \right\}
\] (3.6)

where the constraint on the right-hand side of (3.6) is understood as in (3.5).

Proof. By definition we have for \(v \) and \(q \) as in (3.6)
\[
J_p(v) - J_d(q) = \frac{1}{2} (D^2v, D^2v)_{0,\Omega} - (f, v)_{2,\Omega} + \frac{1}{2} (q, q)_{0,\Omega}
\]
\[
= \frac{1}{2} \left(D^2v - q, D^2v - q \right)_{0,\Omega} + (q, D^2v)_{0,\Omega} - (f, v)_{2,\Omega}
\]
\[
= \frac{1}{2} \| D^2v - q \|_{0,\Omega} \geq 0,
\]

since the relation (3.5) holds by assumption. It follows that \(\inf J_p(v) \geq \sup J_d(q) \) where the infimum and the supremum are understood in the spirit of (3.6). Since we have equality for \(v := u \) and \(q := D^2u \), the proof is complete. \(\square\)
We may split the solution \mathfrak{p} of the dual problem into its symmetric and antisymmetric part $\mathfrak{p}_S = \mathfrak{p}_S^{\text{sym}} + \mathfrak{p}_S^{\text{anti}}$. Obviously we have $\nabla \cdot \nabla \cdot \mathfrak{p}_S = 0$, if $\mathfrak{p}_S^{\text{anti}}$ is a smooth tensor-valued function. A density argument shows this relation is true also here, and $\mathfrak{p}_S^{\text{sym}}$ satisfies the constraint (3.5). Moreover $\|\mathfrak{p}_S\|_{0,\Omega}^2 \geq \|\mathfrak{p}_S^{\text{sym}}\|_{0,\Omega}^2 + \|\mathfrak{p}_S^{\text{anti}}\|_{0,\Omega}^2$. Therefore, the solution is a symmetrical tensor although the optimization problem was stated in the larger set $L_2(\Omega)^{2\times 2}$.

We are now in a position to state an abstract version of the two-energies principle for the biharmonic equation; (cf. [45], Thm. 3.1).

Theorem 3.2 (Two-energies principle for the biharmonic equation).

Let $u \in H_0^2(\Omega)$ be the solution of (3.2), and let $\mathfrak{p} \in L^2(\Omega)^{2\times 2}$ satisfy the equilibrium condition

$$\nabla \cdot \nabla \cdot \mathfrak{p} = f \quad \text{in } H^{-2}(\Omega).$$
(3.7)

Then, for $v \in H_0^2(\Omega)$ it holds

$$\|D^2v - \mathfrak{p}\|_{0,\Omega}^2 = \|D^2(v - u)\|_{0,\Omega}^2 + \|D^2u - \mathfrak{p}\|_{0,\Omega}^2.$$
(3.8)

Proof. We provide a short proof for completeness. If $u \in H_0^2(\Omega)$ is the solution of (3.2), then $(D^2u, D^2(v - u))_{0,\Omega} = (f, v - u)_{2,\Omega}$ for all $v \in H_0^2(\Omega)$. Next we conclude from (3.5) that the equilibrium assumption (3.7) implies $(\mathfrak{p}, D^2(v - u))_{0,\Omega} = (f, v - u)_{2,\Omega}$. Hence

$$(D^2u - \mathfrak{p}, D^2(v - u))_{0,\Omega} = (f - f, v - u)_{2,\Omega} = 0.$$

An application of the binomial formula to $\|D^2v - D^2u\|^2 + (D^2u - \mathfrak{p})^2_{0,\Omega}$ yields (3.8). □

The relationship (3.8) is called the two-energies principle, because it can be stated in terms of the primal energy $J_\varphi(v)$ and the complementary energy $J_\varepsilon(\mathfrak{p})$ as

$$\|D^2(v - u)\|_{0,\Omega}^2 + \|D^2u - \mathfrak{p}\|_{0,\Omega}^2 = 2 \left(J_\varphi(v) - J_\varepsilon(\mathfrak{p}) \right).$$

We conclude this section with a formulation of the two-energies principle that is better manageable in finite element computations. In particular, it translates the equilibrium condition (3.7) for $\mathfrak{p} \in L^2(\Omega)$ from $H^{-2}(\Omega)$ to an element-wise property. We consider moment tensors $\mathfrak{p} \in L^2(\Omega)^{2\times 2}$ that satisfy

$$\mathfrak{p}[K] \in P_k(K)^{2\times 2}, \quad k \geq 2, \; K \in T_h(\Omega),$$
(3.9a)

$$\mathfrak{p} = 0, \quad E \in E_h(\Omega),$$
(3.9b)

$$\mathfrak{p}_E \cdot [\nabla \cdot \mathfrak{p}]_E = 0, \quad E \in E_h(\Omega).$$
(3.9c)

The properties (3.9) imply $\mathfrak{p} \in \mathbb{H}^2(\Omega)$ (but are not necessary for functions in this space). This is obvious from (3.11) in the proof of the announced version of the two-energies principle.

Theorem 3.3 (Variant of the two-energies principle). Let $u \in H_0^2(\Omega)$ be the solution of (3.2) for $\mathfrak{p} \in L^2(\Omega)$. Moreover, for a geometrically conforming simplicial triangulation $T_h(\Omega)$ of Ω let $\mathfrak{p} \in \mathbb{H}(\text{div}^2, \Omega)$ satisfy (3.9a)–(3.9c) as well as the equilibrium condition

$$\nabla \cdot \nabla \cdot \mathfrak{p} = f \quad \text{in each } K \in T_h(\Omega).$$
(3.10)

Then, for $v \in H_0^2(\Omega)$ it holds

$$\|D^2v - \mathfrak{p}\|_{0,\Omega}^2 = \|D^2(v - u)\|_{0,\Omega}^2 + \|D^2u - \mathfrak{p}\|_{0,\Omega}^2.$$

Proof. Using (3.2) and applying integration by parts, we obtain
\[\int_{\Omega} (D^2 u - p) : D^2 (u - v) \, dx = \int_{\Omega} f (u - v) \, dx - \sum_{K \in \mathcal{T}_h(\Omega)} \int_{K} p : D^2 (u - v) \, dx \]
\[= \sum_{K \in \mathcal{T}_h(\Omega)} \int_{K} (f - \nabla \cdot \nabla \cdot p) (u - v) \, dx - \sum_{K \in \mathcal{T}_h(\Omega)} \int_{\partial K} n_{\partial K} \cdot \nabla (u - v) \, ds \]
\[+ \sum_{K \in \mathcal{T}_h(\Omega)} \int_{\partial K} n_{\partial K} \cdot \nabla \cdot p (u - v) \, ds, \]
where \(n_{\partial K} \) is the outward unit normal on \(\partial K \). The first term in the second line of (3.11) vanishes due to (3.10), whereas the boundary integrals vanish due to (3.9b), (3.9c) and \(u - v = n_{\partial K} \cdot \nabla (u - v) = 0 \) on \(\partial K \cap \Gamma \). Hence, it follows that
\[\int_{\Omega} (D^2 u - p) : D^2 (u - v) \, dx = 0. \]
The assertion is again an immediate consequence of this orthogonality relation. \(\Box \)

Remark 3.4. We note that for other type of boundary conditions the function space settings have to be modified accordingly. For instance, Neumann boundary conditions have to be incorporated into the function spaces for the dual variable \(p \). In particular, the boundary conditions \(u = 0 \) and \(D^2 u \, n_{\Gamma} = 0 \) on \(\Gamma \) are associated with the minimization of \(J_p \) over \(H^2(\Omega) \cap H_0^1(\Omega) \) and the maximization of \(J_q \) over \(\{ q \in H(\text{div}^2, \Omega) \mid q \, n_{\Gamma} = 0 \text{ on } \Gamma \} \). This has to be observed as well for the IPDG approximation and in the construction of the equilibrated moment tensor. The corresponding change of the \(a \text{- posteriori} \) error estimator is obvious and is left to the reader.

4. AN IPDG APPROXIMATION OF THE BIHARMONIC EQUATION

We consider the interior penalty discontinuous Galerkin (IPDG) approximation of the biharmonic problem (3.2) with \(f \in L^2(\Omega) \) on a geometrically conforming, locally quasi-uniform simplicial \(\mathcal{T}_h(\Omega) \) of the computational domain. It involves element-wise polynomial approximations of \(u \). For \(k \geq 2 \) we introduce the IPDG space
\[V_h := \{ v_h \in L^2(\Omega) \mid v_h|_K \in P_k(K), \ K \in \mathcal{T}_h(\Omega) \} \]
and as well the space of element-wise polynomial moment tensors
\[\mathbb{M}_h := \{ M_h \in L^2(\Omega)^{2 \times 2} \mid M_h|_K \in P_k(K)^{2 \times 2}, \ K \in \mathcal{T}_h(\Omega) \}. \]
We define a bilinear form \(a_h^{IP}(\cdot, \cdot) : V_h \times V_h \to \mathbb{R} \) for the variational IPDG approximation
\[a_h^{IP}(u_h, v_h) := \sum_{K \in \mathcal{T}_h(\Omega)} \int_{K} D^2 u_h : D^2 v_h \, dx \]
\[+ \sum_{E \in \mathcal{E}_h(\Omega)} \int_{E} (n_E \cdot \nabla \cdot D^2 u_h|_E \ [v_h]|_E + [v_h]|_E \ n_E \cdot \nabla \cdot D^2 v_h|_E) \, ds \]
\[- \sum_{E \in \mathcal{E}_h(\Omega)} \int_{E} ([\nabla v_h]|_E \cdot D^2 v_h|_E \ n_E + [\nabla v_h]|_E \cdot D^2 u_h|_E \ n_E) \, ds \]
\[+ \sum_{E \in \mathcal{E}_h(\Omega)} \int_{E} \frac{\alpha_1}{h_E} n_E \cdot [\nabla v_h]|_E \ n_E \cdot [\nabla v_h]|_E \, ds + \sum_{E \in \mathcal{E}_h(\Omega)} \int_{E} \frac{\alpha_2}{h_E} [u_h]|_E \ [v_h]|_E \, ds, \]
where $\alpha_i > 0$, $i = 1, 2$, are suitable penalty parameters. The IPDG approximation of (3.2) reads: Find $u_h \in V_h$ such that

$$a_h^{IP}(u_h, v_h) = (f, v_h)_{\partial \Omega}, \quad v_h \in V_h. \quad (4.4)$$

Remark 4.1. The Hellan–Herrmann–Johnson based symmetric IPDG approximation (4.4) is the counterpart of the Ciarlet–Raviart based symmetric IPDG approximation in [34, 35]. If we choose the finite element space $V_h = V_h \cap C^0(\Omega)$, then it reduces to the symmetric C^0 IPDG approximation considered in [20, 21], and [33]. In the C^0 case we have $[u_h]_{\partial \Omega} = [v_h]_{\partial \Omega} = 0$, $E \in \mathcal{E}_h(\Omega)$, and hence, the corresponding terms in (4.3) vanish.

For completeness, we note that $a_h^{IP}(\cdot, \cdot)$ is not well defined for functions in $H^2_0(\Omega)$. This can be cured by means of a lifting operator

$$L : V_h + H^2_0(\Omega) \to M_h$$

$$\int_\Omega L(v) : q_h \, dx = \sum_{E \in \mathcal{E}_h(\Omega)} \int_E \left([v]_E n_E \cdot (\nabla v)_E - [v]_E \cdot (\nabla q_h)_E \right) ds. \quad (4.5)$$

The lifting operator L is stable in the sense that it satisfies (cf. [34])

$$\|L(v)\|_{0, \Omega} \lesssim \sum_{E \in \mathcal{E}_h(\Omega)} \left(h^{-1}_E \|n_E \cdot [\nabla v]_E\|_{0, E}^2 + h^{-3}_E \|v]_E\|_{0, E}^2 \right), \quad v \in V_h + H^2_0(\Omega).$$

Now we define $\tilde{a}_h^{IP} : (V_h + H^2_0(\Omega)) \times (V_h + H^2_0(\Omega)) \to \mathbb{R}$ as follows:

$$\tilde{a}_h^{IP}(u, v) := \sum_{K \in \mathcal{K}_h(\Omega)} \int_K \left(\nabla^2 u : \nabla^2 v + (L(u) : \nabla^2 v + D^2 u : L(v)) \right) dx$$

$$+ \sum_{E \in \mathcal{E}_h(\Omega)} \int_E \frac{\alpha_1}{h_E^2} n_E \cdot [\nabla v]_E n_E \cdot [\nabla v]_E ds + \sum_{E \in \mathcal{E}_h(\Omega)} \int_E \frac{\alpha_2}{h_E^3} [v]_E [v]_E ds. \quad (4.6)$$

It is easy to verify that $\tilde{a}_h^{IP}(u_h, v_h) = a_h^{IP}(u_h, v_h)$ holds for $u_h, v_h \in V_h$.

We introduce the mesh-dependent IPDG norm on $V_h + H^2_0(\Omega)$

$$\|v\|_{2, h, \Omega}^2 := \sum_{K \in \mathcal{K}_h(\Omega)} \|D^2 v\|_{0, K}^2 + \sum_{E \in \mathcal{E}_h(\Omega)} \int_E \frac{\alpha_1}{h_E^2} n_E \cdot [\nabla v]_E n_E \cdot [\nabla v]_E^2 + \sum_{E \in \mathcal{E}_h(\Omega)} \int_E \frac{\alpha_2}{h_E^3} [v]_E [v]_E ds. \quad (4.7)$$

It is not difficult to show that for sufficiently large penalty parameters α_i, $i = 1, 2$, i.e., $\alpha_1 = O((k+1)^2), \alpha_2 = O((k+1)^3)$, the bilinear form $\tilde{a}_h^{IP}(\cdot, \cdot)$ is coercive, i.e., there exists a positive constant γ such that

$$\tilde{a}_h^{IP}(v, v) \geq \gamma \|v\|_{2, h, \Omega}^2, \quad v \in V_h + H^2_0(\Omega). \quad (4.8)$$

On the other hand, it is continuous on $V_h + H^2_0(\Omega)$, i.e., there exists a constant $\Gamma > 1$ such that for any $\alpha_i > 0, 1 \leq i \leq 2$,

$$\tilde{a}_h^{IP}(v, w) \leq \Gamma \|v\|_{2, h, \Omega} \|w\|_{2, h, \Omega}, \quad v, w \in V_h + H^2_0(\Omega). \quad (4.9)$$
In particular, it follows from (4.8) and (4.9) that the IPDG approximation (4.4) admits a unique solution \(u_h \in V_h \) for sufficiently large penalty parameters.

A mixed formulation in the spirit of [6] was given in [34] for the Clariet–Raviart method. We provide now two mixed Hellan–Herrmann–Johnstone type formulations of (4.4). The first one is motivated by the weak formulation of the two-field approach (1.1). Multiplying the first equation in (1.1) by \(q \in H(\text{div}^2, \Omega) \), the second one by \(v \in H^2_0(\Omega) \), and integrating over \(K \in T_h(\Omega) \) yields

\[
\int_K \mathbf{p} : \mathbf{q} \, dx - \int_K \mathbf{u} \cdot \nabla \cdot \mathbf{q} \, dx - \int_{\partial K} \mathbf{n} \delta_K \cdot \mathbf{q} \, ds + \int_{\partial K} \mathbf{u} \delta_K \cdot \nabla \cdot \mathbf{q} \, ds = 0, \tag{4.10a}
\]

\[
\int_K \mathbf{p} : D^2v \, dx - \int_{\partial K} \mathbf{n} \delta_K \cdot \nabla v \, ds + \int_{\partial K} \mathbf{n} \delta_K \cdot \nabla \cdot \mathbf{v} \, ds = \int_K f v \, dx. \tag{4.10b}
\]

We specify appropriate numerical flux functions on the edges \(E \in E_h(\Omega) \)

\[
\mathbf{\tilde{u}}^{(1)} := \left\{ \begin{array}{ll}
(u_h) & E \in E_h(\Omega) \\
0 & E \in E(\Gamma)
\end{array} \right., \tag{4.11a}
\]

\[
\mathbf{\tilde{u}}^{(2)} := \left\{ \begin{array}{ll}
(u_h) & E \in E_h(\Omega) \\
0 & E \in E(\Gamma)
\end{array} \right., \tag{4.11b}
\]

\[
\mathbf{\tilde{p}} := (D^2u_h) - \frac{\alpha_1}{\gamma} n_E \mathbf{[\nabla u_h]_E}, \tag{4.11c}
\]

\[
\mathbf{\tilde{\psi}} := (\nabla \cdot D^2u_h) + \frac{\alpha_2}{\gamma} (u_h) n_E \mathbf{[u_h]_E}. \tag{4.11d}
\]

We keep the notion numerical fluxes from [6] although not all the variables in (4.11) are fluxes in the strict sense.

The two-field formulation of (4.4) reads as follows: Find \((u_h, p_h) \in V_h \times M_h \) and numerical fluxes such that (4.11a)–(4.11d) holds and simultaneously for all \((v, q) \in V_h \times M_h \) and \(K \in T_h(\Omega) \)

\[
\int_K \mathbf{p}_h : \mathbf{q} \, dx - \int_K u_h \nabla \cdot \mathbf{q} \, dx - \int_{\partial K} \mathbf{\tilde{u}}^{(1)} \cdot \mathbf{n} \delta_K \, ds + \int_{\partial K} \mathbf{\tilde{u}}^{(2)} \cdot \mathbf{n} \delta_K \cdot \nabla \cdot \mathbf{q} \, ds = 0, \tag{4.12a}
\]

\[
\int_K \mathbf{p}_h : D^2v \, dx - \int_{\partial K} \mathbf{\tilde{p}} \cdot \mathbf{n} \delta_K \cdot \nabla v \, ds + \int_{\partial K} \mathbf{n} \delta_K \cdot \mathbf{\tilde{\psi}} \cdot \mathbf{n} \, ds = \int_K f v \, dx. \tag{4.12b}
\]

All the equations are coupled, since they contain equations on elements as well as on edges.

Often another implementation is considered as more convenient. First the solution \(u_h \) of the primal method is determined by solving linear equations with a positive definite matrix. The numerical fluxes are determined immediately by their definition (4.11). The moment tensor \(p_h \) can be evaluated by solving the small linear system (4.12a) for each \(K \in T_h \).

Lemma 4.2. Let the numerical flux functions \(\mathbf{\tilde{u}}^{(1)}, \mathbf{\tilde{u}}^{(2)}, \mathbf{\tilde{p}} \) and \(\mathbf{\tilde{\psi}} \), be given by (4.11) and suppose that the penalty parameters \(\alpha_i, 1 \leq i \leq 2 \), are sufficiently large.

(i) If \(u_h \in V_h \) is the unique solution of (4.4), then there exists \(p_h \in M_h \) such that the pair \((u_h, p_h) \) satisfies (4.12).

(ii) If \((u_h, p_h) \in V_h \times M_h \) is a solution of (4.12), then \(u_h \) is the solution of the IPDG approximation (4.4).
Proof. Let \(u_h \in V_h \) be the unique solution of (4.4). The associated numerical fluxes are known from (4.11). We define \(\mathbf{p}_h \in \mathbf{M}_h \) by means of (4.12a). Next, let \(K \in T_h(\Omega) \) and \(v \in V_h \). We apply (4.12a) with \(g(x) = D^2v(x), x \in K \), and insert the expressions (4.11a), (4.11b) for the numerical fluxes to obtain

\[
\int_K \mathbf{p}_h : D^2v \, dx = \int_K u_h \, \nabla \cdot \nabla \cdot D^2v \, dx + \int_{\partial K \setminus \partial K \cap \Gamma} \{ \nabla u_h \}_K : D^2v \, n_{\partial K} \, ds - \int_{\partial K \setminus \partial K \cap \Gamma} \{ u_h \}_K n_{\partial K} \cdot \nabla \cdot D^2v \, ds, \tag{4.13}
\]

where \(\{ \} \subset \partial K = \{ \} \subset \partial E, E \in \mathcal{E}(\partial K) \). Note that boundary terms are present only on interior edges, since the numerical fluxes \(\tilde{g}^{(1)} \) and \(\tilde{g}^{(2)} \) vanish on \(\Gamma \). Using Green's formula

\[
\int_K u_h \, \nabla \cdot \nabla \cdot D^2v \, dx = \int_K D^2u_h : D^2v \, dx - \int_{\partial K} \nabla u_h \cdot D^2v \, n_{\partial K} \, ds + \int_{\partial K} u_h n_{\partial K} \cdot \nabla \cdot D^2v \, ds, \tag{4.14}
\]

for eliminating the first integral on the right-hand side of (4.13) we get

\[
\int_K \mathbf{p}_h : D^2v \, dx = \int_K D^2u_h : D^2v \, dx - \int_{\partial K} \nabla u_h \cdot D^2v \, n_{\partial K} \, ds + \int_{\partial K} u_h n_{\partial K} \cdot \nabla \cdot D^2v \, ds + \int_{\partial K \setminus \partial K \cap \Gamma} \{ \nabla u_h \}_K : D^2v \, n_{\partial K} \, ds - \int_{\partial K \setminus \partial K \cap \Gamma} \{ u_h \}_K n_{\partial K} \cdot \nabla \cdot D^2v \, ds. \tag{4.15}
\]

We evaluate the sums over the boundary terms in (4.15) and recall that on interior edges \(\{ v \} \subset \partial K = \{ v \} \subset \partial E = \frac{1}{2} \{ v \} \subset \partial K \) holds true whence

\[
\sum_{K \in \mathcal{T}_h(\Omega)} \left(- \int_{\partial K} \nabla u_h \cdot D^2v \, n_{\partial K} \, ds + \int_{\partial K \setminus \partial K \cap \Gamma} \{ \nabla u_h \}_K : D^2v \, n_{\partial K} \, ds \right) \\
= \sum_{K \in \mathcal{T}_h(\Omega)} \left(\int_{\partial K \setminus \partial K \cap \Gamma} \{ \nabla u_h \}_K - \nabla u_h \, \cdot \, D^2v \, n_{\partial K} \, ds - \int_{\partial K \setminus \partial K \cap \Gamma} \nabla u_h \cdot D^2v \, n_{\partial K} \, ds \right) \\
= - \sum_{E \in \mathcal{E}_h(\Omega)} \int_E [\nabla u_h]_E \cdot \{ D^2v \}_E n_E \, ds. \tag{4.16}
\]

Similarly,

\[
\sum_{K \in \mathcal{T}_h(\Omega)} \left(\int_{\partial K} u_h n_{\partial K} \cdot \nabla \cdot D^2v \, ds - \int_{\partial K \setminus \partial K \cap \Gamma} \{ u_h \}_K n_{\partial K} \cdot \nabla \cdot D^2v \, ds \right) = \sum_{E \in \mathcal{E}_h(\Omega)} \int_E [u_h]_E n_E \cdot \{ \nabla \cdot D^2v \}_E \, ds
\]

Summation over all terms in (4.15) yields

\[
\int_K \mathbf{p}_h : D^2v \, dx = \sum_{K \in \mathcal{T}_h(\Omega)} \int_K D^2u_h : D^2v \, dx + \sum_{E \in \mathcal{E}_h(\Omega)} \int_E [\nabla u_h]_E \cdot \{ D^2v \}_E n_E \, ds - \sum_{E \in \mathcal{E}_h(\Omega)} \int_E [u_h]_E n_E \cdot \{ \nabla \cdot D^2v \}_E \, ds. \tag{4.17}
\]
Next, we use the variational equality (4.4) to eliminate the first integral on the right-hand side of (4.17),

\[
\sum_{K \in \mathcal{T}_h(\Omega)} \int_{K} p_{h} : D^2 v \, dx = - \sum_{E \in \mathcal{E}_h(\Omega)} \left(\int_{E} \left(n_{E} \cdot \{ \nabla \cdot D^2 u_{h} \}_{E} \, [v]_{E} \, ds + \int_{E} \frac{\alpha_{1}}{\beta_{E}} \frac{n_{E} \cdot \{ \nabla v \}_{E}}{\beta_{E}} \, ds \right) \right) =: I_1
\]

\[
+ \sum_{E \in \mathcal{E}_h(\Omega)} \left(\int_{E} \left(\{ \nabla u_{h} \}_{E} \cdot \{ D^2 v \}_{E} n_{E} \, ds + \int_{E} \frac{\alpha_{2}}{\beta_{E}} [u_{h}]_{E} \, [v]_{E} \, ds \right) \right) =: I_2
\]

\[- \sum_{E \in \mathcal{E}_h(\Omega)} \int_{E} \frac{\alpha_{1}}{\beta_{E}} n_{E} \cdot \{ \nabla u_{h} \}_{E} \, [\nabla v]_{E} \, ds - \sum_{E \in \mathcal{E}_h(\Omega)} \int_{E} \frac{\alpha_{2}}{\beta_{E}} [u_{h}]_{E} \, [v]_{E} \, ds \]

\[+ (f, v)_{\mathcal{E}_h(\Omega)} \]

\[- \sum_{E \in \mathcal{E}_h(\Omega)} \int_{E} \{ \nabla u_{h} \}_{E} \cdot \{ D^2 v \}_{E} n_{E} \, ds + \sum_{E \in \mathcal{E}_h(\Omega)} \int_{E} \frac{\alpha_{1}}{\beta_{E}} [u_{h}]_{E} \, \{ \nabla v \}_{E} \, ds . \quad (4.18)
\]

Note that the sums of the integrals \(I_1 \) and \(I_2 \) in (4.18) cancel. Observing (4.11c), (4.11d) we obtain (4.12b).

Conversely, if \((u_{h}, p_{h}) \in V_{h} \times M_{h} \) solves (4.12a), (4.12b), we choose \(q := D^2 v \) in (4.12a). Applying Green's formula (4.14) again, we can eliminate \(p_{h} \) from the system. It follows that \(u_{h} \) is a solution of the primal problem (4.4) which proves (ii).

As opposed to second order elliptic boundary value problems [15], an equilibrated a posteriori error estimator for the IPDG approximation of the biharmonic equation cannot be based on the two-field formulation (4.12). Instead, we have to resort to a three-field approach which can be motivated by introducing \(\psi = \nabla \cdot p \) in (1.1) which implies \(\nabla \cdot \psi = f \). Multiplying the first equation by \(\phi \in H^{1}(\Omega)^{2} \), the second one by \(v \in H^{1}_{0}(\Omega) \), and integrating over \(K \in \mathcal{T}_h(\Omega) \), (4.10b) can be replaced by

\[
\int_{K} p : \nabla \phi \, dx - \int_{\delta K} p n_{\delta K} \cdot \phi \, ds = \int_{K} \psi \cdot \phi \, dx,
\]

\[
\int_{K} \psi \cdot \nabla v \, dx - \int_{\delta K} n_{\delta K} \cdot \psi v \, ds = - \int_{K} f v \, dx.
\]

For the three-field formulation of (4.4) we introduce the finite element space

\[
\mathcal{W}_{h} := \{ \phi_{h} \in L^{2}(\Omega)^{2} \mid \phi_{h}|_{K} \in P_{k-1}(K)^{2}, K \in \mathcal{T}_h(\Omega) \}.
\]

Then, the three-field formulation reads as follows: Find \((u_{h}, p_{h}, \psi_{h}) \in V_{h} \times M_{h} \times \mathcal{W}_{h} \) together with the numerical flux functions \(\tilde{u}^{(1)}, \tilde{u}^{(2)}, \tilde{p} \) and \(\tilde{\psi} \) in (4.11) such that for all \((u, q, \phi) \in V_{h} \times M_{h} \times \mathcal{W}_{h} \) and all
\(K \in T_h(\Omega) \) it holds
\[
\begin{align*}
\int_{K_{j_h}} p_{h} : q \, dx &= \int_{K} u_h \nabla : q \, dx \quad (4.20a) \\
- \int_{\partial K} \hat{u}^{(1)} \cdot q \, n_{\partial K} ds + \int_{\partial K} \hat{u}^{(2)} n_{\partial K} \cdot \nabla : q \, ds &= 0, \\
\int_{K_{j_h}} p_{h} : \nabla \phi \, dx &= \int_{K} \hat{p}_{h} n_{\partial K} \cdot \phi \, ds = - \int_{K} \hat{\psi}_{h} \cdot \phi \, dx, \\
\int_{K_{j_h}} \hat{\psi}_{h} : \nabla v \, dx &= - \int_{K} n_{\partial K} \cdot \hat{\psi}_{h} \, ds = - \int_{K} f v \, dx. \quad (4.20c)
\end{align*}
\]

Lemma 4.3. Under the assumptions of Lemma 4.2 it holds:

(i) If \(u_h \in V_h \) is the unique solution of (4.4), then there exists a unique pair \((p_{h}, \psi_{h}) \in M_{h} \times W_{h} \) such that the triple \((u_{h}, p_{h}, \psi_{h}) \) satisfies (4.20).

(ii) If \((u_{h}, p_{h}, \psi_{h}) \in V_{h} \times M_{h} \times W_{h} \) is a solution of (4.20), then the pair \((u_{h}, p_{h}) \) solves (4.12), and \(u_{h} \) is the solution of the IPDG approximation (4.4).

Proof. If \(u_{h} \in V_{h} \) is the unique solution of (4.4), we already know from Lemma 4.2(i) that there exists \(p_{h} \in M_{h} \), such that (4.12a) and (4.12b) are satisfied. Next, we define \(\psi_{h} \in W_{h} \) by means of (4.20b). Choosing \(\phi = \nabla v \) we may replace the first two terms in (4.12b) by \(\sum_{K} \int_{K} \psi_{h} \cdot \nabla v \, dx \). It follows that (4.20c) holds true which proves (i).

Conversely, if \((u_{h}, p_{h}, \psi_{h}) \in V_{h} \times M_{h} \times W_{h} \) is a solution of (4.20a)-(4.20c), obviously (4.12a) and (4.20a) coincide. Next, for obtaining (4.12b), we set \(\phi = \nabla v \) in (4.20b) and evaluate the term in the second line via (4.20c),
\[
\sum_{K \in T_h} \int_{K} p_{h} : D^2 v \, dx - \sum_{K \in T_h} \int_{\partial K} p_{h} n_{\partial K} \cdot \nabla v \, ds = - \sum_{K \in T_h} \int_{K} \psi_{h} \cdot \nabla v \, dx,
\]
\[
= - \sum_{K \in T_h} \int_{\partial K} n_{\partial K} \cdot \psi_{h} v \, ds + \sum_{K \in T_h} \int_{K} f v \, dx.
\]
Hence, we obtain (4.12b). Now Lemma 4.2, part (ii) shows that \(u_{h} \) solves (4.4) which proves (ii). \(\square \)

5. AN A POSTERIORI ERROR ESTIMATOR FOR THE IPDG APPROXIMATION OF THE BIHARMONIC EQUATION

The construction of an equilibrated moment tensor in the finite element framework will be affected by data oscillations, and the case \(k = 2 \) requires special care. This will be clear from Remark 6.5 below. Specifically, set
\[
M_{h}^{eq} := \left\{ q_{h} \in L^2(\Omega)^{2 \times 2} \mid q_{h} |_{K} \in P_{\ell}(K)^{2 \times 2}, \ K \in T_{h}(\Omega) \right\},
\]
where \(\ell := \begin{cases} k & \text{if } k \geq 3, \\ 3 & \text{if } k = 2. \end{cases} \)

Given \(K \in T_{h}(\Omega) \), let \(f_{K} \) be the \(L^2 \)-projection of \(f \) onto \(P_{k-2}(K) \), and let \(f_{h} \in L^2(\Omega) \) be given by \(f_{h} |_{K} = f_{K}, K \in T_{h}(\Omega) \). A moment tensor \(p_{h}^{eq} \in M_{h}^{eq} \) is called equilibrated in this framework, if it satisfies (3.9b), (3.9c) which implies \(p_{h}^{eq} \in H(\text{div}^2, \Omega) \), and also the equilibrium equation
\[
\nabla \cdot \nabla \cdot p_{h}^{eq} = f_{h} \quad \text{in each } K \in T_{h}(\Omega).
\]
The two-energies principle (Thm. 3.3) can be applied to the IPDG approximation (4.4) involving an equilibrated moment tensor $\p^0_{h,x}$. It gives rise to an a posteriori error bound in terms of element-related terms $\eta_{K,i}^0, 1 \leq i \leq 2$, and edge-related terms $\eta_{E,i}^0, 1 \leq i \leq 2$, as given by

\begin{align}
\eta_{K,1}^0 & := \| D^2 u_h - E^0_{h,K} \|_{0,K}, \quad K \in \mathcal{T}_h(\Omega), \\
\eta_{K,2}^0 & := \| D^2 u_h - D^2 u_h^{\text{conf}} \|_{0,K}, \quad K \in \mathcal{T}_h(\Omega), \\
\eta_{E,1}^0 & := h_{E}^{-1/2} \| n_E \cdot [\nabla u_h]_E \|_{0,E}, \quad E \in \mathcal{E}_h(\Omega), \\
\eta_{E,2}^0 & := h_{E}^{-3/2} \| [u_h]_E \|_{0,E}, \quad E \in \mathcal{E}_h(\Omega),
\end{align}

where $u_h^{\text{conf}} \in H^2(\Omega)$ in (5.3b) will be constructed by postprocessing from the finite element solution $u_h \in V_h$.

The following auxiliary result deals with the data oscillations due to the approximation of f by f_h. Its application is not restricted to a posteriori error estimates.

Lemma 5.1. Let $z \in \mathcal{H}^2_0(\Omega)$ be the weak solution of the biharmonic problem

\begin{align}
\Delta^2 z &= f - f_h \quad \text{in } \Omega, \\
z &= n \cdot \nabla z = 0 \quad \text{on } \Gamma = \partial \Omega.
\end{align}

If the L^2-projection of $f - f_h$ to $P_1(K)$ vanishes in each $K \in \mathcal{T}_h(\Omega)$, then

\begin{align}
\| D^2 z \|^2_{0,K} & \leq \frac{1}{\pi^4} \sum_{K \in \mathcal{T}_h(\Omega)} h_K \| f - f_h \|^2_{0,K}.
\end{align}

Proof. For $v \in \mathcal{H}^2_0(\Omega)$ and $p_1 \in P_1(K), K \in \mathcal{T}_h(\Omega)$, we have by assumption

\begin{align}
\sum_{K \in \mathcal{T}_h(\Omega)} (D^2 z, D^2 v)_{0,K} = \sum_{K \in \mathcal{T}_h(\Omega)} (f - f_h, v - p_1)_{0,K}.
\end{align}

Choosing $v = z$, it follows that

\begin{align}
\sum_{K \in \mathcal{T}_h(\Omega)} \| D^2 z \|^2_{0,K} \leq \sum_{K \in \mathcal{T}_h(\Omega)} \| f - f_h \|^2_{0,K} \| z - p_1 \|^2_{0,K}.
\end{align}

We fix $p_1 \in P_1(K)$ by the interpolation conditions $\int_K p_1 \, dx = \int_K z \, dx$ and $\int_K \nabla p_1 \, dx = \int_K \nabla z \, dx$. Since the choice of p_1 implies $\int_K (z - p_1) \, dz = 0$, the Poincaré–Friedrichs inequality for convex domains with the optimal factor by Payne and Weinberger [46], verified by Bebendorf [8], yields

\begin{align}
\| z - p_1 \|^2_{0,K} \leq \frac{1}{\pi} h_K \| \nabla (z - p_1) \|^2_{0,K}.
\end{align}

The choice of p_1 also implies zero mean values for the derivatives $\int_K \partial_i (z - p_1) / \partial x_i \, dx, 1 \leq i \leq 2$. Another application of the Poincaré–Friedrichs inequality gives

\begin{align}
\| \partial_i (z - p_1) / \partial x_i \|^2_{0,K} \leq \frac{1}{\pi} h_K \| \nabla \partial_i (z - p_1) / \partial x_i \|^2_{0,K}, \quad 1 \leq i \leq 2.
\end{align}

We combine the estimates to obtain

\begin{align}
\| z - p_1 \|^2_{0,K} \leq \frac{1}{\pi^2} h_K^2 \| D^2 z \|^2_{0,K}.
\end{align}
A TWO-ENERGIES PRINCIPLE FOR THE BIHARMONIC EQUATION

Inserting this estimate into (5.6) yields

$$\sum_{K \in T_h(\Omega)} \| D^2 z \|_{0,K}^2 \leq \frac{1}{\pi^2} \sum_{K \in T_h(\Omega)} \| D^2 z \|_{0,K} h_K^2 \| f - f_h \|_{0,K}. $$

By applying the Cauchy inequality to the right-hand side and dividing by the square root of the left-hand side we obtain the assertion. \(\square \)

The data oscillations will be denoted by

$$osc^2_h(f) := \sum_{K \in T_h(\Omega)} osc^2_K(f), \quad osc^2_K(f) := h_K \| f - f_h \|_{0,K}^2. $$

(5.7)

The error bound in the following theorem refers to the norm (4.7).

Theorem 5.2. Let \(u \in H^2_0(\Omega) \) be the solution of the biharmonic problem (3.1a), (3.1b), let \(u_h \in V_h \) be the unique solution of the IPDG approximation (4.4), and let \(p_{\text{eq}}^h \in M_{\text{eq}}^h \cap H(\text{div}^2, \Omega) \) be an equilibrated moment tensor. Moreover, let \(u_{\text{conf}}^h \in H^2_0(\Omega) \), let \(\eta_{h,i}^{eq}, \eta_{h,i}^{eq} \leq 1 \leq 2 \), be given by (5.3a)-(5.3d), and let \(osc_h(f) \) be the data oscillation (5.7). We set

$$\eta_{h,i}^{eq} := \left(\sum_{K \in T_h(\Omega)} (\eta^{eq}_{K,i})^2 \right)^{1/2} + 2 \left(\sum_{K \in T_h(\Omega)} (\eta^{eq}_{K,i})^2 \right)^{1/2} + \left(\sum_{E \in E_h(\Omega)} \left(\alpha_1 (\eta^{eq}_{E,1})^2 + \alpha_2 (\eta^{eq}_{E,2})^2 \right) \right)^{1/2}. $$

(5.8)

Then it holds

$$\| u - u_h \|_{2,h,\Omega} \leq \eta_{h,i}^{eq} + \frac{1}{\pi^2} osc(f).$$

(5.9)

Proof. Let \(\bar{u} \in H^2_0(\Omega) \) be the weak solution of the biharmonic problem

$$\Delta^2 \bar{u} = f_h \quad \text{in} \ \Omega,$$

$$\bar{u} = n_F \cdot \nabla \bar{u} = 0 \quad \text{on} \ \Gamma = \partial \Omega.$$

By recalling (4.7) and applying the triangle inequality twice we obtain

$$\| u - u_h \|_{2,h,\Omega} \leq \left(\sum_{K \in T_h(\Omega)} \| D^2 u - D^2 u_h \|_{0,K}^2 \right)^{1/2} + \left(\sum_{E \in E_h(\Omega)} \left(\alpha_1 (\eta^{eq}_{E,1})^2 + \alpha_2 (\eta^{eq}_{E,2})^2 \right) \right)^{1/2}$$

$$\leq \left(\sum_{K \in T_h(\Omega)} \| D^2 u - D^2 \bar{u} \|_{0,K}^2 \right)^{1/2} + \left(\sum_{E \in E_h(\Omega)} \| D^2 \bar{u} - D^2 u_{\text{conf}} \|_{0,E}^2 \right)^{1/2}$$

$$+ \left(\sum_{K \in T_h(\Omega)} \| D^2 u_{\text{conf}} - D^2 u_h \|_{0,K}^2 \right)^{1/2} + \left(\sum_{E \in E_h(\Omega)} \left(\alpha_1 (\eta^{eq}_{E,1})^2 + \alpha_2 (\eta^{eq}_{E,2})^2 \right) \right)^{1/2}. $$

(5.10)

Since \(z := u - \bar{u} \) solves (5.4a), (5.4b), the first term in the third line of (5.10) can be estimated from above by Lemma 5.1 and thus gives rise to the data oscillations in (5.9). The two-energies principle (Thm. 3.3) with
\[u = 0, \quad v = u_h^{\text{conf}} \] and \(\mathbf{p} = \mathbf{p}_h^{eq} \) yields
\[
\|D^2(u - u_h^{\text{conf}})\|_{0,\Omega} \leq \left(\sum_{K \in \mathcal{T}_h(\Omega)} \|D^2u_h^{\text{conf}} - \mathbf{p}_h^{eq}\|_{0,K}^2 \right)^{1/2} \leq \left(\sum_{K \in \mathcal{T}_h(\Omega)} \|D^2u_h - D^2u_h^{\text{conf}}\|_{0,K}^2 \right)^{1/2} + \left(\sum_{K \in \mathcal{T}_h(\Omega)} \|\mathbf{p}_h^{eq} - D^2u_h\|_{0,K}^2 \right)^{1/2}.
\] (5.11)

Using these estimates in (5.10) allows to conclude.

Corollary 5.3. Assume that the assumptions of Theorem 5.2 are satisfied. Specifically, let \(V_h^{\text{conf}} \) be the generalized version of the classical Hsieh-Clough-Tocher \(C^1 \) conforming finite element space as constructed in [27], and let \(u_h^{\text{conf}} = E_h(u_h) \) be the extension of \(u_h \) to \(V_h^{\text{conf}} \) as defined in [35]. Then there exists a constant \(C_1 > 0 \), depending only on the local geometry of the triangulation and on the penalty parameters \(\alpha_i, 1 \leq i \leq 2 \), such that it holds
\[
\|u - u_h\|_{2,h,\Omega}^2 \leq \sum_{K \in \mathcal{T}_h(\Omega)} (\eta_{\Omega, K,1}^2) \leq C_1 \sum_{K \in \mathcal{T}_h(\Omega)} ((\eta_{E,1}^2)^2 + (\eta_{E,2}^2)^2) + \frac{1}{\pi^2} \cos^2(f).
\] (5.12)

Proof. In [35] it has been shown that
\[
\sum_{K \in \mathcal{T}_h(\Omega)} (\eta_{\Omega, K,2}^2)^2 \leq \sum_{E \in \mathcal{E}_h(\Omega)} ((\eta_{E,1}^2)^2 + (\eta_{E,2}^2)^2).
\] (5.13)

Using (5.13) in (5.9) yields (5.12).

6. CONSTRUCTION OF AN EQUILIBRATED MOMENT TENSOR

We construct an equilibrated moment tensor \(\mathbf{p}_h^{eq} \in \mathbf{M}^{eq}_h \cap \mathbf{H}(\text{div}, \Omega) \) which allows to apply the two-energies principle and Theorem 5.2. The construction will be done by an interpolation on each element. Thus it is a local procedure. In particular, denoting by \(\text{BDM}_m(K), m \in \mathbb{N} \), the Brezzi-Douglas-Marini element of polynomial degree \(m \) (cf., e.g., [22]), we first construct an auxiliary vector field \(\tilde{\mathbf{w}}_h^{eq} \in \mathbf{H}(\text{div}, \Omega), \tilde{\mathbf{w}}_h^{eq}|_K \in \text{BDM}_{m-1}(K), K \in \mathcal{T}_h(\Omega) \), satisfying
\[
\nabla \cdot \tilde{\mathbf{w}}_h^{eq} = f_h \quad \text{in } L^2(\Omega),
\] (6.1)

and then an equilibrated moment tensor \(\mathbf{p}_h^{eq} \in \mathbf{M}^{eq}_h \cap \mathbf{H}(\text{div}, \Omega) \) satisfying
\[
\nabla \cdot \mathbf{p}_h^{eq} = \tilde{\mathbf{w}}_h^{eq} \quad \text{in } L^2(\Omega)^2.
\] (6.2)

For the construction of the auxiliary vector field we recall the following result:

Lemma 6.1. Let \(m \geq 1 \). Any vector field \(\mathbf{\Phi} \in P_m(K) \) is uniquely defined by the following degrees of freedom
\[
\int_E \mathbf{u}_E \cdot \mathbf{\Phi} \, q \, ds, \quad q \in P_m(E), \quad E \in \mathcal{E}_h(\partial K),
\] (6.3a)
\[
\int_K \mathbf{\Phi} \cdot \nabla q \, dx, \quad q \in P_{m-1}(K),
\] (6.3b)
\[
\int_K \mathbf{\Phi} \cdot \text{curl}(b_K q) \, dx, \quad q \in P_{m-2}(K).
\] (6.3c)
where \(b_K \) in (6.3c) is the element bubble function on \(K \) given by \(b_K = \prod_{i=1}^{3} \lambda_i^K \) and \(\lambda_i^K \), \(1 \leq i \leq 3 \), are the barycentric coordinates of \(K \). Moreover, there exists a positive constant \(C_2(m) \) depending only on the polynomial degree \(m \) and the local geometry of the triangulation \(T_h(\Omega) \) such that

\[
\int_K |\phi|^2 \, dx \leq C_2(m) \left(\sum_{E \in E_h(\partial K)} h_E \int_E |n_E \cdot \phi|^2 \, ds + h_K^2 \int_K |\nabla \cdot \phi|^2 \, dx \right.
+ h_K^2 \max_{q \in P_{m-3}(K), \max_{\bar{z} \in K} |q(\bar{z})| \leq 1} \left\{ \int_K |\phi \cdot \text{curl}(b_K q)|^2 \, dx \right\} \right).
\] (6.4)

Proof. For the uniqueness result we refer to (3.41) in [22, p. 125] since \(\text{BDM}_m(K) = P_m(K) \). The estimate (6.4) can be derived by standard scaling arguments (cf. Lem. 3.1 and Remark 3.3 in [15]).

The auxiliary vector field \(\psi^\alpha_h \) is constructed in each element \(K \in T_h \) such that \(\psi^\alpha_h |_K \in \text{BDM}_{l-1}(K) \) satisfies the interpolation conditions

\[
\int_E n_E \cdot \psi^\alpha_h q \, ds = \int_E n_E \cdot \tilde{\psi} q \, ds, \quad q \in P_{l-1}(E), \ E \in \mathcal{E}_h(\partial K),
\] (6.5a)

\[
\int_K \psi^\alpha_h \cdot \nabla q \, dx = \int_K \psi_h \cdot \nabla q \, dx, \quad q \in P_{l-2}(K),
\] (6.5b)

\[
\int_K \psi^\alpha_h \cdot \text{curl}(b_K q) \, dx = \int_K \nabla \cdot D^2 u_h \cdot \text{curl}(b_K q) \, dx, \quad q \in P_{l-3}(K).
\] (6.5c)

Lemma 6.2. The vector field \(\psi^\alpha_h \) that is defined by (6.5) is contained in \(H(\text{div}, \Omega) \) and satisfies (6.1).

Proof. The solvability of (6.5a)-(6.5c) is guaranteed by Lemma 6.1 with \(m = l - 1 \). The continuity of the normal components follows from (6.5a) on adjacent triangles and yields \(\psi^\alpha_h \in H(\text{div}, \Omega) \).

Let \(K \in T_h(\Omega) \). Given a polynomial \(q \in P_{l-2} \subset P_h \), we can use (4.20c) with \(v_1 |_K = q \) and \(v_2 |_{K'} = 0 \), \(K \neq K' \in T_h(\Omega) \). Moreover we make use of Green's formula, as well as of (6.5a) and (6.5b) to obtain

\[
\int_K \nabla \cdot \psi^\alpha_h q \, dx = - \int_K \psi^\alpha_h \cdot \nabla q \, dx + \int_{\partial K} n_{\partial K} \cdot \psi^\alpha_h q \, ds
= - \int_K \psi_h \cdot \nabla q \, dx + \int_{\partial K} n_{\partial K} \cdot \tilde{\psi} q \, ds
= \int_K f q \, dx = \int_K f_h q \, dx.
\]

Since both \(\nabla \cdot \psi^\alpha_h \) and \(f_h \) live in \(P_{l-2}(K) \), (6.1) follows from the preceding equation. Now, the assertion follows from \(\psi^\alpha_h \in H(\text{div}, \Omega) \).

The construction (6.5) by local interpolation and Lemma 6.2 take into account that there is a compatibility condition due to Gauss' theorem. The divergence of \(\psi^\alpha_h \) in \(K \) cannot be fixed independently of the normal components of \(\psi^\alpha_h \) on \(\partial K \), but the latter are required in order to achieve the continuity of the normal components and \(\psi^\alpha_h \in H(\text{div}, \Omega) \).

The compatibility conditions are satisfied here due to the finite element equation (4.20c) for the discontinuous Galerkin (IPDG) method. They enable us to proceed on elements like \(e.g., \) in [15,24,29], and we need not operate on patches like in the applications of the two-energies principle and \(H^1 \)-conforming elements as, \(e.g., \) in [16,18] or ([14], Sect. III.9).
For the construction of the equilibrated moment tensor \mathbf{p}^{eq} we begin with the specification of the degrees of freedom for tensors $\mathbf{p} \in P_{\ell}(K)^{2 \times 2}$.

Lemma 6.3. We have $\dim P_{\ell}(K)^{2 \times 2} = 2(\ell + 1)(\ell + 2)$. Any $\mathbf{p} \in P_{\ell}(K)^{2 \times 2}$, $\mathbf{p} = (p_{ij})_{i,j=1}^2$, with $\mathbf{p}^{(i)} := (p_{1i}, p_{2i})^T, 1 \leq i \leq 2$, is uniquely determined by the following degrees of freedom (DOF)

\begin{align}
\int_E (\mathbf{n}_E) \cdot \mathbf{q} \, ds, & \quad \mathbf{q} \in P_{\ell}(E)^2, \quad E \in \mathcal{E}_h(\partial K), \\
\int_K \mathbf{p} : \nabla \mathbf{q} \, dx, & \quad \mathbf{q} \in P_{\ell-1}(K) \setminus P_0(K)^2, \\
\int_K \mathbf{p}^{(i)} \cdot \text{curl}(b_K \mathbf{q}) \, dx, & \quad \mathbf{q} \in P_{\ell-2}(K), \quad 1 \leq i \leq 2.
\end{align}

(6.6a) (6.6b) (6.6c)

The numbers of degrees of freedom (DOF) associated with (6.6a)-(6.6c) are as follows

\begin{align*}
\text{DOF (6.6a)} & = 6(\ell + 1), \\
\text{DOF (6.6b)} & = \ell(\ell + 1) - 2, \\
\text{DOF (6.6c)} & = \ell(\ell - 1)
\end{align*}

and sum up to $2(\ell + 1)(\ell + 2)$.

Proof. The interpolation conditions for $\mathbf{p}^{(1)}$ and $\mathbf{p}^{(2)}$ are separated. The vector field $\mathbf{p}^{(i)}$ (for $1 \leq i \leq 2$) is determined by the degrees of freedom

\begin{align*}
\int_E \mathbf{n}_E \cdot \mathbf{p}^{(i)} \, q \, ds, & \quad q \in P_{\ell}(E), \quad E \in \mathcal{E}_h(\partial K), \\
\int_K \mathbf{p}^{(i)} \cdot \nabla q \, dx, & \quad q \in P_{\ell-1}(K) \setminus P_0(K), \\
\int_K \mathbf{p}^{(i)} \cdot \text{curl}(b_K q) \, dx, & \quad q \in P_{\ell-2}(K)
\end{align*}

By applying Lemma 6.1 with $m = \ell$ we conclude that there is a unique solution.

Lemma 6.4. Let $\mathbf{q} = (\mathbf{q}^{(1)}, \mathbf{q}^{(2)}) \in P_{\ell}(K)^{2 \times 2}$. Then there exists a positive constant $C_2(\ell)$ depending only on the polynomial degree ℓ and the local geometry of the triangulation $T_h(\Omega)$ such that

\begin{align}
\int_K |\mathbf{q}|^2 \, dx & \leq C_2(\ell) \left(\sum_{E \in \mathcal{E}_h(\partial K)} h_E \int_E \left(|\mathbf{n}_E \cdot \mathbf{q} \mathbf{n}_E|^2 + |\mathbf{n}_E \cdot \mathbf{q} \mathbf{n}_E|^2 \right) ds + h_K^2 \int_K |\nabla \cdot \mathbf{q}|^2 \, dx \right. \\
& \quad \left. + h_K^2 \sum_{t=1}^2 \max_{x \in K} \left\{ \int_K |\mathbf{q}^{(t)} \cdot \text{curl}(b_K q_t) |^2 \, dx; \ q_t \in P_{\ell-2}, \ \max_{x \in K} |q_{t-2}(x)| \leq 1 \right\} \right).
\end{align}

(6.7)

Proof. As in the proof of Lemma 6.1, the estimate (6.7) follows by standard scaling arguments.

Now, for the construction of the equilibrated moment tensor we set $\mathcal{X}_h := D^2 u_h$ with

$$
\mathcal{X}_h^{(1)} := \left(\frac{\partial^2 u_h}{\partial x_1^2}, \frac{\partial^2 u_h}{\partial x_2^2} \right)^T, \quad \mathcal{X}_h^{(2)} := \left(\frac{\partial^2 u_h}{\partial x_1 \partial x_2}, \frac{\partial^2 u_h}{\partial x_2 \partial x_1} \right)^T.
$$
We construct $p_{\text{eq}}^{ij} = (p_{ij}^{h,\text{eq}})^2$, with $p_{ij}^{h,\text{eq}} = (p_{ij}^{h,\text{eq}1}, p_{ij}^{h,\text{eq}2})^T$, $1 \leq i \leq 2$, in each element K by fixing the degrees of freedom (6.6a)–(6.6c) according to

$$\int_E p_{\text{eq}}^{ij} n_E \cdot q \, ds = \int_E \bar{n}_E \cdot q \, ds, \quad q \in P_{\ell}(E)^2, \quad E \in \mathcal{E}_h(\partial K), \quad (6.8a)$$

$$\int_K p_{\text{eq}}^{ij} : \nabla q \, dx = - \int_K \psi_h^{\text{eq}ij} : q \, dx + \int_{\partial K} \bar{n}_{\text{eq}} \cdot q \, ds, \quad q \in P_{\ell-1}(K)^2, \quad (6.8b)$$

$$\int_K p_{\text{eq}}^{ij} \cdot \text{curl}(b_{\text{eq}}q) \, dx = \int_K \bar{n}_E \cdot \text{curl}(b_{\text{eq}}q) \, dx, \quad q \in P_{\ell-2}(K), \quad 1 \leq i \leq 2. \quad (6.8c)$$

Remark 6.5. Obviously, the equations (6.8b) require the compatibility conditions

$$- \int_K \psi_h^{\text{eq}ij} : p \, dx + \int_{\partial K} \bar{n}_{\text{eq}} \cdot p \, ds = 0, \quad p \in P_0(K)^2 \quad (6.9)$$

with constant polynomials $p \in P_0(K)^2$. Indeed, we had to care for $\ell \geq 3$ in (5.1) in order to verify (6.9) now. From the finite element equation (4.20b) we conclude that

$$- \int_K \psi_h : p \, dx + \int_{\partial K} \bar{n}_E \cdot p \, ds = 0, \quad p \in P_0(K)^2.$$

Given $p = (p_1, p_2) \in P_0(K)^2$, there exists $q \in P_1(K)$ with $p = \nabla q$, specifically $(p_1, p_2) = \nabla(p_1 x_1 + p_2 x_2)$. Since $\ell \geq 3$, we conclude from (6.5b) that

$$\int_K \psi_h \cdot p \, dx = \int_K \psi_h \cdot \nabla q \, dx = \int_{\partial K} \bar{n}_E \cdot \nabla q \, ds = \int_{\partial K} \bar{n}_E \cdot p \, ds.$$

Combining the last two equations we obtain (6.9).

The following theorem is the main result and shows that p_{eq}^{ij} is an equilibrated moment tensor and thus fulfills all requirements of the two-energies principle.

Theorem 6.6. Let $k \geq 2$. If the moment tensor p_{eq}^{ij} and the auxiliary vector field ψ_h^{eq} are constructed by (6.8) and (6.5), respectively, then $p_{\text{eq}}^{ij} \in H(\text{div}^2, \Omega)$ is equilibrated, i.e.,

$$\nabla \cdot \nabla \cdot p_{\text{eq}}^{ij} = f_h \quad \text{in} \quad L^2(\Omega).$$

Proof. Let $K \in T_h(\Omega)$. From Remark 6.5 we know that the compatibility condition (6.9) is satisfied. We apply partial integration and insert the rules (6.8a), (6.8b) for the construction of p_{eq}^{ij} to obtain

$$\int_K \nabla \cdot p_{\text{eq}}^{ij} \cdot q \, dx = - \int_K p_{\text{eq}}^{ij} : \nabla q \, dx + \int_{\partial K} p_{\text{eq}}^{ij} \bar{n}_{\text{eq}} \cdot q \, ds$$

$$= - \left(- \int_K \psi_h^{\text{eq}} : q \, dx + \int_{\partial K} \bar{n}_{\text{eq}} \cdot q \, ds \right) + \int_{\partial K} \bar{n}_{\text{eq}} \cdot q \, ds$$

$$= \int_K \psi_h^{\text{eq}} \cdot q \, dx, \quad q \in P_{\ell-1}(K)^2. \quad (6.10)$$
Since both $\nabla \cdot p_h^{eq}$ and p_h^{eq} live in $P_{-1}(K)^2$, it follows from (6.10) that
\[\nabla \cdot p_h^{eq} = p_h^{eq} \text{ in each } K \in T_h(\Omega). \] (6.11)

The left-hand side is contained in $H(div, \Omega)$, since it holds for the right-hand side due to Lemma 6.2. Together with (6.8a) it follows that $p_h^{eq} \in H(div, \Omega)$. In view of (6.1), (6.11) implies
\[\nabla \cdot \nabla \cdot p_h^{eq} = \nabla \cdot p_h^{eq} = f_h \]
and the proof is complete.\square

Usually mixed methods for the treatment of the Hellan–Hermann–Johnson formulation use finite elements for the moment tensors that are $H(div, \Omega)$ nonconforming. This is due to the fact that no simple conforming elements are known. The reader will have observed that the equilibrated moment tensors are constructed in $M_h \cap H(div, \Omega)$. Thus we have implicitly an $H(div, \Omega)$-conforming finite element space. We conclude from the efficiency considerations in the next section that this finite element (sub)space is sufficiently large.

Remark 6.7. We note that the divergence of a tensor was defined row-wise in (3.4). If we had chosen a column-wise definition, then we would have obtained the transposed tensor $p_h^{eq, T}$ of the result (6.8). It follows that also $p_h^{eq, T} \in H(div, \Omega)$ and $\nabla \cdot \nabla \cdot p_h^{eq, T} = f_h$. Therefore, we may use also the symmetrical part
\[p_h^{eq, sym} = \frac{1}{2} (p_h^{eq} + p_h^{eq, T}) \]
for computing the term (5.3a) of the error bound, i.e.,
\[\eta_{K,1}^{eq} := \| D^2 u_h - p_h^{eq, sym} \|_{0, K}, \quad K \in T_h(\Omega). \] (6.12)

Since the symmetrical part and the antisymmetrical part of a tensor are L^2-orthogonal, it follows that
\[\eta_{K,1}^{eq} \leq \eta_{K,1}^{eq}, \quad K \in T_h(\Omega). \] (6.13)

Indeed, numerical results below show that the error bound can be reduced by about 20% in this way.

7. Efficiency of the Equilibrated Error Estimator

A residual-type a posteriori error estimator has been derived and analyzed in [35] for the IPDG approximation of the biharmonic problem. It is based on the Ciarlet–Raviart mixed formulation, and its adaptation to the Hellan–Hermann–Johnson based IPDG approximation (4.4) reads as follows:
\[(\eta_h^{eq})^2 = \sum_{K \in T_h(\Omega)} (\eta_{K,1}^{eq})^2 + \sum_{E \in E_h(\Omega)} (\eta_{E,2}^{eq})^2 + \sum_{E \in E_h(\Omega)} (\eta_{E,3}^{eq})^2, \] (7.1)

where the element residual $\eta_{K,1}^{eq}$ and the edge residuals $\eta_{E,i}^{eq}, 1 \leq i \leq 4$, are given by
\begin{align*}
(\eta_{K,1}^{eq})^2 &= h_K^2 \| f - \Delta^2 u_h \|_{0, K}, \quad K \in T_h(\Omega), \\
(\eta_{E,1}^{eq})^2 &= h_E^2 \| n_E \cdot [\nabla u_h]_E \|_{0, E}, \quad E \in E_h(\Omega), \\
(\eta_{E,2}^{eq})^2 &= h_E \left(\| n_E \cdot [\nabla u_h]_E \|_{0, E} + \| \nabla \cdot [\nabla u_h]_E \|_{0, E} \right), \quad E \in E_h(\Omega), \\
(\eta_{E,3}^{eq})^2 &= h_E^{-1} \| n_E \cdot [\nabla u_h]_E \|_{0, E}, \quad E \in E_h(\Omega), \\
(\eta_{E,4}^{eq})^2 &= h_E^{-3} \| u_h \|_{2, E}, \quad E \in E_h(\Omega). \end{align*}
(7.2)
A slight generalization of the efficiency estimate from [35] shows
\[(\eta_h^e)^2 \lesssim \| u - u_h \|_{2,h,\mathcal{A},\mathcal{D}}^2 + \text{osc}_h^2(f). \tag{7.3} \]
The efficiency of the equilibrated a posteriori error estimator \(\eta_h^e\) follows from (7.3) and the following result.

Lemma 7.1. Let \(\eta_h^{e,q}, K \in \mathcal{T}_h(\Omega),\) and \(\text{osc}_h(f)\) be given by (5.3a) and (5.7), and let \(\eta_h^{e,q}\) be the residual-type a posteriori error estimator (7.1). Then there holds
\[\sum_{K \in \mathcal{T}_h(\Omega)} (\eta_h^{e,q})^2 \lesssim (\eta_h^e)^2 + \text{osc}_h^2(f). \tag{7.4} \]

Proof. Let \(K \in \mathcal{T}_h(\Omega)\) and \(E \in \mathcal{E}_h(\partial K).\) Due to (6.8a) and (4.11c) we have \(\mathbf{p}_h^{eq} \big|_E = \mathbf{p} \big|_E = \{D^2 u_h\} \big|_E - \frac{a_1}{h_E} n_E \| \nabla u_h \|_{2,E}^2.\) Hence,
\[n_E \cdot (\mathbf{p}_h^{eq} - D^2 u_h) n_E = n_E \cdot ((D^2 u_h) \big|_E - D^2 u_h) n_E - \frac{a_1}{h_E} n_E \cdot [\nabla u_h]_E, \]
\[t_E \cdot (\mathbf{p}_h^{eq} - D^2 u_h) n_E = t_E \cdot ((D^2 u_h) \big|_E - D^2 u_h) n_E. \]

It follows that
\[|n_E \cdot (\mathbf{p}_h^{eq} - D^2 u_h) n_E| \leq \begin{cases} \frac{1}{2} |n_E \cdot [D^2 u_h]_E n_E| + \frac{a_1}{h_E} |n_E \cdot [\nabla u_h]_E|, & E \in \mathcal{E}_h(\Omega) \\ \frac{a_1}{h_E} |n_E \cdot [\nabla u_h]_E|, & E \in \mathcal{E}_h(\Gamma) \end{cases} \tag{7.5a} \]
\[|t_E \cdot (\mathbf{p}_h^{eq} - D^2 u_h) n_E| \leq \begin{cases} \frac{1}{2} |t_E \cdot [D^2 u_h]_E n_E|, & E \in \mathcal{E}_h(\Omega) \\ 0, & E \in \mathcal{E}_h(\Gamma) \end{cases} \tag{7.5b} \]

Moreover, in view of (6.11) and (6.8c) we have
\[\nabla \cdot (\mathbf{p}_h^{eq} - D^2 u_h) = \psi_h^{eq} - \nabla \cdot D^2 u_h, \tag{7.6a} \]
\[\int_K \left(\mathbf{p}_h^{eq} - \mathbf{z}_h^{eq} \right) \cdot \text{curl}(\sigma_{q,q}) \, dx = 0, \quad q \in \mathcal{P}_{l-2}(K), \quad 1 \leq l \leq 2. \tag{7.6b} \]

Observing (7.5) and (7.6) we apply Lemma 6.4 to \(\mathbf{p}_h^{eq} - D^2 u_h \in \mathbf{P}_h^{2\times2},\) recall (7.2) and obtain
\[\| \mathbf{p}_h^{eq} - D^2 u_h \|_{h,K}^2 \lesssim h_K^2 \| \psi_h^{eq} - \nabla \cdot D^2 u_h \|_{h,K}^2 + \sum_{E \in \mathcal{E}_h(\partial K \setminus \partial K \cap \Gamma)} \frac{a_1^2}{h_E} \| n_E \cdot [\nabla u_h]_E \|_{0,E}^2 \]
\[+ \sum_{E \in \mathcal{E}_h(\partial K \setminus \partial K \cap \Gamma)} h_E \left(\| n_E \cdot [D^2 u_h]_E n_E \|_{0,E}^2 + \| t_E \cdot [D^2 u_h]_E n_E \|_{0,E}^2 \right) \]
\[\lesssim h_K^2 \| \psi_h^{eq} - \nabla \cdot D^2 u_h \|_{h,K}^2 + \sum_{E \in \mathcal{E}_h(\partial K \setminus \partial K \cap \Gamma)} (\eta_h^{e,q})^2 + \sum_{E \in \mathcal{E}_h(\partial K \setminus \partial K \cap \Gamma)} (\eta_h^{e,q})^2. \tag{7.7} \]

Now we turn to the estimation of \(\psi_h^{eq} - \nabla \cdot D^2 u_h.\) In view of (6.5a) and (4.11d), for \(E \in \mathcal{E}_h(\partial K)\) we have
\[\psi_h^{eq} = Q_{E-1}^{F} = (D^2 u_h) \big|_E + \frac{a_2}{h_E} Q_{E-1}^{F}([u_h]_E) \]
\[n_E \cdot (\psi_h^{eq} - \nabla \cdot D^2 u_h) = n_E \cdot ((\nabla \cdot D^2 u_h) \big|_E - \nabla \cdot D^2 u_h) + \frac{a_2}{h_E} Q_{E-1}^{F}([u_h]_E),\]
where \(Q_{r-1}^P \) stands for the \(L^2 \)-projection onto \(P_{r-1}(E) \). Noting that \(\nabla \cdot D^2 u_h = \nabla^2 u_h \) we obtain
\[
|n_E \cdot (\psi_h^{eq} - \nabla \cdot D^2 u_h) | \leq \begin{cases}
\frac{1}{2} |n_E \cdot [\nabla^2 u_h]|_E + \frac{\alpha_2}{h_E^2} |Q_{r-1}^P([u_h])|_E, & E \in \mathcal{E}_h(\Omega) \\
\alpha_2 |Q_{r-1}^P([u_h])|_E, & E \in \mathcal{E}_h(\Gamma).
\end{cases}
\]
(7.8)

Moreover, taking (6.1) and (6.5c) into account, it holds
\[
\nabla \cdot (\psi_h^{eq} - \nabla \cdot D^2 u_h) = f_h - \Delta^2 u_h \quad \text{in } K,
\]
\[
\int_K (\psi_h^{eq} - \nabla \cdot D^2 u_h) \cdot \text{curl}(\mathbf{b}(K) q) \ dx = 0, \quad q \in P_{r-3}(K).
\]
(7.9a, 7.9b)

Due to (7.8) and (7.9a), (7.9b), an application of Lemma 6.1 to \(\psi_h^{eq} - \nabla \cdot D^2 u_h \in P_{r-1}(K)^2 \) yields
\[
\| \psi_h^{eq} - \nabla \cdot D^2 u_h \|^2_{0,K} \leq h_K^2 \| f_h - \Delta^2 u_h \|^2_{0,K} + \sum_{E \in \mathcal{E}_h(\partial(K \setminus \Gamma))} h_E \| n_E \cdot [\nabla^2 u_h] \|^2_{0,E} + \sum_{E \in \mathcal{E}_h(\partial(K \setminus \Gamma))} \frac{\alpha_2^2}{h_E^2} \| [u_h] \|^2_{0,E}.
\]
(7.10)

Using the local quasi-uniformity once more, we have \(h_E \sim h_K \) for \(E \in \mathcal{E}_h(\partial K) \) and estimate the bounds above in terms of the residual estimators (7.2)
\[
h_K^2 \| \psi_h^{eq} - \nabla \cdot D^2 u_h \|^2_{0,K} \leq (\eta_{K,1}^{eq})^2 + h_K^2 \| f - f_h \|^2_{0,K} + \sum_{E \in \mathcal{E}_h(\partial(K \setminus \Gamma))} (\eta_{E,1}^{eq})^2 + \sum_{E \in \mathcal{E}_h(\partial(K \setminus \Gamma))} (\eta_{E,2}^{eq})^2.
\]

We insert this bound into (7.7), sum over all \(K \in \mathcal{T}_h(\Omega) \), and the proof is complete. \(\Box \)

\textbf{Theorem 7.2.} Let \(u \in H_0^2(\Omega) \) be the solution of the biharmonic problem (3.1), and let \(u_h \in V_h \) be the IPDG approximation. Moreover, let \(\eta_1^{eq}, \eta_2^{eq}, 1 \leq i \leq 2 \), and \(\text{osc}_h(f) \) be given by (5.3a)–(5.3c) and (7.7). Then there exists a constant \(C > 0 \) depending on the polynomial degree \(k \), the local geometry of the triangulation, and on the penalty parameters \(\alpha_i, 1 \leq i \leq 2 \), such that
\[
\sum_{K \in \mathcal{T}_h(\Omega)} ((\eta_{K,1}^{eq})^2 + (\eta_{K,2}^{eq})^2) + \sum_{E \in \mathcal{E}_h(\partial)} ((\eta_{E,1}^{eq})^2 + (\eta_{E,2}^{eq})^2) \leq C \left(\| u - u_h \|^2_{2,h,\Omega} + \text{osc}_h^2(f) \right).
\]
(7.11)

\textbf{Proof.} The assertion follows directly from (5.13), (7.3), and (7.4). \(\Box \)

Since the residual a posteriori error estimator is known to be efficient [35], the error bounds from the two-energies principle are also efficient.

\section{8. Numerical results}

We provide a detailed documentation of the performance of the adaptive IPDG method for an illustrative example taken from [36] which has also been used in [20].

\textbf{Example 8.1.} We choose \(\Omega \) as the L-shaped domain \(\Omega := (-1, +1)^2 \setminus ([0, 1] \times (-1, 0)) \) and choose \(f \) in (3.1a) such that
\[
u(r, \varphi) = (r^2 \cos^2 \varphi - 1)^2 \left(r^2 \sin^2 \varphi - 1 \right)^2 r^{1 + \frac{\alpha}{2}} g(\varphi)
\]
(8.1)
A TWO-ENERGIES PRINCIPLE FOR THE BIHARMONIC EQUATION

is the exact solution of the biharmonic boundary-value problem (3.1), where

\[
g(\varphi) := \left(\frac{1}{z - 1} \sin \frac{3(\varphi - 1)}{2} - \frac{1}{z + 1} \sin \frac{3\varphi}{2} \right) \left(\cos \left(\frac{3(\varphi - 1)}{2} \right) - \cos \left(\frac{3\varphi}{2} \right) \right)
- \left(\frac{1}{z - 1} \sin \left(\frac{3(\varphi - 1)}{2} \right) - \frac{1}{z + 1} \sin \left(\frac{3\varphi}{2} \right) \right) \left(\cos \left(\frac{3(\varphi - 1)}{2} \right) - \cos \left(\frac{3\varphi}{2} \right) \right),
\]

and \(\beta \approx 0.54448 \) is a non-characteristic root of \(\sin^2 \left(\frac{3\beta}{2} \right) = \beta^2 \sin^2 \left(\frac{3\beta}{2} \right) \).

The penalty parameters have been chosen as \(\alpha_1 := 12.5 (k + 1)^2 \) and \(\alpha_2 := 2.5 (k + 1)^8 \).

We make use of the notation

\[
\eta^{eq}_{\mathcal{E}_h, 0} := \left(\sum_{K \in \mathcal{E}_h(\Omega)} \left(\frac{\alpha_1 (\eta^{eq}_{\mathcal{E}_h, 1})^2}{2} + \alpha_2 (\eta^{eq}_{\mathcal{E}_h, 2})^2 \right) \right)^{1/2},
\]

\[
\eta^{eq}_h := \left(\sum_{K \in \mathcal{E}_h(\Omega)} \left(\frac{\eta^{eq}_{\mathcal{E}_h, 1}}{2} \right)^2 \right)^{1/2} + \eta^{eq}_{\mathcal{E}_h, 0},
\]

\[
\eta^{eq, s}_{h} := \left(\sum_{K \in \mathcal{T}_h(\Omega)} \eta^{eq}_{\mathcal{T}^h, 1} \right)^{1/2} + \eta^{eq}_{\mathcal{E}_h, 0},
\]

where \(\eta^{eq}_{\mathcal{E}_h, 0} \) has been defined in (6.12). Note that the re-definition of \(\eta^{eq}_h \) in (8.2b) differs from (5.8) in so far as we have omitted the second term of the right-hand side in (5.8) because according to (5.13) it can be estimated from above by the third term.

The realization of the adaptive refinement is taken care of by the well-known Dörfler marking [26]: a bulk parameter \(\theta \in (0, 1] \) is fixed and we choose a set \(\mathcal{M}_1 \subset \mathcal{T}_h(\Omega) \) of elements and a set \(\mathcal{M}_2 \subset \mathcal{E}_h(\Omega) \) such that it holds

\[
\theta \left(\left(\sum_{K \in \mathcal{T}_h(\Omega)} \left(\frac{\eta^{eq}_{\mathcal{T}^h, 1}}{2} \right)^2 \right)^{1/2} + \eta^{eq}_{\mathcal{E}_h, 0} \right) \leq \left(\sum_{K \in \mathcal{M}_1} \left(\frac{\eta^{eq}_{\mathcal{T}^h, 1}}{2} \right)^2 \right)^{1/2} + \left(\sum_{K \in \mathcal{M}_1} (\alpha_1 (\eta^{eq}_{\mathcal{E}_h, 1})^2 + \alpha_2 (\eta^{eq}_{\mathcal{E}_h, 2})^2) \right)^{1/2}.
\]

If we use (8.2c) instead of (8.2b), \(\eta^{eq}_{\mathcal{T}^h, 1} \) in (8.3) is replaced by \(\eta^{eq}_{\mathcal{T}^h, 1} \). The actual refinement is done by newest vertex bisection.

For polynomial degree \(2 \leq k \leq 5 \) and bulk parameters \(\theta = 1.0 \) (uniform refinement), \(\theta = 0.7 \), and \(\theta = 0.3 \) Figures 1–4 display

- the global discretization error \(u - u_h \) in the mesh-dependent IPDG-norm \(\| \cdot \|_{2, h, \Omega} \) (top left) and the error estimator \(\eta^{eq}_h \) (top right) as a function of the total number of degrees of freedom (dofs) on a logarithmic scale,
- the associated effectivity index \(\eta^{eq}_h / \| u - u_h \|_{2, h, \Omega} \) (bottom left),
- the adaptively generated mesh (\(\theta = 0.7 \)) at refinement level 7 for \(k = 2 \), level 9 for \(k = 3 \), level 11 for \(k = 4 \), and level 13 for \(k = 5 \) (bottom right).

The exact solution \(u \) has a singularity at the origin and satisfies \(u \in H^2(\Omega) \cap H^s(\Omega) \) for any \(s > 0 \) (cf. [36]). Hence, in case of uniform refinement (\(\theta = 1.0 \)) the optimal convergence rate is \(\| u - u_h \|_{2, h, \Omega} = O(h^{2/3-s}) = O(N^{-1/3+s/2}) \), \(N = \text{card}(\mathcal{N}_h(\Omega)) \), which is what we basically observe for \(2 \leq k \leq 5 \). If the exact solution were smooth, e.g., \(u \in H^2(\Omega) \cap H^s(\Omega), s \geq k + 1, \) we would have \(\| u - u_h \|_{2, h, \Omega} = O(h^{k-1}) = O(N^{-s/2}), \) i.e., \(O(N^{-1/2}) \) for \(k = 2 \), \(O(N^{-s/2}) \) for \(k = 3 \), \(O(N^{-s/2}) \) for \(k = 4 \), and \(O(N^{-1/2}) \) for \(k = 5 \). In case of adaptive
Figure 1. Error, estimator, effectivity index, and adaptively generated mesh ($k = 2$).

Figure 2. Error, estimator, effectivity index, and adaptively generated mesh ($k = 3$).
Figure 3. Error, estimator, effectivity index, and adaptively generated mesh ($k = 4$).

Figure 4. Error, estimator, effectivity index, and adaptively generated mesh ($k = 5$).
Table 1. Results for $k = 3$ and $\theta = 0.3$.

<table>
<thead>
<tr>
<th>level</th>
<th># dofs</th>
<th>$|u - u_h|_{2,A,\Omega}$</th>
<th>η_h^{e2}</th>
<th>$\eta_h^{e_0,\alpha}$</th>
<th>$\eta_{h,\alpha}^{e}$</th>
<th>effectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>240</td>
<td>6.78×10^6</td>
<td>2.50×10^1</td>
<td>2.04×10^1</td>
<td>3.06×10^6</td>
<td>3.69</td>
</tr>
<tr>
<td>2</td>
<td>640</td>
<td>4.23×10^6</td>
<td>1.16×10^1</td>
<td>9.85×10^6</td>
<td>1.77×10^6</td>
<td>2.74</td>
</tr>
<tr>
<td>4</td>
<td>940</td>
<td>2.13×10^6</td>
<td>7.75×10^6</td>
<td>6.41×10^6</td>
<td>1.19×10^6</td>
<td>3.64</td>
</tr>
<tr>
<td>6</td>
<td>1520</td>
<td>1.60×10^6</td>
<td>5.56×10^6</td>
<td>4.61×10^6</td>
<td>7.93×10^6</td>
<td>3.48</td>
</tr>
<tr>
<td>8</td>
<td>2380</td>
<td>1.06×10^6</td>
<td>3.71×10^6</td>
<td>3.06×10^6</td>
<td>4.77×10^6</td>
<td>3.51</td>
</tr>
<tr>
<td>10</td>
<td>4360</td>
<td>6.39×10^6</td>
<td>2.27×10^6</td>
<td>1.66×10^6</td>
<td>2.84×10^6</td>
<td>3.55</td>
</tr>
<tr>
<td>12</td>
<td>7340</td>
<td>3.49×10^6</td>
<td>1.17×10^6</td>
<td>9.67×10^6</td>
<td>1.47×10^6</td>
<td>3.35</td>
</tr>
<tr>
<td>14</td>
<td>12210</td>
<td>2.14×10^6</td>
<td>7.16×10^6</td>
<td>5.89×10^6</td>
<td>8.83×10^6</td>
<td>3.35</td>
</tr>
<tr>
<td>16</td>
<td>19380</td>
<td>1.35×10^6</td>
<td>4.34×10^6</td>
<td>3.57×10^6</td>
<td>5.43×10^6</td>
<td>3.20</td>
</tr>
<tr>
<td>18</td>
<td>31190</td>
<td>8.37×10^6</td>
<td>2.64×10^6</td>
<td>2.18×10^6</td>
<td>3.23×10^6</td>
<td>3.16</td>
</tr>
<tr>
<td>20</td>
<td>54040</td>
<td>5.31×10^6</td>
<td>1.62×10^6</td>
<td>1.33×10^6</td>
<td>1.96×10^6</td>
<td>3.04</td>
</tr>
</tbody>
</table>

Refinement, we see such rates asymptotically for $k = 2$ and $k = 5$, but slightly lower rates for $k = 3$. For $k = 4$ the numerically observed rates are lower due to the occurrence of roundoff errors for $\#$ DOFs $> 10^4$.

As far as the adaptive refinement is concerned, we observe a significant refinement in a vicinity of the reentrant corner where the solution has a singularity and some refinement in regions near the upper and left boundary segments of the computational domain where second derivatives of the solution have local peaks. As expected, the refinement is less pronounced for higher polynomial degree k. Moreover, for $k = 2$ the beneficial effect of adaptive refinement sets in for a total number of DOFs ($\#$ DOFs) exceeding 10^4, whereas for $3 \leq k \leq 5$ it occurs for $\#$ DOFs $\approx 10^3$ and is much more pronounced than for $k = 2$. The effectivity index is between 2.0 and 4.5 for all polynomial degrees $2 \leq k \leq 5$.

We note that the computation of the equilibrated moment tensor is ill-conditioned. The condition number deteriorates significantly with decreasing mesh size and increasing polynomial degree k. For $k = 4$ and $k = 5$, Figures 3 and 4 only display the results up to refinement levels before roundoff errors have an influence on the numerical results.

Table 1 lists results of the computation for $k = 3$ and $\theta = 0.3$ and addresses certain components of the error estimator η_h^{e2}. By using the symmetrical part $\eta_h^{e_0,\alpha}$ (cf. (8.2c)) as suggested in Remark 6.7, the error bounds and therefore also the associated effectivity indices $\eta_{h,\alpha}^{e_0}/\|u - u_h\|_{2,A,\Omega}$ can be reduced by 15 to 20%. The weighted edge-related terms as given by $\eta_h^{e_0,\alpha}$ contribute only about 12 – 15% to the overall error estimator.

REFERENCES

A TWO-ENERGIES PRINCIPLE FOR THE BIHARMONIC EQUATION

