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ABSTRACT: Projected changes of extreme precipitation in the Mediterranean area up until the end of the 21st century
are analysed by means of statistical downscaling. Generalized linear models are used as downscaling technique to assess
different percentile-based indices of extreme precipitation on a fine-scale spatial resolution. In the region under consideration
extreme precipitation is related to anomalies of the large-scale circulation as well as to convective conditions. To account for
this, predictor selection encompasses variables describing the large-scale circulation (geopotential heights of the 700 hPa and
500 hPa levels, u- and v-wind components of the 850 hPa level) as well as thermo-dynamic parameters (specific humidity of
the 850 hPa and 700 hPa levels, Showalter-Index, convective inhibition). In the scope of the statistical downscaling approach
a specific statistical ensemble technique is applied in order to allow for non-stationarities in the predictors–predictand
relationships. Consequently, the statistical ensembles include a range of possible future evolutions of extreme precipitation.
Two different emission scenarios (A1B and B1), multiple runs for each scenario, and output of two different general
circulation models (ECHAM5 and HadCM3) are applied to assess extreme precipitation under enhanced greenhouse
warming conditions. The results yield mainly decreases over many parts of the Mediterranean area in spring. In summer
increases are assessed around the Tyrrhenian Sea, the Ionian Sea, and the Aegean Sea, whereas decreases are projected
for most of the western and northern Mediterranean regions. In autumn reductions of heavy rainfall occur over many
parts of the western and central areas. In winter distinct increases are widespread in the Mediterranean area. Beyond
the assessments using all predictors it is shown in the present contribution that different predictor variables can lead to
varying statistical downscaling results. It points to distinct impacts of the change of specific atmospheric conditions on
local extreme precipitation.
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1. Introduction

The Mediterranean area shows a wide range of differ-
ent climatic characteristics, from humid conditions in the
western, northern and north-eastern regions in the wet
season from approximately September to May, to arid
conditions in the southern and eastern regions in sum-
mer. This is due to the location of the region in the
transitional zone between tropical and extra-tropical cir-
culation dynamics. Furthermore, the Mediterranean area
is characterized by a complex topography and by high
climatic variability.

In the scope of climate variability and climate change
the variations and changes of extremes are of special
importance. Extreme events are not only of scientific
interest but also have a profound impact on society.
Moreover, the Mediterranean area represents a region
where the extreme values make up a large proportion of
total precipitation. Toreti et al. (2010) note in a study of
extreme precipitation during the extended winter season
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at twenty Mediterranean coastal sites that at all stations
precipitation extremes have an important contribution
(around 60%) to make seasonal totals.

In the scope of future climate change due to anthro-
pogenic forcing, several climate models are consis-
tent with the projection that precipitation extremes will
decrease over most regions of the Mediterranean area.
Tebaldi et al. (2006) identify, under the consideration
of nine different Atmosphere–Ocean General Circula-
tion Models (AOGCMs), only the northern Mediter-
ranean regions as areas with increases of precipitation
extremes whereas the southern and eastern Mediterranean
regions will mostly be affected by decreases up until
the end of the 21st century. Emori and Brown (2005)
split the projected annual extreme precipitation change
from six GCMs up into a dynamic and a thermody-
namic component. The overall increases over the northern
Mediterranean area are due to increases of the thermody-
namic component caused by increased atmospheric mois-
ture content (whereas decreases of extreme precipitation
would result from the dynamic component alone).

Beniston et al. (2007) compare the results from mul-
tiple runs of four regional climate models (RCMs)
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regarding the 5-year return levels of precipitation and
found a consistent decrease in winter precipitation south
of about 45◦N that is similar to the large-scale pattern of
mean precipitation change (Giorgi and Lionello, 2008;
Gao et al., 2006; Räisänen et al., 2004). In contrast,
Kundzewicz et al. (2006), using the HadRM3-P model
under SRES A2-scenario assumptions (SRES: Special
Report on Emission Scenarios, Nakicenovic and Swart,
2000), find an increase in the annual maximum daily pre-
cipitation for most parts of the Mediterranean area despite
decreases of the annual mean values. Using 10 RCMs
forced with A1B assumptions, Rajczak et al. (2013) also
project decreases in mean precipitation during spring and
autumn, in addition to increases in heavy events. Fowler
et al. (2007) note a large uncertainty amongst RCMs
concerning the spatial pattern of extreme precipitation
change, which is attributed to the influence of the driv-
ing GCMs. From the analysis of the RCM ensemble used
by Fowler et al. (2007) smaller increases, or potentially
decreases, in longer duration extremes (10 day precip-
itation intensities) are determined for southern Europe.
Goubanova and Li (2007) use a variable-grid AGCM
and A2-scenario assumptions to show that precipitation
extremes will increase in the Mediterranean region in
all seasons except summer. Kyselý et al. (2012) obtain
a similar pattern of extreme precipitation change from
a RCM ensemble and note a higher consistency of the
projected changes for winter and in general for short-
term rather than multi-day extremes. However, Flaounas
et al. (2013) note from dynamical downscaling with the
Weather Research and Forecasting (WRF) model an over-
estimation of extreme rainfall by 50% and more in
most parts of the Mediterranean area in winter, and
a smaller bias (±20%) in summer. The authors find
that the subsequent application of statistical downscal-
ing improves the spatial correlation of the rainfall pat-
terns and can be used to correct temporal biases. Tolika
et al. (2008) apply two statistical downscaling techniques
for the simulation of future extreme rainfall changes
over Greece. They note a general underestimation of
the natural variability and a spatial incoherent picture
of change. In a study by Hertig et al. (2011), which
used RCM output and results from statistical down-
scaling, mainly slight decreases are found in the num-
ber of extreme precipitation events of up to about one
day for the Mediterranean area during autumn and win-
ter up until mid-21st century. Regarding the intensity
of the extremes, a small-scale pattern of change arises
with wintertime increases most likely at topographical
elevations exposed to the West, where the uplift of
humid air profits by the increase of atmospheric mois-
ture under climate change conditions. Also in a statis-
tical downscaling assessment of extreme precipitation
changes in southern France, Tramblay et al. (2011) find
an upward trend in the humidity flux towards the end
of the 21st century. This in turn leads to an increase
in the seasonal number of extreme precipitation events,
although does not impact greatly on the magnitude of the
extremes.

Despite considerable advances regarding the physical
realism and the spatial resolution of AOGCMs, down-
scaling of the large-scale dynamical model output is very
important for assessing regional climate change. This
includes, in particular, extreme events, which are given
focus in this study. In this context, statistical downscaling
presents a computationally inexpensive technique which
can be adapted for a wide range of applications. A recent
evaluation of statistical downscaling models for precipi-
tation can be found in Maraun et al. (2010). For the sta-
tistical downscaling of extremes, promising approaches
have been introduced and/or developed further in the last
few years. For instance, Benestad (2010) re-calibrates the
output of analogue models of daily precipitation using the
probability density function from downscaling monthly
precipitation in order to produce a more reliable statisti-
cal distribution of the precipitation amounts, particularly
near the upper tail. Vrac and Naveau (2007) apply a prob-
ability mixture model of Gamma and Generalized Pareto
distributions within a stochastic weather typing approach
to improve the representation of local extreme precipi-
tation. A further approach to model extremes are based
on generalized linear models (GLMs), which are used
for example by Yang et al. (2005) to model station-based
daily rainfall data in southern England and by Benestad
(2007) to infer extreme rainfall over Northern Europe.
A range of further applications of GLM-based analyses
within climate research is given by Chandler (2005).

In this study, changes of extreme precipitation events
in the Mediterranean area up until the end of the
21st century are analysed with a statistical downscaling
approach using GLMs. In the region under consideration,
extreme precipitation is connected to variations of the
large-scale circulation as well as to convective activity.
Thus, commonly used predictor variables as well as novel
ones, particularly describing convection, are considered.
A detailed description of the predictors used can be found
in Section 2. As already mentioned, GLMs are chosen to
downscale different percentile-based indices of extreme
precipitation. Furthermore, a specific statistical ensemble
technique is used for the assessments to account for non-
stationarities in the predictors–predictand relationships.
It yields a range of possible future evolutions of extreme
precipitation. A detailed description of the methodology
is given in Section 3. Overall, the analyses focus on the
improvement of the statistical techniques to downscale
precipitation extremes. In addition, other sources of
uncertainty are taken into account in the following ways:
uncertainties arising from the future emission scenarios
by using two different scenarios, the A1B- and the
B1-scenario; uncertainties due to the particular GCM
response to a given forcing by applying multiple runs for
each scenario; and uncertainties related to the structure
of climate models and their parameterizations by using
output of two different GCMs (ECHAM5 and HadCM3).
The results of the assessment of extreme precipitation
in the Mediterranean area up until the end of the 21st
century are discussed in Section 4 and some conclusions
are drawn in Section 5.
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2. Data

2.1. Predictand

High-resolution precipitation data for the Mediterranean
land areas are taken from the E-OBS gridded dataset
(Haylock et al., 2008). This data set contains daily values
of precipitation on a 0.25◦ × 0.25◦ grid for the European
land areas. In a first step all grid boxes within the area
from 27◦N to 46.5◦N and from the North Atlantic Ocean
to 40.5◦E are considered which feature a characteristic
Mediterranean precipitation regime, i.e. show a summer
minimum of precipitation. Further specifications of the
Mediterranean rainfall regime, like its spatial variability,
are described in Hertig et al. (2011). In a next step the
time series at each grid box are checked whether they
contain less than 20% missing values and less than 80%
zero-rainfall amounts. This mainly affects grid boxes in
the area of northern Africa, which are excluded from
further analysis. In this context it has to be emphasized
that the utility of the data set is generally reduced over
northern Africa due to the very poor station coverage
over this area (Haylock et al., 2008). The data is used
in a seasonal context and thus the selection procedure
results in 2843 grid boxes in spring (March to May),
2520 grid boxes in summer (June to August), 2857
grid boxes in autumn (September to November), and in
2825 grid boxes in winter (December to February). The
observational time period used in this study covers the
years from 1950 to 2006.

2.2. Predictors

Essential within the scope of statistical downscaling is
the choice of the predictor variables. For example Her-
tig and Jacobeit (2008) show for mean precipitation in
the Mediterranean area that the downscaling results of
future precipitation change are significantly influenced
by whether or not humidity is included as a predictor.
In this context, it is necessary to consider that while
a predictor may or may not appear as important when
developing the downscaling model under present climate
conditions, the changes in that predictor under a future
climate may be decisive for determining the character
and amount of climate change. Furthermore, it is vital
to select an optimal predictor set which exhibits physi-
cally meaningful relationships to the local predictand and
which describes a significant part of the variations of
the predictand variable. Thus, the main criteria for large-
scale variables to be qualified as predictors, in accordance
with Wilby et al. (1999) is that they should carry cli-
mate change information and strongly correlate with the
surface variables of interest. In addition, they should be
reliably simulated by GCMs. In this context GCM uncer-
tainties have to be mentioned which are associated with
the spatial and temporal resolutions, the issues of discreti-
sation and parameterizations, the dependence on initial
conditions, and the degree of reproduction of several
important variables. As a result CMIP3 (Coupled Model
Intercomparison Project phase 3, Meehl et al., 2007a)
models commonly overestimate the meridional pressure

gradient in the North Atlantic/European sector (van Ulden
and van Oldenborgh, 2006). But in general the pressure-
related variables are regarded as reliable and useful pre-
dictors to assess regional climate change. Regarding spe-
cific humidity, Willett et al. (2010) find that the range of
CMIP3 seasonal climatology and variance encompasses
the observations. The models also reproduce the magni-
tude of observed inter-annual variability over all large
regions.

In the Mediterranean area extreme precipitation is
induced by advection and/or it is a matter of convec-
tive precipitation. In this context various predictors are
chosen, including more ‘classical ones’ as well as novel
ones, especially for the description of convective pro-
cesses: To give equal weight to predictors describing
the large-scale circulation and to variables characteriz-
ing convection four variables are selected in each case.
Atmospheric factors describing the large-scale circulation
are geopotential heights at the 700 hPa and 500 hPa lev-
els as well as the u- (zonal) and the v- (meridional) wind
components at the 850 hPa level. The choice is based on
own analyses (Hertig et al., 2011; Hertig and Jacobeit,
2008) in addition to various publications on climate vari-
ability and statistical downscaling. Sea level pressure
and/or geopotential height anomalies of different levels
are widely used in the context of studying precipitation
extremes in the Mediterranean area, e.g. to characterize
extreme precipitation at Mediterranean coastal sites in
winter (Toreti et al., 2010), for the explanation of the
variability of extreme winter rainfall in Europe, including
the northern Mediterranean areas (Haylock and Goodess,
2004), in the scope of a statistical downscaling study
for southern France (Vrac and Yiou (2010), and for a
statistical downscaling assessment of extreme winter pre-
cipitation in the Emilia-Romagna region of Italy (Busuioc
et al. (2008). Concerning the wind components, Cavazos
and Hewitson (2005) show in a study about the perfor-
mance of reanalysis variables in statistical downscaling
of daily precipitation that the meridional wind compo-
nent appears in the list of the top variables, suggesting
an influence from surface meridional synoptic systems on
precipitation.

According to Doswell (1987), a triad of ingredients is
required for deep convection: moisture, conditional insta-
bility, and a source of lift. In this study, the information
about ample moisture in the lower troposphere is pro-
vided by taking specific humidity data of the 850 hPa
and 700 hPa levels as predictors. Convective instability
with a steep enough lapse rate may be assessed by exam-
ining convective available potential energy (CAPE) or
other proxies like the Showalter-Index (Showalter, 1953),
which is selected in the study being on hand. The third
requisite for deep convection, a source of lift, can be
restated as a requirement of sufficiently small convective
inhibition (CIN, Myoung and Nielsen-Gammon, 2010).
The mentioned authors assess that CIN is particularly
important for precipitation variability over land areas
and that the existence of a large amount of CIN tends
to inhibit the initiation of convection despite substantial

                                                                



                                          1135

conditional instability and moisture availability. There-
fore, a proxy for CIN calculated from reanalysis data
is also selected as a predictor. Details of the calculation
procedure of the convective indices (Showalter-Index and
CIN) are given in Section 3.2.

It should be noted that the list of predictor variables is
not complete and could be extended by further potential
predictor variables, like for example GCM-simulated
precipitation as a predictor for small-scale precipitation.
This is done for example by Schmidli et al. (2006)
for the European Alps or by Benestad et al. (2007)
for Fennoscandia. Also other variables like sea surface
temperatures, aerosols, and cyclonic activity play a major
role for extreme precipitation in the Mediterranean area.
But since these variables mostly still suffer from large
uncertainties in the reanalysis data and in the GCMs,
they are not included in this study.

The predictor variables are obtained from the
NCEP/NCAR reanalysis project (Kalnay et al., 1996;
Kistler et al. 2001). Geopotential heights of the 700 hPa
and 500 hPa levels are taken in the area 20◦N–70◦N and
40◦W–50◦E. The other predictor variables (850 hPa and
700 hPa specific humidity, 850 hPa U-wind and V-wind
components; also temperature, humidity, and pressure
of various levels for the calculation of convective
indices, for details see Section 3.2..) are selected for the
area 27.5◦N–52.5◦N and 12.5◦W–42.5◦E (horizontal
resolution of 2.5◦ × 2.5◦ in each case). The limits of the
larger area for the geopotential heights incorporate the
major influences on the Mediterranean area, especially
the mid-latitude westerlies in the upstream area. Tests
with different sizes of the domain show that for the other
predictor variables a smaller size, concentrated over
the target area itself, works better within the statistical
downscaling procedure.

Model output of the ECHAM5/MPI-OM-AOGCM
(Roeckner et al., 2003, 2006) and of the UKMO-
HadCM3-AOGCM (Gordon et al., 2000; Pope et al.,
2000) is taken for the representation of the model pre-
dictors within the scope of the statistical downscaling
approach. The forcing uses observed greenhouse-gas
emissions for 1950–2000 and SRES A1B- as well as
B1-scenario emissions from 2001 to 2100. Three 20th
century-, three A1B-, and three B1-scenario simulations
of the ECHAM5 model and one simulation in each case
of the HadCM3 model are used as boundary condi-
tions. General data pre-processing includes the fitting
of the horizontal resolution of the model output data
(T63, 1.875◦) to those of the observed predictor data
(2.5◦ × 2.5◦).

3. Methodology

3.1. Calculation of extreme precipitation indices

Different percentile-based indices of extreme precipi-
tation, characterizing the frequency and the seasonal
amount of heavy rainfall events, are calculated for each
grid box with a seasonal resolution: the number of events

exceeding the 95th percentile of daily precipitation from
the reference period 1961–1990 (R95N) and the total
amount of precipitation from these events (R95AM)
(Moberg et al., 2006). Only days with a minimum rain-
fall amount of 0.1 mm are included in the calculation of
the 95th percentile; dry days are omitted. In the context
of using the 95th percentile one has to keep in mind
that this threshold is rather moderate to define the area
of extremes within the whole precipitation distribution.
However, it is chosen in this study because it includes a
larger number of events, easing a sound statistical anal-
ysis. Furthermore, one has to take into account that the
spatial interpolation, inherent to the gridded dataset, has
a large impact on the magnitude of extremes. Thus the
interpolation methodology reduces the intensities of the
extremes, with a reduction in all extremes higher than the
annual 75th percentile for precipitation (Haylock et al.,
2008).

3.2. Calculation of convective indices

The Showalter-Index (Showalter, 1953) is used to
describe convective instability and is calculated as fol-
lows:

Showalter-Index = T500 − TLCL500 (1)

T 500 is the temperature at 500 hPa and TLCL500 is the
temperature that a parcel will achieve if it is lifted dry
adiabatically from 850 hPa to its condensation level and
then moist adiabatically to 500 hPa. Thus the difference
between the 500 hPa temperature and the air parcel
lifted from the lifting condensation level to 500 hPa
provides an estimate of the instability. It should be
noted that the Showalter-Index does not take into account
the atmospheric conditions below 850 hPa. To calculate
the Showalter-Index from the reanalysis data and the
GCM data, 850 hPa air temperature and 850 hPa relative
humidity are used to calculate the dew point temperature
and from this the height of the condensation level at each
grid box (253 grid boxes in the area 27.5◦N–52.5◦N and
12.5◦W–42.5◦E, horizontal resolution of 2.5◦ × 2.5◦).
The difference of the geopotential heights of the 500 hPa
and 850 hPa levels is used to obtain the absolute height
of the air parcel to be lifted. The air parcel is lifted
dry adiabatically to its condensation level and then moist
adiabatically. In doing so the value of the moist adiabatic
temperature gradient is readjusted in steps of 100 metres
uplift.

CIN characterizing the presence of large- or small-
scale lifting mechanisms, is represented by a proxy,
following Myoung and Nielsen-Gammon (2010):

CIN = T (inv) − Td (s) (2)

Thus CIN depends on the dewpoint temperature at the
surface (T d(s)) and the virtual temperature at some level
just above the mixed layer or within a capping inversion
(T (inv)). According to Myoung and Nielsen-Gammon
(2010) surface pressure values can be taken to obtain
the associated best proxy levels for the calculation of
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Table 1. Surface pressure values and associated best proxy
levels for the calculation of CIN, adopted from Myoung and

Nielsen-Gammon (2010).

Surface pressure (hPa) Assumed best proxy level (hPa)

<870 600
870–980 700
980–1013.25 850
>1013.25 925

the proxy of CIN. In this study for each grid box
of the predictor domain the assumed best proxy level
is determined by taking Table 1 as reference (Table
I in Myoung and Nielsen-Gammon, 2010). Thus for
the calculation of CIN from the reanalysis data and
the GCM output surface dewpoint temperatures are
required, as well as surface pressure (to obtain the
best proxy level), and also specific humidity and air
temperature of the best proxy level (for the calculation
of the virtual temperature). Like the other predictors
(except geopotential heights) CIN is used in the area
27.5◦N–52.5◦N and 12.5◦W–42.5◦E.

3.3. Principal component analysis

S-mode, Varimax-rotated principal component analysis
(PCA; Preisendorfer, 1988) is applied to each predictor
field to reduce dimensions of the data and to define inde-
pendent (orthogonal) spatial centres of variation within
each data set. PCAs are carried out for each of the five
calibration periods (for details on calibration/verification
see Section 3.4.2.) in the observational period from 1950
to 2006. The determination of the number of PCs to be
extracted follows the approach of Philipp et al. (2007)
and is based on the criterion that each PC has to be
uniquely representative for at least one input variable.
Representativeness is assumed when the maximum load-
ing of a variable on a particular PC is at least one standard
deviation greater than the other loadings of this variable
on the remaining PCs; additionally, this maximum load-
ing has to be statistically significant at the 95% level.

Depending on the particular season, 8 (winter) up
to 12 (summer) PCs with overall explained variances
(EVs) between 90% and 96% are obtained from PCA
of the geopotential height fields. The wind components
(note the smaller domain of these variables compared
to the geopotential height fields) yield 8 up to 16 PCs,
the specific humidity fields 10 up to 18 PCs, and the
convective indices 7 up to 15 PCs, all of them with EVs
of about 90%. Generally, in the summer season more PCs
are necessary to describe the large-scale variation within
a predictor field compared to the other seasons.

Then, the time series of the extreme indices at each
individual grid box are linked to the large-scale atmo-
spheric circulation represented by their corresponding PC
time series. The predictand–predictor relationships are
subsequently used to assess the response of extreme pre-
cipitation to changes of the large-scale predictors. For this
purpose the reanalysis data in the verification periods as

well as the GCM model data of the control runs, the A1B-
and B1-scenario runs are projected in each case onto the
existing PCs of the observational period to obtain new
predictor time series.

3.4. Statistical downscaling approach

3.4.1. Generalized linear models

For deriving relationships of the large-scale circulation
with R95N (the number of events exceeding the 95th
percentile of daily precipitation, thus a description of
the frequency of heavy precipitation events) and with
R95AM (precipitation total from events exceeding the
95th percentile of daily precipitation, an index which
characterizes the total seasonal amount of heavy precip-
itation events) at each individual grid box, GLMs are
applied. Deriving a GLM involves three decisions: the
distribution of the data, the function of the mean modelled
as linear in the predictors, and the predictors (McCulloch
and Searle, 2001).

R95N is a matter of counted data and therefore the
analysis can be based on the idea of a log-linear model. In
such a model the systematic effects are multiplicative and
the nominal error distribution is Poisson (in contrast to
the Gaussian model where the effects are additive and the
error distribution normal, Mc Cullagh and Nelder, 1989).
A maximum likelihood estimation is used to derive a
model for the expectation value E (·) for a variable Y t at
any given time t:

E (Yt) = ηt = g (µt) = g
p∑
1

χtjβj (3)

Here, ηt is a linear predictor (i.e. a linear combination of
the explanatory variables), µt is the mean for the PDF at
time t (GLM predicts the mean µ of the distribution rather
than the realization itself), g is the canonical link function
(one of the main ideas of GLMs is to get away from the
idea of transforming the data. The strategy is to apply
a link function to the mean of the response and fit the
resulting model by the method of maximum likelihood),
χ tj is the value of the jth covariate for observation t,
and β j are parameters whose values have to be estimated
from the data. The variance function used by the GLM is
V (µ) = µ, assuming a Poisson process with the canonical
link log (η = log µ).

The modelling of R95AM is a twofold challenge: first
there is a presence-absence problem in such a sense that
there are years with zero values in the time series (years
when no events exceed the 95th percentile). Second a
correct distribution of R95AM and an appropriate link
function has to be determined. In order to solve these
issues the zero values in the time series are disregarded
and a GLM is established for the resulting continuous
data. In the calibration periods the information about the
occurrence of an extreme event is retrieved from the
original time series. So as to get the complete time series
in the verification periods and in the model periods the
information about zero values is taken from the modelling
of R95N.
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To test the continuous time series (zero values left
out) of R95AM regarding the correct distributional form,
the data is fitted to possible theoretical distributions
and chi-square and Kolmogoroff and Smirnov goodness-
of-fit tests are applied on the fit. It is found that
the variance function is best described by a Gamma
distribution with V (µ) = µ2. The associated canonical
link for this distribution is reciprocal (η = µ−1). Although
this canonical link leads to desirable statistical properties
of the GLM (Mc Cullagh and Nelder, 1989), it is found
that the systematic effects in the models are additive not
on a reciprocal scale, but given by the link log. Therefore
a maximum quasi-likelihood-model is established with
the canonical link log (η = log µ).

In order to ensure reliable results from the GLMs,
100 iterations of bootstrapping are performed for each
model. Only predictor variables which have a significant
regression coefficient (t-test with a significance level of
0.1) are included in the models. As a measure of the
overall ability of a model the discrepancy of the fit is
examined by the generalized Pearson χ2 statistic (Mc
Cullagh and Nelder, 1989). Further diagnostic procedures
are applied to examine the residuals by looking at the
deviance residual and the Pearson residual (Mc Cullagh
and Nelder, 1989). Additional measures of the model
performance are used within the context of the calibration
and verification procedure which is described in the next
section.

3.4.2. Calibration and verification

A statistical ensemble approach is applied for the assess-
ment of future changes of the extremes: the whole study
period 1950–2006 is divided into five calibration periods,
each comprising 47 years (46 years in winter, because
December of the last year has no subsequent January
and February values to calculate the winter value). Each
of the five verification periods comprises 10 years which
are not included in the corresponding calibration peri-
ods: 1956–1965, 1966–1975, 1976–1985, 1986–1995,
1996–2005. The predictors–predictand relationships are
established in the different specified calibration periods,
resulting in multiple models which cover a range of the
observed natural variability and which give a particular
quantification of uncertainties.

The ability of a model to describe a stable connection
between the large-scale circulation and Mediterranean
extreme rainfall is determined by means of the correlation
coefficients between modelled and observed extremes
indices in the calibration as well as in the verification
periods. Besides from the correlation coefficients infer-
ences can be made regarding phase errors. Also, mean
error and bias are consulted to judge model performance.
Additionally, the reduction of variance (RV) is calculated,
being similar to the root mean squared skill score.

RV =
(

1 −
(

rmsemodel

rmsereference

)2
)

× 100 [%] (4)

with rmse being the root mean squared error. The ‘ref-
erence’ in this study is the mean of the observations
from the verification sample. RV = 100% would mean
a perfect model, RV = 0% implies no improvement com-
pared to the simple use of the sample climatology, and
RV > 0% indicates some improvement by the model
results. In this study all statistical models with RV > 0
in calibration and verification pass the model check and
are subsequently used for further analyses. The statisti-
cal model performance in the scope of the assessment
of R95N is given in Section 4.1.1., for R95AM in
Section 4.2.1..

At first the downscaling procedure is carried out
for each predictor type separately. Subsequently a joint
analysis is conducted with the PCs selected in the
single predictor analyses serving as potential predictors
in the multi-type predictor analysis. Then for each grid
box and calibration/verification period the decision is
made which model to use for the assessment of future
extreme precipitation changes: the model with the best
performance is chosen in each case. This implies that
for a certain grid box a statistical model ensemble
becomes available which includes different versions of
the observed relationships. Thus, the statistical models
of an ensemble comprise a larger range of the observed
natural variability including differing influences from the
various predictor types. A discussion on this subject is
given in Section 4.1.2.

In order to distinguish between the role of advection
and convection further assessments are performed, once
under the sole inclusion of the predictors describing the
large-scale circulation and once again under the sole
application of the convective predictors. The outcome of
this analysis is presented in Section 4.1.3. for R95N and
in Section 4.2.3. for R95AM.

Subsequently, results are examined under the con-
sideration of all predictor variables. The assessment
results are presented as the changes in the future time
slice 2070–2099 in relation to the control run period
1961–1990. In the future period A1B- and B1-scenario
conditions are considered under the use of multiple
ECHAM5 runs as well as HadCM3 output. Also, for each
grid box the upper and lower limits of the 95% bootstrap
confidence interval (DiCiccio and Efron, 1996) for the
assessed change in the two 30-year time periods are cal-
culated. The bootstrap confidence intervals are calculated
taking 1000 iterations. In addition, the ensemble mean
changes for the future time period 2070–2099 in relation
to the reference period 1961–1990 are tested for signif-
icant differences (95% level) using the non-parametric
U -test (Mann and Whitney, 1947).

4. Results

4.1. Number of extreme precipitation events per
season (R95N)

In this section the results of the assessment of R95N
using the combined information of each single-predictor
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Figure 1. Statistical model performance for R95N in spring (March to May). (a) Size of the statistical model ensemble per grid box
(maximum: 5). (b) Correlation coefficients between modelled and observed extremes indices in the calibration (mean value over the statistical
model ensemble). (c) Correlation coefficients between modelled and observed extremes indices in the verification (ensemble mean). (d) RV for

the calibration (mean value over the statistical ensemble). (e) RV for the verification (ensemble mean).

analysis (700 hPa, 500 hPa geopotential heights, 850 hPa
u- and v-wind components, 850 hPa, 700 hPa specific
humidity, CIN, Showalter-Index) and of the multi-type
predictor analysis of all predictor types are discussed (for
details on the generation of this assessment see Section
3.4.2.)

4.1.1. Model performance

Under the use of the five calibration/verification peri-
ods for the total of 2728 grid boxes, 7501 downscaling
models can be established in spring. This implies that
on average over all grid boxes for almost three (2.75,
resulting from 7501 divided by 2728) out of five calibra-
tion/verification periods a downscaling model is avail-
able. Yet the size of the statistical model ensemble per
grid box is not equally distributed over the Mediterranean
area, but varies over space. This can be seen for spring in
Figure 1(a), where the central and south-eastern Iberian
Peninsula as well as eastern and southern Turkey rep-
resent regions with three up to five statistical models
per grid box, whereas for example around Mediterranean
Tunisia and central Italy often only one statistical model
is available. The total number of models and the num-
ber of models per grid box for summer, autumn, and
winter can be seen in Table 2 and in Figures 2(a), 3(a),
and 4(a), respectively. In summer the total number of
grid boxes entering the analyses is lowest compared to
the other seasons, due to the completely dry character
of the south-eastern Mediterranean area. In autumn the
number of downscaling models which can be established

for R95N traces the areas where mean precipitation is
high, with high numbers over the western Iberian Penin-
sula and the northern Mediterranean area (Figure 3(a)).
In winter, along with the Iberian Peninsula, the eastern
Mediterranean areas depict regions of high modelling
power (Figure 4(a)). Overall the size of the statistical
model ensembles shows a clear connection to the total
precipitation amounts, pinpointing to the fact that the
statistical models perform best in regions and seasons
where and when the maximum of mean precipitation can
be observed.

To give further insight on the quality of the assessments
the correlation coefficients between statistically modelled
and observation-based values of R95N in the calibration
and verification periods are shown in panels (b) and
(c) of Figures 1–4. The coefficients are the mean
over the statistical ensemble. In addition, panels (d)
and (e) of Figures 1–4 illustrate the ensemble mean
of the RV-value for the calibration and verification.
From these figures it becomes evident that for the
Mediterranean area as a whole the best performance
is achieved in winter (Figure 4). In the other seasons
the quality of the assessments varies in a very small-
scale spatial pattern, only the eastern Mediterranean area
emerges as a more problematic region regarding the
establishment of robust downscaling models. Overall, it
becomes apparent that the assessments of R95N can be
seen as very positive in terms of the number of good
models, the correlation coefficients, and the RV-values.
However, some drawbacks of the assessments which do
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Table 2. Frequency of the predictors selected as independent
variables within the statistical downscaling models for the num-
ber of events exceeding the 95th percentile of daily precipitation
(R59N). The total number of models consists of the number of
grid boxes times the number of calibration/verification periods
where a downscaling model can be established. A multi-type
predictor assessment in terms of a specific combination of indi-
vidual predictor variables is used where it yields better results
than an assessment with a single predictor. From top to bottom:

results for spring, summer, autumn, and winter.

R95N/Spring
Predictor Number of

models
Percentage

7501 100%

700 hPa geopotential heights 1177 15.69
multi-type predictor combination 1166 15.54
700 hPa specific humidity 899 11.99
850 hPa meridional wind 885 11.80
850 hPa zonal wind 857 11.43
500 hPa geopotential heights 669 8.92
850 hPa specific humidity 661 8.81
Convective inhibition 625 8.33
Showalter-Index 562 7.49

R95N/Summer
Predictor Number of

models
Percentage

6928 100%

850 hPa specific humidity 985 14.22
multi-type predictor combination 984 14.20
700 hPa geopotential heights 914 13.19
500 hPa geopotential heights 861 12.43
850 hPa zonal wind 766 11.06
Convective inhibition 726 10.48
700 hPa specific humidity 630 9.09
Showalter-Index 541 7.81
850 hPa meridional wind 521 7.52

R95N/Autumn
Predictor Number of

models
Percentage

7717 100%

700 hPa geopotential heights 1126 14.59
multi-type predictor combination 1083 14.04
850 hPa meridional wind 984 12.75
500 hPa geopotential heights 913 11.83
850 hPa zonal wind 831 10.77
Showalter-Index 760 9.85
850 hPa specific humidity 733 9.50
700 hPa specific humidity 711 9.21
Convective inhibition 576 7.46

R95N/Winter
Predictor Number of

models
Percentage

8815 100%

850 hPa specific humidity 1431 16.23
700 hPa geopotential heights 1415 16.05
850 hPa zonal wind 1087 12.33
700 hPa specific humidity 906 10.28
500 hPa geopotential heights 884 10.03
multi-type predictor combination 872 9.89
Convective inhibition 802 9.10
850 hPa meridional wind 777 8.81
Showalter-Index 641 7.28

not become apparent directly have also to be mentioned:
no systematic bias is found in the assessments with the
exception of the almost completely dry regions in the
summer season. In these cases there is a positive bias
towards too large values of R95N in those years, when
the predictor exerts a strong signal on the predictand.

4.1.2. Predictors

Table 2 gives the information on how often a specific
predictor is selected in the downscaling models in terms
of absolute numbers and in relation to the total number of
models per season. It becomes evident that the geopoten-
tial heights of the 700 hPa level as well as a multi-type
predictor set are most frequently selected in the scope
of the assessment of the number of extreme precipitation
events in spring and in autumn. Thus, in the transitional
seasons the large-scale circulation contributes strongly
to the generation of extreme precipitation events (e.g.
through large differences of the characteristics of differ-
ent air masses within meridional circulation types). This
is also supported by the very frequent selection of the
500 hPa geopotential heights and the wind components in
these seasons. However, during spring a source of lift and
moisture availability seem to be more essential compared
to autumn. During the summer season the predictor selec-
tion shows the important requisite of moisture existence
for the generation of precipitation extremes, but also the
requirement of large-scale circulation anomalies to induce
extreme precipitation events. In the winter season R95N
is governed by the moisture availability in the lower tro-
posphere and by the large-scale circulation. Hence, even
in high winter, when the cyclonic west wind drift is at
its southernmost position, the large-scale circulation is
not the only influencing factor for extreme precipitation
events in the Mediterranean area, but the thermo-dynamic
conditions have also to be taken into account. Overall
it becomes clear that the distinction between different
seasons is important within the context of the predictor
choice in order to account for the varying influence of
the predictors on extreme precipitation during the course
of the year.

In order to demonstrate the effects which the predictor
selection exerts on the temporal evolution of R95N
under scenario conditions, for each season the statistically
modelled time series of one arbitrarily chosen (the
availability of a complete statistical ensemble with five
ensemble members is set as the only prerequisite) grid
box are illustrated in Figure 5. Shown are the modelled
values of each of the five statistical ensemble members,
the ensemble mean, and the polynomial fit of each model
for the control run period 1950–2000 and the scenario
period 2001–2100 of the ECHAM5-A1B run1. The
predictors used in each of the five models are depicted
in the legend of Figure 5. Figure 5(a) shows the assessed
number of extreme precipitation events in spring for a
grid box located in Central Iberia. It can be seen that
the inter-annual variation of the extreme precipitation
frequency differs from model to model depending on
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Figure 2. Statistical model performance for R95N in summer (June to August). (a) Size of the statistical model ensemble per grid box (maximum:
5). (b) Correlation coefficients between modelled and observed extremes indices in the calibration (mean value over the statistical model ensemble).
(c) Correlation coefficients between modelled and observed extremes indices in the verification (ensemble mean). (d) RV for the calibration

(mean value over the statistical ensemble). (e) RV for the verification (ensemble mean).

the signals given by a specific predictor. Nevertheless,
when looking at the polynomial fit of the models, it
becomes visible, that these are mainly in accordance.
Only the assessment which uses geopotential heights of
the 700 hPa level as predictor shows an overall downward
trend until the end of the 21st century, in contrast to the
other assessments where almost no change of R95N is
visible. The predictors which are chosen in the GLMs
indicate that for this area in spring the configuration of
the large-scale circulation is of prominent importance.
But also CIN is selected as predictor in one of the
models, suggesting the question whether or not high
pressure within the context of the Azores High is
already established at this time of the year and therefore
convective events are suppressed. Looking at the results
in Figure 5(b) for a grid box located in Sicily reveals
a larger range between the different models with almost
no change (predictor: v-wind component) up to a strong
increase of R95N from around the year 2010 until the end
of the 21st century (predictor: 850 hPa specific humidity).
Also, a generally very high inter-annual variability of
extreme precipitation events becomes visible in this
example for the summer season. The selected predictor
variables humidity, wind components, and CIN indicate
that advective moisture transport in the lower troposphere
and local lifting mechanisms plays a major role for R95N
at this central Mediterranean island in summer. Figure
5(c) shows the temporal evolution of R95N in autumn
for a grid box located in Croatia. In this example all

statistical ensemble members are in a good agreement,
yielding an overall decrease of R95N of about 1 day
until the end of the 21st century. The selection of
humidity and CIN as predictors points to the importance
of moisture availability and unhindered conditions within
orographically induced air mass uplift in the area of
the Dinaric Alps. Figure 5(d) presents the results for a
grid box in Israel in the winter season. Regarding the
overall trend the statistical models are in good accordance
with each other. As predictors geopotential heights of the
700 hPa level and specific humidity of the 850 hPa level
are primarily selected, indicating that moist circulation
anomalies (e.g. in the context of low-pressure systems
which are generated or are travelling over the eastern
Mediterranean Sea in winter) are responsible for the
generation of extreme precipitation events. Additionally,
the selection of the Showalter-Index in one of the
statistical models points to the relevance of conditional
instability of the atmosphere.

4.1.3. Thermo-dynamic factors versus large-scale
circulation

The aforementioned results and the overall assessment
which will be described in Section 4.1.4. are based
on the use of the whole predictor set which describes
the large-scale circulation as well as convective con-
ditions. But at first the question about the specific
contributions of the different predictor types to the
assessed changes will be addressed in this subsection
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Figure 3. Statistical model performance for R95N in autumn (September to November). (a) Size of the statistical model ensemble per grid box
(maximum: 5). (b) Correlation coefficients between modelled and observed extremes indices in the calibration (mean value over the statistical
model ensemble). (c) Correlation coefficients between modelled and observed extremes indices in the verification (ensemble mean). (d) RV for

the calibration (mean value over the statistical ensemble). (e) RV for the verification (ensemble mean).

in more detail. In addition to the overall assessment
considering all predictors, two further types of statis-
tical downscaling models are realized. In one analysis
just circulation-type predictors (700 hPa/500 hPa geopo-
tential heights, 850 hPa u-,v-wind components) are used,
and in the other one solely predictors describing thermo-
dynamic conditions (850 hPa/700 hPa specific humidity,
CIN, Showalter-Index).

Regarding the performance of the two different types
of assessments in terms of the number of statistical mod-
els per grid box, correlation coefficients, and RV-values
in calibration and verification, there is no systematic
preference of one predictor set (not shown). Overall,
the modelling power of the two predictor sets is of the
same value, but it is reduced in relation to the model
performance of the assessment using all predictors. For
example, the number of statistical models which can be
established is reduced to about 3/4 compared to the num-
ber resulting from the modelling with all predictors (e.g.
in winter (summer) 7051 (4793) circulation-type models,
7268 (5181) thermo-dynamic models, and 8815 (6928)
all-predictors models). Between the two predictor sets
differences can be found on a seasonal and regional
view, e.g. the circulation-type predictor set performs in
general better over the western Mediterranean area in
autumn and over the eastern Mediterranean area in winter
compared to the thermo-dynamic predictor set. In con-
trast, widespread in the Mediterranean area the thermo-
dynamic predictor set exerts a higher modelling power
in summer. Comprehensively, under the cost of a lower

modelling power compared to the overall assessment,
the Mediterranean area can be assessed in all seasons
through the sole use of one predictor set, due to the
indirect containment of information from the other pre-
dictor set (for instance does a certain circulation pattern
imply a characteristic humidity distribution). Neverthe-
less, considerable differences might appear under future
climate conditions, because the relationship among differ-
ent predictor variables may not be preserved. This leads
to different assessment results depending on the particular
predictor variables being included into the downscaling
models.

The assessed changes of R95N resulting from the two
different downscaling exercises are shown in Figure 6
as the difference of the future time slice 2070–2099
to the control run period 1961–1990 under the use of
the ensemble mean of the three A1B-scenario runs of
ECHAM5. On the left of Figure 6 the results of the
downscaling using the circulation-type predictors are pre-
sented, on the right of Figure 6 the assessment based on
the thermo-dynamic predictors is illustrated. It becomes
visible that there are several differences between the two
assessments. The most noticeable features become appar-
ent in autumn and in the winter season.

Summing up the results clearly show that different pre-
dictor types lead to a different outcome of the statistical
downscaling and point to the importance to include dif-
ferent predictor variables in the statistical downscaling
models. This is necessary to get a comprehensive descrip-
tion of the observed predictand–predictor relationships
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Figure 4. Statistical model performance for R95N in winter (December to February). (a) Size of the statistical model ensemble per grid box
(maximum: 5). (b) Correlation coefficients between modelled and observed extremes indices in the calibration (mean value over the statistical
model ensemble). (c) Correlation coefficients between modelled and observed extremes indices in the verification (ensemble mean). (d) RV for

the calibration (mean value over the statistical ensemble). (e) RV for the verification (ensemble mean).

and to obtain a realistic picture of possible future cli-
matic change on a regional basis. The assessment using
all predictor variables is described in next Section 4.1.4.

4.1.4. Assessment of R95N for the 21st century

Figure 7 illustrates for the four seasons the assessment
of the frequency of extreme precipitation events in the
Mediterranean area up until the end of the 21st century
as the change in the future time slice 2070–2099 in
relation to the control run period 1961–1990. Presented
is the ensemble mean which consists of 3 up to 15
statistical assessments, resulting from the use of the three
ECHAM5-A1B runs, each of them multiplied by the
size of the statistical ensemble (one to five ensemble
members). Also shown are the significance of the changes
(U -test, 95%-level) and the upper and lower limits of the
95% bootstrap confidence interval. The results are based
on the assessment incorporating all predictor variables.

As an overall result in spring (Figure 7(a)) mainly
decreases of up to about one day emerge over many parts
of the Mediterranean area. In contrast, increases of R95N
can be found over some western exposed mountainous
areas of the central Mediterranean area with maximum
values of about two days increase. These increases can
be attributed to changes of the large-scale circulation
(see Figure 6). Concerning the significance (95%-level)
of the described changes, the results from the U -test
can be seen in the lower part of Figure 7(a). It becomes
apparent that the significance pattern is rather scattered
across the Mediterranean area, but for many grid boxes

the change turns out to be significant. Looking at the
upper and lower limit of the 95% bootstrap confidence
interval on the right side of Figure 7(a) reveals that
the uncertainty of the change of R95N between the
periods 2070–2099 and 1961–1990 results in possible
decreases (lower limit) as well as potential increases
(upper limit) for most parts of the Mediterranean area. In
the summer season increases of up to about two extreme
precipitation days are visible around the Tyrrhenian Sea,
the Ionian Sea, and the Aegean Sea, whereas decreases
of up to about one day arise for most of the western
and northern Mediterranean regions (Figure 7(b)). In
autumn reductions of R95N occur over many parts of the
western and central Mediterranean area with values of
partly more than one day decrease (Figure 7(c)). In the
eastern Mediterranean area a widespread rise of the fre-
quency is assessed. For Greece mainly thermo-dynamic
factors control the increases, whereas for southern
Turkey circulation changes can be attributed to the rise
(Figure 6). In winter distinct increases of R95N can be
seen for many parts of the Mediterranean area, most
pronounced over the north-western Iberian Peninsula,
the northern Dinaric Alps, around the northern Aegean
Sea, and the southern coast of Turkey with a maximum
of about four days (Figure 7(d)). The increases over
the western Mediterranean area are mainly related to
changed thermo-dynamic conditions, whereas over the
central and north-eastern Mediterranean area changes of
the large-scale circulation play a major role (Figure 6).
Overall, the pattern of significance in winter (lower part
of Figure 7(d)) is less pronounced compared to the other
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Figure 5. Temporal evolution of the number of extreme precipitation events for the time period 1950–2100 resulting from five statistical
downscaling models for four example grid boxes in different seasons and regions of the Mediterranean area. Output of the ECHAM5-run1 is
used for the assessment (1950–2000 control run conditions, 2001–2100 SRES A1B scenario assumptions). Shown are the values of R95N for

each individual year as well as the polynomial fit of each time series.

seasons despite considerable changes of R95N over
some Mediterranean areas. This is due to the generally
higher values of R95N in the winter season.

The changes described above refer to the statistical
downscaling of ECHAM5-A1B model output. However,
the assessment using HadCM3-A1B data yields very
similar results. Only small differences become appar-
ent like for example a larger area of small increases
over the Iberian Peninsula and over Syria and the
Lebanon in spring and generally less pronounced but

more widespread increases in the winter season. Also the
statistical downscaling under the use of the B1-scenario
instead of A1B-scenario leads to results comparable to the
changes visible in Figure 7. Using the B1-scenario causes
generally a slightly smaller amount of change, leaving the
overall pattern of change unmodified. Since these further
assessments do not yield differing results they are not
explicitly presented here. Nevertheless, to give a com-
prehensive picture of the downscaled evolution of R95N,
Figure 8 shows the time series of the number of extreme
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Figure 5. Continued .

Figure 6. Changes of the number of events exceeding the 95th percentile of daily precipitation for the future time period 2070–2099 in relation
to the control run period 1961–1990. Left side: Assessment taking only predictors describing the large-scale circulation (700hPa, 500 hPa
geopotential heights, 850 hPa u-, v-wind components). Right side: Assessment under the sole inclusion of convective predictors (850hPa,

700 hPa specific humidity, CIN, Showalter-Index). From top to bottom: spring, summer, autumn, winter.

precipitation events for the time period 1950–2100 for
the four example grid boxes which were already used in
Figure 5. Each time series depicts the statistical ensem-
ble mean using output from three ECHAM5 model runs
and one HadCM3 run, respectively. For the time period
1950–2000 control run conditions, for 2001–2100 SRES
A1B scenario conditions (left side) and SRES B1 scenario
assumptions (right side) are applied. The time series
with the black signature in the left figures of Figure 8
(ECHAM5-SRESA1B run1) corresponds to the ensem-
ble mean illustrated in red colour in Figure 5. Overall

it becomes visible that the assessments are not in agree-
ment for individual years, but the general temporal evo-
lution indicated by the polynomial fits is largely concur-
rent. Summing up, all different downscaling assessments
generally produce similar results regarding the change
of the number of extreme precipitation events in the
Mediterranean area up until the end of the 21st century
under enhanced greenhouse warming conditions. Yet one
has to keep in mind the uncertainties related to the results
which are reflected for example by the 95% bootstrap
confidence intervals.
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Figure 7. Ensemble mean changes of the number of events exceeding the 95th percentile of daily precipitation for the future time period
2070–2099 in relation to the control run period 1961–1990 under SRES A1B scenario assumptions. In addition the significance of the changes
(95% level, U -test) and the upper and lower limit of the 95% bootstrap confidence intervals are shown. Results are based on statistical downscaling
assessments using GLMs as downscaling technique and predictors from three ECHAM5/MPI-OM runs. From top to bottom: spring, summer,

autumn, winter.

4.2. Total amount of precipitation from extreme
precipitation events per season (R95AM)

This section deals with the assessment of R95AM,
analogue to the previous Section 4.1. where the results
of the statistical downscaling of R95N were discussed.

4.2.1. Model performance

Models for the total amount of precipitation from events
exceeding the 95th percentile can only be established
for those grid boxes and calibration/verification periods,

where a model for R95N is available, since the infor-
mation about the occurrence of an extreme precipitation
event in the verification and model periods is taken from
the assessment of R95N. Under the use of the various
calibration/verification periods 6265 downscaling models
can be established for 2611 grid boxes in spring. In the
summer season 5065 statistical models are successfully
built for 2150 grid boxes, in autumn 6373 models are
available for 2605 grid boxes, and in winter 7566 mod-
els for 2618 grid boxes. The number of statistical models
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Figure 7. Continued .

per grid box can be seen in Figures 9–12 (panel a) for
the four seasons.

Looking at the statistical ensemble mean corre-
lation coefficients between statistically modelled and
observation-based values of R95AM in the calibration
and verification periods (Figures 9–12, panels (b) and
(c)) and at the RV-values (Figures 9–12, panels (d) and
(e)) reveals that the modelling of the seasonal amount of
extreme precipitation events is quite successful when the
occurrence of these extremes is perfectly known. Thus,
the performance of the statistical models is quite good
in the calibration, because the information on the fre-
quency of the extremes is taken from the original time
series, whereas the quality of the models drops notice-
ably in the verification due to the dependence of the
information about zero values on the modelling power
of R95N. An exploratory analysis of the model perfor-
mance of R95AM in the verification periods reveals that
the models remain robust in terms of correlation coeffi-
cients and RV-values when taking the information about
zero values from the original time series instead of the
modelled ones (not shown). Consequently, the limits of
the modelling potential are primarily determined by the
presence-absence problem of the extremes, whereas the
distributional form of R95AM without the zero values can
be described very successfully with the GLMs. In sum-
mary, the statistical model performance for the seasonal
precipitation amount of the extremes features ensemble
mean correlation coefficients of about 0.4 up to 0.8 and
ensemble mean RV-values of up to 90% in the calibra-
tion and correlation coefficients of about 0.3 up to 0.7
and RV-values of up to about 60% in the verification.

4.2.2. Predictors

The information on how often a specific predictor is
selected in the downscaling models in terms of abso-
lute numbers and in relation to the total number of
models per season is given in Table 3. In comparison
to the predictor selection for R95N it becomes visible
that the top three predictor variables are the same for

R95AM. An exception occurs in autumn, where there is
a stronger connection of the 500 hPa geopotential heights
to the frequency of the extremes (R95N), whereas specific
humidity of the 850 hPa level is of greater importance for
the seasonal rainfall amount of the extremes (R95AM).
Overall, another apparent feature is the increased rele-
vance of the Showalter-Index and CIN for R95AM in
comparison to R95N in the winter season. Besides, there
is a greater modelling power of the multi-type predic-
tor assessments for R95N compared to R95AM in all
seasons. But altogether there is a high correspondence
regarding the predictor selection in the statistical down-
scaling models for the frequency and the seasonal amount
of extreme precipitation events in the four seasons.

4.2.3. Thermo-dynamic factors versus large-scale
circulation

Prior to discussing the downscaling results of R95AM
based on the application of all predictor variables in
Section 4.2.4. the specific signals from the two differ-
ent predictor sets (large-scale circulation and thermo-
dynamic factors) are addressed in this subsection in
more detail. As for the analysis of R95N two further
types of statistical downscaling models are realized for
R95AM. In one analysis only the circulation-type predic-
tors (700 hPa/500 hPa geopotential heights, 850 hPa u-,
v-wind components) are regarded, and in the other analy-
sis only the thermo-dynamic predictors (850 hPa/700 hPa
specific humidity, CIN, Showalter-Index).

The statistical model performance of the two differ-
ent types of assessments is lower compared to the model
performance of the assessment using all predictors. Thus
the number of statistical models which can be established
is reduced to 59.4% (3010 models, summer season) to
74.1% (5606 models, winter) when using only thermo-
dynamic variables and to 54.1% (2741 models, summer)
to 67.5% (5106 models, winter) in case of the circulation-
type predictor set compared to the downscaling with all
predictors (the number of models of the all-predictors
assessment is specified in Section 4.2.1.). For the down-
scaling using thermo-dynamic predictors more statistical
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Figure 8. Temporal evolution of the number of extreme precipitation events for the time period 1950–2100 for four example grid boxes in the
Mediterranean area (same grid boxes like in Figure 5). Each time series presents the statistical ensemble mean using output from three ECHAM5
model runs and one HadCM3 run, respectively. For the time period 1950–2000 control run conditions, for 2001–2100 SRES A1B scenario
conditions (left side) and SRES B1 scenario assumptions (right side) are applied. Shown are the values of R95N for each individual year as well

as the polynomial fit of each time series.

models can be established compared to the downscaling
with circulation-type predictors. The differences of the
number of statistical models which can be established is
greatest in winter and summer, and least in the transi-
tional seasons autumn and spring. But with respect to

the correlation coefficients and RV-values in calibration
and verification no systematic higher modelling power
of one predictor set is found. Thus, the differences are
related to the basic circumstance whether or not a sta-
tistical model can be successfully built, but in case of
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Figure 9. Statistical model performance for R95AM in spring (March to May). (a) Size of the statistical model ensemble per grid box (maximum:
5). (b) Correlation coefficients between modelled and observed extremes indices in the calibration (mean value over the statistical model ensemble).
(c) Correlation coefficients between modelled and observed extremes indices in the verification (ensemble mean). (d) RV for the calibration

(mean value over the statistical ensemble). (e) RV for the verification (ensemble mean).

model availability the model performance is equally high.
In summary, statistical downscaling can be performed
under the sole inclusion of only one predictor set at
the expense of a smaller number of statistical models
compared to the assessment using all predictors. Model
performance in terms of correlation coefficients and RV-
values is not influenced as much as it is the case in
the similar study of R95N described in Section 4.1.3..
This can be attributed to the lesser importance of the
multi-type predictor assessments for R95AM compared
to R95N. That way model performance of R95AM is
not frequently enhanced by providing different predictor
types, but often one predictor variable plays a decisive
role and therefore determines the performance of a spe-
cific GLM.

In spite of a lower modelling power compared to
the overall assessment, R95AM can be assessed in the
observational period through the sole use of one predictor
set. However, substantial differences become apparent
when comparing the downscaling results under future
climate change conditions. Figure 13 shows the changes
of R95AM for the future time period 2070–2099 in
relation to the control run period 1961–1990. On the
left side the assessment results taking only predictors
describing the large-scale circulation (700 hPa, 500 hPa
geopotential heights, 850 hPa u-, v-wind components)
are shown, on the right side the projection under the
sole inclusion of the convective predictors (850 hPa,
700 hPa specific humidity, CIN, Showalter-Index). In

spring pronounced decreases of R95AM are visible over
the Iberian Peninsula in the downscaling with circulation-
type predictors (upper left figure of Figure 13), whereas
a mixed spatial pattern with some decreases and some
increases emerges for this area in the thermo-dynamic
projection (upper right figure of Figure 13). Besides,
stronger decreases in spring can be found over western
North Africa in the thermo-dynamic assessment, which
are not evident in the modelling result taking large-
scale circulation predictors. In the summer season main
differences are visible over the Iberian Peninsula. In
autumn widespread differences become apparent, only
the eastern coast of the Adriatic Sea and the eastern
Mediterranean area stand out as regions of coherent
decreases. In winter a rise of R95AM over the central-
northern Mediterranean area and mainly reductions of
R95AM over the western Mediterranean area results from
circulation changes (lowest left figure of Figure 13),
whereas thermo-dynamic forcing induces rather decreases
over the central-northern region and strong increases
over the western Mediterranean area (lowest right part
of Figure 13). Around the north-eastern Mediterranean
region both assessments yield comparable results with
increases around the Aegean Sea and decreases over parts
of southern Turkey.

Overall, it is shown that different predictor vari-
ables can lead to varying statistical downscaling results
pointing to distinct impacts of the change of specific
atmospheric conditions on local extreme precipitation.
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Figure 10. Statistical model performance for R95AM in summer (June to August). (a) Size of the statistical model ensemble per grid box
(maximum: 5). (b) Correlation coefficients between modelled and observed extremes indices in the calibration (mean value over the statistical
model ensemble). (c) Correlation coefficients between modelled and observed extremes indices in the verification (ensemble mean). (d) RV for

the calibration (mean value over the statistical ensemble). (e) RV for the verification (ensemble mean).

Figure 11. Statistical model performance for R95AM in autumn (September to November). (a) Size of the statistical model ensemble per grid box
(maximum: 5). (b) Correlation coefficients between modelled and observed extremes indices in the calibration (mean value over the statistical
model ensemble). (c) Correlation coefficients between modelled and observed extremes indices in the verification (ensemble mean). (d) RV for

the calibration (mean value over the statistical ensemble). (e) RV for the verification (ensemble mean).
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Figure 12. Statistical model performance for R95AM in winter (December to February). (a) Size of the statistical model ensemble per grid box
(maximum: 5). (b) Correlation coefficients between modelled and observed extremes indices in the calibration (mean value over the statistical
model ensemble). (c) Correlation coefficients between modelled and observed extremes indices in the verification (ensemble mean). (d) RV for

the calibration (mean value over the statistical ensemble). (e) RV for the verification (ensemble mean).

Consequently, as for R95N, this subsection points to the
importance to include different predictor variables in the
statistical downscaling models to obtain a comprehen-
sive picture of regional extreme precipitation changes.
Subsequently, the analysis presented in this section can
be used in the scope of the downscaling using all predic-
tor variables which is described in the next Section 4.2.4.
to give additional information on the specific sources of
the assessed changes.

4.2.4. Assessment for the 21st century

Due to substantial similarities concerning the assessed
general tendencies of R95AM under future climate
change conditions from different scenarios (A1B and
B1), multiple runs, and different GCMs (ECHAM5 and
HadCM3), the statistical downscaling results discussed in
this section are primarily based on the ensemble of the
three ECHAM5 runs under A1B-scenario conditions. The
results using B1-scenario conditions feature in general
the same patterns of change. Only the absolute amounts
of change are reduced to some extent compared to the
A1B-scenario case. Figure 14 shows for the four sea-
sons the downscaled projection of the precipitation total
from events exceeding the 95th percentile in the Mediter-
ranean area up until the end of the 21st century as the
change in the future time slice 2070–2099 in relation to
the control run period 1961–1990. Presented is the mean
of the ensemble which incorporates for each grid box up
to five statistical downscaling models each with the input
of the three ECHAM5-A1B runs. Also shown are the

significance of the changes (U -test, 95%-level) and the
upper and lower limits of the 95% bootstrap confidence
interval. The results are based on the statistical down-
scaling taking all predictor variables into account.

The pattern of change of R95AM in spring follows
closely the assessed changes of R95N (see Figure 7(a)),
indicating that the total amount of precipitation from
events exceeding the 95th percentile is closely connected
to the frequency of these events. In the summer season
mainly reductions of R95AM of up to about minus
40 mm become visible over the western and northern
Mediterranean area, whereas increases of up to about
30 mm are visible around the Tyrrhenian Sea, the Ionian
Sea, and the Aegean Sea (Figure 14(b)). Modifications
of the large-scale circulation and of the thermo-dynamic
conditions contribute in an analogous manner to the
assessed changes. The overall pattern of change of
R95AM is in close correspondence with the change
assessed for R95N, with some interesting features like
the increase of R95N over parts of southern Turkey with
values of more than one day (Figure 7(b)), but increases
of R95AM of only about 10 mm, which points to more
frequent but less intense extreme precipitation events over
this area. In autumn a decrease of the seasonal extreme
precipitation amount up until the end of the 21st century
becomes visible for many parts of the Iberian Peninsula
with strongest reductions of partly more than 70 mm over
the eastern Mediterranean coast of Spain and parts of
Mediterranean Algeria (Figure 14(c)). Decreases are also
projected for Tunisia, parts of Italy, the eastern coast of
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Figure 13. Changes of the total amount of precipitation from events exceeding the 95th percentile of daily precipitation for the future time period
2070–2099 in relation to the control run period 1961–1990. Left side: Assessment taking only predictors describing the large-scale circulation
(700hPa, 500 hPa geopotential heights, 850 hPa u-, v-wind components). Right side: Assessment under the sole inclusion of convective predictors

(850hPa, 700 hPa specific humidity, CIN, Showalter-Index). From top to bottom: spring, summer, autumn, winter.

the Adriatic Sea and some eastern Mediterranean regions.
The decreases over the western Mediterranean area are
mainly due to changes of the large-scale circulation,
whereas the reductions over the northern and eastern
Mediterranean areas are connected to thermo-dynamic
modifications (see Figure 13). In contrast, increases of
R95AM over the northern coast of the Ligurian Sea,
Greece, and the southern coast of Turkey are primarily
due to thermo-dynamic changes. In winter increases of
R95AM up until the end of the 21st century dominate
the pattern of change in Figure 14(d). In this context, the
increases over the western Mediterranean area are mainly
related to changes of thermo-dynamic conditions whereas
the increases over the central-northern Mediterranean
area are induced by circulation changes (see Figure
13). The increases over the north-eastern and eastern
Mediterranean area as well as the decreases over parts of
Turkey are connected to similar effects from both thermo-
dynamic as well as circulation-type forcing. The overall
pattern of change in winter is largely correspondent to
the assessed changes of R95N. A comparison of the
results indicates some special features, like, e.g. that
in the north-eastern Mediterranean area, especially over
Turkey the assessed frequency decreases of partly more
than one day are stronger in relation to the overall amount

decrease of up to about 20 mm, indicating that this region
might experience less frequent but more intense extreme
precipitation events.

5. Discussion and conclusions

For the Mediterranean area possible future changes of the
frequency (R95N, represented by the number of events
exceeding the 95th percentile of daily precipitation) and
the total seasonal amount (R95AM, total amount of pre-
cipitation from these events) of extreme precipitation
events are analysed on a seasonal basis. The results are
obtained by means of statistical downscaling. Uncertain-
ties due to future greenhouse-gas emission scenarios, as
well as to the structure of climate models and their param-
eterizations are considered by the inclusion of different
emission scenarios (A1B and B1), two different GCMs
(ECHAM5 and HadCM3), and multiple runs of a specific
GCM (three A1B and three B1 runs of ECHAM5).

A statistical downscaling technique based on GLMs
is adopted to assess extreme precipitation changes. For
R95N a Poisson process is assumed with the canonical
link log. For the modelling of R95AM the zero values
in the time series are disregarded and GLMs are estab-
lished for the resulting continuous data. In this context the
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Figure 14. Ensemble mean changes of the total amount of precipitation from events exceeding the 95th percentile of daily precipitation for the
future time period 2070–2099 in relation to the control run period 1961–1990 under SRES A1B scenario assumptions. In addition the significance
of the changes (95% level, U -test) and the 95% bootstrap confidence intervals are shown. Results are based on statistical downscaling assessments
using GLMs as downscaling technique and predictors from three ECHAM5/MPI-OM runs. From top to bottom: spring, summer, autumn, winter.

variance function is described by a Gamma distribution
and the canonical link used is also log. The informa-
tion about zero values is taken from the modelling of
R95N. The particular predictand–predictor relationships
are derived in different calibration and verification peri-
ods to account for non-stationarities in the relationships.
The consideration of various predictor–predictand rela-
tionships helps to cover a larger range of determining
factors for the generation of extreme precipitation events

and different possible evolutions of the predictand are
allowed for. Consequently, statistical model ensembles
are available which cover a range of the observed natural
variability and which give a particular quantification of
uncertainties.

In the Mediterranean area extreme precipitation is
related to advective processes and/or is a matter of
convective precipitation. To account for this, various
predictors are chosen, including more ‘classical ones’
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Figure 14. Continued .

as well as novel ones, especially for the description of
convective processes. Thus, for the assessments of R95N
and of R95AM, 700 hPa and 500 hPa geopotential heights
and u-wind and v-wind components of the 850 hPa level
are used to describe the large-scale circulation, 850 hPa
and 700 hPa specific humidity, CIN, and the Showalter-
Index are taken as thermo-dynamic predictors.

It is shown that the model performance for R95N and
R95AM by means of GLMs as a statistical downscaling
technique fluctuates depending on the region and season.
The best results can generally be obtained in areas
and seasons where and when total precipitation amounts
are high and the inter-annual precipitation variability is
comparatively low. Thus, summer represents the season
and the eastern and southern Mediterranean areas the
regions which are more difficult to assess.

Regarding the predictor selection within the scope of
the modelling of R95N in spring and autumn, geopoten-
tial heights of the 700 hPa level as well as a multi-type
predictor set are most frequently selected. Besides, the
wind components are very relevant, indicating that the
large-scale circulation plays an important role for the gen-
eration of extreme precipitation events in the transitional
seasons. Additionally, a source of lift and moisture avail-
ability seem to be more essential in spring, whereas con-
vective instability plays a more important role in autumn.
The most frequent selection of 850 hPa specific humidity
in summer points to the basic requirement of moisture
existence for the generation of precipitation extremes
in this season. The inclusion of 700 hPa and 500 hPa
geopotential heights and the zonal wind component in
the GLMs indicates that large-scale circulation anomalies
are also necessary to induce extreme precipitation events
in summer. In the winter season R95N is governed by the
moisture availability in the lower troposphere and by the
large-scale circulation, represented by the geopotential
heights of the 700 hPa level and the zonal wind compo-
nent of the 850 hPa level. Thus, even in high winter, when
the Mediterranean area is under the increased influence of
the cyclonic west wind drift, extreme precipitation events

in the Mediterranean area are not solely determined by
the large-scale circulation, but the moisture content of the
atmosphere has also to be taken into account. Concerning
the predictor selection for the statistical assessment of
R95AM, it appears that the top three predictor variables
are the same as those for R95N. An exception is during
autumn when 500 hPa geopotential heights are more
relevant for R95N, and 850 hPa specific humidity is of
greater importance for R95AM. Beyond that, in the win-
ter season an apparent feature is the increased relevance
of the Showalter-Index and CIN for R95AM in compari-
son to R95N. Besides, there is a greater modelling power
of the multi-type predictor assessments for R95N com-
pared to R95AM in all seasons. Yet in summary there is
a high correspondence regarding the predictor selection
in the statistical downscaling models for R95N and for
R95AM.

In addition to the statistical downscaling based on the
application of all predictor variables, the specific signals
from two different predictor sets (large-scale circulation
represented by 700 hPa/500 hPa geopotential heights,
850 hPa u-, v-wind components and thermo-dynamic
factors described by 850 hPa/700 hPa specific humidity,
CIN, Showalter-Index) are addressed in this study.
From this analysis considerable differences appear under
conditions of future climate change. For example, in
winter the increases of the frequency and seasonal
amount of extreme precipitation events over the western
Mediterranean area are primarily related to changes of
thermo-dynamic conditions whereas mainly decreases
arise from circulation changes alone. In contrast, the
increases over the central-northern Mediterranean area
in winter are more strongly connected to circulation
changes, while the change of the thermo-dynamic factors
rather results in decreases over this area. Overall it
is shown that different predictor variables can lead
to varying statistical downscaling results pointing to
distinct impacts of the change of specific atmospheric
conditions on local extreme precipitation. It points to the
importance to include different predictor variables in the
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Table 3. Frequency of the predictors selected as independent
variables within the statistical downscaling models for the
precipitation total from events exceeding the 95th percentile
of daily precipitation (R95AM). The total number of models
consists of the number of grid boxes times the number of
calibration/verification periods where a downscaling model can
be established. A multi-type predictor assessment in terms of
a specific combination of individual predictor variables is used
where it yields better results than an assessment with a single
predictor. From top to bottom: results for spring, summer,

autumn, and winter.

R95AM/Spring
Predictor Number of

models
percentage

6265 100%

700 hPa geopotential heights 897 14.32
700 hPa specific humidity 762 12.16
850 hPa meridional wind 727 11.60
850 hPa specific humidity 720 11.49
850 hPa zonal wind 699 11.16
500 hPa geopotential heights 633 10.10
Showalter-Index 632 10.09
Multi-type predictor combination 612 9.77
Convective inhibition 583 9.31

R95AM/Summer
Predictor Number of

models
percentage

5065 100%

700 hPa geopotential heights 658 12.99
850 hPa specific humidity 657 12.98
500 hPa geopotential heights 635 12.54
850 hPa zonal wind 572 11.29
Multi-type predictor combination 568 11.21
Convective inhibition 538 10.62
700 hPa specific humidity 496 9.79
Showalter-Index 476 9.40
850 hPa meridional wind 465 9.18

R95AM/Autumn
Predictor Number of

models
Percentage

6373 100%

850 hPa meridional wind 837 13.13
700 hPa geopotential heights 812 12.74
850 hPa specific humidity 768 12.05
850 hPa zonal wind 752 11.80
700 hPa specific humidity 712 11.17
Showalter-Index 649 10.19
Multi-type predictor combination 625 9.81
500 hPa geopotential heights 612 9.60
Convective inhibition 606 9.51

R95AM/Winter
Predictor Number of

models
Percentage

7566 100%

850 hPa specific humidity 1146 15.16
700 hPa geopotential heights 1049 13.86
850 hPa zonal wind 906 11.97
Convective inhibition 874 11.55
Showalter-Index 788 10.42
700 hPa specific humidity 775 10.24
850 hPa meridional wind 747 9.87
500 hPa geopotential heights 725 9.58
Multi-type predictor combination 556 7.35

statistical downscaling models to obtain a comprehensive
picture of regional extreme precipitation changes.

The change of R95N in the Mediterranean area in the
future time slice 2070–2099 in relation to the control
run period 1961–1990 from the assessment using all
predictor variables shows in spring mainly decreases
over many parts of the Mediterranean area. In the
summer season increases of up to about two extreme
precipitation days up until the end of the 21st century
are visible around the Tyrrhenian Sea, the Ionian Sea,
and the Aegean Sea, whereas decreases are assessed
for most of the western and northern Mediterranean
regions. In autumn reductions of R95N occur over many
parts of the western and central Mediterranean area.
In the eastern Mediterranean area a widespread rise of
the frequency is assessed, in particular over southern
Turkey and southern Greece with values of up to about
three days. In winter distinct increases of R95N can be
seen for many parts of the Mediterranean area, most
pronounced over the north-western Iberian Peninsula,
the northern Dinaric Alps, around the northern Aegean
Sea, and the southern coast of Turkey with a maximum
of about four days. Also for northern Morocco, central
and southern Italy increases are assessed. In contrast
for the Mediterranean coast of Tunisia, the eastern
Mediterranean area, and parts of Turkey decreases of the
number of precipitation extremes are modelled. Overall,
the described changes are significant at many grid boxes,
but the limits of the 95% bootstrap confidence intervals
indicate that for most regions the change can range from
possible decreases up to potential increases.

The overall pattern of change of R95AM in the
Mediterranean area is largely correspondent to the
assessed changes of R95N. Thus, up until the end of
the 21st century widespread decreases of R95AM are
visible for the spring season. The decreases are strongest
over the north-western Iberian Peninsula, north-western
Africa, parts of Greece and Albania as well as over
south-eastern Turkey with values of up to about minus
50 mm. Noticeable increases of R95AM in spring can
only be found for parts of northern and western Italy,
southern France and southern Greece. In the summer sea-
son mainly reductions of R95AM occur over the western
and northern Mediterranean area, whereas increases up
until the end of the 21st century emerge around the
Tyrrhenian Sea, the Ionian Sea, and the Aegean Sea. In
autumn a decrease in the amount of seasonal extreme
precipitation becomes visible for many parts of the
Iberian Peninsula with strongest reductions of partly
more than 70 mm over the eastern Mediterranean coast
of Spain and parts of Mediterranean Algeria. Decreases
are also projected for Tunisia, parts of Italy, the eastern
coast of the Adriatic Sea and some eastern Mediterranean
regions. In contrast, increases of R95AM can be found
over the northern coast of the Ligurian Sea, Greece, and
the southern coast of Turkey. In winter mainly increases
of R95AM are noted up until the end of the 21st century.

The described changes refer to the statistical down-
scaling of ECHAM5-A1B model output. However, the
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assessment using HadCM3-A1B data yields a very
similar outcome. Also the statistical downscaling under
the use of the B1-scenario is consistent to the results
obtained with the A1B-scenario. Using the B1-scenario
results in a slightly smaller change, leaving the overall
pattern of change unmodified.

Overall, the statistical assessment of extreme precipita-
tion in the Mediterranean area up until the end of the 21st
century yields diverse seasonal and regional patterns of
change. In general there are consistencies to the projected
large-scale pattern of mean precipitation change as it is,
e.g. statistically assessed by Hertig and Jacobeit (2008)
and dynamically by Giorgi and Lionello (2008). How-
ever, considerable variations occur which are primarily
related to the projected increases of extreme precipita-
tion over some regions in the transitional seasons, which
are not evident for mean precipitation. A further pur-
suit of the question about the relation between mean and
extreme precipitation change in the Mediterranean area
will be addressed in future work.
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