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Abstract

"Simplicity is about subtracting the obvious and adding the meaningful."

- John Maeda

A sentence which describes exactly the goal of this work.

But why is simplicity a desirable goal in the first place? To understand this,
we investigate how Consumer-Grade Software Systems (CGSS) have evolved
over the past decades in terms of complexity. A subsequent comparison with
Safety-Critical Software Systems (SCSS) shows that these lag behind the CGSS
by about 5-10 years. The complexity of these systems increases to such an extent
that they are no longer controllable with the previous methods, languages and
tools and therefore new methods, languages and tools were invented to master
this complexity again. Hereby, simplicity is the groundbreaking goal and in
most cases this simplicity is achieved by abstraction and encapsulation.

Therefore, in this thesis we show how to build on the observed developments in
CGSS to bring about improvements for SCSS. We use an oppinionated approach
which already specifies the methods, languages and tools to use in order to
provide a better overall workflow and developer experience. We show how to
start with a semantically well-defined modeling language to generate standard-
compliant high-level language code for SCSS. Thereby, reducing the time spent
for recurring and error-prone tasks regarding the writing of timing-, structure-,
and communication-related code. The only task a programmer then is left with,
is the writing of business logic which corresponds exactly to the aforementioned
quote about simplicity.

Subsequently, we add modularity by design on top of the aforementioned ap-
proach in order to provide better maintainability of the generated systems. This
is achieved by reusing an existing modularity framework on top of the chosen
high-level language. Thereby, enabling a developer to also use additional ben-
efits of this framework, like predefined, modular services and a well-defined
lifecycle that can be reused to achieve even more abstract goals, like mapping
modes of the modeling language to runtime reconfigurable modules in code.

Finally, we complement the existing approaches with additional compile- and



runtime checks in order to enable a developer of a SCSS to easily show semantic
equivalence of exchanged or newly added modules to existing modules in a
generated system.

All approaches are evaluated via a qualitative and quantitative evaluation. The
qualitative evaluation uses a running example based on a real-world quadro-
copter autopilot, whereby the quantitative evaluation makes heavy use of Java
Microbenchmark Harness (JMH) benchmarks in order to compare our approaches
with a handwritten solution as well as comparing the approaches among them-
selves.
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Introduction



1. INTRODUCTION

1.1. Motivation

Complexity in software is ever-rising - this is an undeniable fact in software en-
gineering. The rise of complexity in software has first been officially recognized
in the mid 1960s, when costs for software exceeded the cost for hardware for
the first time in history. The term "software crisis" came up at this time and
was coined by attendees at the first NATO Software Engineering Conference
in 1968. Since then programmers ever have tried to keep in step with the fast-
paced evolution of software whose complexity rose exponentially over time.
However, how exactly does one measure the complexity of software? In this
work we decided to take on a rather simplistic approach and used the Source
Lines of Code (SLOC) of a given piece of software under the assumption that
every SLOC is fulfilling (partly) a requirement. This assumption might not ap-
ply to all software systems, but definitely holds true for Safety-Critical Software
Systems (SCSS) where every SLOC usually has to be traceable to an initial re-
quirement. If a SLOC cannot be traced back to a requirement it has to be re-
moved from the code base as it is not fulfilling any purpose.

Therefore, we can prove the rise in complexity by the size of SCSS over time
as depicted in Figure 1.1. This graph shows the SLOC in millions for United
States Air Force (USAF) aircrafts of the last three decades. The curve implies
that SLOC double about every 4 years which implies a quadratic rise in com-
plexity.
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Figure 1.1.: SLOC in millions of USAF aircraft software. [1]

4



1.1. MOTIVATION

Complexity of software is also always an indicator for costs and time spent on
the development of such a system. Given a SLOC in a SCSS then this line was
part of a design that has been made and someone had to write and finally test it.
The more SLOC a piece of software contains, the more time a programmer spent
with writing and testing this code. In addition, one can assume that the more
code a project contains, the more design work had to be done beforehand. Ad-
ditionally, for each SLOC additional documents and reviews have to be created
in order to prove compliance with standards and finally being approved by an
official authority. Thus, there is a direct connection between number of SLOC,
complexity, time and money spent on a given SCSS project. Given this con-
nection between complexity, time and money we have to take measurements
to cope with rising complexity in the future in a way that still enables us to
develop SCSS.

In this context we took Consumer-Grade Software Systems (CGSS) into account
which empirically evolve faster than their safety-critical counterparts, as they
are not forced to show compliance with any safety standards. CGSS have un-
dergone a similar process regarding rise in complexity as the one observed in
SCSS. In order to illustrate this fact Figure 1.2 exemplarily depicts the evolution
of SLOC in millions of the Windows NT operating system over a timespan of
12 years. Starting in 1991 with Windows NT 1.0 (Windows 3.1) and approxi-
mately 4-5 million SLOC and ending with Windows NT 5.2 (Windows Server
2003) in 2003 with 50 million SLOC, this figure depicts the same quadratic rise in
complexity every 4 years as we already observed in Figure 1.1 for SCSS. Com-
paring those two charts, we can immediately see that the level of complexity
reached by the software of the F-35 in 2012 has already been reached (and even
surpassed) by Windows NT 5.0 in 1999. This obvious similarity led us to the
assumption that the development of SCSS lags behind about 10 - 15 years com-
pared to CGSS. Therefore, we investigated by what means the developers of
these CGSS handled the rise in complexity, costs and time and what tools, lan-
guages and processes were used to get a grip on the problem.

A general trend that we could identify is the increasing use of abstraction. In
programming languages this trend is reflected in the change of programming
languages and paradigms over time. Starting with machine languages like the
Z80 being taken over by assembler languages which then again have been over-
taken by procedural programming languages like C. That all culminated in the
takeover of object-oriented languages in the late 1990s, like C# or Java, which
still dominate the current market [4] and thus, are considered current state of
the art.

5
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Figure 1.2.: SLOC in millions of USAF aircraft software [1] compared to SLOC
of Windows NT. [2, 3]

Another emerging trend was the offspring of model-driven techniques. Starting
with simple models of a system to gain an overview, to code generation facili-
ties over to full-fledged low-code platforms like Appian [5] that enable a user
to create applications without the need to write a single line of code by him-
self. Formerly called model-driven development in general, this technique to-
day is sold as so called "low code platforms" [6]. Model-driven software devel-
opment usually encompasses a modeling language, e.g., the Unified Modeling
Language (UML) as source language and a high-level programming language
like Java or C# as target language. Thus, by using a model, that in terms of ab-
straction is even above current high-level programming languages, the task of
creating a working system is reduced to drawing a few model elements instead
of writing several hundred or even thousand lines of code.

The last trend that could be observed just recently is the shift from monolithic
systems towards microservices and a more modular design of applications in
general. Each microservice usually defines a Representational State Transfer
(REST) Application Programming Interface (API) through which it communi-
cates with other microservices. Higher functionality is provided by combining
and orchestrating several of those microservices, e.g., the functionality "open
a bank account" is realized by combining microservices for "capture customer
data" and "check credit-worthiness". Advantages provided by microservices
are - but are not limited to - reusability, e.g., "check credit-worthiness" could be
reused in another context, and simplicity because of the reduced size of pro-

6



1.1. MOTIVATION

vided functionality. A drawback is the increased distribution which introduces
common problems of highly distributed systems like concurrency or data loss
because of network outages.

The remainder of this part is structured as follows: section 1.2 elaborates on the
aforementioned major challenges and identifies the accompanying problems of
each. In section 1.3 we present the languages and framework we use in this
thesis as well as a reasoning on why we chose them. section 1.4 then identifies
objectives to deal with the problems and challenges of the design and imple-
mentation of SCSS as outlined in the section before. Each objective is paired
with the according contribution of this work. section 1.5 enumerates the dis-
tinct papers and publications which contributed to this work and have been
published beforehand. section 1.6 provides an overview of the entire following
work. Finally, section 1.7 explains the typeface conventions we made in order
to enable unambiguous descriptions of highly ambiguous sections.

7



1. INTRODUCTION

1.2. Problems and Challenges

This section describes specific problems in current performance-critical system
development, initially identified by means of literature research and intensive
discussions with industrial partners. Based on problems common developers
of SCSS face in their day-to-day work when dealing with outdated technology
stacks, languages and tooling, we define challenges that will be tackled by this
work.

1.2.1. Early Errors and Late Discovery

Although software nowadays permeates our daily lives as never before and
more code is written daily, the fact depicted in Figure 1.3 still holds true: All
software projects suffer from the early errors and late discovery of those. Usu-
ally 70% of errors are introduced during the design phases of a software devel-
opment process (in this case the V-Model) whereas roughly 80% are not found
until the last three phases.The costs of fixing one of those thus, rises from 1 times
to 5-80 times the cost if they had been found during design time. These costs
even add up when the system under development is a SCSS as usually the work
to be done for such a system is many times the amount of a normal, non-critical
business software.

Problems The problems resulting from this statistics are diverse:

• Costs of maintenance and operations often exceed costs of development
itself

• More time is invested into discovery of errors than writing the software

• Delivery is delayed

Challenge 1 Error reduction: Provide a methodology for SCSS, which enables devel-
opers to reduce common errors and enables them to discover uncommon errors during
early stages of the development process.

8



1.2. PROBLEMS AND CHALLENGES

Figure 1.3.: Share of errors introduced versus their share of their discovery
across development phases and the relative costs compared to er-
rors discovered during design phase. [7, 8]

1.2.2. Decreasing Maintainability

Figure 1.3 shows that, although not really a phase of development, still a vast
amount of 20,5% of introduced errors are found during operation and mainte-
nance which makes them the most costly ones with 300-1000 times as expen-
sive as if been found during design phases. Thus, maintainability is a goal of
every SCSS in order to reduce the aforementioned costs as much as possible,
especially when the developed system is an embedded one, e.g., cars, planes or
spacecrafts, which is usually not as easily reachable as other systems.

Problems Mainly there are three problems when it comes to the maintainabil-
ity of SCSS:

• The system may not be restarted or otherwise be disrupted by the update
process

• Other parts of the system may not be affected by the update and therefore
should stay the same as before the update

9
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• Systems shall be easily extendable which assumes the architecture of the
system to be extendable by nature

Challenge 2 Maintainability: Provide a possibility for developers of SCSS, to en-
hance maintainability of the final system by design and enabling hot updates of running
systems while assuring the rest of the system not to be affected.

1.2.3. Partial Certification

SCSSs are usually subject to certification processes. Certification of new systems
usually is a cost- and time-intensive process. When it comes to updating such
systems, developers mostly want to certificate the update and not recertificate
the whole system which would not be economically feasible. In order to enable
such a partial certification one has to prove that the newly added or updated
parts are semantically the same as the ones before and also that there are no
unwanted impacts on the overall system.

Problems The problem identified by us is:

• The update or new part of a system should be (semi-)automatically prov-
able to be semantically equivalent to the replaced/updated part

Challenge 3 Partial Certification: Enable developers of SCSS to easily show seman-
tic equivalence of their updates in order to easen the certification process for partial
updates of existing systems

10



1.3. TECHNOLOGY DECISIONS

1.3. Technology Decisions

As explained in section 1.1, SCSS and the development of such do lag behind
CGSS approximately 10-15 years. Therefore, we assume the aforementioned
trends, i.e., increasing use of abstraction, model-driven techniques and microser-
vices, will be of interest for the future development of SCSS. Each trend led
to multiple implementations or languages and consequently for each trend we
must decide which implementation to choose. In the following we will explain
which implementation or language we did choose and why.

The first choice encompasses an appropriate modeling language. Given the
fact, that the field of modeling languages is a crowded one, we decided to nar-
row this field down by defining two premises. First, we are not going to rein-
vent the wheel, so it has to be an existing modeling language which is in a
stable state. Second, as we are settled on the safety-critical domain, the mod-
eling language shall be established in at least one subdomain of safety-critical
software development. The first premise excludes all emerging modeling lan-
guages and leaves us with the well established ones like UML or Systems Mod-
eling Language (SysML). The second premise cuts down on those even further,
effectively leaving us with the choice between Architecture Analysis and De-
sign Language (AADL) and Electronics Architecture and Software Technology
- Architecture Description Language (EAST-ADL) in combination with Autosar.
The main difference between those two languages are the well-defined seman-
tics that are declared in the official AADL standard documents. These precisely
defined semantics are a distinct advantage of AADL over EAST-ADL regard-
ing code generation. In AADL every modeling element is described exactly
in terms of behavior which makes it easy to generate code that behaves accord-
ingly. EAST-ADL in contrast lacks such a precise semantic meaning of its model
elements and thus, allows space for interpretation which is neither intended by
the authors nor expedient regarding the model-driven approach of this work.
Therefore, we decided to go with AADL as the best fitting modeling language
for our approach.

The second decision concerns the high-level programming language that shall
be used as target language. According to [9] who examines the fitness of pro-
gramming languages for use in SCSS, there would be only one choice, i.e., ADA
with a fitness of 93%, directly followed by Java, although with a difference of
21%. However, there are other criteria that can influence the choice of language
in large projects like commonness or popularity. According to [10] ADA is on
place 24 of the most popular programming language at the time of writing with

11
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an estimated market share of 0,87%, whereas Java constantly resides among the
top 3 programming languages since 15 years with an estimated market share of
16,38%. Additionally, the original classification of [9] only examined a pre-1.4
version Java and also not the Real-Time Specification for Java (RTSJ) version
of it. If we take into account the changes made to Java since then, we can lift
the fitness of Java for SCSS up to 80% instead of 72% according to the criterias
defined in [9]. This fitness combined with its popularity let us choose the RTSJ
version of Java as our high-level programming language, i.e. target language.

Lastly, we needed means to modularize the code that is produced by our trans-
formation from modeling language to high-level programming language. As
we decided to go for Java as target language, we only had the choice between
two module systems. The first one is project Jigsaw which was introduced in
Java 9 and, at the time of writing, still struggles to claim its place in the en-
terprise world. The second one is OSGi which looks back on an over 15 year
long history and is a well-established framework for modularizing Java code.
Beyond the modularization of code it provides a standard specification which
specifies several services that might be of use in a future system. Eventually, the
choice was made in favor of OSGi as it simply poses the more mature frame-
work although project Jigsaw is the new default in Java 9.

All of the above mentioned technologies are meaningless if not utilized in an
expedient way. Thus, we will define a methodology which combines the best of
those technologies in order to partially tackle the 3 major identified challenges
of SCSS development, i.e., early errors and late discovery, maintainability and
partial certification.

Besides these major problems, we also expect to reduce more common low-level
errors like buffer overflows or reduce the time spent with recurring tasks like
garbage collection by using the aforementioned languages and framework.

12
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1.4. Objectives and Contributions

This section identifies objectives to deal with the problems and challenges of
the design and implementation of SCSS as outlined in section 1.2. Therefore,
we provide an overview of identified objectives as illustrated in Figure 1.4 and
list the main contributions of this thesis. To achieve these contributions our
approaches utilize common techniques known from Model-Driven Develop-
ment (MDD) and high-level languages as well as software stacks built upon
and around them in order to extend the boundaries of current best practices.

Figure 1.4.: Objectives overview

1.4.1. Error Reduction

Software in SCSS nowadays usually is written by hand using rather mature
languages like Assembler or C. This results from the need to verify and validate
the written code during unit or integration testing as well as during reviews
done by authorities which are necessary for the often aspired compliance to
certain standards, e.g., DO-178B/C in aviation or ISO-26262 in automotive in-
dustry. During such reviews handwritten code usually is better validable than
generated instruction that stem from higher level languages and their compil-
ers. Thus, modern techniques like MDD or high-level programming languages
like Java are not widely used in the domain of SCSS although providing added
value in terms of error reduction and frontloading of technical debts. There-
fore, in our first objective we aim to shift stakes in favor of the aforementioned
techniques in order to give an example of their value in the domain of SCSS.
Figure 1.4 depicts several core technologies around which our overall approach
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is centered. At the core there is AADL which poses the starting point for any
SCSS design. Its centralized architecture model enables us to capture all rele-
vant information needed for the automated transformation into several aspects
of the implementation which is based on Java, more precisely RTSJ. Those de-
picted parts are used to overcome Challenge 1.

Objective 1 Use MDD techniques in combination with a semantically well-defined
modeling language and a capable, modern high-level target programming language in
order to lower coding errors via code generation and usage of a managed, high-level
programming language as well as enable early detection of errors during design phase
via model analysis.

Contributions In this work we reuse AADL with its well-defined semantics
as well as RTSJ with its industry-proven capabilities. In order to diminish the
number of errors introduced in the design phase as shown in Figure 1.3.

• We contribute a mapping from a subset of AADL to RTSJ that preserves
the semantics of all utilized AADL model elements while leveraging the
facilities of RTSJ as an high-level programming language, e.g., automatic
memory management, garbage collection, no pointer arithmetics and run-
time checks.

• We created a generation facility that is able to take any sufficiently detailed
AADL models and turns the structure as well as communication patterns
and timing constraints into RTSJ code.

AADL and its ecosystem of tools already offer means by which a developer can
verify the system from different viewpoints, thus reducing the number of errors
left in the system model significantly. Our contribution enables the developer
to generate a skeleton application which adheres to the system design choices
made and its semantics, proven correct by the already available tooling.

1.4.2. Maintainability

Although, Objective 1 and our contributions in that regard already can offer
a benefit in terms of error reduction over traditional development techniques
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and languages, Challenge 2 remains largely untouched. Each change that is
introduced to a system generated with our approach still leads to the whole
system being regenerated and by this rendering existing components of the old
system non-reusable. In terms of maintainability this poses an untenable draw-
back that would render the whole approach obsolete. Therefore, we tackled
Challenge 2 by altering the former approach to also take maintainability of a
generated system into consideration. As we decided to use Java and RTSJ as
target language, the possible technical candidates to tackle Challenge 2 have
been narrowed down to only a few. These lasting ones need to be able to re-
place code in running systems as well as providing mechanisms that resolve
dependencies between different parts of the software. We decided to facilitate
OSGi, a component framework built on top of Java, as a target framework for
the generation facility of subsection 1.4.1, to incorporate the second challenge
into our existing approach.

Objective 2 Enhance the mapping of subsection 1.4.1 to target a software stack that
enables developers to implicitly design and generate runtime reconfigurable and inter-
changeable software components, thus enhancing overall maintainability

Contributions In this work we utilized the capabilities of AADL and OSGi to
provide the following contributions:

• We introduce a mapping from AADL to RTSJ that simultaneously deliv-
ers reconfigurable and interchangeable software components by leverag-
ing AADL’s inherent component-oriented design and transferring it onto
semantically equivalent concepts in the target framework, i.e., OSGi.

• We combine several of OSGi’s capabilities in order to enable a hot de-
ployment of updates to a running SCSS and also to easen the extension of
existing SCSS without compromising the previous existing compliance of
such a system.

By reusing OSGi we also harness its vast tooling ecosystem that leads to in-
creased developer productivity and also to reduced error introduction, thus
amplifying the effect achieved through the contributions of Objective 1.
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1.4.3. Certifiability

Objective 1 and 2 as well as our contributions in that regard, provide a frame-
work that is capable of generating a working and maintainable skeleton system
from any sufficiently detailed AADL models. Nevertheless, the generated, self-
contained components still are missing additional information to make them
(semi-)automatically provable in regard to semantic equivalence and therefore
standard compliant interchangeability which is largely the demand of Chal-
lenge 3. Therefore, means are provided to easen the prove of compliance of
newly created software components or updates of existing ones. This is achieved
by enhancing the existing generated code base with additional metadata in form
of requirements and capabilities that enable a developer to automatically show
equivalence of components to a certain extend. Also a mechanism is provided
to enforce runtime contract enforcement.

Objective 3 Easen the creation of reusable and interchangeable software components
whose semantic equality can be (semi-)automatically shown and enforce their stated
contract at runtime

Contributions To enable the generation of reusable and interchangeable soft-
ware components whose semantic equality can be (semi-)automatically shown
we developed the following artifacts:

• We created a range of capabilities and corresponding component property
types to capture contract specific information.

• We reused mechanisms provided by OSGi to automatically show the se-
mantically equivalence of software components through the process of re-
solving.

• We leveraged existing mechanisms in OSGi to enforce arbitrary contracts
between components at runtime.
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1.5. Publications

In this section we present published work concerning this thesis, thereby clari-
fying our own contribution within it and its relation to the parts of this work.

• Driessen, T., & Bauer, B. (2016, September). Shifting temporal and com-
municational aspects into design phase via AADL and RTSJ. In Digital
Avionics Systems Conference (DASC), 2016 IEEE/AIAA 35th (pp. 1-10).
IEEE. [11]

This paper primarily describes parts of the approach presented in chapter 3, i.e.,
the mapping approach from AADL to RTSJ. This is solely our own work.

• Driessen, T., Bauer, B., Honke, B., & Kuhnmünch, M. (2015, September).
Layered-V. In Digital Avionics Systems Conference (DASC), 2015 IEEE/A-
IAA 34th (pp. 10A2-1). IEEE. [12]

This paper was in parts reused for the basic section presented in chapter 2 and
also is solely our own work.
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1.6. Outline

This section describes the outline of this thesis. Depending on the reader’s tech-
nical expertise chapter 2 can be skipped entirely or at least partially. However, it
is strongly recommended to read chapter 3, chapter 4 and chapter 5 in sequence
as the results and some other parts of the respective chapter are assumed to
be known in subsequent chapters. Each chapter starts with a motivation for
its respective focus of attention, explains additional basic knowledge if neces-
sary, then elucidates the respective contributions, compares those with related
work and finally evaluates them directly within each chapter which is why we
refrained from adding a separate evaluation chapter at the end of this thesis. Fi-
nally, chapter 6 and chapter 7 provide an overview of possible further work that
could be done to enhance our approach as well as an outlook to what extend
this approach could be used for designing and implementing truly modular
SCSS in the future.

Chapter 1 provides an introduction and motivates our thesis. It details our
aimed application environment, for which we identified problems and chal-
lenges. Based on that, we derive objectives to be faced in this thesis and list our
contributions.

Chapter 2 provides necessary background information about technologies
and techniques that are used throughout this thesis. As the main contributions
can be allocated to the research area of model-driven development of safety-
critical, service-oriented software system, the used source language AADL and
the used target language RTSJ are explained in detail as well as the used frame-
work for service-orientation and modularization on top of RTSJ, namely OSGi.

Chapter 3 details our mapping approach from a sufficiently detailed AADL
model to RTSJ which maintains the semantics given by the AADL standard in
order to enable developers of SCSS to shift structure, timing and communication-
related concerns into design phase. Hence, enabling them to perform analyses
regarding communication and timing during design phase while resting as-
sured that the implementation will reflect their design choices. The application
of this approach is shown via the implementation of an autopilot for quadro-
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copters, once handwritten and once generated by the implementation of the
presented approach.

Chapter 4 details the adoption of chapter 3’s approach, targeting not only a
high-level language as target language for code generation, but also a modular
code base by design. Thus, enabling developers of a SCSS to not only shift struc-
ture, timing and communication-related concerns into design phase, but also to
create a highly modular, runtime reconfigurable and, most important, a more
easy to maintain systems by design. Advantages explained in the former ap-
proach still hold true, i.e., being able to perform different analyses and resting
assured that the implementation will reflect AADL semantics while new ad-
vantages, i.e., enhanced maintainability and better configurability are added on
top. The evaluation of this approach shows advantages as well as drawbacks
of this approach, e.g., better performance compared to chapter 3’s approach,
but at the same time additional computing cost as well as an increased memory
consumption during reconfiguration of a system.

Chapter 5 presents an extension to the two aforementioned approaches in
terms of semantic restriction of components. By building on top of OSGi’s re-
quirement/capability model four different capabilities are provided that enable
developers of SCSS to express additional functional and non-functional prop-
erties of a service implementation. First, two capabilities for pre- and post-
conditions as well as type ranges, i.e., allowed values for the types defined in
service interfaces, is provided. Second, a capability for hardware dependen-
cies is presented which allows developers to express mandatory dependencies
of their software components to specific hardware requirements, e.g., a specific
amount of ram or a specific cpu architecture. Finally, a capability is shown that
enables developers to define a Worst-Case Execution Time (WCET) for their ser-
vice implementation. The application of these capabilities is shown by applying
them to several small examples taken from the use-case presented in section 2.1.
Subsequently, we present an approach how the contracts between components,
defined by those capabilities, can be enforced at runtime by leveraging existing
concepts of OSGi.

Chapter 6 details three possible extensions that would greatly enhance the
usability of the aforementioned approaches in a real-world scenario. First, sev-
eral additional AADL components, features and properties are named that
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would be necessary to broaden the applicability of our approaches enough to
be usable outside of a pure research context. For each of them we propose a pos-
sible transformation approach and highlight possible future challenges of their
implementation. Second, we show how inter-process communication might be
incorporated into our existing approach, which currently only supports single
processes. Therefore, we provide a glimpse on OSGi’s remote service mecha-
nisms which would be a perfect match for an inter-process scenario. Finally,
we show which additional capability contracts might be sensible and what has
to be done to incorporate our contract approach into the existing generation
facility.

Chapter 7 provides an extensive conclusion of our three approaches and pro-
vides some thoughts on how the presented work might be used in the future
to create a standardized component-oriented development methodology for
SCSS.
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1.7. Typeface Conventions

In this section we will provide the typeface decisions we made in order to pro-
vide a homogeneous and comprehensible look and feel for this work as well as
an unambiguous way of describing ambiguous sections within this thesis.

In this work we will make heavy use of code listings, be they for source code or
model code. Often those code listings are used to show how to map a concept
from a source language into a target language. In those cases it might be confus-
ing when the references from the text to the respective listings contain the same
names. Therefore, we decided to type AADL code/concepts/types in a bold,
verbatim style, i.e. like this, whereas Java code/concepts/types and also ev-
ery other code language is typed in normal verbatim style, i.e., like this. In
some places we map general concepts from AADL to Java and therefore need
a third type of accentuation for those concepts that are neither AADL nor Java
specific. In those cases we type general concepts in bold, i.e., like this. A bold
typeface is also used for important concepts when they are introduced for the
first time. At some places we also make use of quotation marks to emphasis
certain words.

Whenever one of the accentuated words is used in plural or with an apostrophe,
then those are typed in the same typeface as the word itself in order to keep the
appearance consistent.
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2.1. Running Example and Evaluation Baseline

In this chapter we introduce a running example that we will reuse (partially) in
the remaining chapters for source code and model code listings. This running
example is used to offer a practical real-world example in order to be able to
better illustrate the matching of abstract concepts of our work on a real-world
SCSS.

The running example under consideration is based on an autopilot, developed
by students of the practical course "Avionik Praktikum" at the University of
Augsburg. The goal of this course was to write a working autopilot for a quadro-
copter that is simulated in X-Plane [13]. The autopilot software is running on
a separate device – a Raspberry Pi 2 with special autopilot hardware from Erle
Robotics S.L. [14] – and communicates with the simulation via UDP messages.
The software is written completely in Java, respectively RTSJ, and is running
within the JamaicaVM [15] from aicas GmbH on a real-time Linux. The current
state of the software used for this use-case encompasses seven different compo-
nents which are depicted in Figure 2.1.

The first component simulation provides means to connect the autopilot code
to the mentioned simulation. This component sends CommandPosition com-
mands and InformationPosition informations to the positionControl. Com-
mandPosition commands are usually waypoints the quadcopter shall pass and
InformationPosition informations are the current values for pitch, roll, yaw
and altitude, as well as longitude and latitude, that are provided by the simu-
lation. The positionControl takes care of converting CommandPosition com-
mands and InformationPosition information into high-level commands for
each of subsequent controls, i.e., pitchControl, rollControl, yawControl and
altitudeControl. It also forwards the current InformationPosition informa-
tion to those controls.

The controls for yaw, pitch, roll and altitude take the high-level commands
provided by positionControl, as well as the position information, to convert
each of the high-level commands into throttle values for each of the quad-
copter’s engines. Those are forwarded as RequestThrottle requests to the
mixThrottlesControl which waits for each of the four controls to send such a
request before it accounts them with each other to obtain a single CommandThrot-
tle command that is sent back to the simulation. The simulation then inter-
nally sends those commands to XPlane and receives new InformationPosition
information, that are fed back to the rest of the autopilot system. In the hand-
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written solution each component is currently implemented as an AsyncEvent-
Handler. All handlers have a period of 20 Hz or 50 ms, and are hence periodic.
Thus, the messages are sampled, no immediate or delayed connections exist
between the components.

Given this starting point, we modeled the same autopilot only using the de-
fined subset of AADL elements defined later in section 2.2. We decided to rep-
resent the messages that are exchanged between the different controls via three
common super data type declarations, i.e., Information, Request, Command.
Those data type declarations are then realized by several data implemen-
tation declarations which represent the more specific values of these mes-
sages as data subcomponents, e.g., the message CommandPosition is mapped
onto a data implementation declaration that contains three data subcompo-
nents: altitude, latitude and longitude. The three subcomponents use Basic-
_Type::Float as classifier.

Figure 2.1.: Architecture of the Autopilot in AADL

Subsequently, each component is mapped onto a thread in AADL as can be
seen in Figure 2.2, whereby the four basic controllers – Pitch-, Roll-, Yaw- and
AltitudeControl – are modeled via AADL’s extension and refinement mech-
anisms. The common parent thread type declaration is PIDController that
defines the features info and command as in data ports and request as an
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out data port. Afterwards, we created four type declarations for pitch, roll,
yaw and altitude, extending PIDController and refining the command in data
port to its corresponding message type, e.g., CommandPitch, CommandRoll, etc..
The remaining controllers are modeled as separate thread type declarations
as they do not share common features. Then, we connected each sending com-
ponent with its receiving counterparts, resulting in the explicit communication
architecture depicted in Figure 2.1.

Figure 2.2.: Package of the Autopilot in AADL displaying all components and
their hierarchies

The presented running example will not only be used to illustrate basic concepts
in the basic section, but also for the evaluation of out mapping approaches.
Whenever the running example is not sufficient to explain a certain concept
we will fall back to a more general example. Evaluations in this work all are
divided into a quantitative and a qualitative part. Within the qualitative part
the running example will always be used to show the impact of the respective
approach on actions like addition, removal or modification of a component, one
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of its features or the connections in between.

The quantitative parts of the evaluations will be done by creating Java Mi-
crobenchmark Harness (JMH) [16] benchmarks.

"JMH is a Java harness for building, running, and analysing nano/mi-
cro/milli/macro benchmarks written in Java and other languages targetting
the JVM."[16]

The creation of a JMH benchmark is fairly simple as depicted in Listing 2.1. The
benchmark itself is just a method annotated with @Benchmark. JMH generates
the benchmarks based on the annotations it finds in given class and then cre-
ates an executable Java Archive (.jar) file. This .jar file then can be executed to
perform the benchmark of code given within the annotated method. In List-
ing 2.1 the method was intentionally left blank, as it is used to create a baseline
for all other benchmarks of our work.

public class BaselineBenchmark {
2

@Benchmark
4 public void baseline () {

// this method was intentionally left blank .
6 }

}

Listing 2.1: Simple JMH baseline benchmark.

The benchmarks in this work usually produce results in terms of operations
per second, which illustrate how fast (or slow) the respective code executes.
However, without a proper baseline with which the results can be compared
those operations per second are rather meaningless. Additionally, benchmarks
tend to produce different results on different hardware. Therefore, we created
an empty benchmark that gives us a baseline to compare all other benchmarks
against as this benchmarks poses the maximum amount of operations per sec-
ond that are possible on the given hardware. A baseline produced on different
hardware thus, would provides means to compare it with the baseline produced
by our hardware. Therefore, a baseline then also can be used to compare the
same benchmarks executed on a different machine. This baseline is depicted in
Figure 2.3 as a black bar with 2656466293.421 operations per second which is a
mean value. The red bars show the error rate or distribution for this benchmark,
i.e., how much the results varied during benchmark execution. The variation for
our baseline benchmark is +- 28089138.228 operations per second.
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Figure 2.3.: Baseline for all benchmarks

The created JMH benchmarks in this work will be equivalent to the code that
would be actually generated by the respective approach, e.g., if the approach
would generate a large switch-case statement in order to pass messages from a
sender to the right receiver then a corresponding equivalent JMH benchmark
would only contain a realistic switch-case statement in terms of size and com-
plexity of code within each case statement. The benchmark would not contain
complex sender and receiver classes or a surrounding framework, as those
might distort the benchmark results. The use of JMH is necessary in order to
achieve reliable results, as benchmarking on the Java Virtual Machine (JVM) is
a highly complex topic, see [17].
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2.2. Architecture Analysis and Design Language

2.2.1. Introduction to AADL

"Developed by a SAE International sponsored committee of experts, the
Architecture Analysis and Design Language (AADL) was approved and
published as SAE Standard AS-5506 in November 2004. Version 2.1 of the
standard was published in Sept 2012. The AADL is designed for the spec-
ification, analysis, automated integration and code generation of real-time
performance-critical (timing, safety, schedulability, fault tolerant, security,
etc.) distributed computer systems. It provides a new vehicle to allow anal-
ysis of system designs (and system of systems) prior to development and
supports a model-based, model-driven development approach throughout
the system life cycle." [18]

AADL promotes the approach of one centralized model and stakeholder-specific
views. Thus, all data is centralized and changes in one view affect other views.
This way the chance of introducing errors by changing one view and thereby
breaking another is minimized.

Although the field of modeling languages is very crowded, AADL excels by
defining an official, standardized semantic for all its model elements and prop-
erties. This makes it an ideal candidate for model-to-model or model-to-text
transformations as the semantics to be fulfilled by the target language are al-
ready predefined and standardized by the source language.

AADL provides three main categories of modeling elements: components, fea-
tures/connections and properties. Components pose the main building blocks
of a system and can be nested within each other with some semantic restrictions.
Features can be added to components and thus define their interface through
which they can interact with other components that are connected to them via
connections. Finally, properties can be used to alter the semantics of modeling
elements. As AADL is a very complex and powerful language, we decided to
restrict our mapping approach to a specific subset. In the following sections we
will provide a detailed description of modeling elements that are part of this
subset.
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2.2.2. Components

In AADL each component is divided into a type and an implementation. A type
describes the component in term of features that can be seen from the outside
and thus providing an interface-like view on the given component. An imple-
mentation in turn describes a component regarding its inner composition, i.e.,
its subcomponents, connections between those, etc.. An implementation must
implement a type, whereas a type must not have an implementation. Both, type
and implementation, can extend other types and implementations and special-
ize them by doing so. This enables users of AADL to create inheritance hierar-
chies and thus simplify the development of components through reuse.

All components in AADL can be represented in two ways (except packages): A
graphical and a textual notation. Those notations will be shown for each ele-
ment as in parts of this work we use the textual notation (e.g., for comparing
model code with generated code) and in other parts we use the graphical nota-
tion (e.g., for system overviews).

2.2.2.1. Package

Packages are used to organize sets of components and therefore resemble pack-
ages known from different programming languages. As in Java, packages in
AADL can be used to create hierarchies through naming schemes. de::unia
would thus be a parent package for de::unia::smds. In contrast to Java, where
packages are usually folders that can contain other folders and hereby cre-
ating a hierarchy, AADL packages cannot physically contain other packages
(e.g., defined in code). Packages can contain a private and a public sec-
tion. Components defined in the private section are hidden from components
in other packages and thus cannot be further extended or refined by these.
Components defined in public sections are exposed to other packages which
can declare dependencies to them via a with clause at the beginning of their
package declaration as can be seen in Listing 2.2. This mechanism resembles
for example Java’s import statement.

package autopilot
2 public

with Base_Types ;
4 ...

private
6 ...
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end autopilot ;

Listing 2.2: AADL Package Declaration

2.2.2.2. Process

"An AADL process represents a protected address space that prevents other
components from accessing anything inside the process and prevents threads
inside a process from causing damage to other processes. [...] A process
specification does not include an implicit thread; therefore, a complete pro-
cess specification should contain at least one explicitly declared thread or
thread group. This process may have source code associated that represents
the executable code and data." [19]

In our approach we use processes as uppermost composite component ag-
gregating all data, subprograms and threads we need for the execution of a
given set of tasks. In Figure 2.4 the general graphical and textual notation of a
process component can be seen. As all components have to be declared within
a package, our process type AutopilotProcess is declared within autopilot.
In the textual representation an implementation of a type must declare the type,
i.e., process, the keyword implementation and the type to extend via its name,
i.e., AutopilotProcess. The name of the implementation itself is given after
a separating dot, i.e., impl. All components have to be closed by a final end
keyword and the name of the component. In the graphical representation the
implementation is shown via a dotted arrow that points to the type being im-
plemented.

package autopilot
2 public

process AutopilotProcess
4 end AutopilotProcess ;

6 process implementation AutopilotProcess .impl
end AutopilotProcess .impl;

8 end autopilot ;

Figure 2.4.: AADL process type and implementation

31



2. FOUNDATIONS

2.2.2.3. Thread

"A thread represents an execution path through code that can execute con-
currently with other threads. [...] The code of a thread executes within the
address space defined by the process [...] that contains the thread." [19]

In our approach, and also in AADL, threads are the core concept for describ-
ing running software. Every piece of software being executed is executed by
a thread. Therefore, AADL describes the semantic of the lifecycle of threads
in great detail in terms of timed automaton. It defines different lifecycle states
which are reached through lifecycle events. Lifecycle events are for example
dispatch, start, completion or deadline. Those four lifecycle events are de-
picted in Figure 2.5.

Figure 2.5.: AADL thread lifecycle events.

Dispatch marks the beginning of a new dispatch cycle whereas start marks the
actual start of the computation of a thread. The lifecycle event for the end of
the thread’s computation is called completion and the end of the dispatch
cycle is called deadline. In case of periodic threads the end of a dispatch
cycle is marked via the given period (which is explained in detail in subsub-
section 2.2.4.1) and not via its deadline. Also for periodic threads the lifecy-
cle event marked as deadline in Figure 2.5 is also a new dispatch, as periodic
threads are dispatched recurringly. Figure 2.6 depicts the textual and graphical
definition of an AADL thread.

The control over dispatching, parallelism of threads or in general scheduling is
the task of a scheduler which we consider out of scope for this work as it is also
not directly covered by AADL.

The semantics of threads can be further altered through properties which will
be explained in detail in subsection 2.2.4.
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package autopilot
2 public

thread PIDController
4 end PIDController ;

6 thread implementation PIDController . Altitude
end PIDController . Altitude ;

8 end autopilot ;

Figure 2.6.: AADL thread type and implementation

2.2.2.4. Subprogram

"A subprogram represents a callable unit of sequentially executable code.
[...] Subprograms can have parameters through which data values are
passed with and returned from a subprogram call." [19]

In our approach subprograms are used to model methods that are called by user
code, e.g., methods that are executed when a thread reaches one of its lifecycle
states. Therefore we only use the possibility to model parameters and not the
possibility to require data access which would grant the subprogram access to
global state or shared data. Subprograms are the only model elements contain-
ing user specified code. One can model subprograms as direct subcomponents
of a thread component. Another possibility is modeling subprograms as subcom-
ponents of processes and granting a thread access to this subprogram via
requires subprogram access connections, which are however not part of
this work.

Analogous to threads and processes, subprograms can be defined in textual
notation via the keyword subprogram and a name as shown in Figure 2.7. An
implementation is also declared the same way it is for threads and processes.

2.2.2.5. Data

"Data component types represent application data types. Data component
implementations [...] allow you to specify the internal structure of a data
type." [19]
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package autopilot
2 public

subprogram Compute
4 end Compute ;

6 subprogram implementation Compute .
AltitudeController

end Compute . AltitudeController ;
8 end autopilot ;

Figure 2.7.: AADL subprogram

Data components can be used in different places within a model. First, one
can use a formerly declared data type in order to describe the data transmit-
ted over a connection, port or bus, whereby only the former two matter for
our approach. Second, one can declare data types as subcomponents within an-
other component. This way we usually describe local or shared data within a
thread or in a process. Third, data can be used to describe the parameters for a
subprogram and thus serve as a way to detail the interface of a subprogram com-
ponent. The semantic of data components can be altered by properties which
is described in detail in subsection 2.2.4.

Figure 2.8 shows the usage of a user defined data type as classifier for the port
of a thread. The port is defined within the features section of PIDController.
The name, i.e., cmd, is followed by the direction and type of this port. Finally,
the classifier Command.Altitude is given to describe the data being transmitted
over this port. Within the subcomponents section of PIDController.Altitude
Command.Altitude is used as a classifier for the data subcomponent localData.

2.2.3. Features and Connections

After describing the basic components we now will have a closer look on how
those components can be connected and how the communication between them
is defined in AADL.

As previously seen in Figure 2.7 and Figure 2.8 and also already described in
subsection 2.2.2 each component type can declare features which are con-
sidered as an interface of this component. AADL defines different types of
features, like event data port, event port, requires/provides data/sub-
program access of which we only will use data ports.
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package autopilot
2 public

with Base_Types ;
4 thread PIDController

features
6 cmd : in data port Command ;

end PIDController ;
8

thread implementation PIDController . Altitude
10 subcomponents

localData : data Command ;
12 end AADL_Thread .impl;

14 data Command
end Command ;

16 end OurPackage ;

Figure 2.8.: Data as port classifier and local data

2.2.3.1. Data Port

Data ports are specialized features that allow components to exchange data.
They can be directional (in/out) or bidirectional (in out). We only consider di-
rectional ones as each bidirectional one can be replaced by two directional ones.
Usually, the type of data that can be received/sent is declared by a classifier,
which is either a user defined data type as in Figure 2.8 or one of the predeclared
data types provided by AADL, e.g., Basic_Types. In contrast to event data
ports which can buffer a defined amount of data, data ports only can hold
one data at a given point in time. Incoming data always replaces the current
data. In Listing 2.3 the thread type PIDController declares two data ports,
one incoming, the other one outgoing, both with an user defined data type.

package autopilot
2 public

thread PIDController
4 features

cmd: in data port Command ;
6 request : out data port Request ;

end PIDController ;
8 end autopilot ;

Listing 2.3: In- and outgoing data ports with defined classifiers.
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2.2.3.2. Port Connections

Port connections are a specific subtype of connections and can only be de-
clared between two ports. Port connections can be directed or bidirectional
and thereby indicating the direction of the data flow. Again, we decided to only
consider directed connections as each bidirectional connection can also be ex-
pressed by two directed connections. Given a connection is directed, i.e., if a
connection is starting at port A and ending at port B and both ports are de-
clared by sibling components, then A must be an out port and B an in port.
There are other cases, e.g., port A being declared by a parent component and
port B being declared by a child component, where A and B both must be an
in port, but the port direction may never be contradicting the data flow direc-
tion and vice versa. For two ports A and B connected via a port connection
AB one can check if the data produced by port A, transmitted over connection
AB and received by port B is consistent, e.g., if it is the same data type. The
rules for consistency, as other semantics, can be altered by properties which are
explained in detail in subsection 2.2.4.

Listing 2.4 shows an exemplary connection between two threads, Simulation
and PositionControl. Both threads are contained within a parent process
component, i.e., AutopilotProcess.impl, which declares two thread subcompo-
nents whose classifier reference Simulation and PositionControl. Simulation
declares an out data port positionCmd and PositionControl an in data port
also named positionCmd, both with the classifier Command. In the parent compo-
nent AutopilotProcess those two ports are connected via the port connection
poscmd, declared within its connections section.

package autopilot
2 public

thread Simulation
4 features

positionCmd : out data port Command ;
6 end Simulation ;

8 thread PositionControl
features

10 positionCmd : in data port Command ;
end PositionControl ;

12
process AutopilotProcess

14 end AutopilotProcess ;

16 process implementation AutopilotProcess .impl
subcomponents

18 simulation : thread Simulation ;
positionControl : thread PositionControl ;
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20 connections
poscmd : port simulation . positionCmd -> positionControl .

positionCmd ;
22 end AutopilotProcess .impl;

end autopilot ;

Listing 2.4: Port connection between two threads within a common process.

2.2.3.3. Semantic Connections

AADL differs between its component model and an instance model. The com-
ponent model is considered to be a collection of reusable building blocks whereby
the instance model is one specific manifestation of a combination of such com-
ponents. This has consequences for the connections between different build-
ing blocks. Figure 2.9 shows the component model of a system implementation
which declares several different subcomponents. As section 2.1 does not de-
fine a system with two levels of hierarchy which we would need to explain a
semantic connection, we define an extra example as follows:

A system type with corresponding implementation called ComplexSystem and
ComplexSystem.impl. The system implementation is used to aggregate two
process subcomponents, i.e., SenderProcess and ReceiverProcess accompa-
nied by their respective implementations, i.e., SenderProcess.impl and Recei-
verProcess.impl. SenderProcess.impl contains the sending thread of type
Sender whereas ReceiverProcess.impl contains two receiving threads, both
of type Receiver

Each component is self-contained and only references other components. Given
that ComplexSystem.impl is instantiated and consequently transformed into an
instance model, all those references are resolved and the result is a tree-like
structured model where ComplexSystem.impl contains both process imple-
mentations and those again contain their thread subcomponents. This means
that all formerly implicit references are made explicit in the instance model.
This explicit references have consequences for the connections defined in each
component. Previously, loosely defined connections from a subcomponent to
an outgoing port, e.g.: con1 from sender.dataOut to dataOut, are now con-
nected to other connections defined in the parent component, e.g., con2 from
senderProc.dataOut to receiverProc.dataIn. This way there are connections
created that formerly did not exist. Those connections are called semantic con-
nections. A semantic connection always goes from an ultimate source to an ulti-
mate target and consists of all declared connections in between, e.g., dataOut,
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con1, con2, con3, dataIn. This means that at each port that defines multiple
incoming/outgoing connections the number of semantic connections is mul-
tiplied by the number of incoming/outgoing connections. In Figure 2.9 this
means we have two semantic connections:

• SemCon1: Sender.dataOut, con1, con2, con3, Receiver.dataIn

• SemCon2: Sender.dataOut, con1, con2, con4, Receiver.dataIn

Semantic connections are important for our approach as they are the actual
connections over which data is transmitted. Depending on the connections
they consist of, they change their behavior, their source or target or if they are
active or not. The properties that influence the behavior of connections and
thus, semantic connections are explained in detail in subsection 2.2.4.

Figure 2.9.: Example system with two semantic connections.

2.2.4. Properties

Properties are used in AADL to either change the semantics of a model element
or to add additional metadata to a model element. AADL comes with a variety
of different properties that are preorganized into different property sets, e.g.:
Thread_Properties, Communication_Properties or Programming_Properties.
Properties can be declared by virtually every model element in AADL, be it a
component type or implementation, a feature or a connection. As AADL pre-
defines so many properties we restricted them to those important for our ap-
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proach and categorize them according to their place of purpose, i.e., threads,
ports or connections.

2.2.4.1. Thread Properties

The behavior of a thread can be altered depending on which values are given
for several of its properties or properties of its ports or connections. The fol-
lowing represents a list of properties that can be used to alter the behavior of a
thread directly in AADL:

• Dispatch_Protocol
• Priority
• Period
• Deadline

However, there are even more properties that (sometimes indirectly) have an
effect on the runtime semantics of threads, like

• Input_Time/Ouput_Time on ports of the thread or
• Timing on connections between threads which we will investigate later

in detail.

In the following we will describe each of those in detail.

Dispatch_Protocol A thread in AADL can have different types of dispatch:

• periodic
• sporadic
• aperiodic
• background
• timed

A thread is periodic if its code is executed recurringly with a given period.
It is sporadic if there is no real period, but at least a minimum interarrival
time which states how much time at minimum elapses before this thread is dis-
patched again. An aperiodic thread finally is completely event-triggered with
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no period or minimum interarrival time. Background threads are threads that
consume left-over computing time and run (as the name implies) in the back-
ground. Timed threads are threads that are dispatched exactly once at a prede-
fined time. This time can be relative to an event or absolute, e.g., at 05.09.2019
22:30:45.

Due to limitations of time, scope and the possibilities of RTSJ itself, we limit the
possible values of Dispatch_Protocol to the value periodic.

Priority Most real-time systems use the concept of thread priority - usually
an integer, where a higher value represents higher priority - in order to deter-
mine a feasible schedule for the given system. The priority is an indicator for
the system of a desired order of execution for a given set of threads. Through
a feasibility analysis a real-time system can determine if a given set of threads
and their priorities have a feasible schedule which concedes each thread the
computing time it desires. During runtime of such a real-time system a sched-
uler (in RTSJ a preemptive priority-based first-in-first-out scheduler [20]) then
takes care of dispatching, stopping, and preempting threads according to the
determined schedule.

Period Another variable of the aforementioned feasibility analysis is the period
of periodically dispatched threads. The period determines when and how long
at maximum this thread runs. Given a default of 1000 ms and 0 ns a thread
runs each second for at most 1 second if no deadline (see below) is given. The
period especially becomes important when it comes to the sampling of data
exchanged between two periodic threads which is explained in detail in sub-
subsection 2.2.4.3.

Deadline As mentioned above, if no deadline is given, the thread can run at
most for 1 second, as it then is restarted by its period. If one wants to restrict
the maximum amount of time a thread may run, one should define a specific
deadline. The deadline should be lesser or equal to the period if a thread is
periodic, as it otherwise would still be allowed to compute when it is dispatched
again. The deadline is another important variable for the feasibility analysis, as
it allows restricting the maximum computation time of a periodic thread and
thus providing the rest time of this thread’s period as compute time for other
threads.
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2.2.4.2. Port Properties

Although there are many more properties, like Queue_Size, Transmission_Type
or Queue_Processing_Protocol that affect the different types of ports, like
data ports, event ports or event data ports, we decided to restrict those
to the three most important for our approach. Those properties enable a mini-
mal setup while we assume sensible defaults for others.

Input_Time / Output_Time Input_Time and Output_Time are both used
to specify a time range, based on one of the lifecycle events of a thread, at
which incoming data is frozen or outgoing data is being sent. Frozen means
that the incoming data is made immutable for the time of the current dispatch
cycle. Usually for Input_Time only the lifecycle events dispatch and start are
sensible, while the lifecycle event plus the time range should not exceed the
deadline of a given thread. Otherwise the port declares to receive data at a
point in time where the corresponding thread can definitely not any further
process this data. Vice versa this holds true for Output_Time, where the only
sensible lifecycle events are completion and deadline and the lifecycle event
minus the given time range should not be earlier than the start lifecycle event
of the corresponding thread. Otherwise the port declares to send data that
definitely cannot have been produced yet.

Fan_Out_Policy The Fan_Out_Policy determines how a port deals with
data that is sent over it. AADL predefines four different possible values for
Fan_Out_Policy. Due to the scope of this work and its corresponding reference
implementation we consider Broadcast and OnDemand to be sufficient to deal
with the majority of use-cases encountered in our test scenarios.

• Broadcast: data sent by this port is also sent over each connection con-
nected to this port. Subsequent ports connected via these connections
of course can have different Fan_Out_Policies so that in another part of
a semantic connection the data might be cached.

• OnDemand: the need to explicitly request data from a data port which forces
the port to store incoming data until the receiver explicitly demands it to
be sent further.
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2.2.4.3. Connection Timing

The only property of interest in our approach for connections is their timing
property. This property interferes with those of ports and threads and is of up-
permost importance for periodic threads that communicate via data ports
and a port connection. The timing property has three possible values:

• Sampled
• Immediate
• Delayed

which will be explained in detail below.

Sampled A sampling connection between two periodic threads is the sim-
plest case that can occur for connections between two data ports. In the up-
per half of Figure 2.10 we depicted two periodic threads with the same period
that are communicating via a port connection between two data ports. Given
this case, the receiver receives and processes the incoming data at its own pace
of 10 times per second (period of 100ms).

Figure 2.10.: Sampling port connection with over- and undersampling.

This means that the receiver does not pay any attention to the speed at which
the sender produces data, neither does it regard the different start times within
a dispatch cycle. This may lead to two different effects: over- or undersampling
of data, which are both depicted in the lower half of Figure 2.10. In the case of
oversampling, which can be seen in the first and second dispatch cycle, the re-
ceiver operates both times on the same data, as the sender has not been started
in between the two times the receiver has been started. In contrast, the second
and third dispatch cycle show the possible case of undersampling whereby the
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situation is vice versa. The sender is started twice before the receiver is started
again. This results in lost data that is never received and thus not processed by
the receiver.

Immediate One possibility to overcome the flaws of purely sampling con-
nections is to declared a connection in AADL to be immediate. In Figure 2.11
we depicted an immediate connection (denoted via the parallel arrows on the
connection) between two threads in the upper half of the figure. The lower
half shows the effects of such a declaration. The receiver is forced to wait for
the sender to produce and send its data before the receiver is dispatched and
can receive and process that data. This way it is assured, that in each dispatch
cycle the receiver receives new data and does not receive the data produced
one dispatch cycle earlier. The functionality of waiting for another thread has
to be implemented outside the responsibility of a scheduler and thus, has an
impact on the implementation of threads. Also a drawback of this approach
is the possibility of the receiver missing the end of a dispatch cycle although
the compute time of both, sender and receiver, would easily fit. This can occur
whenever the sender’s actual start time is very late within a dispatch cycle and
thus, delaying the start time of the receiver even further. A possible solution to
this challenge is explained in the next section.

Figure 2.11.: Immediate port connection with deterministic sampling.

Delayed A countermeasure to the above mentioned challenge when using
immediate connections is to declared the connection to be delayed instead.
Figure 2.12 depicts in its upper half the declaration of a delayed connection
between two threads, this time denoted via two parallel strokes. The lower
half explains the gained effect of declaring a connection as delayed. The data
produced by an arbitrary sender is delayed until the end of a dispatch cycle
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before it is transmitted to the respective receiver. This way the receiver de-
terministically receives new data in each dispatch cycle, even if the sender is
running before the sender. As the receiver is not forced to wait within one dis-
patch cycle the risk of missing the end of a dispatch cycle is avoided by paying
the price of receiving "old" data. Delayed connections have a direct effect on
the source ports they are connected to, because the Output_Time of this port is
overwritten.

Figure 2.12.: Delayed port connection with deterministic sampling.
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2.3. Real-Time Specification for Java

"The RTSJ is the specification resulting from JSR-1, the first specification
launched through the Java® Community Process. [...] RTSJ is designed
to support both hard and soft real-time applications. Among its major fea-
tures are: scheduling properties suitable for real-time applications with pro-
visions for periodic and sporadic tasks, support for deadlines and CPU time
budgets, and tools to let tasks avoid garbage collection delays." [21]

Before RTSJ it was common wisdom for software developers that Java could not
be used to develop real-time capable systems. Before we explain why this was
true before RTSJ and why this fact has changed, we will give a short overview
of what real-time systems are and what makes them stand apart from "normal"
systems.

2.3.1. Real-Time Systems

Real-time systems are

"[...] systems that have to respond to externally generated input stimuli
(including the passage of time) within a finite and specified time interval."
[22]

Besides this definition [23] also identified the following characteristics:

Large and complex Complexity is rising. A statement that is true for many
areas of our daily life. However, in this work we want to restrict its meaning
to the area of real-time systems. Although, real-time systems can be very small,
e.g. a controller for the rotor of a quadrocopter, they usually tend to grow very
fast as soon as they are integrated into larger system, e.g., an autopilot system
for a quadrocopter. A commonly used metric for complexity in software are
SLOC. Staying in the domain of airborne software, which is a subset of real-
time software systems, we see in Figure 1.1 the SLOC in millions for USAF
aircrafts of the last three decades. The curve implies that SLOC double about
every 4 years which implies a quadratic rise in complexity.
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Extremely reliable and safe Real-time systems very often control some of so-
ciety’s most critical systems, e.g., nuclear power plants, aircrafts, railways or
cars, just to name a few. Therefore, those systems must be written with upper-
most safety and security in mind during development. Even in the unlikely
case of a malfunction or failure, the overall system state has to be stable which
is not always as easy as it seems, e.g., in case of a flying airplane. Even if failures
occur the system shall be able to further operate, although, as the case may be,
in a degraded way. A worst-case scenario still must be a controlled shutdown.
[22]

Real-time control facilities

"Given adequate processing power, language and run-time support is re-
quired to enable the programmer to

• specify times at which actions are to be performed

• specify times at which actions are to be completed

• respond to situations where all the timing requirements cannot be met

• respond to situations where the timing requirements are changed dy-
namically." [22]

Those four possibilities are called real-time control facilities. They enable a
programmer to control succession of tasks, their timely start and stop or their
frequency among others. Thereby, a programmer never directly manipulates
the schedule of a system (which is usually determined by the system itself), but
merely provides information to the system that enable it to determine a feasible
schedule on its own.

Interaction with hardware interfaces Very often real-time systems are also
embedded systems, which requires them to interact with the external world.
Usual interactions happen through actuators, e.g., the rotors of a quadrocopter,
and sensors, e.g., a barometer or GPS. Usually those devices get a predefined
memory where they can write and read values from. Those values have to be
in a defined format, e.g., a 32-bit Integer, unsigned, low endian. In order to en-
able a real-time system to interact with its environment the used programming
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language must provide means to access these memory areas, may it be through
native provided functions or by providing interfaces to other languages that
enable such access. [22]

Efficient implementation and a predictable execution environment Given
the time-centric nature of real-time systems an efficient implementation will be
more important than in usual systems. A telling example is the control software
of an engine. Given an engine of a motorcycle, computation cycles with a few
microseconds only are not uncommon. Some programming languages do not
even provide clocks with such a fine granularity, neither any possibility to write
code which runs in such short cycles and does not miss the deadline. Real-time
systems not only have to run in such extremely short cycles they even have to
do it in 100% of the time. They may not even once miss their deadline if they
are defined as a hard real-time system which we will be explained in detail in
the next section.

2.3.1.1. Soft, Hard and Isochronal Real-Time Systems

Real-time systems are often misunderstood in terms of which requirements
must be fulfilled in order to be considered as a real-time system. Hard or soft
real-time have neither to do with the size of the deadline nor with the speed
the overall systems work at. A program reacting to an incoming event within
two days can still be a real-time system, even a hard or isochronal real-time
system which are the most restrictive ones. Usual systems are considered to be
working correctly if they always produce the right answer to a given question.
A real-time system additionally has to deliver this right answer within a given
time (deadline). Depending on its classification - soft, hard or isochronal - it
has to do so mostly, always or must always respond and even may not answer
before another given time (earliest) elapsed. Hence, the three categories can be
described as follows:

• Soft real-time: A system where the right answer has to be delivered in the
majority of cases within a given deadline. If not the system is considered
to be working in a degraded state of service.

• Hard real-time: A system where the right answer has to be delivered in
every case within a given deadline. If not, the system is considered to be
in an abnormal, non-functioning state.
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• Isochronal real-time: A system where the right answer has to be deliv-
ered in every case within a given deadline and not before an earliest time
has elapsed. If not, the system is considered to be in an abnormal, non-
functioning state.

This way the aforementioned system responding within two days is still a hard
real-time system if the given deadline is three days. It even might be an isochronal
real-time system if an earliest time of one day is given. However, there might
be cases where our fictional system needs four days instead of two and hence
would be at the most considered a soft real-time system. Summarizing, real-
time systems are systems that can be predicted in terms of time, be this time
one nanosecond or five weeks. [24]

2.3.2. Latency and Jitter

Besides the definition of soft, hard and isochronal real-time, latency and jitter
are the most important variables to consider when developing real-time sys-
tems. As with the different categories of real-time, latency and jitter are all
about the overall predictability and determinism of a system. A real-time sys-
tem must always behave in a way that can be predicted mathematically. This is
where latency and jitter come into play.

"Latency is a measure of time between a particular event and a system’s
response to that event [...]" [24]

In Figure 2.13, Latency in microseconds is depicted for a run of Cyclictest [25]
on a normal Linux OS (red) and for a Linux OS with its real-time patch en-
abled (green). The average latency for normal Linux is 28 microseconds and for
real-time Linux 27 microseconds. The other variable that can be read from this
Figure is the jitter of the systems.

"Jitter is the variation or unsteadiness in a measured quantity." [24]

Jitter in Figure 2.13 is represented by those samples that are far slower than
the average latency of 27/28 microseconds. For the non-real-time Linux there
are many samples in the area of 100 - 200 microseconds and even a few com-
pletely out of range with 350 microseconds and above. However, the Linux
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with real-time patch enabled shows a far smaller jitter with its highest latency
being below 100 microseconds.

Figure 2.13.: Latency and Jitter for Linux with and without rt-patch. [26]

2.3.3. Standard Java

After having seen what makes a real-time system stand apart from "normal"
systems we will now have a closer look on what makes normal Java incapable of
being a programming language for real-time systems and how the RTSJ changes
this.

2.3.3.1. Garbage Collection

Garbage Collection is what made Java once stand apart from other program-
ming languages where programmers were forced to take care of memory alloca-
tion and deallocation by themselves. Java does not provide features to explicitly
allocate or deallocate memory, but works with objects for which the JVM itself
allocates memory and deallocates it, if the given object is freed by the garbage
collector. In Java there are currently 5 different Garbage Collectors:

• Serial Collector: single threaded, pauses the whole application when per-
forming a collection
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• Parallel Scavenging Collector: only works for the young generation of
objects, older generations are collected by the serial collector

• Parallel-Compacting Collector: similar to Parallel Scavenging Collector,
but also working for old generations

• Concurrent Mark-Sweep Collector: improvement for above named col-
lectors, significantly reduces the pause during collection

• G1 Garbage Collector: successor of the Concurrent Mark-Sweep Collec-
tor, minimizes the pauses due to garbage collection even further

Common to all collectors is the pause they cause, which is neither predictable
in its length nor when it occurs. This sort of unpredictability can render the best
WCET prediction void and thus makes normal Java an inappropriate choice for
writing real-time systems.

2.3.3.2. Just-In-Time HotSpot Compilation

Another real-time deficiency of Java is the Just In Time (JIT) HotSpot compiler.
Often Java’s bytecode is initially only interpreted by the JVM and therefore
rather slow in execution time. This is where the JIT HotSpot compiler comes
into play. Given the case that a method is called more than 10000 times, which
is the default, the JIT compiler first translates the bytecode of this method into
machine code which can be directly run on the processor instead by the inter-
preter of the JVM. This is only the first stage of the JIT compiler which also
recompiles already compiled code into even more efficient machine code if the
same method is called more often. On the one hand this mechanism leads to
a so called warm-up phase of the JVM in which code is executed significantly
slower than in later phases. On the other hand those relatively arbitrary, ad-
ditional compilation phases render the whole program unpredictable in terms
of WCETs. We do neither know when the compilation of methods takes places,
neither do we know the time it takes to (re-)compile these methods into machine
code. Again, this sort of unpredictability makes normal Java an inappropriate
language for writing real-time systems.
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2.3.3.3. Thread Priorities

After two sources for unbounded latency and jitter we will now have a look on
how Java handles threads and their priorities. In subsection 2.3.1 we worked
out real-time control facilities to be one characteristic of real-time systems. Usu-
ally this means features that enable programmers to synchronize their code with
time itself via precise clocks, periodic event sources or language features encap-
sulating time in an absolute or relative form as well as using those to determine
the start and end of tasks. Another mandatory feature is to enable program-
mers to specify the importance of a task or in our case a thread. Usually this is
done via priorities which Java indeed offers. Unfortunately, most JVM imple-
mentations completely ignore the priority values given to a specific thread. This
implies that despite having a priority of 10 a thread would be granted the same
computation time as another thread with priority one. Far worse, the original
Java Language Specification stated the following:

"Every thread has a priority. When there is competition for processing re-
sources, threads with higher priority are generally executed in preference
to threads with lower priority. Such preference is not, however, a guar-
antee that the highest priority thread will always be running, and thread
priorities cannot be used to implement mutual exclusion." [27]

Due to this statement Java cannot guarantee thread priority obedience and with-
out this capability we are unable to build real-time applications. This means
that even if we were able to control the garbage collector and the JIT compiler
in a predictable way, we are still unable to guarantee real-time behavior for our
application. [24]

2.3.3.4. Hardware Access

As stated in subsection 2.3.1, real-time systems usually need access to their sur-
rounding environment. This might be sensors and actuators that write and read
data to/from predefined memory areas for control and data delivery. Because
of its platform independent nature Java grants no direct access to the underlying
memory instead providing its own memory model. Reading from or writing to
sensors and actuators is therefore completely impossible with Java’s language
features alone. One possibility to circumvent this is to access functions written
in other languages via Java Native Interface (JNI), but this interferes with Java’s
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"Write Once Run Anywhere" goal. Although not a complete show stopper this
missing feature definitely makes Java even less attractive for writing real-time
applications.

2.3.4. Real-Time Java

RTSJ is the first Java Specification Request (JSR) ever launched. This indicates
the enormous importance Java developers ascribe to real-time capabilities for
Java. As part of JSR-1 all of the above named deficiencies of Java regarding
writing real-time applications are addressed and solved as we will see in detail
in the following subsections.

2.3.4.1. Real-Time Garbage Collection

Recall the example of an application running for days and still being a real-
time application, as long as it is predictable and does not miss its deadlines.
What holds true for this application also does for a garbage collector. Real-time
garbage collectors are not about being fast, but about being predictable (while
still being reasonable fast). Two common approaches to achieve such garbage
collection behavior are work-based garbage collection and time-based garbage
collection. As our targeted JVM implementation, JamaicaVM [15], uses a work-
based garbage collector we will explain its details in the following.

Work-Based Garbage Collector A work-based garbage collector becomes pre-
dictable by ensuring that every time a thread, no matter what priority, allocates
an object, it must pay some of the cost of garbage collection work up front.
Usually the garbage collection work does not vary much between allocations,
thus making it predictable in terms of WCET for the thread, e.g., the manual
for the JamaicaVM shows an example build of a common "HelloWorld" appli-
cation where a memory analyzer tool is used to measure the application’s mem-
ory usage (heap). The analysis’ output consists of the maximum heap memory
demand plus a table of possible heap sizes and corresponding worst-case allo-
cation overheads, which are given in units of garbage collection work that are
needed to allocate one block of memory (typically 32 bytes). The real amount of
time is platform dependent, e.g., on the PowerPC processor a unit corresponds
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to the execution of about 160 machine instructions. In their example the appli-
cation uses a maximum of 3362144 bytes of memory for the java heap, the heap
sizes are given from 3732K to 17373K and the constant garbage collection work
from 3 to 100 units. Garbage collection work and heap sizes are inversely pro-
portional to each other, i.e., a larger heap means fewer garbage collection units.
This way a programmer is able to determine exactly how much time he must
allow for the WCET of a given thread. [28]

2.3.4.2. Ahead Of Time Compilation and JarAccelerator

As explained in subsubsection 2.3.3.2, Oracle’s JVM employs a JIT compiler
which (re-)compiles code during runtime. Another class of compilers are so
called Ahead Of Time (AOT) compilers which are performing compilation dur-
ing compile time instead of runtime. Although, JIT compilers in Java are usually
faster, AOT compilers are a perfect match for real-time applications due to their
predictability. All of the code is translated into byte code or machine code dur-
ing compile time and no additional work has to be done during runtime, ergo
no additional time is spent on (re-)compilation of source code.

The performance loss is still a drawback worth mentioning, as it has to be con-
sidered during development of real-time applications. While investigating our
own code executed on the JamaicaVM we usually observed a slowdown by the
factor of 10 compared to the execution time on a current Oracle JVM. These
measurements are only meant to be taken as a very coarse indication, as there
are many factors that influence the execution speed of Java programs. A possi-
bility to speed up a real-time application with AOT compilation is to translate
the source code not just into byte code, but directly into machine code of the tar-
get platform as it is partially done by the JIT compiler of Oracle’s HotSpot JVM.
This usually can only be done for an existing application. If any code has to be
dynamically loaded afterwards one could use, although it is a vendor specific
solution, Aicas’ JarAccelerator which allows to AOT compile individual .jars to
cpu machine instructions for dynamic loading at runtime.

Using AOT compilers and tools like Aicas’ JarAccelerator enable programmers
to reliably predict execution times of their application, thus making them real-
time capable.
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2.3.4.3. Real-Time Threads and Priority-Based Preemptive Scheduler

As stated in subsubsection 2.3.3.3, usual JVMs do not care about priorities of
threads, let alone have a scheduler being able to preempt threads based on their
priorities. By contrast, RTSJ requires an implementation to provide (at least) a
fixed-priority preemptive scheduler with at least 28 unique priority levels [20].
The JamaicaVM provides an implementation which is a first-in-first-out fixed-
priority preemptive scheduler. This scheduler is able to create a feasible sched-
ule for a set of given Schedulables, which is an additional interface defined by
the RTSJ. This interface is initially implemented by two classes in the RTSJ,
RealtimeThread and AsyncBaseEventHandler along with their subclasses.

Real-Time Threads RealtimeThreads are one of the core concepts of RTSJ
and extend normal Java Threads as can be seen in Figure 2.14. The above men-
tioned Schedulable interface extends Java’s Runable interface, hence mak-
ing all RTSJ specific classes compatible with existing Java applications. The
only difference entails a real-time JVM to treat RealtimeThread different from
standard Java Threads according to their given ReleaseParameters, Scheduling-
Parameters and MemoryParameters. The most common form of SchedulingPara-
meters are PriorityParameters which indicate the importance of one thread
towards another. ReleaseParameters enable a programmer to synchronize its
code with time itself through providing methods to set a deadline or in case of
PeriodicParameters a period or start time. This additional information is taken
into account by a scheduler’s attempt to create a feasible schedule.

Although a good starting point for programmers to write real-time capable ap-
plications, writing RealtimeThreads is more complicated than initially appar-
ent, e.g., in order to create a periodic RealtimeThread we have to adapt its run
method as depicted in Listing 2.5.

public class MyRTThread extends RealtimeThread {
2

@Override
4 public void run () {

while ( Thread . interrupted ()) {
6 doSomething ();

waitForNextPeriod ();
8 }

}
10 }
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Figure 2.14.: RTSJ RealtimeThread and its associated classes and interfaces.

Listing 2.5: RTSJ RealtimeThread with PeriodicParameters and
accordingly adapted run method.

A naive expectation would have been that the JVM takes care of calling the
run method periodically and putting the RealtimeThread to sleep after its run
method has been executed. Instead the programmer still has to take care of forc-
ing the RealtimeThread to run periodically, e.g., by using a while loop, and to
give away its spare time, if any, by calling waitForNextPeriod() which lets this
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RealtimeThread wait as long as it takes to reach the end of its period given by
its PeriodicParameters. As this approach is rather unintuitive, we will present
another approach in the next section.

Figure 2.15.: RTSJ AsyncBaseEventHandler with subclasses and associated
classes and interfaces.

Asynchronous Event Handlers Although initially merely intended for asyn-
chronous events, AsynchronousEventHandlers can also be used to write real-
time applications without direct use of RealtimeThreads. As can be seen in Fig-
ure 2.15 the base class of all AsynchronousEventHandlers is AsyncBaseEvent-
Handler. Like RealtimeThread it implements Schedulable but in contrast to
RealtimeThread it does not directly extend Java’s Thread. Instead it has an as-
sociation to an AsyncEvent which can be a representation for a system event
or an interrupt or simply a timer, e.g., in order to use an AsyncEventHandler
for periodic tasks we have to add it to the list of AsyncEventHandlers of a
PeriodicTimer as shown in Listing 2.6. ReleaseParameters and Scheduling-
Parameters are set the same way they would be set for a RealtimeThread. In
the background the JVM takes care of associating the AsyncEventHandler with

56



2.3. REAL-TIME SPECIFICATION FOR JAVA

an appropriate RealtimeThread regarding the given SchedulingParamters and
ReleaseParameters. All a programmer is left with is to write the business logic
of its AsynchronousEventHandler. Thus, the business code is kept free from
timing related code.

PeriodicTimer timer = new PeriodicTimer (null , new RelativeTime (100 , 0) , null);
2 AsyncEventHandler handler = new AsyncEventHandler (){

4 @Override
public void handleAsyncEvent (){

6 doSomething ();
}

8 }

10 ReleaseParameters rps = timer . createReleaseParameters ();
timer . setSchedulingParameters (new PriorityParameters (11));

12 rps. setDeadline (new RelativeTime (50 , 0));
handler . setReleaseParameters (rps);

14
timer . addHandler ( handler );

16 timer . start ();

Listing 2.6: PeriodicTimer and AsyncEventHandler.

Bound vs. Unbound Asynchronous Event Handlers The mentioned benefit
of using AsyncEventHandler over RealtimeThread can also be a drawback, if a
programmer does not exercise care when using it. A common pitfall is to use
AsyncEventHandler when waiting for other tasks to finish. Recall, the JVM takes
care of associating an AsyncEventHandler with an appropriate RealtimeThread
in the background. Now, imagine the case where a programmer has two Async-
EventHandlers, a producer and a consumer. The consumer waits for the pro-
ducer to finish, e.g., calls wait() on a shared resource and waits for a notify().
If both, producer and consumer, have the same priority the JVM might decide
to associate them with the same RealtimeThread in the background. In case
the consumer is running before the producer, which is completely legitimate,
and then calls wait() on the shared resource it will stop the thread from work-
ing. Consequently, the producer will never run (it should be run by the same
RealtimeThread) and will never call notify() on the shared resource. The
result of such a scenario behaves like a deadlock without the explicit use of
locks.

A solution for this situation is the use of a BoundAsyncEventHandler. A Bound-
AsyncEventHandler is guaranteed to be associated with its own, unique Real-
timeThread. Consequently, a situation as described above could never happen
as the JVM will always associate two AsynchronousEventHandler with two dif-
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ferent RealtimeThreads. It also would be sufficient to only make the consumer
be a BoundAsyncEventHandler as it is the one that is blocking the thread.

2.3.4.4. Hardware Access

As mentioned in subsection 2.3.1 real-time systems often need access to their
surrounding environment. This is usually done via devices that have their in-
terface registers mapped into the virtual memory address space. RTSJ provides
two mechanisms for granting access to this memory:

• Direct Memory Access/Shared Memory: "Mechanisms that allow objects to
be placed into areas of memory that have particular properties or access require-
ments." [24]

• Raw Memory Access: "Mechanisms that allow the programmer to access raw
memory locations that are being used to interface to the outside world, e.g., memory-
mapped input or output devices." [24]

public class MemoryAccess {
2 private static final long BASE_ADDRESS = 0 x3f000000l ;

private static final long GPIO_OFFSET = 0 x200000l ;
4 private static final int LENGTH = 32;

6 public static void main( String [] args) {
final RawInt mem = RawMemoryFactory

8 . getDefaultFactory ()
. createRawInt ( RawMemoryFactory . MEMORY_MAPPED_REGION ,

10 BASE_ADDRESS + GPIO_OFFSET , LENGTH , 1);
}

12 }

Listing 2.7: Raw memory access via RTSJ.

Listing 2.7 shows an exemplary access to a RawInt that is stored in a specific
place in memory. In order to access this specific place we create the default in-
stance of RawMemoryFactory on which we call the method createRawInt which
takes parameters according to [29] as follows:

• region: "The address space from which the new instance should be taken."

• base: "The starting physical address accessible through the returned instance."
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• count: "The number of memory elements accessible through the returned in-
stance."

• stride: "The distance to the next element as a multiple of element size, where 1
means the elements are adjacent in memory."

In our case we want to access a memory-mapped region of a Light Emitting
Diod (LED), hence we are using the predefined RawMemoryRegion MEMORY_MAP-
PED_REGION. The base is calculated via a BASE_ADDRESS plus a GPIO_OFFSET,
count is given via the LENGTH variable (a 32-bit integer) and stride is 1. We
are now able to switch the LED on and off by writing 0, respectively 1 to the
memory via mem.setInt(value).

As shown by this example RTSJ gracefully solves the challenge of Java’s non-
existent hardware access by encapsulating hardware access into a facade, i.e.,
RawMemoryFactory, and by doing so delegating the implementation details to
the real-time JVM vendor. Additionally, RawMemoryFactory enables a type-safe
access to the underlying memory which eliminates a possible source of errors.
Also the challenges of priority-based preemptive scheduling as well as real pri-
orities have been tackled and solved by the RTSJ as explained in subsubsec-
tion 2.3.3.3. The standard even forces compliant implementations to offer a real-
time garbage collector which erases the need for manual memory management.
AOT compiler and proprietary tools like Aicas’ JarAccelerator offer a sensible
trade-off between runtime performance and predictability.

Based on the demonstrated fact of Java being suitable for writing real-time ap-
plications and its undisputed supremacy in the rambling market of program-
ming languages [10], we chose Java as starting point for the technologies and
approaches shown later in this work.

59



2. FOUNDATIONS

2.4. Open Services Gateway initiative

OSGi has been around since the year 2000, where its first specification was re-
leased. According to the official website of the OSGi Alliance OSGi is defined
as follows:

"OSGi is a set of specifications that define a dynamic component system
for Java. These specifications enable a development model, where appli-
cations are dynamically composed of many different reusable components.
The OSGi specifications enable components to hide their implementations
from other components while communicating through services, which are
objects that are specifically shared between components. This architecture
significantly reduces the overall complexity of building, maintaining and
deploying applications." [30]

As we decided to use Java as programming language throughout this work, we
will explain OSGi as it is implemented in Java, although other implementations
in other languages exist [31]. OSGi is a dynamic module system on top of Java
that offers an approach for several shortcomings and common pitfalls that occur
when developing large systems in Java. To provide a better understanding of
what OSGi exactly is and how it compares to a normal Java application we de-
picted an abstract view of an application written with OSGi and an application
written in plain Java in Figure 2.16.

Figure 2.16.: OSGi application vs. plain old Java application.

On the right side we can see a normal Java application which is more or less a
monolithic application that runs on the JVM which in turn runs on an Operating
System (OS). Somewhere within this Java application there is a main method
that is invoked by the JVM at startup and the rest of the application’s lifecycle
is up to the developer.
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On the left side we can see an application written with OSGi. The main dif-
ference is shown by the green box which represents the OSGi framework. On
top of this framework a developer creates so called bundles which are Java
.jar files with additional information in their MANIFEST.MF file. Each bundle
contains one or more services that are normal Java classes with well-defined
interfaces that contain program logic. Where the Java application has been
more or less monolithic in its nature, the OSGi application is modular by de-
fault. Each service can only be accessed through its interface and each bundle
can decide which interfaces and classes it makes accessible to other bundles.
Also each bundle and service has their own well-defined lifecycle that is con-
trolled by the OSGi framework and that can be hooked into by a developer.
Hence, the main method is hidden somewhere in the OSGi framework and not
created by the developer.

In the following we will have a more detailed look at why we use OSGi, how
bundles and services work in detail as well as the runtime reconfiguration ca-
pabilities of OSGi services.

2.4.1. Reasons for OSGi

As SCSS tend to follow the overall trend of software in growing fast, OSGi is a
reasonable solution to counter this trend when already using Java. The usage
of OSGi comes with a set of benefits according to the OSGi Alliance [32]:

Reduced Complexity When developing with OSGi one develops bundles.
Bundles are simple .jar files with additional information in their MANIFEST.MF
file that will be explained in subsection 2.4.2 in detail. Each bundle has a set of
dependencies to other bundles (requirements) as well it offers a set of interfaces
and classes to other bundles (capabilities). Usually, each bundle only repre-
sents one well-defined functionality (often only one service with its interface)
and therefore is rather small in terms of number of classes and lines of code.
This makes them easy to understand and better maintainable than monolithic
code where dependencies are not clearly defined. More complex applications
are achieved by composing several of these small bundles to achieve another,
aggregated functionality. An example for this might be a booking system, where
each step of the booking (find offers, submit booking request, check credit card
information, ...) is represented by a small bundle and the whole booking ap-
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plication is just an aggregation and orchestration of those bundles and their
services.

Reuse Following the aforementioned example, we can reuse each bundle in a
different scenario. This way we might reuse the "check-credit-card-information"
bundle within a cash system. The functionality of the single bundle stays the
same, but it is used within a complete different scenario.

Dynamic Updates Bundles and services have their own lifecycles. Both will
be explained in detail in subsection 2.4.2 and subsection 2.4.3, but we will al-
ready use some of their possible states here. Bundles can get installed and unin-
stalled at runtime which means that with no downtime a production server can
be updated with the newest bugfixes. Also services can be activated and deac-
tivated while their corresponding bundle is active. If we imagine an embedded
application where a service represents a sensor, this lifecycle can be utilized
to notify the overall system of the failure of this sensor as the OSGi frame-
work handles newly created and vanishing bundles/services during runtime
and broadcasts these changes to the rest of the system.

2.4.2. Bundles

As mentioned above the main building blocks of OSGi applications are bun-
dles. In Java, bundles are represented as .jar files. A bundle represents a self-
contained, cohesive module, often with a public API and a private implemen-
tation for this API. OSGi defines a dedicated layer in its architecture overview
[30] for the import and export of code from and to bundles, whereby the API of
a bundle is crucial as the API is the part of a bundle that is usually exported and
subsequently imported by another bundle. Those import-export dependencies
between bundles are used for dependency resolution during buildtime. Each
bundle has its own classloader which differs strongly from Java’s usual "one
classloader for everything" philosophy. This makes it possible to have differ-
ent versions of the same library within different bundles. If there were only
one classloader this would not be possible as the names of classes within the
different versions of a library would not be distinguishable.
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Lifecycle All bundles have a predefined lifecycle as shown in Figure 2.17.
Bundles can be Installed, Resolved and Uninstalled during the runtime of
an application. After a bundle is installed, the OSGi framework resolves its de-
clared dependencies to other bundles and, if all dependencies can be satisfied,
sets its state to Resolved. Every bundle can also declare an Activator to partic-
ipate in the lifecycle events after being set to Resolved and getting started and
before being stopped and set back to Resolved. The Activator is a class whose
methods are called whenever the bundle is started or stopped. In Figure 2.17
this is depicted by the states Starting, Active and Stopping. A bundle can ei-
ther be started/stopped by the framework itself, e.g., whenever it gets resolved
it is also started, or can be started/stopped manually by a user.

Figure 2.17.: States of a bundle’s lifecycle [33]

Dependencies
Recall that bundles are merely .jar files which are zip containers containing all
.java, .class, .jar and other files needed by this .jar to be complete. The .java
files contain the Java source code written by a programmer and usually have
an import section, where all classes are declared that neither are provided by
the Java Runtime Environment (JRE) directly nor by the package the class is
declared within. Those are imports that have to be satisfied by another bundle
at runtime and are therefore dependencies to another bundle. This is why bun-
dle dependencies are declared in form of import and export statements that
declare the packages to be imported from another bundle or to be exported in
order to be used by another bundle. Usually, all packages are also declared
with a version range, e.g., de.unia.smds.app.api [1.0.0 - 2.0.0]. The versioning
further restricts the packages that are allowed to satisfy a given dependency.
Only when a bundle can be found that exports a matching package in the right
version our bundle gets resolved.
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2.4.3. Services

Although bundles pose a good possibility to modularize and organize code,
they are not sufficient to capture all needs of modern software development.
Therefore, a service model has been introduced by OSGi.

Services are the core of modern OSGi. In order to give a gentle introduction
to OSGi services, we draw a direct comparison between a simple Hello World
application written once with OSGi and once with plain Java. Both are depicted
in Figure 2.18. Although, the OSGi version might look a little more verbose with
its two annotations, it is still the same amount of characters. In plain Java we
must always implement a public static void main(String[] args) method
in order to offer an entrypoint for the JVM, whereas in OSGi we can annotate an
arbitrary method with @Activate. Both code snippets provide the same output
to the console.

@Component
2 public class HelloWorld {

@Activate
4 private void hi (){

System .out. println ("Hello ,
OSGi!")

6 }
}

public class HelloWorld {
2 public static void main( String []

args){
System .out. println (" Hello Java

!");
4 }

}

Figure 2.18.: Hello World! in OSGi on the left vs. in plain Java on the right.

The @Component annotation used in the OSGi snippet declares the annotated
class to be an OSGi service. Those so called Declarative Service (DS) are the
current state-of-the-art when developing OSGi applications.

2.4.3.1. Declarative Services

When OSGi once started in 2000, declaring services involved a lot of boilerplate
code, making it a rather messy framework for beginners. Business logic often
was tightly entangled with logic concerning the declaration, registration and
lookup of services which lead to code that could not be used outside an OSGi
framework. Also the dynamism of OSGi often posed a common pitfall to begin-
ners as services that were once looked up still could vanish later on and, if not
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handled correctly, could lead to unexpected behavior or failure of the developed
system.

DSs are a non-programmatical approach to declare services in OSGi which en-
able a programmer to write plain Java classes that are enriched with metadata
via annotations. By using annotations the written Java classes are freed from
most dependencies to an OSGi framework. The only dependency left is the one
to the annotation package which only consists of a small number of annotations
and enums [34]. This way a developer can write services without loosing the
reusability of the written classes if they are repurposed in another, non-OSGi
context. The above mentioned annotations will be explained in detail in the
following paragraphs.

@Component The most important annotation is @Component. It declares the
annotated class to be a component that is registered with its respective ser-
vice(s), i.e., interface(s), at the service registry. The @Component annotation
comes with a set of predefined properties which are used to configure the be-
havior of the created component and can add additional metadata. We will
shortly explain the most important ones for our later approaches according to
[35]:

• enabled: A boolean indicating the initial state of this component when
the containing bundle is started.

• immediate: A boolean indicating whether or not the annotated compo-
nent is subject to immediate or delayed activation. Activation and com-
ponent lifecycles will be discussed in the following.

• name: A String used as name for this component which must be unique
within a bundle. Can be used by other components to filter for this exact
component.

• property: An Array of Strings that specifies a set of component prop-
erties. Is used to add additional metadata to the service which can then be
utilized by other components

• service: An Array of Class<?> that specifies the name(s) of the inter-
face(s) or class(es) this component is registered under as a service.
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Although the @Component annotation uses sensible defaults for all its properties
and we are able to use it without explicitly setting any property at all, see Fig-
ure 2.18, in Listing 2.8 we exemplarily show the above named properties when
being set explicitly. This example shows a simple version of a Servlet that can
be found by a running HttpService and subsequently be published according
to the properties set. So getting a Servlet up and running comes down to us-
ing the @Component annotation and adding additional metadata, i.e., the path
the Servlet is registered under. The developer is only left with implementing
the business logic.

@Component {
2 enabled =true ,

immediate =true ,
4 service = Servlet .class ,

name =" MyComponent ",
6 property = "osgi.http. whiteboard . servlet . pattern =/ hello "

}
8 public class HelloWorldServlet extends javax . servlet .http. HttpServlet {

protected void doGet ( HttpServletRequest req , HttpServletResponse resp)
10 throws ServletException , IOException {

resp. getWriter (). println (" Hello World ");
12 }

}

Listing 2.8: Usage of properties withing @Component annotation.

Within this component a developer can also use all the other amenities OSGi
has to offer, e.g., lifecycle event methods.

@Activate, @Deactivate and @Modified Components live within a bundle
and its lifecycle, so all component-specific lifecycle events take place within the
Active state of its according bundle as depicted in Figure 2.17. Although there
exist different forms of lifecycles for components which will be shown in sub-
subsection 2.4.3.2, every single component in OSGi can at most participate in
three lifecycle events: Activation, Modification and Deactivation. To partici-
pate in these events a component must declare methods annotated with the cor-
responding annotation as depicted in Listing 2.9. Any method annotated with
@Activate is called by the OSGi framework as soon as the declaring component
is instantiated and started. The method can also declare a set of predefined
parameters in order to offer more context information to the developer. Those
parameters can be:

• BundleContext: Offers information about installed bundles and means to
start/stop these or to search their classpath for resources or .class files.
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• ComponentContext: Offers information about the component and offers
means to modify the component itself.

• ComponentPropertyType: An object containing configuration information
of this component.

While being activated a component can be modified if it contains a method an-
notated with @Modified. The possible parameters are the same as with @Activate,
but usually the most interesting parameters in @Modified methods are Component-
PropertyTypes. Those enable a component to be reconfigurable at runtime
which will be shown in detail in subsection 2.4.4. Whenever the component
is deactivated, e.g., because its declaring bundle is stopped, the method anno-
tated with @Deactivate is called. This method usually is used to clean up a
component, e.g., shut down network connections or free resources obtained by
this component.

@Component
2 public class LifecycleShowcase {

@Activate
4 private void activate (){ System .out. println (" Hello !"); }

6 @Modified
private void modified (){ System .out. println (" Modified !"); }

8
@Deactivate

10 private void deactivate (){ System .out. println (" Goodbye "); }
}

Listing 2.9: Component lifecycle methods via annotations.

@Activate and @Deactivate are also both interconnected with the @Reference
annotation. @Activate is called after all references have been resolved and
@Deactivate is called just before those references are freed again. The details
on how @Reference works are shown in the next part.

@Reference Until now only standalone components have been shown, how-
ever @Reference can be used to link different components together. In List-
ing 2.10 we depicted a simple reference between a HelloCommand component
and a Greeter service which is used by the HelloCommand component in its
@Activate method. The reference is realized via a member variable of type
Greeter within the HelloCommand component that is annotated with @Reference.
The interface Greeter is implemented by GreeterImpl which is a component
as denoted by the @Component annotation as is HelloCommand. The OSGi frame-

67



2. FOUNDATIONS

work takes care of instantiating both components and injecting a reference into
the member variable of HelloCommand. In the @Activate method this reference
is already set and can thus be used to invoke the method greet() on it.

@Component
2 public class HelloCommand {

@Reference
4 private Greeter greeter ;

6 @Activate
private void activate (){ greeter . greet (); }

8 }

10 @Component
public class GreeterImpl implements Greeter {

12 @Override
public void greet (){ System .out. println (" Hello World !"); }

14 }

Listing 2.10: Service reference via annotation.

Similar to @Component, @Reference can be modified in its behavior through
properties. Taken from [35] the most important ones for our approach are the
following:

• cardinality: An enumeration value describing if this reference has an
OPTIONAL (0..1), a MANDATORY (1..1), a MULTIPLE (0..N) or an AT_LEAST_ONE
(1..N) cardinality.

• policy: An enumeration value that can either be STATIC or DYNAMIC. STATIC
forces the declaring component to restart whenever this reference changes,
whereas DYNAMIC enables the declaring component to stay activated but
still receive a new reference.

• policyOption: An enumeration value that can either be RELUCTANT or
GREEDY. GREEDY leads this reference to be changed to another service when-
ever a better fitting one is available, whereas RELUCTANT is satisfied with
the first reference it gets and does not change afterwards.

• target: A Lightweight Directory Access Protocol (LDAP) [36] filter ex-
pression as String which describes the to target service(s) via metadata
that must be present at the target component.

Although @Reference uses sensible defaults for all its properties and we are
able to use it without explicitly setting any property at all, see Listing 2.10, in
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Listing 2.11 we exemplarily show the above named properties when being set
explicitly.

@Component
2 public class HelloCommand {

@Reference (
4 cardinality = ReferenceCardinality .MANDATORY ,

policy = ReferencePolicy .DYNAMIC ,
6 policyOption = ReferencePolicyOption .RELUCTANT ,

target = "( serviceRanking <=10) "
8 )

private Greeter greeter
10 }

Listing 2.11: Usage of properties within @Reference annotation.

In this example the HelloCommand component’s greeter reference would not ac-
cept any Greeter service with a serviceRanking higher or equal than 10. This
means that even if there is a component registered under the Greeter interface
but has a serviceRanking of 11, the HelloCommand component would not accept
a reference to it and thus not get activated as greeter is a mandatory reference.
The possibility to change the target filter at runtime as later explained in subsec-
tion 2.4.4 enables the dynamic reconfiguration of components at runtime, which
is a powerful mechanism in OSGi in order to create runtime reconfigurable sys-
tems.

2.4.3.2. Component Lifecycles

In subsubsection 2.4.3.1 we already had a look at lifecycle methods that are
available for all DSs. Although these methods are the same for all DSs, their
lifecycle might be different. Usually we differ between two types of DSs de-
pending on whether or not the DS is immediate. We do this because depending
on being immediate or not the lifecyle of the component has an additional state
as depicted in Figure 2.19.

On the left side an immediate DS is depicted. A DS is either explicitly declared
being immediate by setting the immediate property of @Component to true or
it is declared so implicitly as long as the class annotated with @Component
does not directly implement an interface. An immediate DS starts in the state
UNSATISFIED and is activated as soon as all its mandatory references have been
satisfied. Whenever this component gets deactivated, e.g., the declaring bundle
is stopped, it is deactivated and goes back into its UNSATISFIED state.
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Figure 2.19.: Immediate and delayed component’s lifecycle.[37]

This lifecycle is quite different from the delayed DS depicted on the right side. A
DS is delayed as soon as the annotated class directly implements an interface
or if the immediate property has been explicitly set to false. A delayed DS
also starts in its UNSATISFIED state, but when becoming satisfied is switching to
the REGISTERED state and is not getting activated yet. Its activation is delayed
until another DS requests the delayed DS. In that case the delayed DS also gets
activated. Whenever the requesting DS releases the reference to the delayed DS,
the delayed DS switches back into the REGISTERED state. Apart from that all the
rest of the states are transitioned like they are for an immediate DS.

2.4.3.3. Service Component Registry

Until now we have declared several classes to be DSs by annotating them with
@Component but have not looked yet at the facility that takes care of wiring all
these components together. This is where the service component registry comes
into play which is also the core of every OSGi application.

In part this service component registry can be compared to Dependency In-
jection (DI) frameworks like Contexts and Dependency Injection (CDI) [38] or
Google Guice [39]. DI frameworks are used to lower the complexity of large
applications by making use of the principle of "Inversion of Control" [40]. Usu-
ally this principle is implemented by outsourcing the wiring of different soft-
ware parts to an external component and a configuration file instead of letting
the components take care of their wiring themselves. The wiring can then be
configured to the needs of the application and its changes over time simply
are reflected by changing the configuration file. The same principle is also im-
plemented by the OSGi service component registry that takes care of wiring
components together according to their declared dependencies via @Reference
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annotated member variables and the components that are available at runtime.
Hereby, the service component registry enables DSs to find other DSs without
having knowledge of their implementation classes but only knowing about
the implemented interface, i.e., their services. The usage of an interface
as a mandatory contract between requesting component and requested service
highly enhances the reusability of components and meanwhile enforces devel-
opers to adhere to best practices in software development.

What makes the OSGi service component registry stand apart from the above
mentioned solutions is the support of dynamic dependencies. Dynamic means
components that come and go over time, whereas dependencies in Guice for
example stay forever. This way a component can react to new components reg-
istered at runtime as well as old components being deregistered. A common
implementation that makes use of dynamic dependencies is the Whiteboard
Pattern[41] that is widely used in OSGi applications.

"The whiteboard pattern is defined as a server that uses the OSGi service
registry to find its constituents, where each constituent is registered as a
service. A constituent can for example be like a traditional listener. This is
in contrast with a pattern where the server registers itself as a service and
the constituents then register with this server service."[42]

In Figure 2.20 a graphical description of the Whiteboard Pattern is given with
the usual graphical syntax for OSGi services. The rectangular shapes represent
bundles, whereas the triangular shape represents a service. Bundles connected
to the flat side of the triangle are requesting the service, while bundles con-
nected to the tip of the triangle provide such a service.

Figure 2.20.: Whiteboard Pattern [42]

One of the most prominent implementations of this pattern is the HttpWhite
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boardService that allows developers to register new Servlets only by adding
specific metadata to the DS that defines the path under which the Servlet can
be reached. At runtime the HttpWhiteboardService is notified by the service
component registry whenever a new component with this specific metadata
is registered. The HttpWhiteboardService then takes care of registering this
component as a Servlet under the specified path. Whenever this component
is deregistered the HttpWhiteboardService is also notified and subsequently
deregisters the according Servlet. Thus, it is possible to create a web applica-
tion that can be changed at runtime simply by (de-)registering components.

2.4.4. Configurable Components

OSGi offers a variety of standardized mechanisms and services that are all de-
fined within their core specification [43] and compendium specification [44].
One of those services is the ConfigurationAdmin which enables developers to
reconfigure components at runtime programmatically. Each component has im-
plicitly a configuration that consists of all property values of the annotations
used within this component, e.g., one can set a specific reference by altering the
target property of a specific @Reference annotation.

What might sound trivial is in fact a mechanism that allows components to be
completely runtime reconfigurable, thus making whole systems being able to
be configurable at a fine granular level. In Listing 2.12 we depicted a simple
example for using the ConfigurationAdmin to reconfigure a component’s refer-
ence. In this case we force ConfigurableService to use a FooService that has
its foo property set to the value foobar instead of bar as the component declares
it. This mechanism can be used to adapt existing components to changes that
are made after the component has been deployed. If one translates this simle
example to the scale of a complete application one is capable of reconfiguring a
whole system at runtime.

@Component
2 public class ConfigAdminShowcase {

@Reference
4 private ConfigurationAdmin cm;

6 @Activate
private void activate (){

8 Configuration config = cm. getConfiguration (" exampleConfig ");
config . update (new HashTable <String , Object >() {{ put(" FooService .

target ", "(foo= foobar )"); }};);
10 }
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}
12

@Component (pid =" exampleConfig ")
14 public class ConfigurableService {

@Reference ( target = "( foo=bar)")
16 private FooService fs;

}

Listing 2.12: Change reference target via ConfigrationAdmin.

The configuration of a component does not only contain the implicit properties
given by the used annotations, e.g., <ReferenceName>.target, but also properties
that are set by the developer through the property property of @Component. This
way any possible metadata can be altered by other components through the
simple usage of ConfigurationAdmin, metadata that might influence additional
semantics defined by the developer.
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3. COMMON ERROR REDUCTION WITH AADL AND RTSJ

3.1. Motivation

It is common knowledge in software engineering that an early development
error detection lowers the costs of its correction. This is especially the case if the
system under development is an embedded one or a SCSS, whereby not only
a system’s software, but also its corresponding documentation or hardware is
affected by changes.

Although already shown in chapter 1, Figure 3.1 is repeated here to again il-
lustrate the impacts of late error discovery on costs of a software project. Even
though 70% of errors are introduced into a system during design phase, where
their costs to be removed would be lowest, only 3,5% of them are also discov-
ered during this phase. The vast majority of errors is discovered either during
unit, integration and system tests, or even worse during operation and mainte-
nance accompanied with 5 up to 1000 times the costs for removal as compared
to design time discovery.

Figure 3.1.: Introduction of errors, their finding and the relative costs compared
to errors discovered during design phase. [7, 8]

In order to reduce time and costs related to late error discovery MDD aims at
shifting most aspects of a system’s software implementation into earlier phases
of the development, e.g., software design or system design. This is usually done
by establishing thoroughly tested transformations between models of different
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level of abstraction of the overall system, as well as by introducing code gener-
ators that finally convert sufficiently detailed models into executable code.

Although, theoretically the whole system, including business logic, could be
represented as models in this work we decided to merely concentrate on shift-
ing structure, timing and inter-component communication aspects of a system’s
software from the implementation phase to the system design phase. This deci-
sion was made because of the increased workload of modeling business logic in
comparison to only modeling more abstract aspects of a system, i.e., structure,
timing and inter-component communication.

In order to benefit from MDD a sufficiently expressive and preferentially se-
mantically well-defined source language has to be chosen as well as a target
language supporting the semantic aspects of this source language. In chapter 1
we already have justified our decision to use AADL as source and RTSJ target
language, thus we only explain what additional benefits we expect of those two
languages.

The chosen source language, i.e., AADL, offers the following benefits for devel-
opers of SCSS:

• Integration of several stakeholders into one central source of information,
e.g., requirements, testing, implementation

• Strong type system down to the level of measurement units, e.g., meter
vs. yards or gallons vs. liter

• Predefined analyses targeting several aspects of SCSS, e.g., schedulability
of the system, fault tree analyses, etc.

• Standardized semantics for all model elements and properties of those

Whereas, our chosen target language, i.e., RTSJ or in a more general sense Java,
offers the following benefits over traditional SCSS programming languages,
e.g., Assembler or embedded C:

• Reduction of complexity due to language-specific constructs, like classes,
inheritance and abstraction

• Production-grade real-time garbage collection in contrast to ad-hoc mem-
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ory management solutions per project or company

• Production-grade standard libraries instead of ad-hoc libraries per project
or company

• Highly sophisticated Integrated Development Environment (IDE)s sup-
porting features like autocompletion, instant compile time error recogni-
tion, standard refactorings and many more

Our approach uses the standardized semantics of AADL to define a mapping
between AADL and RTSJ. By an implementation of this mapping, we gener-
ate AADL semantic-compliant RTSJ code which preserves the timing behavior
and inter-component communication defined in an AADL model. Thus, a sys-
tem designer is capable of designing and performing analyses regarding com-
munication and timing almost completely during design phase, while resting
assured that the implementation will reflect made design choices. Simultane-
ously, programmers are relieved of the monotonic and repetitive task of writing
communication- and timing-related code.

The rest of this chapter is structured as follows: section 3.2 presents our map-
ping from AADL to RTSJ which details the mapping concerning structure, tim-
ing and communication, as well as the system setup of a system generated with
our approach. Finally, we evaluate our approach via a comparison with a hand-
written solution.
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3.2. Mapping

In this section we present the three main parts of our mapping between AADL
and RTSJ. In the first part of this mapping we will show which structural char-
acteristics of AADL are mapped onto the target language. In the second part we
present the timing-related features that can be automatically transformed into
semantically appropriate RTSJ code. The last part shows how inter-component
communication defined in AADL is transformed into inter-thread communica-
tion mechanisms in RTSJ.

3.2.1. Structural Mapping

The structural mapping of our approach covers the AADL language constructs
type declaration, implementation declaration, subcomponents and the relation-
ships extends, realizes and refined to that enable a user to structure com-
ponents and refine them incrementally. In order to keep the following sections
readable, we decided not to use a formal representation. Instead, a structural
definition is given through the main concepts of AADL.

3.2.1.1. Type and Implementation Declarations

Type declarations in AADL are representing interfaces in form of features
that are provided by a realizing implementation declaration. In Java, the con-
cept of an interface already exists. An interface defines method signatures
which have to be realized by classes that implement the interface. In order to
reuse this interface concept to reflect the type declaration concept in AADL,
we translate each feature defined by a type declaration into corresponding
method signatures. In our approach, we only regard data ports which can
hold one data element at a time and therefore can be translated into simple in
and out methods. This mapping is shown in Listing 3.1 and Listing 3.2, where
the in/out data port dataIO is translated into its corresponding in and out
methods, each with the declared classifier A as parameter type.

process processA
2 features

dataIO : in out data port A;
4 end processA
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6 data A
end A

Listing 3.1: Types in AADL

public interface ProcessA {
2 void inDataIO (A data);

void outDataIO (A data);
4 }

public interface A{}

Listing 3.2: Types as interfaces in Java

Implementation declarations can realize exactly one type declaration and ex-
tend exactly one other implementation declaration. Multiple inheritance is
forbidden by the standard. The extended implementation declaration has to
realize the same type declaration as the extending one. One type declaration
can have several implementation declarations, each inheriting the features
defined by the type declaration. Additionally, implementation declarations
can have subcomponents which specify the inner composition of a component.
When transferred to Java, implementation declarations resemble abstract clas-
ses which have member variables that hold references to their subcomponents.

process implementation processA .impl
2 subcomponents

worker1 : thread threadA .impl;
4 worker2 : thread threadA .impl;

end processA
6

thread threadA
8 features

dataIO : in out data port A;
10 end threadA

12 thread implementation threadA .impl
end threadA .impl

Listing 3.3: Implementations in AADL

Listing 3.3 depicts a process implementation processA of the process type
defined in Listing 3.1 which inherits the in/out data port and adds two thread
subcomponents, worker1 and worker2. This implementation declaration is trans-
lated into a Java class as shown in Listing 3.4. The class ProcessAImpl imple-
ments the interface ProcessA, inherits the methods defined by ProcessA and
implements them. The implementation of in/out methods is explained in de-
tail in subsubsection 3.2.3.3. Likewise, each subcomponent is represented by its
own member variable, i.e., worker1, worker2 and uses the declared classifier
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as type, i.e. ThreadAImpl. The member variables are initialized within the con-
structor as all classes and interfaces can be seen as blueprints which have to
be assembled by an outside entity.

public abstract class ProcessAImpl implements ProcessA {
2 ThreadAImpl worker1 ;

ThreadAImpl worker2 ;
4

public ProcessAImpl ( ThreadAImpl worker1 ,
6 ThreadAImpl worker2 ){

this. worker1 = worker1 ;
8 this. worker2 = worker2 ;

}
10

@Override
12 public void inDataIO (A data){

...
14 }

16 @Override
public void outDataIO (A data){

18 ...
}

20 }

22 public interface ThreadA {
void inDataIO (A data);

24 void outDataIO (A data);
}

26
public class ThreadAImpl implements ThreadA {...}

Listing 3.4: Implementations as classes in Java

3.2.1.2. Hierarchies and Refinements

Type declarations and implementation declarations can be used to create an in-
heritance hierarchy of components by letting one component extending another
or by an implementation declaration realizing a type declaration. The extends
relation of AADL only allows single inheritance and demands the extending
component to be of the same type, e.g., system, process, etc., as the one that is
extended. Therefore, we can simply reuse the extends keyword from Java in or-
der to map this relation. Type declarations inherit all features from their parent
type declaration which is mapped in Java by the child interface inheriting all
method signatures from the parent interface. The same concept can be trans-
ferred to implementation declarations that are classes instead of interfaces in
Java. An implementation declaration extending another implementation dec-
laration inherits all features and subcomponents from its parent. In Java, a
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subclass extending a superclass inherits all non-private member variables,
representing subcomponents and all methods representing features.

In case of an implementation declaration realizing a type declaration, we will
use the implements keyword in Java to map the semantic meaning. A realizing
implementation declaration inherits all features defined by the type declara-
tion. The same semantic meaning is given by a Java class that is implementing
an interface, whereby all methods declared in the interface are inherited and
implemented by the class.

Problems arise when it comes down to the refine mechanism in AADL. The
refinement of a component encompasses, among other things, the possibility to
refine classifiers of ports by an extending type declaration. In order to reflect
the classifier refinement of a data port in an extending and refining type dec-
laration, we have to change the signature of its corresponding method in Java.
Listing 3.5 shows a simple refinement of an in data port, where the classi-
fier gets specialized by the extending type declaration. In Java, this would lead
to an interface definition as shown in Listing 3.6. Declared as depicted, the
overridden in method for dataIO is an invalid method signature. In Java, an
overriding method must have the same signature composed by method name
and parameter types as declared in the super type. As the overriding method
changes the parameter types, it is not valid.

In order to restrict the possible types for refinements, AADL defines the prop-
erty Classifier_Substitution_Rule which can be associated with a port. Cur-
rently, AADL defines three different values for this property, Classifier_Match,
Type_Extension and Signature_Match. We only consider the former two. Clas-
sifier_Match – the default value – enforces the refined classifier to be exactly
the same as the classifier in the extended component. Type_Extension allows
the refined classifier to be a subtype of the one used by the extended compo-
nent.

thread threadA
2 features

dataIO : in data port A
4 { Classifier_Substitution_Rule => Type_Extension };

end threadA ;
6

thread threadB extends threadA
8 features

dataIO : refined to in data port B;
10 end threadB ;

12 data A
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end A
14

data B extends A
16 end B

Listing 3.5: Refinement of features in AADL

public interface ThreadA {
2 void inDataIO (A data);

}
4

public interface ThreadB extends ThreadA {
6 @Override

void setDataIO (B data); // Compiler Error
8 }

10 public interface A{}
public interface B extends A{}

Listing 3.6: Erroneous refinement of features in Java

Addressing the previously mentioned problem of invalid method overriding,
we decided to use Java’s default implementation mechanism [45] to prevent
an illegal use of the wrong method for a refined classifier of a data port. As
depicted in Listing 3.7, the refined in method is defined in interface ThreadB
and the now illegal in method, that is inherited from ThreadA is per default
redirecting to the newly defined method. If the given parameter does not match
type B a ClassCastException will be thrown. This way we conform to the se-
mantic meaning of the AADL model, while only making minimal changes to
the inheritance mechanisms in Java.

public interface ThreadA {
2 void inDataIO (A data);

}
4

public interface ThreadB extends ThreadA {
6 @Override

default void inDataIO (A data) {
8 inDataIO ((B)data);

}
10

void inDataIO (B data);
12 }

Listing 3.7: Valid refinement of features in Java
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3.2.2. Timing concerned Mapping

In this section, we explain how the different semantics for timing of threads,
data ports and their connections are mapped from AADL to RTSJ.

As already described in subsubsection 2.2.2.3, threads are the core concept for
running software in AADL. As such they have a semantic defined by AADL
that describes their timing behavior in detail. We restrict the Dispatch_Protocol
of threads in this work to periodic, so we will only explain the behavior of
periodic threads and properties altering it.

3.2.2.1. Period, Deadline and Priority

Periodic threads must have a period, i.e., an interval at which they are ex-
ecuting code. The period can be given by the property Period in form of a
number and a time unit, e.g., 200 ms or 3 sec. Period can be directly trans-
lated into RTSJ by using a PeriodicTimer for which a period can be given. A
Timer is an event trigger and meant to be used in conjunction with the afore-
mentioned AsyncEventHandlers, so the code to be executed is encapsulated in
the handleAsyncEvent() method of the handler.

Another timing-related AADL property is the Compute_Deadline of a thread
which states until when the computation has to be done at the latest. In RTSJ,
an AsyncEventHandler can have so called ReleaseParameters which define a
deadline and a deadlineMissHandler that is called in the case of a not fulfilled
deadline.

Although not actually being a timing-related property, the Priority is never-
theless essential for every priority-based scheduler. It can be given for each
thread and can be represented by PriorityParameters in RTSJ which again
are associated with AsyncEventHandlers. Listing 3.8 and Listing 3.9 depict the
mapping between a thread implementation defined in AADL, with the three
mentioned properties associated, and a class in RTSJ representing an instance
of this thread implementation.

thread implementation threadA .impl
2 properties

Dispatch_Protocol => periodic ;
4 Period => 200 ms;

86



3.2. MAPPING

Priority => 5;
6 Compute_Deadline => 100 ms;

end thread .impl;

Listing 3.8: Timing in AADL

public class ThreadAInstance extends ThreadImplA {
2 private AsyncEventHandler handler = new InnerAsyncEventHandler ();

private Timer timer = new PeriodicTimer (null ,new RelativeTime (200 ,0) ,handler
);

4
class InnerAsyncEventHandler extends AsyncEventHandler {

6
public InnerAsyncEventHandler (){

8 setDeamon ( false );
setSchedulingParameters (new PriorityParameters (5));

10 ReleaseParameters rps = timer . createReleaseParameters ();
rps. setDeadline (new RelativeTime (100 ,0));

12 setReleaseParameters (rps);
}

14
@Override

16 public void handleAsyncEvent (){ // Logic }
}

18 }

Listing 3.9: Timing in RTSJ

By default, all AsyncEventHandlers are treated as daemons, i.e., background
tasks that are only executed as long as the main thread in Java is running. In
order to make an AsyncEventHandler a foreground task which is executed in-
dependently from the main thread we have to explicitly call setDeamon(false).
The SchedulingParameters of ThreadAInstance’s InnerAsyncEventHandler are
used to reflect the Priority of threadA.impl. The Dispatch_Protocol and
Period are directly translated into a PeriodicTimer with its period set to 200
ms. The handler for this timer is InnerAsyncEventHandler as it extends Async-
EventHandler. Finally, the ReleaseParameters are used to map the Compute_-
Deadline.

3.2.2.2. Input_Time and Output_Time at Data Ports

Timing is not only important in the context of threads and their execution time,
but also for ports and the time when they are receiving or sending data. Based
on Input_Time and Output_Time property values given for a port, there are
basically two possibilities for data ports in AADL.

First, a data port receives/sends data at a given lifecycle event of the thread
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it belongs to, i.e., dispatch, start, completion or deadline, without any ad-
ditional offset. In this case, the receiving/sending can be done by the thread
itself.

Second, the data port defines its timing with a given offset in relation to one of
the above mentioned lifecycle events. In this work we only consider a positive
offset as sensible. In this second case, the thread is no longer able to do the re-
ceiving/sending on its own, but has to start a parallel task at the given lifecycle
event. This parallel task then executes at the given offset and receives/sends
data from/to a data port.

public class ThreadAInstance extends ThreadAImpl {
2 private InDataPort <Object > dataIn ;

private InDataPort <Object > dataInWithOffset ;
4 ...

6 private final void dispatch () {
datain . receiveInput ();

8 new Handler ( dataInWithOffset );
}

10 private final void start () {...}
private final void compute () {...}

12 private final void completion () {...}

14 class InnerAsyncEventHandler extends AsyncEventHandler {
...

16 public void handleAsyncEvent (){
dispatch ();

18 start ();
compute ();

20 completion ();
}

22 }
}

24
public class Handler extends BoundAsyncEventHandler {

26 private InDataPort <Object > dataIn ;

28 public Handler ( InDataPort <Object > dataIn ){
this. dataIn = dataIn ;

30 setSchedulingParameters (new PriorityParameters (5));
Timer timer = new OneShotTimer (new RelativeTime (30 ,0) ,this);

32 timer . start ();
}

34
! @Override

36 public void handleAsyncEvent () { dataIn . receiveInput (); }
}

Listing 3.10: Data port timing in RTSJ

In Listing 3.11 two exemplary data ports are given. First, an in data port
with no explicitly defined Input_Time which is set to Dispatch and 0 ns offset
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per default. Second, an in data port with an Input_Time set to Dispatch and
a positive offset between 30 ms and 40 ms. In Listing 3.10 the timings of those
two in data ports are translated into the direct method call datain.receiveIn-
put() and a parallel handler. The handler executes the same method with an
offset of 30 ms which is the lower bound of the offset specified in the AADL
model. The Priority of the handler is set to the same value as the thread that
creates it, i.e., 5.

thread threadA
2 features

dataIn : in data port;
4 dataInWithOffset : in data port

{ Input_Time => ([ Time => Dispatch ;
6 Offset => 30 ms .. 40 ms ]) ;};

properties
8 Priority => 5;

end threadA ;
10

thread implementation threadA .impl
12 end threadA .impl

Listing 3.11: Data port timing in AADL

3.2.2.3. Immediate, Delayed and Sampled Connections

Although a specific Input_Time or Output_Time can be given for a port, the
connection between two ports also has implicit effects on the timing aspects
of a port. This implicit behavior is expressed by setting the Timing property of
a connection between two data ports of two periodic threads to immediate,
delayed or sampled.

By default, all connections are set to be sampled as this has no effects on the
timings given directly via Input_Time or Output_Time. The receiving thread
would always receive the latest data from the sending thread.

For immediate connections, the Input_Time of the receiver is forced to be
start as IO_Reference_Time and zero offset. The Output_Time for the sender
is assumed to be completion as IO_Reference_Time and also zero offset, but
can be overridden if a single value for Output_Time is given. An immediate
connection enforces the receiver to be delayed until the sender completes exe-
cution. This ensures predictable communication within one dispatch frame as
depicted in Figure 3.2. In RTSJ this behavior is enforced by using a common
synchronization object for the immediate connection on which the receiving
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thread calls wait() as long as the call to isDirty() of the corresponding port
returns false. The sending thread then wakes up the receiving thread after
writing a new value to the respective port, by calling notifyAll() on the com-
mon synchronization object.

sender

receiver

sender receiver

100ms 100ms

sender

receiver

sender

receiver

100ms 100ms 100ms

Figure 3.2.: Communication via Immediate Connection [19]

Delayed connections initiate the transmission of data at the deadline of the
sender, thus having an Output_Time with deadline as IO_Reference_Time and
zero offset. Accordingly, the receiver has an Input_Time with dispatch as IO_-
Reference_Time and zero offset as well. This way, the data is received at the
next dispatch of the receiver following or equal to the sender’s deadline as de-
picted in Figure 3.3.

sender receiver

100ms 100ms

receiver

sender

receiver

sender

receiver

100ms 100ms 100ms

Figure 3.3.: Communication via Delayed Connection [19]

3.2.3. Communication-related Mapping

AADL defines several mechanisms concerning communication between com-
ponents. Regarding our employed subset of AADL, we only consider port
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connections and the property Classifier_Matching_Rule. First, we will ex-
plain in detail how the mentioned property is semantically defined and sub-
sequently how the mapping of modeled port connections into RTSJ code is
done.

3.2.3.1. Classifier_Matching_Rule

The Classifier_Matching_Rule property defines how the classifiers of two
connected data ports must conform to each other. Two possible values are cur-
rently of interest for our approach, i.e., Classifier_Match and Type_Extension.
Other possible values that are not covered by our work are Equivalence, Subset
and Conversion. Classifier_Match is the simplest case whereby the classifier
of the source port has to match exactly the classifier given at the destination
port. Classifier_Match is also the default value applying to every connection
if not specified otherwise. The rule Type_Extension enforces the destination
port to have a classifier that is either the same as the one of the source port or a
subtype, e.g., a data type declared to be extending the source’s classifier. By de-
fault, both possibilities are covered by the extends semantics of Java. The map-
ping declared in subsection 3.2.1 automatically leads to valid Java code, regard-
ing the classes used as parameter types in methods that represent ports.

3.2.3.2. Port Connections

Port connections in AADL are always defined within a component imple-
mentation declaration. Each connection has a source port and a destination
port. In Figure 3.4 a process with two thread subcomponents is depicted
where all components are connected via directed port connections. For our
mapping we identified two categories of port connections within a given
component implementation declaration. First, port connections that have
a subcomponent’s port as destination, e.g., downward or subcom_con1. Second,
port connections that have a port of the component itself as destination, e.g.,
upward.

In order to map these two categories of connections, we decided to generate
a separate class – a Connection Broker (CB) – for each component that takes
care of transmitting data over connections declared within that component.
Listing 3.12 exemplarily shows a CB for the process depicted in Figure 3.4. The
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Figure 3.4.: Port connections within a component

CB has a member variable myself for the process it manages the connections
for as well as for each subcomponent of myself, i.e., sendReceive and worker.

The actual transmission of data takes place in the method sendOnConnection(),
where the name of the connection is passed as a unique identifier. If called,
the method decides – based on the connection’s name – which corresponding
in/out methods of the component or one of its subcomponents have to be called.
Depending on the chosen in/out method’s parameter types, the transmitted
data may have to be cast to the corresponding type.

In Listing 3.12, the case "subcomp_con1" is a representative of the first of the two
above-named connection categories and represents the eponymous connection
in Figure 3.4. As the destination port of this connection is sRDataIn of the
thread subcomponent sendReceive, the corresponding method inSRDataIn()
is called on the subcomponent member variable sendReceive. The port declares
the base type Boolean as classifier, therefore the transmitted data is cast to this
type.

The second category of connections is represented by the case "upward" in
Listing 3.12. Also representing the eponymous connection in Figure 3.4, its
destination is the out data port dataout of the component itself. Thus, the
respective out method of myself is called. The given data is cast to Boolean, as
declared by the out data port dataout.
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public class ConnectionBroker {
2 private SomeProcessImpl myself ;

private SendReceiveImpl sendReceive ;
4 ...

6 public ConnectionBroker ( Componet myself , SendReceiveImpl sendReceive ,...) {
this. myself = myself ;

8 ...
}

10
public void sendOnConnection ( String connection , Object data){

12 switch ( connection ) {
case " subcomp_con1 ":

14 sendReceive . inSRDataIn (( Boolean )data);
break ;

16 ...
case " upward ":

18 myself . outDataout (( Boolean )data);
break ;

20 }
}

22 }

Listing 3.12: Connections in RTSJ

3.2.3.3. In and Out methods

As explained in subsubsection 3.2.3.2, a CB is a sufficient possibility to manage
the transmission of data within a component. In case of communication inside a
subcomponent or outside of the given component, a CB calls the in/out methods
of the respective component. The in/out methods take care of further routing
the given data to their destination. The in methods of subcomponents handle
this routing via their own CB, but in order to forward the given data over an
out port of the component itself, a component has to use the CB of its parent
component. Therefore, each component has – in addition to its own CB broker
– a member variable parentBroker, as depicted in Listing 3.13. Below, the im-
plementation of in and out methods of a generic component are explained in
detail.

For in methods of a component, there are two possibilities. The first is, there
are outgoing connections for the given in data port within the component.
Thus, the method forwards the incoming data via the component’s CB as shown
in the method inMethodForwarding() in Listing 3.13. The second is, there are
no outgoing connections declared for the given in data port within the com-
ponent. Then, the respective in method stores the incoming data within a
designated port member variable, e.g. inPort, as depicted by the method
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inMethodFinal().

For out methods, there is only the possibility of forwarding the given data
via the parentBroker. An out method resembles a broadcast as it sends the
given data on all outgoing connections that are declared within its compo-
nent’s parent component. This is done via the sendOnPort() method of the
parentBroker. This method works similar to the sendOnConnection() method,
as shown in Listing 3.12. Merely the unique identifier is different, as several
subcomponents of the parent component might have the same name for their
out data ports. Thus, the concatenation of the components name and its out
data port’s name is used.

public class Component {
2 private ConnectionBroker broker ;

private ConnectionBroker parentBroker ;
4 private InDataPort <Object > inPort = new InDataPort <Object >();

6 public void inMethodForwarding ( Object data){
broker . sendOnConnection ("con1", data);

8 ...
broker . sendOnConnection ("conX", data);

10 }

12 public void inMethodFinal ( Object data){
inPort . setFWData (data);

14 }

16 public void outMethodForwarding ( Object data){
parentBroker . sendOnPort (" compName + portName ", data)

18 }
}

Listing 3.13: In and out methods in RTSJ

3.2.4. System Setup

In order to provide a developer with an easy way to start (and test) the gener-
ated system, our approach also encompasses the generation of a central Main
class, which implements the mandatory main method that is the entry point
for every Java application. Within this main method all generated classes are
instantiated and assembled according to their hierarchical structure defined in
the AADL model, e.g. if a developer defined a process A with two thread
subcomponents T1 and T2, then within the method there will be three state-
ments as depicted in Listing 3.14.
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public class Main{
2 public static void main( String [] args){

ThreadT1 t1 = new ThreadT1 ();
4 ThreadT2 t2 = new ThreadT2 ();

ProcessA a = new ProcessA (t1 , t2);
6 }

}

Listing 3.14: Simplified main method for a system defined in AADL

The constructor of ProcessA is generated in such a way that it accepts two pa-
rameters of the type ThreadT1 and ThreadT2, which represent the subcomponents
of ProcessA. As ThreadT1 and ThreadT2 do not define any subcomponents of
their own, their constructors are parameterless. However, this depiction only
represents a simplified version of an actual Main class. In order to avoid nam-
ing conflicts regarding class names we have to use their fully qualified class
names, e.g., for ThreadT1 we have to use its fully qualified class name de.unia.-
smds.examplesystem.processa.threadt1.ThreadT1. Additionally, the used vari-
able names for each instance have to be unique, e.g., t1-12345 where 12345 is a
unique identifier created by Java. Unfortunately, this results in not easily legible
code as exemplarily shown in Listing 3.15.

public class Main{
2 public static void main( String [] args){

de.unia.smds. examplesystem . processa . threadt1 . ThreadT1 t1 -12345 = new de.
unia.smds. examplesystem . processa . threadt1 . ThreadT1 ();

4 de.unia.smds. examplesystem . processa . threadt2 . ThreadT2 t2 -12345 = new de.
unia.smds. examplesystem . processa . threadt2 . ThreadT2 ();

de.unia.smds. examplesystem . processa . ProcessA a -12345 = new de.unia.smds.
examplesystem . processa . ProcessA (t1 -12345 , t2 -12345) ;

6 ...
}

8 }

Listing 3.15: Actual main method code

Finally, the main method contains code needed to establish communication be-
tween all components, as well as code to start all defined threads.
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3.3. Related Work

In the context of AADL, a lot of work was done regarding code generation for
different target platforms like [46] or [47]. [46] focuses on AADL and Simulink
[48] for modeling architecture and behavior and then generating the correspond-
ing Ada and SPARC code. [47] is a standalone AADL model processor that
supports code generation, targeting C real-time operating systems and Ada for
native and Ravenscar targets. However, as we decided to use RTSJ as target
language, we concentrate on work that has the same target language or at least
Java without the real-time capabilities of RTSJ. To the best of our knowledge,
we are aware of three different approaches, namely [49], [50] and [51].

[50] focuses on medical applications and a generation of AADL system models
into Java code for a given reference platform. The generated code has to be com-
pliant with the specified publish/subscribe mechanisms of the underlying mid-
dleware. As reference platform, they use an open source "Medical Application
Platform" called "Medical Device Coordination Framework". Although some
of the presented generation mechanism are relevant for our work, the highly
specialized target platform contradicts our more general-purpose approach, as
we use plain RTSJ without any further assumptions about the underlying plat-
form.

[49] indeed uses RTSJ as target language, but focuses on the partitioning of sys-
tems defined in AADL for ARINC 653 compliant systems and how this parti-
tioning can be maintained in the generated code. Moreover, a major part of the
work deals with communication between partitions and is not concerned with
a generalized generation approach.

[51] in contrast is very similar to our approach regarding their goal of a general
mapping between AADL and RTSJ. However, their work is simplifying most of
the aspects that our work investigates in detail. To allege an example, they sim-
plify the data port communication to always happen either at dispatch, start
or deadline. The properties Input_Time and Output_Time are completely ignored
as well as timings dictated by the Timing property of data port connection.
Threads are not forced to run consecutively if a data port connection be-
tween them is marked as immediate. Another distinction to our work is the
targeted version of RTSJ. While they are targeting version 1.0.2, we use mecha-
nisms from version 2.0 which facilitates the realization of semantics determined
by AADL.
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3.4. Evaluation

The evaluation of our approach follows the layout explained in section 2.1, i.e.,
is split into a quantitative and a qualitative part. As we are only interested in
the parts of code that are related to either structure, timing or communication
we stripped the examples of all logic-related parts, i.e., no autopilot logic is
contained. In order to evaluate the generated code we assume a handwritten,
golden-standard solution that is designed simple in terms of structure and effi-
cient in terms of communication patterns, e.g., all communication is assumed to
be executed via a direct method call which is the best possible communication
time-wise.

First, a quantitative comparison between the handwritten code and the gener-
ated code was done. Hereby, we examined the differences between both so-
lutions regarding metrics like Lines of Code (LoC), performance in terms of
latency introduced by the communication-related code and, most important, re-
duction of complexity. Second, a qualitative evaluation was done by executing
different scenarios that are common in a day-to-day development workflow.

3.4.1. Quantitative Evaluation

For the quantitative part of our evaluation we examine four different metrics
and how those differ between the handwritten code base and a code base com-
pliant to our mapping.

In embedded systems memory often is a restricting factor, therefore the knowl-
edge about size of written code is crucial for a successful deployment of soft-
ware to a given target platform. Therefore, the first metric are SLOC (without
comments) as those usually are a good indicator for the final size of the ma-
chine code that is deployed to the target system. In Figure 3.5 we depicted the
SLOC of both solutions first the manual written ones and then the generated
ones. Regarding this metric our approach adds roughly 4-5 times the amount
of code in comparison to a handwritten solution. The majority of this massive
overhead stems from the more complex communication patterns used by the
generated solution. Where the handwritten solution relies upon direct calls be-
tween different system components, the generated one offers a more generic
but also more verbose solution that enables it to deal with different types of
communication, e.g. immediate or delayed ones.
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Figure 3.5.: SLOC comparison between handwritten and aadl2rtsj solution

However, it should not be forgotten that the manually written model code in
the generated approach is roughly half the size of the handwritten solution. The
SLOC observed in Figure 3.5 led us to the conclusion that the initial time of writ-
ing would be roughly half the time required for a handwritten solution. This
speedup might even be further amplified by how Java code usually is struc-
tured in contrast to how AADL code. In Java each component as well as its type
are separated into different classes and interfaces, thus into different files.
In AADL instead, the whole code resides within one file. The creation of each
of the mentioned Java files, just as the navigation between those, generates a
non-neglectable amount of work that has to be done by a programmer, which
in turn leads to an additional increase in time it takes to write the code.

After examining the observable effect of our approach on SLOC and thus time
of writing we now turn to the performance of our generated code. As structure
and timing code are virtually the same in handwritten and generated solution
we focus on the communication-related code of both solutions.

In order to compare both solutions we first created two benchmarks. The bench-
mark for the handwritten solution assumes the developer to know exactly which
component has to be called and thus results in a direct method call. The bench-
mark for the generated solution is a little more complex as the generated so-
lution makes heavy use of large switch-case statements in its code to decide
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Figure 3.6.: Comparison of message throughput between handwritten and
aadl2rtsj solution

which component shall receive the message or if the message shall be delegated
to another CB as depicted in Listing 3.12.

In Figure 3.6 we depicted a simplified comparison between the throughput of
our handwritten and our generated solution. According to this figure the gen-
erated solution roughly copes with one third the throughput of the handwritten
solution. However, this is a simplification of the behavior of a CB in the gen-
erated solution. The detailed behavior of a CB, i.e., a switch-case statement in
general, can be seen in Figure 3.7. Obviously it depends on the position of the
case statement within a switch clause as well as on the call depth, how long
it takes the CB to transmit a message successfully. The aforementioned 1 ∗ 108

messages per second correspond to a case position of 5 and a call depth of 5,
whereas a call depth of 1 and case position of 5 would already provide a dou-
bling in throughput. Therefore, it depends on how deep an AADL model is
nested and how many different connections have to be served by one port
to determine how fast exactly the transmission of a message in the generated
solution is. We assume 1 ∗ 108 messages per second to be a reasonable aver-
age. Depending on communication’s share of the whole system this decrease
in message throughput might have a measurable impact on the overall system
performance.
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3.4.2. Qualitative Evaluation

In subsection 3.4.1 we compared our solution to a handwritten one based on
performance-related numbers. One drawback noted was the increased size of
generated code.

Reduced Complexity This drawback of a generated solution is more than
compensated for by the reduction of overall complexity as it is depicted in Fig-
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ure 3.8. Here we define the reduction of complexity as the share of logic-related
code of the overall system. This share we measure by counting the SLOC of
business logic and structure/timing/communication. The overall system is the
sum of both. This way, depending on whether the handwritten or generated
solution is taken as reference, the reduction of complexity varies between 25%
and 62%. Likely, a real-life system will be somewhere in between as neither it
will be simplistic in terms of communication, structure and timing as the cur-
rent handwritten solution is, nor it will contain as little logic-related code as
our generated solution does. Nevertheless, we estimate a complexity reduc-
tion of approximately 33% merely by the fact that a programmer does not have
to take care of communication, structure or timing of components defined in a
system.

Enhanced Reliability The other major advantage of our solution is the quality
and therefore safety of the generated code. In a real-world use-case the genera-
tor would be one of the most frequently used tools of a developer of a SCSS and
therefore be a thoroughly tested solution. Therefore, all structure/timing/com-
munication-related code fragments can be trusted to be working correctly if
designed correctly in AADL und subsequentially generated by our production-
tested generator. Thus, errors resulting from this code would result from a
flawed system design in AADL which already can be detected during design
time through extensive model analysis provided by the standardized AADL
tooling. This is also shown by the use-case described in the following.

From the running example presented in section 2.1 we pick two components
that are communicating via transitive connections with each other, i.e., mix-
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ThrottlesControl and simulation which are transitively connected via the
different controllers for position, pitch, roll, etc.. Assume the case a developer
wants to add logging logic to the overall system which shall log all incoming
commands sent from the positionCmd and positionInfo ports of simulation
as well as all resulting throttle values coming from the throttle port of mix-
ThrottlesControl.

In a pure simplified Java solution the developer would have to execute the fol-
lowing steps:

• Create a new logger class, e.g., Logger, implementing a corresponding
interface to enforce proper encapsulation.

• Write timing logic, regarding initialization, periodic dispatching, stop-
ping, etc.

• Implement a method void logging(PosCmd cmd, PosInfo info) which
contains the business logic of our logger.

• Alter the implementation class of simulation to keep a reference to the
newly created Logger.

• Alter the implementation class of mixThrottlesControl to keep a refer-
ence to the newly created Logger.

• Alter the implementation class of simulation to also call the logging
method of our newly created logger.

• Alter the implementation class of mixThrottlesControl to also call the
logging method of our newly created logger.

• Alter the system startup code to create a new instance of Logger as well
as alter the instantiation of simulation and mixThrottlesControl to en-
compass the passing of a proper Logger reference to them for later use.

All these actions have to be done by a developer by hand and no IDE support
is given to him when it comes to thinking of all the places the existing code
needs an alteration due to newly added entities. Also, no support is given by
an IDE regarding (existing) structure, timing or communication in general. Al-
though the code produced is rather repetitive for each new component and its
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communciation, those actions are still very time consuming as they have to be
done by hand for each component individually.

In contrast all a developer has to do – following the modeling approach pre-
sented in this chapter – is as follows:

• Create a new thread component, maybe inheriting from an already de-
fined abstract thread.

• Add three ports for the incoming data.

• Add connections from the ports of simulation and mixThrottlesCon-
trol to the newly created logging component.

• Generate structure/timing/communication related code and write busi-
ness logic for the newly created logging component.

All those tasks can be done in a graphical AADL IDE that supports the devel-
oper with optical feedback, e.g., when a connection is missing or a port. The
only thing left to the developer to be done by hand is to write business logic
within his newly created logging thread. This business logic can be preserved
even if the communication patterns change as long as the data transmitted stays
the same. All structural, communication- and timing-related code is generated
and also can be regenerated if changes occur. As the generated code is assumed
to be safer and less error-prone than code written by hand, this adds an tremen-
dous amount of reliability to code produced with our approach in contrast to a
handwritten solution that also adds way more complicated steps to the addition
of a simple component than our approach does.
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3.5. Conclusion

In this part we presented a mapping approach from an AADL subset to RTSJ
which maintains the semantics given by the AADL standard. This approach en-
ables developers of SCSS to shift structure, timing and communication-related
concerns into design phase. Hence, they are able to perform analyses regard-
ing communication and timing during design phase, while resting assured that
the implementation will reflect their design choices. The application of our ap-
proach is shown via the implementation of an autopilot for quadrocopters. For
this purpose the software of the quadrocopter is modeled in AADL and is then
generated by our implementation. The use-case shows three advantages of our
approach over an implementation without code-generation:

• The speed-up of development by letting the programmer focus on appli-
cation logic instead of writing recurring code concerned with timing and
communication.

• A less error-prone transition from the design of a system to its implemen-
tation.

• The possibility of an earlier detection of timing- or communication-related
errors in the system.

Additionally, the aforementioned benefits also come together with an enhanced
changeability of the overall system. Every time a system changes all a developer
has to do is to regenerate it and add missing business logic, instead of rewriting
large parts of an existing system by hand and thereby thinking of all possible
impacts and variability points that have to be changed too.

Taken some steps further, this approach can lead to the possibility of simple
Java developers writing real-time systems designed by one competent real-time
system designer. In the next part we will investigate a broader subset of AADL
as well as we tackle the yet untouched issue of maintainability.
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4.1. Motivation

In chapter 3 we presented a mapping from AADL to RTSJ which tackled the
challenge "Early Errors and Late Discovery" defined in subsection 1.2.1. By en-
abling developers of SCSS to shift several aspects of coding into earlier phases
and offering them means to perform analyses during those, the aforementioned
problem was addressed in major parts. However, one shortcoming of this ap-
proach is the monolithic nature of the generated system which is due to the
use of plain RTSJ with no modularity concept in mind. Lastly, the other chal-
lenges mentioned in section 1.2 remain completely untouched by the current
approach.

Therefore, in this chapter we will drop the plain RTSJ-based approach in favor
of an RTSJ and OSGi-based one. This step is taken on the basis of our findings
presented in chapter 1, where we interrelated the development of CGSS with
SCSS. By using OSGi we try to reproduce the observed trend of CGSS, i.e., to
move from monolithic applications towards fine granular microservices, on a
small scale - within a single JVM.

The aim of this switch from RTSJ to OSGi is mainly to tackle the second chal-
lenge defined in section 1.2: "Maintainability". However, by increasing the
modularity of a system not only maintainability is improved, but also other
aspects that have a positive effect on the remaining challenges "Recertification"
and "Variability" as described in the following.

First, maintainability is one of the most important requirements a SCSS has to
fulfill. Software that is written for airplanes often has to run not only for a cou-
ple of years but decades. The same holds true for banking systems or embedded
software, e.g., in satellites. A system that is planned to be run for such a long
time must be designed maintainable so that it can stay affordable. Modularity
of a system is one major factor that attributes to maintainability. If a system is
decomposed into several modules, each with its well-defined interfaces and
dependencies, then maintenance usually is restricted to only a few modules as
the interfaces between modules pose a natural endpoint for chain reactions.
If in contrast a system is rather monolithic and as such contains a lot of inner
dependencies, then a change or a later addition might result in unpredictable
side-effects somewhere else in the code.

Second, variability is the next challenge that is affected by the modularity of a
system. Given that a system is composed of fine granular modules, each with
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its well-defined interface, then the implementations that are hidden behind
those interfaces are interchangeable. Thus, each interface poses a point of
variability in its own. Additionally, each module usually has a clearly defined
functionality. This functionality is encapsulated by the interface of the module
and thereby can be reused in another context. If the system is merely a compo-
sition of fine granular modules, then a composition of other modules will result
in another system with a different functionality as variability is usually nothing
more than a tree composed of different modules for the same interface and
a resulting system is nothing more than a path through such a tree, variability
directly results from a modular system.

Third, recertification is simplified if each module is guarded by an interface.
An interface poses a natural barrier for unwanted side-effects of changes. In
this way one can prove more easily that if one module is changed, then other,
already existing modules are not affected by this change. This way a system
designer is only left with the task of recertifying the changed module instead of
recertifying the system as a whole.

The rest of this section is structured as follows: section 4.2 presents the adap-
tations made in contrast to our former approach, as well as our mapping from
AADL to OSGi and is subdivided into subsections dealing with different the
different aspects of this mapping, i.e., a translation of type and implementation
declarations, hierarchies and refinements, ports, threads, as well as semantic
connections. In subsection 4.3.2 we detail our mapping of AADL modes onto
sets of configurations in OSGi. In section 4.4 we compare our approach to exist-
ing approaches in the same field of research. Finally, we evaluate our modified
approach by a comparison between handwritten code, generated code from our
previous approach and generated code of the current approach.
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4.2. Mapping Adaptations

As the mapping between AADL and OSGi is based upon our former work de-
scribed in chapter 3, we will compare the mapping presented in this chapter to
the one defined in section 3.2. In some parts we just reuse the former defined
mapping, but in others we need to adapt the mapping in order to be able to
generate modular code that adheres to the restrictions of OSGi and also makes
use of its best practices.

First, we will present the differences between the two approaches and the adap-
tations made in our current approach. Afterwards, we will introduce the en-
hancements provided by the current approach regarding configuration and inter-
process communication.

4.2.1. Type and Implementation Declarations

Type declarations in AADL are representing interfaces in form of features that
are provided by a realizing implementation declaration. In the former approach
we reused the concept of an interface that already exists in Java by translating
each feature - which were restricted to data ports only - defined by a type
declaration into corresponding simple in and out methods. A drawback of this
approach was the fact that features were regarded as part of a parent compo-
nent and not as a component of their own. This way a feature transformed
to code could semantically not be altered afterwards. Additionally, the respec-
tive parent component relied on an external component that calls the defined
methods to transfer data form and to the component instead of a self-contained
approach, where each component takes care of sending and receiving on its
own.

The mapping presented in this chapter will alter the mapping defined before in
order to tackle those drawbacks and by this create a more modular code base
for mapped AADL type declarations and features. In general, we decided to
keep the mapping from a type declaration to a Java interface, as the abstract
nature of an interface reflects those of a type declaration. However, instead
of mapping each feature onto a respective method declaration we decided to
map each feature onto a self-contained class that is no more reflected in the
type declaration interface, but will later be referenced in the class of an imple-
menting implementation declaration. This will be shown later when we explain
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the changes made to the mapping regarding implementation declarations.

This mapping of a type declaration threadA on its corresponding interface is
shown in Listing 4.1 and Listing 4.2, as is the mapping from the defined feature
dataIO onto a corresponding Java class. Aside from the obvious change from
an interface method declaration to a self-contained class, Listing 4.2 also
shows a second change we made in this mapping: the use of OSGi. The gen-
erated class makes use of the @Component annotation of OSGi. As features
can not have a hierarchy like type declarations or implementation declarations
they consequently do not implement any interface in their Java representa-
tion. However, in order to later reference a feature class from an implemen-
tation declaration class it has to define a type it is registered under in the OSGi
service registry. This is done via the annotation property service in Listing 4.2
which registers DataIO directly under its own class.

thread threadA
2 features

dataIO : in out data port A;
4 end threadA ;

6 data A
end A;

Listing 4.1: Types and features in AADL

public interface ThreadA {}
2

@Component ( service = DataIO . class )
4 public class DataIO {

public void setData (A data) {...}
6 public A getData () {...}

}
8

public interface A{}

Listing 4.2: Types and features in Java/OSGi

In order to use Java with OSGi as our target language we have to make sure, that
the rules of inheritance posed by AADL on implementation declarations can be
reflected by an OSGiified code base. Remember, a implementation declaration
can realize exactly one type declaration and extend exactly one other imple-
mentation declaration. Multiple inheritance is forbidden by the standard. The
extended implementation declaration has to realize the same type declaration
as the extending one. One type declaration can have several implementation
declarations, each inheriting the features defined by the type declaration.
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As we changed the way a type declaration and features are mapped onto Java,
we have to adapt the way implementation declarations are mapped too. In our
former approach implementation declarations inherited all feature methods
automatically, as they were implementing the type declaration’s interface. In
our current mapping this no longer holds true, as a type declaration interface
does no longer contain any feature method declarations. Instead, features
are classes of its own now. Therefore, implementation declarations have to
somehow reference those classes.

In order to adhere to OSGi-specific restrictions regarding inheritance and still
generate a semantically compliant code base we used OSGi’s @Reference mech-
anisms to reference features as we formerly referenced subcomponents via a
member variable in an implementation declaration’s class. Now, each feature
defined by any parent type declaration of an implementation declaration is
added to the implementation declaration’s respective class as a member
variable that is annotated with @Reference, which can be seen in Listing 4.3
and Listing 4.4. The filter of the @Reference can be set to any property that is
unique to the instance of the respective feature class.

thread implementation threadA .impl
2 end threadA ;

Listing 4.3: Implementation declarations in AADL

@Component
2 public class ThreadAImpl implements ThreadA {

@Reference
4 private DataIO dataIO ;

}

Listing 4.4: Implementation declarations in Java/OSGi

Additionally, implementation declarations can have subcomponents which spec-
ify the inner composition of a component. In the former approach those were
represented as member variables that hold references to the respective subcom-
ponents. Those were set by a constructor that had the same number of parame-
ters as the component had subcomponents. A drawback of such an approach is
again the assumption about an outer component that takes care of assembling
the respective component with all its subcomponents.

In our current approach this is solved by the same means a feature is imple-
mented in an implementation declaration class. Subcomponents in AADL are
composed of a type, usually another implementation declaration and a name for

110



4.2. MAPPING ADAPTATIONS

the instance of such. Therefore, the mapping is straight forward and an imple-
mentation declaration class declares a member variable for each subcomponent
that is defined for the corresponding implementation declaration. In contrast
to the former approach this member variable also has a @Reference annota-
tion that references the respective instance of the declared type as can be seen
in Listing 4.5 and Listing 4.6. Listing 4.5 depicts a process implementation
processA.impl of the process type processA which defines two thread subcom-
ponents, worker1 and worker2. This implementation declaration is translated
into a Java class as shown in Listing 4.6. The class ProcessAImpl implements
the interface ProcessA and represents each subcomponent by its own mem-
ber variable, i.e., worker1, worker2 and uses the declared classifier as type, i.e.,
ThreadAImpl. Formerly, all those member variables had to be initialized within
the constructor by an outside entity. This is no longer necessary due to the
mechanisms provided by OSGi, i.e., the @Reference annotation which enable a
programmer to set those references and changing them by setting the config-
uration of a component. This way the respective instance is set via the target
filter that is given by the component’s configuration.

process processA
2 end processA ;

4 process implementation processA .impl
subcomponents

6 worker1 : thread threadA .impl;
worker2 : thread threadA .impl;

8 end processA ;

Listing 4.5: Implementation declarations with subcomponents in AADL

public interface ProcessA {}
2

@Component
4 public class ProcessAImpl implements ProcessA {

@Reference
6 private ThreadA worker1 ;

8 @Reference
private ThreadA worker2 ;

10 }

Listing 4.6: Implementation declarations with subcomponents in
Java/OSGi

111



4. MAINTAINABILITY WITH AADL AND OSGI

4.2.2. Hierarchies and Refinements

In the former approach we mapped the inheritance semantics of AADL onto
Java simply be reusing the extends keyword in Java. As the extends relation of
AADL only allows single inheritance and demands the extending component to
be of the same type, e.g., system, process, etc., as the one that is extended, this
was a legitimate approach. This holds true in parts for our current approach,
where we made changes to the way features are mapped to the corresponding
Java code. Type declarations inherit all features from their parent type decla-
ration which formerly was mapped in Java by the child interface inheriting
all method signatures from the parent interface. As we now have no more
method signatures to inherit, this boils down to a simple inheritance hierarchy
with no methods for type declarations.

The same concept was applied to implementation declarations that are mapped
as classes instead of interfaces. An implementation declaration extending
another implementation declaration simply inherited all features and subcom-
ponents from its parent which meant that all subclasses/-interfaces in Java
inherited all non-private member variables, representing subcomponents and
all methods representing features.

First, this no longer holds true for our current approach where the inheritance
mechanisms of Java methods cannot be applied to our new interfaces that do
not contain method declarations any longer. In case of an implementation dec-
laration realizing a type declaration, we still can use the implements keyword
in Java to map the semantic meaning of a hierarchy, but the methods are no
longer there and therefore are not inherited. Each feature defined in a type
declaration has to be implemented as a private member variable in each of the
direct children of this type declaration. This way each implementation declara-
tion child redeclares all features defined by any of its parent type declarations
at once.

Second, OSGi poses restrictions regarding the use of DS annotations within an
inheritance hierarchy. Given two classes A and B and B extends A, then it is
not possible to define a @Reference annotation on a member variable of A that
is then also treated as an OSGi reference in B. OSGi merely treats the @Reference
annotations of B as references, but not those of its parent. Therefore, we have
to repeat this for every child within the inheritance tree. This way each direct
and indirect implementation declaration within an inheritance tree redeclares
all features of all its type declaration parents as private member variables with
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a @Reference annotation. As the member variables are declared as private they
can have the same name within any class in this inheritance tree.

As features are treated the same way as subcomponents and both are defined
as member variables with a @Reference annotation. This has to be repeated
for all subcomponents as well, i.e., all implementation declaration classes have
to declare a private member variable for each subcomponent reference defined
in any of its parent implementation declaration classes. The new approach
can be seen in Listing 4.7 and Listing 4.8. Listing 4.7 defines two type dec-
larations, i.e., threadA and threadB as well as two corresponding implemen-
tation declarations, i.e., threadB.impl1 and threadB.impl2. threadB extends
threadA and therefore inherits its features, i.e., dataIO1. threadB.impl1 im-
plements threadB and therefore inherits the features of both threadA and
threadB. Finally, threadB.impl2 extends threadb.impl1 thus inheriting all of
the features defined by threadA and threadB and additionally all subcompo-
nents defined in threadB.impl1. In Listing 4.8 this hierarchy is reflected in
code by the use of extends and implements keywords. However, as features
are no longer represented by method declarations in interfaces, they are con-
sequently not automatically inherited by subclasses or -interfaces. Instead,
the corresponding member variables are declared in each subclass, adding up
in each additional subclass, e.g., ThreadBImpl1 only has member variables for
dataIO1, dataIO2 and sub1, whereas ThreadBImpl2 has all of the above men-
tioned and additionally a member variable for sub2.

thread threadA
2 features

dataIO1 : in out data port A;
4 end threadA ;

6 thread threadB extends threadA
features

8 dataIO2 : in out data port A;
end threadB ;

10
thread implementation threadB . impl1

12 subcomponents
sub1 : subprogram subA.impl;

14 end threadB . impl1

16 thread implementation threadB . impl2 extends threadB . impl1
subcomponents

18 sub2 : subprogram subA.impl;
end threadB . impl2

Listing 4.7: Hierarchies in AADL

public interface ThreadA {}
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2 public interface ThreadB extends ThreadA {}

4 @Component
public class ThreadBImpl1 implements ThreadB {

6 @Reference
private DataIO1 dataIO1 ;

8
@Reference

10 private DataIO2 dataIO2 ;

12 @Reference
private SubAImpl sub1;

14 }

16 @Component
public class ThreadBImpl2 extends ThreadBImpl1 {

18 @Reference
private DataIO1 dataIO1 ;

20
@Reference

22 private DataIO2 dataIO2 ;

24 @Reference
private SubAImpl sub1;

26
@Reference

28 private SubAImpl sub2;
}

Listing 4.8: Hierarchies in Java

Although this solution is a working one, one might argue that it is not an ar-
chitectural good one. However, this solution solves a problem that occurred
in our first approach, i.e., invalid method signatures when using refines to
declarations in AADL.

In our former approach problems arose when it came down to the refine mech-
anism in AADL. The refinement of a component encompasses, among other
things, the possibility to refine classifiers of ports by an extending type declara-
tion. In order to reflect the classifier refinement of a data port in an extending
and refining type declaration, we had to change the signature of its correspond-
ing method in Java. In Java, this led to an interface definition with an invalid
method signature. An overriding method must have the same signature, com-
posed by method name and parameter types, as declared in the super type. As
the overriding method changes the parameter types, it is not valid.

In our current approach we do not have to deal with such invalid method sig-
natures anymore, as the type declaration interfaces do not contain methods
any longer. At the time a feature is implemented by an implementation dec-
laration the type of the feature can not change any more and therefore the
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implementation declaration class declares the most "up-to-date" type for the
feature member variable. This is shown in Listing 4.9 and Listing 4.10.

In Listing 4.9 we define two thread type declarations threadA and threadB,
where threadA defines an in out data port with type A that is refined to an in
out data port with type B within threadB. The depicted thread implementa-
tion declaration threadB.impl inherits the defined data port from threadB
that it is implementing. In Listing 4.10 this constellation is represented in its
corresponding Java/OSGi form. The interfaces for both type declarations are
empty and merely reflect the type hierarchy, whereas the class ThreadBImpl
declares a member variable for the feature defined in its parent type dec-
larations. As there are two different features defined in AADL - one with
type A and one with type B - two different feature classes are created, i.e.,
DataIO which implements InOutDataPort<A> and another DataIO that imple-
ments InOutDataPort<B>. Both classes are merely differentiated by their im-
plemented interface which is typed differently either with A or B. The two
interfaces will be explained in detail in subsection 4.2.4.

thread threadA
2 features

dataIO : in out data port A
4 { Classifier_Substitution_Rule => Type_Extension };

end threadA ;
6

thread threadB extends threadA
8 features

dataIO : refined to in out data port B;
10 end threadB ;

12 thread implementation threadB .impl
end threadB .impl;

14
data A

16 end A;

18 data B extends A
end B;

Listing 4.9: Refinement of features in AADL

public interface ThreadA {}
2

public interface ThreadB extends ThreadA {}
4

@Component
6 public class ThreadBImpl implements ThreadB {

@Reference
8 private DataIO dataIO ;

}
10
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@Component ( service = DataIO . class )
12 public class DataIO implements InOutDataPort <B >{...}

14 @Component ( service = DataIO . class )
public class DataIO implements InOutDataPort <A >{...}

16
public interface A{}

18 public interface B extends A{}

Listing 4.10: Refinement of features in Java/OSGi

The additionally depicted Classifier_Substitution_Rule which restricts the
possible types for refinement, is kept as we defined it to be in subsubsection 3.2.1.2.

4.2.3. Separation of User- and Framework-specific Code

In the last subsection the interface InOutDataPort<type> has been firstly in-
troduced. This interface and many others are part of our newly introduced
separation of user- and framework-specific code. In our former approach, a
user who used the generated code always had the same view on the code as
the framework had, i.e., he used the same classes and interface as were used
by the framework. In our current approach one major contribution is the sep-
aration of user- and framework-specific code, which is achieved by the use of
user- and framework-specific interface for one class. This concept was imple-
mented in order to restrict the possibilities of a user who extends the generated
code to affect the inner workings of the framework as well as to hide the com-
plexities of the generated framework from the potential user. Classes that im-
plement both types of interface are used to provide framework-specific data
to the user or the other way around. In Listing 4.11 we depicted an abstract
example for such a class with user- and framework-specific interface. The
user-specific interface IUser defines two methods in order to set and get a
name property. The framework-specific interface merely has a getter method
for a name property. Both interface are implemented by the DataClass, which,
for the sake of simplicity, knows about how the framework expects its name
property, i.e., with a "framework" prefix. The classes UserSpecificCode and
FWSpecificCode represent code written by a potential user and code that is gen-
erated by our approach and thus part of the framework. The class UserSpeci-
ficCode declares a reference to IUser, whereas the class FWSpecificCode de-
clares a reference to IFramework. Both references are satisfied by OSGi with
the same service, i.e., the same instance of DataClass, as it implements both
interface and therefore is registered under both in the OSGi registry. Now
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both parties have access to the same data but with their own special view on it
and can communicate with each other without even suspecting the existence of
the other.

public interface IUser {
2 public String getName ();

public void setName ( String name);
4 }

6 public interface IFramework {
public String getNameFW ();

8 }

10 @Component
class DataClass implements IUser , IFramework {

12 private String nameUser = " default ";
private String prefixFW = " framework ";

14 public String getName () { return nameUser ; }
public void setName ( String name) { nameUser = name ;}

16 public String getNameFW () { return prefixFW + nameUser ; }
}

18
@Component

20 class UserSpecificCode {
@Reference

22 private IUser data;
private void doSomething (){

24 String name = data. getName ();
...

26 data. setName (name);
}

28 }

30 @Component
class FWSpecificCode {

32 @Reference
private IFramework data;

34 private void doSomething (){
String name = data. getNameFW ();

36 ...
}

38 }

Listing 4.11: User- and framework-specific interfaces and data classes

This kind of communication between framework- and user-specific code is used
in different parts of our mapping, e.g., for threads as explained in subsec-
tion 4.2.5 and ports as explained in subsection 4.2.4. The existence of different
views, i.e., interfaces, will be mentioned if sensible, but will be left out for the
sake of brevity where possible in our further work.
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4.2.4. Ports

As already indicated in subsection 4.2.2 features, in particular data ports,
have been completely redesigned in our current approach. Instead of a direct
mapping onto methods of the type declaration interface those features be-
long to, they are now mapped onto self-contained feature classes that are
referenced via member variables in the corresponding implementation type
classes and OSGi’s @Reference annotations. This new concept was already de-
picted in Listing 4.1 and Listing 4.2. Also the separation of user- and framework-
specific code that leads to the use of special interfaces has been mentioned in
subsection 4.2.3. However, the implementation details of the respective ports
have been left unclear.

In this subsection we will restrict ourselves to data ports as those are the only
ones supported currently by our approach. First we will examine how plain
AADL defines the semantics of data ports and their methods and then we will
explain the additional semantic restrictions that we introduced with respect to
how users of the generated framework shall interact with them.

AADL defines the semantics for data ports, as well as methods they have to
implement in order to interact with them, e.g., the definition given by AADL
for Receive_Input defines its semantic as

"[...] explicitly request port input on its incoming ports to be frozen
and made accessible through the port variables, any previous queue
content not processed by Next_Value calls is discarded. Newly ar-
riving data may be queued, but does not affect the input that thread
has access to." [18]

This definition encompasses semantics not only for data ports, but also all
other kinds of ports. Therefore, some of its definitions do not match data
ports perfectly, e.g., a Next_Value method would make no sense on a data
port as it is defined to only hold one data value at a given point in time and not
a queue of data values. Thus, we discard the parts of the definition not apply-
ing to data ports and reduced the set of applicable methods to Receive_Input,
Get_Value, Set_Value and Send_Ouput.

The definitions given by AADL for those methods are:

"[...] Get_Value to access the current value of a port variable. Re-
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peated calls to Get_Value result in the same value to be returned,
unless the current value is updated through a Receive_Input call or
a Next_Value call." [18]

"Put_Value: supply a data to a port variable." [18]

"Send_Ouput: explicitly cause event, event data, or data to be trans-
mitted." [18]

In our former approach those semantics were not considered in detail, but merely
replaced by simple getter and setter methods. In our current approach we
extend the mapping in order to adhere to the semantics given by the AADL
standard in Java/OSGi. We ensure that each data port class implements
the respective methods, i.e., Receive_Input and Get_Value for in data ports,
Set_Value and Send_Ouput for out data ports and all of them for in out
data ports.

However, as explained in subsection 4.2.3 our approach now differentiates be-
tween framework- and user-specific code, so we added additional restrictions
to the data ports that are used by users.

First, we assume, that all timing-related semantics are defined by the AADL
model, e.g., when data of a data port is sent or when it is received in relation
to their parent component’s lifecycle methods. Therefore, on user-side there
is no need for an explicit Send_Output or an explicit Receive_Input method.
Those semantics are handled by the framework, which takes care of when data
is received, when frozen and made available to the user and when it is sent to
other components in the framework. This reduces the set of methods needed
on user-side to Get_Value and Put_Value, whereas on framework-side the set
of methods encompasses all methods, but in data ports and in data ports
have another semantic, i.e., to retrieve the value set by a user and to set the value
the user should interact with in the next lifecycle of the respective component.

In the exemplary case of an in out data port this results in two different
interfaces as depicted in Listing 4.12. The interface IInOutDataPort reflects
the user-side by only declaring the two user-side required methods getValue
and putValue. The interface IFWInOUtDataPort represents the framework-
side by declaring the framework-specific getValueFW and putValueFW methods
that have a different semantic than their user-side counterpart as described be-
fore. Additionally, the methods receiveInput and sendOutput are declared to
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be used by the framework to send and receive data on/over this port at the
predefined times in the AADL model. Excluding the framework-specific meth-
ods with an FW suffix, those methods represent those required by AADL for all
data ports.

public interface IInOutDataPort <T >{
2 public T getValue ();

public void putValue (T data);
4 }

6 public interface IFWInOutDataPort <T> {
public void receiveInput ();

8 public Integer getValueFW ();
public void putValueFW (T data);

10 public void sendOutput ();
}

Listing 4.12: User and framework interfaces for an in out data port

In Listing 4.13 we depicted all method implementations for a sample InOutData-
Port that is defined with an Integer as data type. The stipulated semantics for
Receive_Input, which is only called by the framework, are fulfilled by separat-
ing the Integer value into two different member variables. One for data to be
set during a dispatch, i.e., inValue, and one for the port to deliver during this
dispatch when getValue is invoked, i.e., frozenInValue. The value of inValue
is frozen as soon as a component invokes receiveInput by copying the cur-
rent value of inValue to frozenInValue. This depicted code is thread-safe as
the variables are all declared volatile, therefore no write-invalidations can oc-
cur if several threads access the variables through the declared methods at the
same time. putValue is realized as a simple setter method with a volatile, back-
ing member variable outValue. sendValue is intentionally left blank as the logic
of this method is connected to the concept of semantic connections which will
be explained later in subsection 4.2.6. In addition, the two framework-specific
methods putValueFW and getValueFW are implemented. The first in order to
enable the framework to set the initial inValue that is subsequently frozen via
receiveInput and made available to the user via getValue. The second in order
to enable the framework to take care of transmitting the data set by a user to by
first retrieving this data via getValueFW and then subsequently by sending the
data via sendOutput.

@Component
2 public class InOutDataPort implements IInOutPort <Integer >, IFWInOutPort <

Integer >{
private volatile Integer inValue ;

4 private volatile Integer frozenInValue ;
private volatile Integer outValue ;

120



4.2. MAPPING ADAPTATIONS

6

8 public Integer getValue (){ return frozenInValue ;}
public void putValue ( Integer data){ outValue = data ;}

10 public Integer getValueFW (){ return outValue ;}
public void putValueFW ( Integer data){ inValue = data ;}

12 public void receiveInput (){ frozenInValue = inValue ;}
public void sendOutput (...) {...}

14 }

Listing 4.13: Port methods in Java/OSGi

4.2.5. Threads

The mapping between AADL and Java/OSGi has made changes to the afore-
mentioned approach in two ways, but largely stays the same as already ex-
plained in subsubsection 3.2.2.1. We keep the translation into a BoundAsync-
EventHandler, but do not further regard a translation into an AsyncEventHandler
as sensible. Due to the configuration possibilities of our new approach as later
on described in section 4.3. We might otherwise have to change the type of our
thread implementation from an AsyncEventHandler into a BoundAsyncEvent-
Handler, or vice versa, as immediate connections come and go, which is tech-
nically not possible in RTSJ. The mapping of the thread’s properties, i.e.,
Compute_Deadline, Period, Priority and Dispatch_Protocol, onto the corre-
sponding Java constructs, i.e., DeadlineMissHandler, ReleaseParameters and
PriorityParameters was kept.

The first major change concerns the concept of the central piece of code, i.e., a
Main class with a main method as described in subsection 3.2.4, that starts all
threads of a generated system from the outside. This contradicts our concept of
modularity, where each component is self-contained and, in case of a thread,
knows when to start and stop itself. Therefore, we made use of the lifecycle
methods of immediate and delayed services in OSGi that have been introduced
in subsubsection 2.4.3.2. As described in subsection 4.2.1 all AADL compo-
nents are translated into classes with an OSGi @Component annotation, which
makes them either an immediate or a delayed component. Thus, threads are
OSGi components that can make use of OSGi’s @Activate, @Deactivate and
@Modified annotations to participate in the lifecycle of a component. We use
those annotations to annotate methods that implement the starting and stop-
ping of the thread. This can be seen in Listing 4.14 where we defined a thread
implementation declaration ThreadC.impl that defines several properties al-
tering its semantic behavior. First, the Dispatch_Protocol is set to periodic,
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which makes this thread execute in a fixed interval given by the Period prop-
erty of 200ms. Priority is set to 5 and the Compute_Deadline, i.e., the time
until which the thread has to finish its work, is set to 100ms relative to its
dispatch. Those declarations are mapped to Java/OSGi as depicted in List-
ing 4.15 where the periodic nature of TreadCImpl is reflected by the use of a
PeriodicTimer whose period is set to 200ms. The priority is set to 5 within
the given PriorityParamters and the ReleaseParamters define a deadline of
100ms. Instead of declaring public start and stop methods to be called manu-
ally by an outside entity, ThreadCImpl makes use of OSGi’s lifecycle annotation
to mark the methods initialize and finalize to be called when the service
is started, respectively stopped by OSGi. This way we create threads that are
self-contained in contrast to threads in our former approach, where an outside
entity had to start and stop the thread.

thread ThreadC
2 end ThreadC ;

4 thread implementation ThreadC .impl
properties

6 Dispatch_Protocol => periodic ;
Period => 200 ms;

8 Priority => 5;
Compute_Deadline => 100 ms;

10 end thread .impl;

Listing 4.14: Thread in AADL

@Component
2 public class ThreadCImpl implements ThreadC {

public AsyncEventHandler handler ;
4 public Timer timer ;

6 @Activate
public void initialize () {

8 timer = new PeriodicTimer (null , new RelativeTime (200 , 0) , null);
ReleaseParameters rps = timer . createReleaseParameters ();

10 handler = new BoundAsyncEventHandler (){
public void handleAsyncEvent (){

12 dispatch ();
start ();

14 compute ();
completion ();

16 }
};

18 handler . setDaemon ( false );
handler . setSchedulingParameters (new PriorityParameters (5));

20 rps. setDeadline (new RelativeTime (100 , 0));
handler . setReleaseParameters (rps);

22 timer . addHandler ( handler );
timer . start ();

24 }
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26 @Deactivate
public void finalize () {

28 timer .stop ();
}

30
...

32 }

Listing 4.15: Reuse of lifecycle methods in Java/OSGi (Simplified)

Listing 4.14 is marked as being a simplified version of an actual thread imple-
mentation. This is due to the second major enhancement we made.

In AADL threads are defined to have several lifecycle events and states, e.g.,
Initialize, finalize, activate or compute. Each of them can be defined by a
predefined Programming_Property that is named accordingly, e.g., Compute_-
Entrypoint or Activate_Entrypoint. The declaration of such a property can
be seen in Listing 4.16. The value of each of those properties is a reference to
a Subprogram that shall be executed in case the respective event is triggered.
A subprogram in AADL can have parameters and resembles a method in Java.
Subprograms that are chosen to be the method to execute for a given thread
lifecycle event are defined to have access to all variables that the thread it-
self has access to, which in our case are usually all its data ports and the
BoundAsyncEventHandler and its Timer.

thread implementation ThreadA .impl
2 properties :

Activate_Entrypoint => InitializeThreadA .impl;
4 end ThreadA .impl;

6 subprogram implementation InitializeThreadA .impl
end InitializeThreadA .impl;

Listing 4.16: Declaration of an Activate_Entrypoint

In our previous approach we decided to simplify the lifecycle events of a thread
to be represented by several lifecycle methods, e.g., activate, deactivate or
compute. Due to the modularity we had in mind for our current approach,
this no longer fits our needs. Once the methods are generated, they can not
be altered anymore which makes them neither configurable nor exchangeable.
Therefore, we decided to externalized the logic that usually is called during
lifecycle methods of a thread, e.g., initialize or finalize, but also when switching
between states or, although not included in this work, when reacting to events.
The logic formerly contained within a method now is moved into a separate
class that represents the subprogram executed in a thread-specific context.

123



4. MAINTAINABILITY WITH AADL AND OSGI

As the respective subprogram must be granted access to all the variables avail-
able to the context they are used in, i.e., in this case all the variables that are also
available to ThreadCImpl, we pass this context as a generic Thread parameter
that has then to be cast into the respective implementation that is the context
of the current subprogram. An example implementation for the activation of
ThreadCImpl is shown in Listing 4.17.

@Component
2 public class ThreadCImpl implements ThreadC {

public AsyncEventHandler handler ;
4 public Timer timer ;

6 @Reference
Subprogram initialize ;

8
@Activate

10 public void initialize () { ... initialize . execute (this); ... }
...

12 }

14 @Component
public class InitializeThreadAImpl implements Subprogram {

16 public void execute ( Thread context ) {
ThreadCImpl myContext = ( ThreadCImpl ) context ;

18 myContext . timer = new PeriodicTimer (null , new RelativeTime (200 , 0) , null);
ReleaseParameters rps = timer . createReleaseParameters ();

20 myContext . handler = new BoundAsyncEventHandler (){
public void handleAsyncEvent (){

22 myContext . dispatch ();
myContext . start ();

24 myContext . compute ();
myContext . completion ();

26 }
};

28 myContext . handler . setDaemon ( false );
myContext . handler . setSchedulingParameters (new PriorityParameters (5));

30 rps. setDeadline (new RelativeTime (100 , 0));
myContext . handler . setReleaseParameters (rps);

32 myContext . timer . addHandler ( handler );
myContext . timer . start ();

34 }
}

Listing 4.17: The generic parameter of a subprogram

InitializeThreadAImpl declares a method execute that can be called by its
context, i.e., ThreadCImpl, in order to execute the respective action, e.g., compute
or activate. Within the execute method the generic context parameter then
is cast into the actual type, i.e., ThreadCImpl. Afterwards, the method executes
the same code as the activate method of the thread has done before by using
the variables of the respective context object. This way we decouple the logic
from the thread and by using OSGi’s referencing mechanisms the method is
exchangeable at runtime.
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4.2.6. Semantic Connections

In subsection 3.2.3 of our former approach we explained how the communication-
related mapping between AADL components and RTSJ was handled. In order
to enable all components to communicate via their defined port connections
and to hide those mechanisms from the user of the generated framework, we in-
troduced an extra class for each component, called a CB. This class took care
of transmitting data from one port to another as long as both ports, source
and target, were defined within the component the CB belonged to. Thus, the
concept of connections had not been translated into a separate class for each
connection, but into one class comprising all connections defined within one
component.

This again contradicts our understanding of modularity and also impedes the
configurability of a component where connections can come and go depending
on the current state of a component, or can be switched from being immediate
to being delayed during runtime. Additionally the logic of how data is trans-
mitted between ports is located within an outside entity instead of the ports an
connections itself, what would be preferred in a self-contained design. There-
fore, in our current approach we decided to represent not only ports as OSGi
components, but connections as well. An example of such a connection in
AADL and its representation in OSGi is given in Listing 4.18 and Listing 4.19.

In Listing 4.18 a process implementation ProcessA.impl is declared to have
two subcomponents threadA and threadB. In our example those are assumed
to each have a data port defined, threadA an outgoing and threadB an incom-
ing one. Both ports are then declared to be connected via a port connection
con1. In Listing 4.19 this connection is represented in OSGi via the component
Con1 implementing the generic interface PortConnection<T>. In this case we
assumed each data port to have its data type to be declared as Integer. In
case the two ports had different types declared which is possible due to the
Type_Extension value of the Classifier_Matching_Rule as described in sub-
subsection 3.2.3.1, then the connection would have the common super type of
both classifiers as data type. We only consider directed connections, meaning
that a connection always has a source and a target, represented in our example
by OSGi references on an IFWOutport source and an IFWInPort target. Con1
itself barely implements any logic but to transmit data from its source to its
target.

process implementation ProcessA .impl

125



4. MAINTAINABILITY WITH AADL AND OSGI

2 subcomponents
threadA : thread ThreadA .impl;

4 threadb : thread ThreadB .impl;
connections

6 con1: port threadA .out -> threadB .in;
end ProcessA .impl;

Listing 4.18: Declaration of a connection in AADL

@Component
2 public class Con1 implements PortConnection <Integer >{

@Reference
4 IFWOutPort <Integer > source ;

6 @Reference
IFWInPort <Integer > target ;

8
public void transmit (){ target . putValueFW ( source . getValueFW ()); }

10 }

Listing 4.19: Declaration of a connection in Java/OSGi

Based on threads, ports and connections being represented as OSGi com-
ponents we are now able to express the concept of a semantic connection, as
already mentioned in subsection 3.4.2, more accurately than before.

In our previous approach semantic connections only were created implicitly by
consecutively calling several CB in a row which eventually forwarded data from
an ultimate source to an ultimate target port, whereas each CB only knew one
step, i.e., one connection, of the overall semantic connection.

In order to illustrate this situation we depicted a semantic connection in Fig-
ure 4.1. In this figure there are three connections, i.e., from threadA.dataOut
to proc1.comm, from proc1.comm to proc2.comm and finally from proc2.comm to
threadB.dataIn. Those three connections together, as well as their connected
ports represent one semantic connection with the ultimate source dataOut and
the ultimate target dataIn. In our former approach proc1, SystemA_impl_In-
stance and proc2 each would have had an own CB that takes care of the con-
nection defined for each component, e.g., proc1’s CB would only take care
of forwarding data between threadA.dataOut and proc1.comm, but not for the
other connections. The semantic connection then was implicitly created by first
calling the CB of proc1 which delegated to the CB of SystemA_impl_Instance
that delegated further to the CB of proc2.

A problem of this approach is its non-configurability as the transmissions are
hard coded cases within the transmit method of a CB. Once generated it is
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not possible to create new semantic connections or to alter the behavior of an
existing one during runtime, e.g., due to the change from being an immediate
to being a delayed connection.

Figure 4.1.: AADL example for a semantic connection

Therefore, we altered our former approach by generating OSGi components
that represent semantic connections by referencing all parts a semantic connec-
tion consists of, i.e., ports, connections and other components guaranteeing
their semantic compliance to their AADL counterpart. In Listing 4.20 we de-
picted a representation of the semantic connection presented in Figure 4.1 as an
OSGi component.

@Component
2 public class SemCon1 implements SemanticConnection <Integer >{

@Reference
4 IFWOutPort <Integer > dataOut ;

@Reference
6 IFWInPort <Integer > dataIn ;

@Reference
8 IFWInOutPort <Integer > comm1 ;

...
10 @Reference

PortConnection <Integer > con1;
12 @Reference

PortConnection <Integer > con2;
14 ...

@Reference
16 IFWPhaser phaser ;

}

Listing 4.20: Declaration of a semantic connection in Java/OSGi

SemCon1 defines several references to other OSGi components that represent
the Java equivalents of AADL data ports and connections, e.g., dataOut and
dataIn as ultimate target and source as well as intermediate ports like comm.
connections are references as well as depicted by the references con1 and con2.
This way all necessary parts of the semantic connection depicted in Figure 4.1
are reflected as references in its OSGi counterpart SemCon1.
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The concept of a semantic connection consisting of several real connections
is necessary as only a semantic connection knows if it is immediate, delayed
or sampled. Those three possible values of the Timing property, as described
in subsubsection 2.2.4.3, can only be applied to connections and not semantic
connections, as those are completely implicit. Given the case of three connect-
ions connected through ports, as shown in Figure 4.1, the middle one might
be declared to be immediate, whereas the first and last one have no explicit
Timing property set and are therefore sampled by default. AADL defines a se-
mantic connection to be immediate or delayed as soon as one connection, that
is part of the semantic connection, is declared immediate or delayed. Without
the notion of a semantic connection as defined in Listing 4.20 the first and last
connection in our example would not know that they are implicitly immediate
or delayed as they know nothing of the other connections they are connected
to through intermediate ports. However, a semantic connection can check each
connection it consists of being immediate or delayed and if so, changing the
way data is sent to the ultimate target, depending on the respective semantics
of either immediate or delayed.

This is where the above depicted IFWPhaser comes into play. This reference is
only used in a scenario where one of the referenced connections is declared to
be immediate which forces the semantic connection to somehow force the re-
ceiving thread to run directly after data has been send by the sending thread.
Therefore, each OSGi representation of an AADL thread has a reference to an
IFWPhaser that is used as a barrier as soon as an immediate semantic connection
is attached to this thread. Both, thread and semantic connection, reference the
same IFWPhaser which they use to synchronize on. As long as the semantic con-
nection did not arrive at the IFWPhaser the thread halts its execution and waits
for the sender to send its data over the semantic connection. As soon as the
semantic connection arrives at the IFWPhaser the thread resumes its execution
and can use the transmitted data during its dispatch cycle.

A semantic connection is only meant for use by the generated framework code.
This is reflected in the aforementioned user-specific interfaces for ports, which
are the only way for a user to send and receive data within a subprogam. The
actual transmission of data is predefined by the timing semantics of the port
connections and therefore is part of the generated framework. The framework
again uses the semantic connections instead of directly calling the sendData
methods of ports to transmit data from source to target. This is done in or-
der to encapsulate the knowledge of connections being immediate, delayed or
sampled within those instead of, as before, in an external class like the CB.
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All of the aforementioned adaptations made to our former approach serve an
increased modularity of the overall system. Our final goal is to make the whole
system runtime reconfigurable, so that each single part can be reused in other
contexts as well. In order to achieve this goal we made heavy use of OSGi
components and references. What we omitted until now are the details on how
each component gets the right reference and not an arbitrary one. For this we
will make use of OSGi’s configuration mechanisms which will be explained in
detail in the next section.
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4.3. Configuration

Based on the changes presented in section 4.2 that were made to our former
approach presented in section 3.2, we now explain how OSGi’s configuration
mechanisms can be leveraged to turn the aforementioned components and their
references into a runtime reconfigurable system. Thereby granting enhanced
maintainability as each component is self-contained and therefore changeable
as long as its contract, i.e., its interface is not altered. Additionally, the con-
figurability enables us to map AADL’s state mechanisms onto configurations in
OSGi.

In the following subsections we first introduce the concepts of properties and
target filters in OSGi and how those are connected to configurations in OSGi,
followed by a more detailed explanation of states in AADL. Both are connected
in the following subsection in order to map AADL states onto OSGi configura-
tions.

4.3.1. Properties and Target filter

In order to understand the concept presented in subsection 4.3.5 we have to
revisit the mechanisms OSGi provides with regard to configuration of runtime
systems. Those mechanisms can be separated into two distinct categories, i.e.,
properties/targeting and configurations. In this subsection we explain how
OSGi makes objects configurable through properties that are assigned to them
which then can be used by a target property for selection of specific instances.

In OSGi each component or service is registered at a central service registry as
already explained in subsubsection 2.4.3.3. Additionally, each registered service
is accompanied by a Map of properties that are specific for this object instance.
Those properties can be separated into two types. First, OSGi internal prop-
erties that are assigned by the framework and depend on the properties of a
given @Component annotation. Second, properties that are set by the developer
which can be arbitrary. In Listing 4.21 we depicted a component with additional
properties set in its @Component annotation, i.e., name, service, immediate and
property. immediate and service are properties that are used by a Service
Component Runtime (SCR) in order to determine under which interface it
should register a given component and if this component should be started im-
mediately or delayed. name is used to set the name of this component which by
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default is its fully qualified class name, i.e., de.unia.smds.osgi.MyComponent.
Finally, property is used to set arbitrary, user-defined properties for this compo-
nent. Those properties are always in the format <identifier>:<type>=<value>,
where <type> is optional.

@Component (
2 name =" compName ",

immediate =true ,
4 service = MyComponent .class ,

property ={" ref. target =( sometarget =*)", "ref. cardinality . minimum =1"}
6 )

public class MyComponent {
8 @Reference ( cardinality = OPTIONAL )

volatile ISomeService ref;
10

@Activate
12 private void activate (Map <String , Object > props ){ ... }

}

Listing 4.21: Declaration of a component with specific properties

Partially, the aforementioned properties can be used at runtime as shown by the
activate method in Listing 4.21. The properties of this component are passed
as a Map<String, Object> parameter to the activate method by the SCR when it
activates this component. Per default only two properties are contained within
this map - component.name and component.id. component.name has been set
by us to the value compName, component.id has been left untouched. Those
two properties are set by the SCR regardless whether they have been explicitly
defined by the developer or not. In contrast, all properties defined in property
are only passed if they have been defined by a developer.

component.name and component.id barely influence the behavior of MyComponent,
whereas the exemplarily set properties ref.target and ref.cardinality.mini-
mum directly influence the wiring of MyComponent to other services. In List-
ing 4.21 MyComponent defines a reference to another service of type ISomeService.
This reference is per default static and any registered service that implements
ISomeService is accepted. Its optionality is defined to be optional (0..1). The
last two characteristics of this reference are altered by the properties added to
MyComponent via the property attribute.

ref.target restricts the acceptable services from any component that imple-
ments ISomeService to components that implement ISomeService and have an
additional sometarget property defined which means that of the two depicted
components in Listing 4.22 only SomeServiceImpl2 is an eligible target for this
reference. It defines a property sometarget with an arbitrary value, whereas
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SomeServiceImpl1 does not provide this property at all, thus being removed
from the list of possible targets for the ref reference in Listing 4.21.

ref.cardinality.minimum is a property that, applied to a component, alters the
cardinality of a reference of this component. The respective reference is identi-
fied by its name which is the name of the variable, i.e., ref, and the value of the
property specifies the optionality part of the reference’s cardinality, i.e., manda-
tory. The minimum cardinality of a reference cannot exceed the multiplicity,
the second part of the cardinality. The minimum cardinality property can be
used to raise the minimum cardinality of a reference from its initial value, e.g.,
an optional (0..1) cardinality can be raised to a mandatory (1..1) cardinality by
setting this property to 1. The minimum cardinality of a reference cannot be
lowered. That is, a 1..1 or 1..n cardinality cannot be lowered to a 0..1 or 0..n car-
dinality because the component was coded to expect at least one bound service.
In our example depicted in Listing 4.21 we initially defined the reference to be
optional, but via ref.cardinality.minimum we explicitly set its cardinality to
be 1 which makes this reference effectively a mandatory one.

@Component
2 public class SomeServiceImpl1 implements ISomeService { ... }

4 @Component ( property =" sometarget = somevalue ")
public class SomeServiceImpl2 implements ISomeService { ... }

Listing 4.22: Declaration of two ISomeService implementations

4.3.2. Configurations in OSGi

In the previous subsection we explained how each component in OSGi comes
along with a Map of properties, that further describe their behavior at runtime,
e.g., via ref.cardinality.minimum. In this subsection we will explain how
those properties correlate to configurations in OSGi and how they can be used
by us to express different states of a system.

The aforementioned properties of each component have been implicit, that means
they are present even if a developer did not define them explicitly, e.g., component-
.name. This also means each component is eligible to run, even if some of its
properties have not been set explicitly. This is made possible by sensible default
values for all properties. In contrast to this default behavior, a developer can
also mark a component to only be runable if there is a configuration available
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for the component at runtime. A configuration is a collection of properties ex-
plicitly set for this component which is subsequently passed during activation
to the component through its @Activate method.

In Listing 4.23 we depicted a component that explicitly requires a configuration
for startup. The component itself declares the attributes configurationPolicy
and configurationPid to force the SCR to take care of activating this compo-
nent only in case a valid configuration for the configurationPid myPid.test is
available at runtime. This configuration is passed to the activate method as
usual properties. As the class RequireConfig knows which properties it pro-
vides to be configured, those can then be taken from the config Map and used
further to execute runtime-specific logic according to the configuration.

@Component ( configurationPolicy =REQUIRE , configurationPid =" myPid .test ")
2 public class RequiresConfig {

@Activate
4 private void activate (Map <String , Object > config ){

Object configObject = config .get(" exampleProp ");
6 // do something with configObject

}
8 }

Listing 4.23: Declaration of component requiring a configuration

In order to create such a required configuration we can make use of the pre-
defined ConfigurationAdmin service which is standardized by the OSGi com-
pendium specification. In Listing 4.24 we depicted the programmatic creation of
a configuration via ConfigurationAdmin. The class MyConfigurator is itself an
immediate component that takes care of deploying a configuration for the con-
figruation pid myPid.test into the OSGi runtime. This is done via referencing a
ConfigurationAdmin which is then used to create a configuration object for the
given configuration pid. The configuration expects a Dictionary<String, ?>
that contains the properties that shall be passed to the configured component.
Those are defined via the Hashtable ht that contains the exampleProp required
by RequiresConfig to work properly. Finally, the configuration is updated
which forces the ConfigurationAdmin to deploy the new configuration into the
runtime. This in turn activates the RequiresConfig component and passes the
configuration as a Map into its activate method. A great benefit of this mech-
anism is its loose coupling between the component providing a configuration
and the component requiring the configuration. Additionally, the mechanism
itself frees a developer from manually passing a configuration to a component
and taking care of instantiating and managing it.
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@Component
2 public class MyConfigurator {

@Reference
4 ConfigurationAdmin admin ;

6 @Activate
private void activate (){

8 Configuration configuration = admin . getConfiguration (" myPid .test", "?"
);

Hashtable <String , ?> ht = new Hashtable < >();
10 ht.put( " exampleProp ", new Object ());

configuration . update (ht);
12 }

}

Listing 4.24: Programmatic creation of a configuration

In combination with properties and target filter as explained in subsection 4.3.1,
we now can turn our formerly static system into a runtime configurable one.
This is possible due to the fact that properties like ref.target and ref.cardi-
nality.minimum can be altered by configurations that are dynamically deployed
into the runtime via ConfigurationAdmin. The startup of a component is guar-
anteed to wait for the first configuration to be deployed by a central steering
component that has no knowledge of any of the components it controls, but
merely knows a set of configurations. In Listing 4.25 we exemplarily depict
the connection presented in Listing 4.19 enhanced with properties, target fil-
ters and an external Configurator providing the initial configuration for this
connection. Con1 was defined to be the connection between the two data
ports threadA.dataOut and proc1.comm in Figure 4.1. Both data ports, as
well as all other components, are assumed to have a unique id which serves as
a target property for the reference target filter for the source and target refer-
ences of Con1. In our case this unique identifier is depicted exemplarily for Con1,
i.e., de.smds.unia.uid. Those target filters are not set during compile time via
the @Component annotation and its property attribute, as it was shown in List-
ing 4.21, but are dynamically set by an external component MyConfigurator
during runtime.

@Component (
2 configurationPolicy =REQUIRE ,

configurationPid =" systemA_impl_instance . proc1 .Con1",
4 property ={"de.smds.unia.uid= systemA_impl_instance . proc1 .Con1"}

)
6 public class Con1 implements PortConnection <Integer >{

@Reference
8 IFWOutPort <Integer > source ;

10 @Reference
IFWInPort <Integer > target ;

12
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public void transmit (){ target . putValueFW ( source . getValueFW ()); }
14 }

16 @Component
public class MyConfigurator {

18 ...
@Activate

20 private void activate (){
Configuration configuration = admin . getConfiguration ("

systemA_impl_instance . proc1 .Con1", "?" );
22 Hashtable <String , ?> ht = new Hashtable < >();

ht.put( " source . target ", "(de.unia.smds.uid= systemA_impl_instance .
proc1 . threadA . DataOut )");

24 ht.put( " target . target ", "(de.unia.smds.uid= systemA_impl_instance .
proc1 .Comm)");

configuration . update (ht);
26 }

}

Listing 4.25: Programmatic configuration of Con1

There are two fields in which the aforementioned mechanisms of properties,
target filtering and configurations enhance our former approach. First, during
system startup as will be explained in the following subsection. Second, by
enabling us to map AADL states of systems on sets of configurations as we will
explain in subsection 4.3.4 and subsection 4.3.5.

4.3.3. System Setup

The system setup described in subsection 3.2.4 encompasses a severe drawback
regarding its inability to enable changes or reconfigurations of a system at run-
time.

In our former approach there are virtually no means of changing anything in the
running system once it has been started which poses a severe restriction to the
expressiveness of this approach. In real-world systems often the system under
development has several states, e.g., an autopilot being in flying or in landing
mode.

Also the need for an external entity, i.e., the Main class, can be regarded as a de-
sign flaw from the point of view of a truly modular system. A better approach
would be to let each part of a system know its direct dependencies and the over-
all system then results from the implicit transitive dependencies between all of
its parts. This would eliminate the need for a central entity with knowledge
about how the overall system has to be composed.
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Therefore, we dropped the former approach of an external Main class with a
hard coded main method in favor of OSGi’s more elegant approach of config-
urable components, as described in subsection 4.3.1 and subsection 4.3.2.

In order to highlight the differences between our former and current approach
we reuse the AutopilotProcess.impl presented in section 2.1 as an example
system whose startup code shall be generated either as pure RTSJ or RTSJ with
OSGi. As a refresher, the system architecture is once again depicted in Fig-
ure 4.2.

Figure 4.2.: Architecture of the autopilot in AADL

First we will have a closer look at the startup code generated in RTSJ which par-
tially has already been described in subsection 3.2.4. In Listing 4.26 the whole
startup code for the system depicted in Figure 4.2 is shown. As all AADL com-
ponents are represented by classes that each know their subcompnents, only
the root components, i.e., the process and its threads have to be created, initial-
ized and started, as well as the CB. This is a straight forward process, but obvi-
ously makes it impossible to alter the composition of each of the subcomponents
as well of the threads itself or the process. Each class explicitly states which
subcomponent it expects to be passed through its constructor and therefore leaves
no space for change.

public class Main{
2 public static void main( String [] args) {

instance . autopilotsystem_impl . autopilot . simulation . simulation simulation =
new instance . autopilotsystem_impl . autopilot . simulation . simulation ();

4 instance . autopilotsystem_impl . autopilot . rollcontrol . rollControl
rollControl = new instance . autopilotsystem_impl . autopilot . rollcontrol .
rollControl ();
...

6 instance . autopilotsystem_impl . autopilot . autopilot autopilot_ID615661078 =
new instance . autopilotsystem_impl . autopilot . autopilot ( simulation ,
rollControl , ...);
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...
8 AutopilotSystem_Impl_Instance_ID1055526063 . setParentConnectionBroker (

null);

10 simulation_ID2061775037 . startExecution ();
rollControl_ID1288843078 . startExecution ();

12 ...
}

14 }

Listing 4.26: Programmatic startup of AutopilotProcessImpl

In contrast we depicted a startup configuration for the system generated for
an OSGi target. In this case the Main class is an OSGi component that ref-
erences the ConfigurationAdmin and uses configurations to setup the compo-
nents as described in subsection 4.3.2. Therefore each component, e.g., process
or thread, gets a configuration created by the Main class, e.g., processConfig
or simulationConfig. These configurations set the target properties of all refer-
ences of the respective component. For example, the overall autopilot process
autopilot has references to all its subcomponents, e.g., simulation or rollCon-
trol. Those references are set to specific targets via autopilot’s reference target
properties, e.g., simulation.target is set to target autopilotsystem_impl.auto-
pilot.simulation.simulation. This is repeatedly done for all components and
finally all component configurations are updated and thus deployed to the run-
time where the SCR picks up these configurations and instantiates all the re-
spective components accordingly. Therefore, the whole system setup is merely
a set of configurations, specific to the respective, initial state of an AADL sys-
tem.

@Comopnent
2 public class Main{

@Reference
4 ConfigurationAdmin ca;

6 @Activate
public void activate () {

8 Configuration processConfig = admin . getConfiguration ("
autopilotsystem_impl . autopilot . autopilot ", "?" );

Configuration simulationConfig = admin . getConfiguration ("
autopilotsystem_impl . autopilot . simulation . simulation ", "?" );

10 Configuration rollCtrlConfig = admin . getConfiguration ("
autopilotsystem_impl . autopilot . rollcontrol . rollControl ", "?" );

...
12 Hashtable <String , ?> processProps = new Hashtable < >();

processProps .put( " simulation . target ", "(de.unia.smds.uid=
autopilotsystem_impl . autopilot . simulation . simulation )");

14 processProps .put( " positionCtrl . target ", "(de.unia.smds.uid=
autopilotsystem_impl . autopilot . rollcontrol . rollControl )");

Hashtable <String , ?> simulationProps = new Hashtable < >();
16 simulationProps .put( " throttles . target ", "(de.unia.smds.uid=

autopilotsystem_impl . autopilot . simulation . throttles )");
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...
18 Hashtable <String , ?> positionCtrlProps = new Hashtable < >();

rollCtrlProps .put( " command . target ", "(de.unia.smds.uid= autopilot .
autopilotsystem_impl . autopilot . rollcontrol . command )");

20 ...
rollCtrlConfig . update ( rollCtrlProps );

22 simulationConfig . update ( simulationProps );
processConfig . update ( processProps );

24 }
}

Listing 4.27: Configurational startup of AutopilotProcessImpl

Until now OSGi’s configuration mechanisms were used to represent the initial
state of a system, but provided no more configurability than the original Main
class with its hard coded main method. Therefore, we will introduce AADL
states in the next subsection and how those can also be represented with the
aforementioned approach..

4.3.4. Modes in AADL

Modes in AADL can be compared to states, whereas mode transitions are equal to
state transitions. Thus, modes in AADL resemble simple finite state machines as
they are well known in the IT industry today. Modes can be used to describe ei-
ther the state of hardware, e.g., processors, busses or other hardware elements
defined by AADL, or can be used to describe different states of the software by
using modes within AADL processes or threads. As we already restricted our
approach to the software part of AADL, see section 2.2, we only examine modes
in the context of processes and threads.

A mode in the context of a process or thread manifests itself as a configuration
of contained components, connections and mode-specific properties and val-
ues. Such a configuration in the context of a process might be for example a
specific subset of threads being active, or in context of a thread defining dif-
ferent execution modes or times, i.e., periodic versus aperiodic or a period of
200 versus one of 300 ms. Also connections, activated ports and several other
properties of each of them can be defined to be included within a specific mode
or not. In order to exemplify these mechanisms we depicted a modes declara-
tion in AADL in Listing 4.28. We reused our previous example of an autopilot
where we defined a process autpilot with two in event ports someEvent
and someOtherEvent. We also defined its implementation autopilot.impl to
contain several subcomponents, two of them being threads called simulation
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and sensorinput. In this example we added the declaration of two modes, i.e.,
simulated and realworld, describing the states the process can be in, being
either within a simulated environment with artificial inputs or in a real-world
scenario with real sensors delivering input to the autopilot. The initial or de-
fault mode is simulated, thus being the state the process would be in at startup.
It remains in this mode as long as there is no event arriving at the someEvent
port. Given the case such an event arrives, the process has to switch modes
from simulated to realworld. Likewise it has to switch back to simulated if
another event on the someOtherEvent port arrives. These mode transitions are
defined in the lines 15 and 16 of our example.

Until now we defined two modes the process can be within and transitions
between those modes, but did not explain the effect those modes have on the
behavior of the autopilot process. This is done in lines 9 and 10 where we
defined the subcomponents simulation and sensorinput to only be active in
either the simulated or the realworld mode respectively. This means, in either
state only one of those threads is active and forwards input accordingly to the
rest of the system.

process autopilot
2 features

someEvent : in event port;
4 someOtherEvent : in event port;

end autopilot ;
6

process implementation autopilot .impl
8 subcomponents

simulation : thread simulation .impl in modes ( simulated );
10 sensorinput : thread sensorinput .impl in modes ( realworld );

...
12 modes

simulated : initial mode;
14 realworld : mode;

simulated -[ someEvent ]-> realworld ;
16 realworld -[ someOtherEvent ]-> simulated ;

end autopilot .impl;

Listing 4.28: Declaration of modes in AADL

In our approach we decided to not implement all aspects and components of the
AADL language, therefore we made several restrictions regarding the compo-
nents and properties needed for modes and mode transitions to work properly.

First, in our example we placed the mode declaration in an implementation type
declaration, whereas it also could be defined within a type declaration and by
this passing on this mode declaration to all its inheriting component type dec-
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larations. We did this on purpose as we restrict the mode declarations in our
approach to be defined within an implementation declaration as well as we ex-
plicitly excluded the possibility to reuse states of parent components via the
requires mode subclause which is actually provided by AADL.

Second, we decided to include event ports for the special case of modes in our
approach. This means, those can merely be used as triggers for mode switches,
but can not be used to define arbitrary events that can be sent and received by
components. This is done in order to enable a first impression of how modes can
be mapped onto a generated framework, but omit the complications of a full
incorporation of events, event ports and their semantics into our approach, as
this would go beyond the scope of this work.

4.3.5. Mode Related Mapping

After introducing modes in AADL we will now explain how those modes and
their transitions can be mapped onto OSGi components, properties and config-
urations.

Modes as they were presented in subsection 4.3.4 have to be mapped in two
different ways onto an OSGi system. First, the composition of a system, where
subcomponents or parts of components can be added or removed due to mode
transitions must be adaptable. Second, OSGi components must be able to reflect
changes of their properties due to mode transitions. We will first explain the
composition of a system.

An AADL model usually describes the structural union of all possible modes,
that is, for a given component all possible subcomponents and features known
at design time. Additionally, all modes and subcomponents/features they en-
or disable at runtime are also well-defined. Given the example depicted in List-
ing 4.28 the process implementation autopilot.impl defines two subcompo-
nents, i.e., simulation and sensorinput, although only one will be active at
a given point in time at runtime, i.e., simulation only during the simulated
mode and sensorinput only during the realworld mode. Thus, AADL models
always define a superset of subcomponents and features that are available at
design time, whereas modes are a subset (or configuration) of all the available
subcomponents or features available at runtime during a specific mode.
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In order to map these semantics we use the configuration mechanisms of OSGi
presented in subsection 4.3.2. Hereby, every single mode defined in an AADL
model is translated into an according set of OSGi configurations. Thus, each
component of the systems that is affected by the respective mode gets a configu-
ration for this mode. This means, each possible subcomponent or feature which
in code is represented as a reference to another OSGi component, is either made
mandatory or optional by the configuration depending on whether or not is
marked as active in the respective mode. By creating such a configuration for
each component-mode combination for each OSGi component eventually all de-
fined modes are represented by a set of these configurations.

To clarify this approach we created a sample class Configurator in Listing 4.29
which serves as a central entity, referenceable by any OSGi component that
takes care of creating the right configurations for different modes. This class de-
fines two different methods, i.e., simulated and realworld that are eponymous
to the modes defined in Listing 4.28. Those two methods, if called by another
component, take care of creating the right configuration(s) for the respective
mode. Given the autopilot component received the event someEvent and wants
to initiate a mode transition from simulated to realworld, then all it has to do
is to call the method simulated in the Configurator class. This method first
creates a configuration for the autopilot component. Then, it creates the ac-
cording target and cardinality.minimum properties for the references of the
autopilot. The simulation reference is set to a specific target and its cardi-
nality is set to 1, thus making it a mandatory reference. sensorinput in turn
is made optional by setting its cardinality.minimum to 0, thus enabling the
autopilot component to start without having this dependency being resolved.
Additionally, the target property of sensorinput is set to a predefined, never
used constant notarget which ensures that it will not be resolved at any time.
The other method, i.e., realworld, instead implements the exact opposite be-
havior, i.e., turning sensorinput into a mandatory reference and likewise mak-
ing simulation optional. These mechanisms can be used for all relations wihtin
an AADL model that are mapped onto OSGi references, i.e., subcomponents,
features and connections.

@Comopnent ( service = Configurator . class )
2 public class Configurator {

@Reference
4 ConfigurationAdmin ca;

6 @Override
public void simulated () {

8 Configuration autopilotConfig = admin . getConfiguration ("
autopilotsystem_impl . autopilot . autopilot ", "?" );
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Hashtable <String , ?> autopilotProps = new Hashtable < >();
10 autopilotProps .put( " simulation . target ", "(de.unia.smds.uid=

autopilotsystem_impl . autopilot . simulation . simulation )");
autopilotProps .put( " simulation . caridnality . minimum ", "1");

12 autopilotProps .put( " sonsorinput . target ", "(de.unia.smds.uid= notarget )
");

autopilotProps .put( " sonsorinput . caridnality . minimum ", "0");
14 autopilotConfig . update ( autopilotProps );

}
16

@Override
18 public void realworld () {

Configuration autopilotConfig = admin . getConfiguration ("
autopilotsystem_impl . autopilot . autopilot ", "?" );

20 Hashtable <String , ?> autopilotProps = new Hashtable < >();
autopilotProps .put( " simulation . target ", "(de.unia.smds.uid=

autopilotsystem_impl . autopilot . simulation . simulation )");
22 autopilotProps .put( " simulation . caridnality . minimum ", "0");

autopilotProps .put( " sonsorinput . target ", "(de.unia.smds.uid=
autopilotsystem_impl . autopilot . simulation . sensorinput )");

24 autopilotProps .put( " sonsorinput . caridnality . minimum ", "1");
autopilotConfig . update ( autopilotProps );

26 }
}

Listing 4.29: Mode transitions via configurations

Until now we merely used built-in mechnisms of OSGi to alter the runtime com-
position of a system, where we did not need any further generated or hand-
written code in order to react to the different configurations deployed into the
runtime. All changes are automatically handled by the SCR as only references,
their cardinalities and optionalities are concerned.

However, there are also parts of an AADL system that can not be handled
automatically by the SCR, e.g., properties. For our approach the most im-
portant properties that are used to alter semantic of AADL components are
the Dispatch_Protocol and Period properties of threads. Those properties,
which were explained in detail in subsection 2.2.4, alter the dispatch behavior
of a thread and, in case of a periodic thread, its period. Those properties are
implementation-specific and therefore can not be handled by predefined mech-
anisms of OSGi. Therefore, the generated code of our framework has to take
care of this, where we reuse the configuration mechanisms of OSGi in order to
tackle this challenge.

Each property that is used to alter the semantics of an AADL component has
to be treated differently in its OSGi counterpart. Thus, we only exemplarily ex-
plain how the Period property is mapped onto code that reflects its semantic.
In Listing 4.30 we depicted a thread similar to the one depicted in Listing 4.15
but extended it with an additional lifecycle method, i.e., modified, annotated
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with the OSGi @Modified annotation. This method, if defined, is called by the
SCR whenever a new configuration is deployed into the system and is called
with the respective configuration as a Map<String, ?> of properties. However
the first time a configuration is made available for the respective component not
the modified method is called by SCR but the activate method which is why
this methods merely forwards every call to the modified method instead. Now,
the modified method shows an excerpt from the original activate method of
Listing 4.15. The only difference lies within the time that is given the respective
PeriodicTimer to operate with. Whereas, in Listing 4.15 this time was fixed dur-
ing the runtime and no changes could be made to a running system, we now
declare this component to react to changes made by configurations deployed
to the system at runtime. In this case, ThreadImpl first stops the currently run-
ning timer, then fetches the configured period from the given props and then
creates a new PeriodicTimer which is subsequently started, now running with
the period defined by the configuration.

@Component (
2 configurationPolicy =REQUIRE ,

configurationPid =" threadimpl "
4 )

public class ThreadImpl {
6 public AsyncEventHandler handler ;

public Timer timer ;
8

@Activate
10 private void activate (Map <String , ?> props ) {

modified ( props );
12 }

14 @Modified
private void modified (Map <String , ?> props ) {

16 timer .stop ();
int period = (int) props .get(" period ");

18 timer = new PeriodicTimer (null , new RelativeTime (period , 0) , null);
...

20 timer . start ();
}

22 ...
}

Listing 4.30: Configurable Period property

This mechanism, i.e., reacting to configurations within a method annotated with
@Modified, can be used to map all mode-specific property changes onto a system
generated for OSGi.
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4.4. Related Work

As to the best of our knowledge there is no work that can be compared directly
with ours, meaning there is no work that targets AADL as source language
or RTSJ as target language, let alone OSGi as a component framework on top
of it. If viewed more abstractly then our work can be seen as model-driven
development of service-oriented, SCSS, but there are only approaches partially
tackling the challenges of this field. Therefore, we present different approaches
for each combination of these three research fields in the following.

For the research area of model-driven development of service-oriented sys-
tems there exist plenty of approaches, mainly targeting the creation of service-
oriented architectures and microservice architectures. Service-oriented architec-
tures have experienced a hype around 2007 which is mirrored in the amount of
papers published at that time on this topic. Microservice architectures currently
experience the same hype as service-oriented architectures have 13 years before.
Therefore, we picked approaches targeting each of those architectures to com-
pare with our approach. [52] proposes a UML profile, called UML4SOA which
they are using to generate code in multiple languages, e.g., Business Process
Execution Language (BPEL), Web Service Description Language (WSDL), Java
and Jolie. [52] has been part of a larger EU project called Sensoria [53] and "[...]
deals with the modelling of structural aspects of services, service orchestrations, policies,
and other non-functional properties." In contrast to our work, [52] targets service-
oriented, distributed systems, communicating over a network and uses UML as
source language. Our approach instead targets service-orientation within one
system instead of a distributed system and also uses AADL as source language
which is standardized in terms of semantic, visual and textual representation
and syntax in contrast to the non-standardized semantic of UML and especially
the proposed profile of [52]. Related approaches in the area of model-driven de-
velopment of service-oriented systems are, according to [52], [54], [55] and [56],
all of them also utilizing UML as source language and targeting distributed sys-
tems.

The research area of microservice architectures is currently flooded with ap-
proaches regarding generation of microservice configurations regarding specifc
metrics like elasticity [57], the generation of several microservices to form a
complete backend system [58] or even complete microservice architectures with
API gateways and service discoveries included [59]. Common to all of them is
the generation of a service-oriented, distributed system in contrast to our ap-
proach of a service-oriented system within one process. Additionally, none of
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them uses a standardized source language that could easily be used for veri-
fication or validation within a certification process. [58] uses its own domain
language called JHipster Domain Language (JDL) for the description of all ap-
plications, deployments, entities and their relationships within a single file. [59]
facilitates Maven [60] and its archetype system for the generation which is a
purely command line based and thus a non-standardized approach.

The research area of model-driven development of SCSS usually encompasses
two subareas, i.e., approaches that analyze models of SCSS in order to verify
or validate them [61, 62, 63] and approaches that generate code, but usually
only test code. The first area only partially overlaps with our approach as we
rely on AADL for those disciplines, but do not directly target issues like model-
driven verification or validation. The second subarea is directly addressed by
our approach in terms of generating a working code base that can be run on any
real-time JVM, whereas the majority of research approaches merely targets the
generation of tests for such a system, e.g., [64] or [65].

Approaches directly targeting the generation of a SCSS itself are rather sparsely
represented. One of these is for example [66] which uses a specialized subset
of UML, e.g., component diagrams and real-time state charts, in order to de-
scribe systems which is again a non-standardized source language in contrast
to AADL. They especially target the reduction of state explosion by a compo-
sitional reasoning approach which is tackled by our approach by use of con-
tracts, see chapter 5. Another very well-known approach is the usage of Matlab
Simulink [48] which also does not support a high-level language like Java as
target language. Besides, [48] encourages modeling of business logic, which is
explicitly excluded from our approach as we regarded this as too low-level to
enhance productivity.

Service-oriented systems are in general rather hard to find in the domain of
SCSS, with one exception being the automotive domain. There, some approaches
emerged that tackled challenges of this domain by utilizing concepts of service-
oriented architecture, e.g., [67] or [68]. But again, those approaches merely ex-
amined service-orientation within a distributed system, not within one system
as our approach does.
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4.5. Evaluation

For the evaluation of our approach we again use the running example presented
in section 2.1. In contrast to our former approach we generated the code this
time as an OSGi system. The golden standard against which this generated
system is compared is still the handwritten implementation of section 3.4. As
we are still only interested in the parts of the code that are related to either
structure, timing or communication, we stripped the handwritten as well as the
generated code of all logic related parts. We then applied the same quantitative
tests as were already applied in subsection 3.4.1 and additionally added a test
that detects the performance impact of OSGi related code onto the generated
system of our current approach. We then examined the impacts of using OSGi
for a system with modes and how much time the ConfigurationAdmin and the
overall OSGi runtime takes to de- and reconstruct a simple system. Finally, we
conducted a qualitative analysis of different typical scenarios once solved with
plain RTSJ and once with an OSGi solution.

4.5.1. Quantitative Evaluation

First, we compared the SLOC of the different approaches. As can be seen in
Figure 4.3 the amount of manually written code stays the same as for our first
approach and therefore roughly half the size of a purely handwritten solution.
As in subsection 3.4.1 this implies a 50% reduction in time of writing, which is
a tremendous benefit if applied to larger systems. We were also able to reduce
the amount of generated code in our current approach compared to the former
one, resulting in an approximately 9% smaller, generated code base.

In Figure 4.4 we compared the messages sent per second of the different ap-
proaches. The mechanisms that are used to transmit messages from one compo-
nent of the system to another differ between the three approaches. The golden
standard solution usually results in calling a method directly on the target com-
ponent that delivers the message to this component which is obviously the
fastest, but also the least adaptive approach. As can be seen in Figure 4.4 this
approach leads to roughly 315 million messages sent per second which is more
than three times the number of messages sent by the aadl2rtsj approach. The
aadl2rtsj approach facilitates the concept of a CB as explained in subsubsec-
tion 3.2.3.3. This CB internally has usually a large generated switch-case state-
ment that routes the message to its respective receiver component. This ap-
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Figure 4.4.: Messages per second comparison between handwritten, aadl2rtsj
and aadl2osgi

proach degrades in speed depending on the position of the receiver within the
switch-case statement as well as of the number of connections between sender
and receiver, each resulting in another switch-case statement, i.e., a higher calldepth.
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Figure 4.5.: Message throughput of aadl2rtsj solution with differnt calldepth/-
case position combinations

The number presented in Figure 4.4 therefore is only one, i.e. the one for calldepth
5, of a number of different possibilities, all depicted in Figure 4.5. Here, we can
see that a position in the middle of the switch-case statement is beneficial in
terms of execution time or throughput. The calldepth of course has a direct
impact on throughput, meaning the higher the calldepth the longer it takes to
transmit a message and therefore less throughput can be generated.

Our current solution enhances the former approach as we got rid of the switch-
case statements for each step in a call chain. By leveraging OSGi’s mechanisms
of service composition a message transmission at runtime results in a chain of
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Figure 4.6.: Throughput aadl2osgi with different calldepths

method calls, which removes the overhead of the former switch-case statement.
Now, the execution time of a message transmission merely depends on the num-
ber of chained methods which is also reflected in Figure 4.4, where our cur-
rent approach is approximately 21% faster than the former aadl2rtsj approach.
In Figure 4.6 we can see the direct impact of chain length on throughput and
therefore transmission time for messages. In Figure 4.4 we always have chosen
a calldepth of 5 for both, aad2rtsj and aadl2osgi, in order to be able to directly
compare the approaches, but as mentioned before each case can be different.

In contrast to our former approach, aadl2osgi added OSGi as an additional layer
of abstraction on top of the JVM. While providing better means of modulariza-
tion and decoupling it also has a significant impact on overall performance and
memory consumption. Many objects are not any longer created directly via the
new keyword, but by mechanisms explained in detail in subsection 4.3.5. This
enables us to represent states of the system as configurations, but intitializa-
tion of such a state can be much slower than a handwritten solution. In order
to measure the impact of OSGi on object (service) creation we implemented a
benchmark measuring the throughput of OSGi in terms of service creations per
second. Each service in OSGi is created with a configuration, namely a Map
with several key-value pairs. These configurations can differ in size depending
on the configurability of the respective service. In Figure 4.7 we depicted the
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Figure 4.7.: OSGi’s throughput for creating services with different sizes of con-
figurations

results for service creations with different sizes of configuration objects, i.e., a
large configuration containing 20 key-value pairs (OSGi L), a medium config-
uration containing 5 key-value pairs (OSGi M) and a small configuration con-
taining a null configuration (OSGi S). The size of a configuration has a direct
impact on the time needed to create a service. The larger the configuration, the
slower the service creation, resulting in 60.146 service creations per second for
large configurations and 74.330 service creations per second for medium con-
figurations. null configurations seem to be handled differently from non-null
configurations, as in contrast to the expected highest throughput this type of
configuration took more time than the medium one. Probably, the OSGi frame-
work incorporates additional null checks and the creation of an empty Map if
the given configuration for a service is null which would explain the lower
throughput.

Apart from time consumption another important key figure is the amount of
memory consumed by each approach. Therefore, each benchmark was executed
with a profiler attached so that memory allocation and deallocation could be
tracked. For the handwritten solution this resulted in 16 kilobytes allocated for
each run which lead to allocation peaks of over 1 gigabyte per second during
testruns. Although each single testrun for the OSGi solution did allocate far
more memory, ranging from 4,5 kilobyte for small configurations to 6,5 kilobyte
for large configurations the allocation peaks only reached 313 to 363 megabytes
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Figure 4.8.: Java throughput for creating objects

per second respectively.

In summary, it can be said that the impact of OSGi on object/service creation
is massive in comparison with the creation of a simple object, as depicted in
Figure 4.8. Although, it also has to be said in all fairness, that this comparison
is rather coarse, as the creation of a service incorporates the creation of addi-
tional metadata, several checks for configuration parameters on how (and if)
the service should be created and several more steps, where in contrast a object
creation in java is a primitive operation. The numbers presented in Figure 4.7
therefore should rather be taken into consideration when analyzing the impact
of OSGi on state switches of a system than to be used in a direct comparison
between a handwritten and a generated solution.

4.5.2. Qualitative Evaluation

Aside from a purely quantitative evaluation we also played through different
scenarios that put the generated, modular solution in contrast to a handwritten
one in terms of maintainability and runtime reconfigurability. Also a compari-
son with our former approach is executed. For both we will reuse the running
example defined in section 2.1.
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Maintainability through Modularity The first use-case under consideration
is the addition of a component and will show the increased maintainability of
the generated modular code base. In subsection 3.4.2 we compared the addition
of a component in a pure handwritten solution to the addition of a component
written in AADL and the subsequent generation of it. For this we chose the
example of a logger that is added to the system after it has been initially gener-
ated or written. We showed that the addition of this logger and its connection
to the rest of the existing system would be rather error prone in a purely hand-
written solution. Many existing classes would have to be altered as well as
additions would have to be made in several different locations that might not
be obvious to a developer. Therefore, we claimed our aadl2rtsj approach being
superior in such cases, as the addition of the component in AADL is a rather
small task, is well supported by standardized IDEs and the developer gets vi-
sual support through a standardized graphical representation that for example
makes missing connections more obvious.

However, in order to add the logger component not only the component itself
has to be generated, but also other components it is linked to via connections
due to the implementation details of the generated solution, i.e., how immedi-
ate connections are handled within a CB. In Listing 4.31 we depicted a simpli-
fied version of the generated code for the AutopilotConnectionBroker which
takes care of transmitting data from the mixThrottlesControl to the newly
added logger component. In our fictional case this CB already has been gen-
erated a first time when the original system without our newly added logger
component had been generated. Therefore, a version of this CB already existed
in the code base which now has to be altered in order to contain code that takes
care of transmitting data from mixThrottlesControl to the newly created log-
ger component as well as code that takes care of timing as we defined the new
connection between both components to be immediate. This is depicted in List-
ing 4.31 by the additional case "con_1" as well as the added synchronization
object syncObjectCon1 and the additional Logger member variable.

public class AutopilotConnectionBroker {
2 private Object syncObjectCon1 = ...;

private Logger logger = ...;
4

public void sendOnConnection ( String connection , Object data) {
6 switch ( connection ) {

case " con_1 ":
8 logger . inThrottleCmd (( ThrottleCmd ) data);

syncObjectCon1 . notify ();
10 break ;

...
12 }
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}

Listing 4.31: Simplified immediate connection from mixThrottlesControl to
logger component

Thus, the purely generated solution not only does not cover edge cases, but
also has to be regenerated in order to add a newly defined component. This
results mainly from immediate connections which, in Java, are represented
using synchronization objects on which both, sender and receiver, can synchro-
nize to transmit data within one dispatch cycle, see section 2.2.4.3. If there is an
additional immediate connection added, then not only has this connection to
be represented by an additional switch-case statement in the CB, but also has
the sender to be extended with an additional reference to the mandatory syn-
chronization object. Thus, a preexisting class has to be altered and the whole
system must be regenerated again. Therefore, our former approach indeed is
better than a handwritten solution with regard to error susceptibility but lacks
some important properties to be maintainable, i.e., strict encapsulation and a
clear separation of concerns.

Our new approach renders such regeneration obsolete as it generates a truly
modular system in which classes/services and references between them can
be altered afterwards within specific boundaries which improves the overall
maintainability of the system. For example, in aadl2osgi we are able to add
an additional connection to an existing port easily by creating a new service
representing this connection and changing the configuration of its source port
by deploying an appropriate configuration to the running system.

@Component (
2 configurationPolicy =REQUIRE ,

configurationPid =" handwritten .Con1",
4 property ={"de.smds.unia.uid= handwritten .Con1"}

)
6 public class Con1 implements PortConnection <Integer >{

@Reference
8 IFWOutPort <Integer > source ;

10 ...
}

12
@Component

14 public class MyConfigurator {
...

16 @Activate
private void activate (){

18 Configuration configuration = admin . getConfiguration (" handwritten .Con1
", "?" );

Hashtable <String , ?> ht = new Hashtable < >();
20 ht.put( " source . target ", "(de.unia.smds.uid= mixthrottlescontrol .
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throttlecmdout )");
configuration . update (ht);

22
Configuration configuration2 = admin . getConfiguration ("de.unia.smds.

uid= mixthrottlescontrol . throttlecmdout ", "?" );
24 Hashtable <String , ?> ht = new Hashtable < >();

ht.put( " outgoing . target ", "(de.unia.smds.uid= handwritten .Con1)");
26 ...

configuration2 . update (ht);
28 }

}

Listing 4.32: Adding a handwritten connection to a preexisting port

In Listing 4.32 we depicted such a solution for a handwritten case. First, we cre-
ated a new connection Con1 reusing the interfaces provided by aadl2osgi, i.e.,
PortConnection for the connection itself and IFWOutPort for its source port.
This way we ensure, that the generated code can interact with our handwritten
one. In the next step we first configure Con1 to target mixThrottlesControl.-
throttlecmdout as source port and then we configured ThrottleCmdOut to tar-
get Con1 as an outgoing connection. Of course this is a simplified configuration
as we usually would have to ensure that ThrottleCmdOut would also target all
other connections it targeted before we added Con1, but this can be easily done
by copying the configuration and then adding the additional target Con1.

Aside from now being able to extend a generated system without regenerating
the already existing code, the aforementioned benefits of section 3.5 still hold
true. AADL remains superior in the majority of cases regarding SCSS design
regarding introduction of errors, whereas plain Java remains superior in edge
cases maybe not covered by AADL components and semantics.

The interchangeability of existing components as well as the addition of new
ones mostly stems from the heavy use of interfaces within OSGi, thus guaran-
teeing strong encapsulation and separation of concerns within a code base. This
strong encapsulation again is a major advantage of aadl2osgi over aadl2rtsj as
now a recertification of a system is by far easier than with our former approach.
Existing components within a generated system are not altered anymore when
new functionality is added and by leaving the old code untouched recertifica-
tion is not a topic anymore. Only the parts that are added have to be certified to
work correctly, also in interplay with existing components, thus freeing devel-
opers of a SCSS from recertifying old parts of the system.
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Runtime Code Replacement Additionally, by using OSGi as the underlying
framework a system is now able to support hot updates, i.e., updates of the
code at runtime. This feature is possible due to the strictly defined lifecycle
rules of bundles, see subsection 2.4.2, services, see subsection 2.4.3, and the dy-
namism that inherently is added to all services via lifecycle methods and dy-
namic adding and removing references to other services. This way each service
is well aware of its changing surroundings in terms of other services and bun-
dles that may come and go during runtime. Each service and bundle therefore
is written with this dynamism in mind and is able to cope with changing refer-
ences or being gracefully stopped by the framework at all.

In order to examine this feature more in depth we again use the running ex-
ample of section 2.1. In this example we alreday generated a running system
from a sufficiently detailed AADL model. Each controller of the autopilot is
deployed to the OSGi framework as a separate bundle, i.e., .jar file. We assume
there is a bundle for AltitudeController with a symbolic name "altitudecon-
troller.fixed", which controls the altitude of our quadrocopter by keeping it al-
ways at the fixed height above ground of one meter.

Now, imagine the requirements changed for our quadrocopter and we need to
change the behavior of our AltitudeController, i.e., it should not keep a fixed
height above ground, but react to commands from the outside which tell it the
height to keep. In our previous approach and also in a handwritten solution
we would have to model/write the software, compile it, package it, somehow
deploy it to our quadrocopter and then launch the quadrocopter with the new
software. For this to work, we usually have to shut down the quadrocopter for
a while, i.e., the time it takes to deinstall the old autopilot and install the new
autopilot. As this is a rather cumbersome procedure and demands physical
access to the quadrocopter. However, we would prefer to be able to do this pro-
cedure without having the quadrocopter to be landed, shut down and restarted
subsequently. Although not absolutely necessary for a quadrocopter, other em-
bedded systems might benefit far more from such a functionality, especially in
cases where access to such devices is hard to achieve.

In contrast, with aadl2osgi we are now able to do just that. Not only are we
able to replace the software without physical access to the device, but we could
do so even in midair. The code base generated by our approach can be ex-
changed during runtime by the use of an additional service standardized by
the OSGi alliance in their compendium specification [44], i.e., the Configurator
[69]. Once installed in the framework this service takes care of deploying con-
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figurations of a bundle into the runtime via using the ConfigurationAdmin. The
additional value of Configurator is its standardized behavior which enables us
to not only deploy a bundle into the system, but also a corresponding configu-
ration for this bundle which, if placed in the right location within the bundle’s
folder structure, is found by the Configurator and deployed to the runtime
accordingly. From there on the mechanisms that take care of registering and
adding new services within the runtime are the same as already described in
subsection 4.3.5.

@Component (
2 configurationPolicy =REQUIRE ,

configurationPid =" autopilot ",
4 property ={"de.smds.unia.uid= altitudecontrol "}

)
6 public class Autopilot {

@Reference
8 AltitudeController altitude ;

...
10 }

12 @Component (
configurationPolicy =REQUIRE ,

14 configurationPid =" altitude . dynamic ",
property ={"de.smds.unia.uid= altitude . dynamic "}

16 )
public class AltitudeControllerDynamic implements AltitudeController {

18 ...
}

Listing 4.33: Simplified Autopilot and its reference to MixThrottlesControl

Now all a developer has to do is generating the code for the new AltitudeCon-
troller, implement the business logic and write the configuration for the ex-
isting Autopilot to use the new AltitudeController instead of the old one.
In Listing 4.33 we depicted a simplified version of an Autopilot which holds
a reference to an AltitudeController as well as the newly created, dynamic
AltitudeControllerDynamic implementation. Given such an implementation,
the configuration for Autopilot would merely contain the key-value-pair alti-
tude.target=(de.smds.unia.uid=altitude.dynamic) which advises the Auto-
pilot to use the dynamic implementation instead of the static one. This config-
uration is contained within the .jar file that is subsequently deployed to a run-
ning system. After the framework installed this .jar the Configurator scans the
bundle for configurations and deploys those via the ConfigurationAdmin into
the running system. The runtime then picks up this configuration, matches it to
an instance of Autopilot and forces the implementation to change its reference
of AltitudeController to the dynamic one as soon as the static one is stopped
during the deployment process.
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4.6. Conclusion

In this section we presented an adoption of our former approach aadl2rtsj, tar-
geting not only a high-level language as target language for our code gener-
ation, but also a modular code base by design. This approach enables devel-
opers of a SCSS to not only shift structure, timing and communication-related
concerns into design phase, but also enables them to create a highly modular,
runtime reconfigurable and, most important, a more easy to maintain system by
design. Advantages explained in our former approach still hold true, i.e., being
able to perform analyses regarding communication and timing during design
phase, while resting assured that the implementation will reflect their design
choices, while new advantages, i.e., enhanced maintainability and better con-
figurability are added on top.

Within the evaluation of this approach we have shown that those additional
benefits come with a cost, e.g., configurability comes with an additional com-
puting cost as well as an increased memory consumption, but at the same time
other aspects of the generated code have been improved by the new architec-
ture of the generated code, e.g., throughput of messages has been increased by
over 21%, meanwhile shrinking the size of the generated code by 9%. Applied
to the autopilot implementation of our former approach, this means better per-
formance during one state and the possibility to switch between several states,
e.g., flying and landing, but with an added cost in terms of computing time and
memory during these transitions.

Another aspect targeted by enhanced reconfiguration and extendability / main-
tainability is the certification process of SCSS. While the former approach re-
quired a developer to regenerate the whole code base for even the smallest
change, it is now possible to enhance an existing system by adding/altering
only specific parts of the overall system, due to its modularity.

This aspect will be even further enhanced in the following chapter by enabling
a developer to show that newly added components are semantically equivalent
to the components they alter or replace.

157





5
Certifiability through Contracts



5. CERTIFIABILITY THROUGH CONTRACTS

5.1. Motivation

The last objective left of those defined in chapter 1 is "Certifiability". As SCSS
are usually subject to certification processes and certification of a system usually
is a cost- and time-intensive process, developers mostly want to certificate only
updates or parts that are newly introduced to an existing system instead of re-
certificate the whole system. Although the former chapter already showed how
to cleanly separate code and therefore, makes it easier to show none of the other
code parts are afflicted if new code is added, it does not provide means by which
a developer can show that the replacement for an existing code fragment does
the same as the replaced one. In order to enable such a partial certification one
has to show that the newly added or updated parts are semantically the same as
the ones before and that there are no unwanted impacts on the overall system.
Therefore, the update or new part of a system should be (semi-)automatically
demonstrable to be semantically equivalent to the replaced/updated part. Usu-
ally, this is easy as long the system under development is small, but becomes
harder the larger the system becomes. As already shown in chapter 1 SCSS or
embedded systems in general tend to become larger and larger, thus becoming
more complex and harder to certify. A developer of a SCSS often is confronted
with components whose interrelationships and behavior he can hardly intu-
itively grasp anymore, i.e., systems with a too large number of possible states
they can get into.

In order to gain access to the properties of such a system a developer usually
decomposes such a system into smaller components, as the behavior and inter-
action of those encapsulated components is relatively easy to understand and
describe in contrast to the overall system. With our aforementioned approaches
we succeeded in designing systems in a way that are by design modular. Ev-
ery model element is translated into a self-contained component, thus making
each component easier to understand and more maintainable as the system as a
whole. By utilizing RTSJ, i.e., Java, and OSGi we encapsulated each component
with a syntactically well-defined interface that formally describes the types
that methods are expecting as parameters as well as types that are returned to a
caller of those methods.

This syntactic definition of an interface fulfills the requirements for Level 1
contracts as defined by [70]. As shown in Figure 5.1, [70] defined "four levels of
increasingly negotiable properties" of contracts between components which start
with non-negotiable properties on a syntactic level, i.e., interface definition lan-
guages or programming languages as Java, and progresses to dynamically ne-
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gotiable quality-of-service level properties, e.g., response time of specific meth-
ods.

Figure 5.1.: The four contract levels [70]

Between syntactical and quality-of-service properties there are also behavioral
and synchronizational properties. Those could be pre- and post-conditions for
behavior or automatons for synchronization.

Those different types of contracts can be used to even enhance the description
of a component as we did define them in the previous chapters. This would
enhance the possibility for a developer of a SCSS to test two different compo-
nents for their semantical equivalence, thus easen the demonstration of seman-
tic equivalence needed for partial certification of such a component. Intercon-
nections between different components could be (semi-) formally described by
these contracts and thereby reduce the work of showing their semantic equiva-
lence to demonstrate the fulfilling of those contracts.

As we already provide components by design through the usage of OSGi and
provide contracts on a syntactical level by using Java interfaces as interfaces
between components, we only have three other levels of contracts left in or-
der to define contracts between components, i.e., behavior, synchronization and
quality-of-service. However, in this section we will provide contracts only tar-
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geting two of these three level, i.e., behavior and quality-of-service, due to the
extend of this work and restrictions of our chosen language, i.e., RTSJ, and our
chosen component framework, i.e., OSGi.

The rest of this section is structured as follows: section 5.2 provides a definition
of contracts as they are used in the following approach as well as an detailed
explanation of the mechanisms of OSGi used to implement contracts for our
existing approach. section 5.3 details our mapping of different contract types
onto sets of attributes of a capabilities in OSGi and shows how to enforce those
contracts at runtime. In section 5.4 we compare our approach to existing ap-
proaches in the same field of research. Finally, we evaluate our approach by
applying it to the previously used running example of an autopilot and show-
ing the effects of contracts on replacing, updating and adding components.
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5.2. Contracts and additional OSGi Basics

In the following subsections we first explain the term "contract" within the con-
text of this approach. This is followed by a detailed explanation of OSGi’s
requirements and capabilities as our approach heavily depends on the inner
workings of OSGi’s dependency resolution mechanisms. Additionally, we in-
troduce OSGi’s service hooks and Java’s proxying capabilities which will be
used for runtime enforcement of our contracts.

5.2.1. Contracts

Contracts in the context of software engineering have been first made popular
by Bertrand Meyer in [71] and were based on pre- and post-conditions as well
as invariants for functions. This notion of contracts has been implemented by
some programming languages natively, e.g., D, Eiffel or even Ada in its 2012
version. However, contracts in general can encompass more than the aforemen-
tioned pre-/post-conditions. [72] provides an extensive overview of the current
state of contracts within research as well as in industrial contexts. Aside from
providing their own meta-theory of contracts, they identify two major research
areas regarding contracts, i.e., assume/guarantee contracts and interface theo-
ries.

Assume/Guarantee contracts encompass all sorts of contracts that on the one
hand make assumptions that characterize a valid environment of a component
and on the other hand offer guarantees for the respective components as long
as they are used in such an environment. [72] further divides assume/guar-
antee contracts into data flow assume/guarantee contracts and synchronous
assume/guarantee contracts. As we prefer a rather hands-on approach on con-
tracts we only use pre- and post-conditions as assume/guarantee contracts in
our context.

Interface theories, as described in [72], usually treat components as input/out-
put automatons. As such their behavior can be defined as interface state au-
tomatons. Interface state automatons describe all possible states and transitions
between them that an implementation of a specific interface can get into. Tran-
sitions usually are triggered by outside events, e.g., a method call, but also inner
events are possible, e.g., a timer that triggers a state transition after a specified
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amount of time. Interface state machines offer developers of SCSS means to re-
duce the number of possible states a component can get into by hiding possible
in-between states of an implementation behind a facade, i.e., an interface. This
reduction of possible states later on easens testing, as only the official states of
a component as described by its interface state machine have to be tested. We
exclude interface state machines from our approach, due to restrictions of the
requirement and capability mechanism that is used for our approach.

5.2.2. Requirements and Capabilities

According to the official OSGi core specification [73] "OSGi dependency handling
is based on a very general model that describes the dependency relationships. This model
consists of a small number of primitive concepts:

• Environment - A container or framework that installs Resources.

• Resource - An abstraction for an artifact that needs to become installed in some
way to provide its intended function. A Bundle is modeled by a Resource but for
example a display or secure USB key store can also be Resources.

• Namespace - Defines what it means for the Environment when a requirement
and capability match in a given Namespace.

• Capability - Describing a feature or function of the Resource when installed in
the Environment. A capability has attributes and directives.

• Requirement - An assertion on the availability of a capability in the Environ-
ment. A requirement has attributes and directives. The filter directive contains
the filter to assert the attributes of the capability in the same Namespace."

Dependencies described by this model can vary widely, i.e., Import-Package
and Export-Package relationships between bundles or dependencies between
services and components or even OSGi contracts as explained later in section 5.4.
Each of those types has an according namespace in OSGi. Namespaces that are
used for predefined types of dependencies are listed in the Framework Names-
paces Specification [74]. This specification defines the semantics of these prede-
fined namespaces.
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Namespaces are denoted by a name, usually in a form similar to a unique qual-
ifying class name, i.e., de.unia.smds.namespace, and are in general used to
group a set of attributes that in turn are used to describe a capability. At-
tributes can have a type, e.g., primitive types like int, float or boolean or
lists of primitive types or a Version. A Version is a String in the form
of major.minor.macro, where major, minor and macro are positive Integers.
Version is treated as a semantic version [75] which implies it has a natural or-
dering, e.g., 1.2.0 is smaller than 1.3.0. If no type is given, the type is assumed
to be String.

A capability defined this way then can either be provided or required by any
given resource. A resource providing a capability defines a Provide-Capability
header in its manifest followed by the namespace of the capability it provides,
followed by at least all mandatory attributes with values attached to each of
them. On the other side, if a resource requires a given capability, then usually
it defines a Require-Capability header in its manifest, followed by the names-
pace of the respective capability, followed by at least one filter for possible val-
ues of an attribute of the given capability. Requirements also can be declared to
be usable by more than one other resource through their cardinality attribute.
Additionally, requirements can be declared to be mandatory or optional.

The aforementioned filters in OSGi are based on LDAP filters [36]. The string
representation of an LDAP search filter uses a prefix format and is defined by
the grammar defined in Listing 5.1.

filter ::= ’(’ filter -comp ’)’
2 filter -comp ::= and | or | not | operation

and ::= ’&’ filter -list
4 or ::= ’|’ filter -list

not ::= ’!’ filter
6 filter -list ::= filter | filter filter -list

operation ::= simple | present | substring
8 simple ::= attr filter -type value

filter -type ::= equal | approx | greater -eq | less -eq
10 equal ::= ’=’

approx ::= ’~=’
12 greater -eq ::= ’>=’

less -eq ::= ’<=’
14 present ::= attr ’=*’

substring ::= attr ’=’ initial any final
16 initial ::= () | value

any ::= ’*’ star - value
18 star - value ::= () | value ’*’ star - value

final ::= () | value
20 value ::= <see text >

attr ::= <see text >

Listing 5.1: Grammar for LDAP search filters [76]
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This grammar enables us to create simple filters, e.g., a check for an exact match
of an attribute value or its presence or absence, respectively. However, also
more complicated filters are possible, e.g., a check if the value of an attribute
is within a specified range or in general a combination of several simple filters.
Even approximations and wildcards are supported which can be a powerful
instrument in order to create highly complex filter conditions.

The interplay of requirements, capabilities and filters is exemplarily shown in
Listing 5.2 and Listing 5.3. In this example we decided to use computers and
games to depict the interplay between provided capabilities and filters for re-
quirements. Therefore, we defined two attributes:

• graphiccards: a list of strings naming the graphic card provided by the
computer

• ram: a positive integer specifying the amount of RAM build into the sys-
tem

Both attributes are declared within the namespace de.unia.smds and the capa-
bility itself has the name system. In Listing 5.2 we defined three systems, i.e., a
High-End-System, a Medium-System and a Low-End-System. The High-End-Sys-
tem offers two graphic cards, i.e., one from NVidia and an onboard one, and
32GB RAM, the Medium-System offers a Radeon and an onboard graphic card as
well as 16GB RAM and finally the Low-End-System offers merely 4 GB of RAM
and an onboard graphic card.

Bundle -Symbolic -Name: High -End - System
2 Provide - Capability :

de.unia.smds. system ;
4 de.unia.smds. system = system ;

graphiccards :List <String >=" nvidia , onboard ";
6 ram:Long =32

8 Bundle -Symbolic -Name: Medium - System
Provide - Capability :

10 de.unia.smds;
de.unia.smds. system = system ;

12 graphiccards :List <String >=" radeon , onboard ";
ram:Long =16

14
Bundle -Symbolic -Name: Low -End - System

16 Provide - Capability :
de.unia.smds;

18 de.unia.smds. system = system ;
graphiccards :List <String >=" onboard ";

20 ram:Long =4
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Listing 5.2: Definition of hardware capabilities of a system

We now define two games that require specific hardware in order to be playable,
i.e., a High-End-Game and a Casual-Game. The High-End-Game requires at least
16GB RAM or more and either a NVidia or a Radeon graphic card in order to be
playable. This is expressed in Listing 5.3 as a filter in form of (&(|(graphiccard-
=nvidia)(graphiccard=radeon))(ram>=16)), combining three simple filters into
one. When this filter is applied, only the High-End-System and Medium-System
of Listing 5.2 would satisfy the requirements posed by High-End-Game.

In contrast, the Casual-Game merely requires at least 4GB RAM but no specific
graphic card. Therefore, the filter for the Casual-Game makes use of a wildcard
operator * which is equivalent to an existential quantifier, whereby every sys-
tem defined in Listing 5.2 would satisfy this requirement.

Bundle -Symbolic -Name: High -End -Game
2 Require - Capability :

de.unia.smds. system ;
4 filter :="(&( de.unia.smds= system )(|( graphiccard = nvidia )( graphiccard = radeon )

)(ram >=16) )"

6 Bundle -Symbolic -Name: Casual -Game
Require - Capability :

8 de.unia.smds;
filter :="(&( de.unia.smds= system )( graphiccard =*)(ram >=4))"

Listing 5.3: Definition of hardware requirements of a game

As the capability definitions shown in Listing 5.2 have to be written by hand
and the IDE does not offer any support in this regard, we leverage a mechanism
newly introduced in OSGi’s R7 specifications to enhance the handling of those
capabilites: package annotations.

Package annotations have been introduce in OSGi’s R7 specification in order to
be able to declare capabilities directly in the code, thus getting partial support
by the IDE, instead of writing them entirely by hand which is rather error-prone.
Therefore, the OSGi specification defined several so called meta annotations,
i.e., annotations that can be used to annotate other annotations that can then
be applied to classes or packages and makes the corresponding bundle auto-
matically provide the capability defined in the meta annotation. Those meta
annotations are:

• @Capability - Define a capability for a bundle
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• @Attribute - Mark an annotation element as an attribute

With those meta annotations the capabilities presented in Listing 5.2 can now
be written as shown for High-End-System in Listing 5.4.

@Capability ( namespace = " de.unia.smds. system ")
2 public @interface SystemCap {

@Attribute (" graphiccard ")
4 String [] graphiccard ();

6 @Attribute (" ram ")
long ram ();

8 }

10 @TyperangeCap ( graphiccard ={" nvidia "," onboard "}, ram =32)
public HighEndSystem {}

Listing 5.4: Definition of system capabilities and requirements via
annotations

Requirements can only partially be enhanced through IDE support as the filter
expressions still have to be written by hand. Therefore, we decided to only use
@Capability and @Attribute annotations in our approach.

Capabilities, requirements and filters in combination with the OSGi resolver can
be used to ensure that a system composed of bundles only is runable if all re-
quirements are satisfied, thus preventing an incomplete system from being even
started. This mechanism however is only applicable on bundle level. Therefore,
it might be the case that the available bundles in the system provide all capa-
bilities necessary, but the component within those bundles are referencing the
wrong component and thus would lead to a malfunctioning system.

Hence, we also utilize another mechanism provided by OSGi that has already
been introduced in subsection 4.3.1, i.e., properties and target filters of compo-
nents and their references.

5.2.3. Component Property Types and Target Filters

Although, we already introduced the concepts of component properties and
their target filters in subsection 4.3.1, we have to detail them as we will use some
more advanced mechanisms than the already introduced ones in our following
approach.
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The @Component annotation is a compile time annotation that is used by exter-
nal tools to detect for which classes a declarative services xml file should be
generated in the OSGI-INF folder of a bundle. An xml file produced by such
an external tool for a simple component with one property as depicted in List-
ing 5.5 is shown in Listing 5.6

@Component ( property =" test=TEST ")
2 public class ExampleComponent {}

Listing 5.5: Definition of a declarative service with a property

The amount of work needed for defining the component as a DS is drastically
reduced as well as the chance to introduce an error into the xml. However, com-
mon components used in OSGi usually have more than one property, which
rapidly can lead to complex and confusing lists of properties being declared
within the @Component annotation’s property property. Therefore, the OSGi
R7 specification introduces a new concept called ComponentPropertyType that
again reduces the amount of work needed to define a large amount of proper-
ties, thus reducing the risk of introducing an error and even providing a type-
safe access of those properties that is supported by IDEs.

<?xml version ="1.0" encoding ="UTF -8"?>
2 <scr:component xmlns:scr =" http: // www.osgi.org/ xmlns /scr/v1 .3.0" name="de.unia.

smds. ExampleComponent ">
<property name="test" type=" String " value ="TEST"/>

4 <implementation class ="de.unia.smds. ExampleComponent "/>
</ scr:component >

Listing 5.6: Definition of a declarative service with a property in xml

Again OSGi leverages the use of meta annotations in order to achieve this goal.
The ComponentPropertyType annotation can be used to annotate other annota-
tions that were so far used to describe configurations of components in a type-
safe way. In Listing 5.7 we reused the previously introduced example of sys-
tems and games in order to exemplify the usage of ComponentPropertyTypes
for components and references. The ComponentPropertyType annotation is ap-
plied to our self-defined System annotation. This annotation represents the
configuration for a component, defining the properties graphiccards and ram
which will be translated by an external tool into system.graphiccards and
system.ram. The name of the annotation serves as namespace for the prop-
erties. We only used one word, i.e., System as annotation name, but given
we used a camel-cased name like SystemSomething this would be translated
into system.something. A component that is additionally annotated with the
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@System annotation will automatically be registered in the OSGi registry with
the respective values given for the two attributes, e.g., HighEndSystem will be
registered with the interface IHighEndSystem and the properties system.-
graphiccards:List<String>="nvidia,onboard" and system.ram=32. Another
component, e.g., HighEndGame then can use these properties to filter for them
within a @Reference target filter.

@ComponentPropertyType
2 public @interface System {

String [] graphiccards ;
4 long ram;

}
6

@Component
8 @SmdsCapSystem (

graphiccards ={"nvidia , onboard "},
10 ram =32

)
12 public class HighEndSystem implements IHighEndSystem {}

14 public class HighEndGame {
@Reference ( target ="(&(|( system . graphiccard = nvidia )( system . graphiccard =

radeon ))( system .ram >=16) )")
16 IHighEndSystem highEndSystem ;

}

Listing 5.7: ComponentPropertyType annotated annotation applied to a
component

This mechanism can be used to define complex property collections for a com-
ponent that can be safely applied via annotations that are supported by IDEs.

Cap-Req-Filter Property-Filter
Level of Abstraction Bundle Component
Place of Definition Manifest service.xml

Used Mechanisms
Requirements
Capabilities
Filters

Properties
Filters

Effect Prevents Bundle
Resolving

Prevents Component
Resolving

Table 5.1.: Comparison between Capabilities-Requirements-Filter mechanism
and Properties-Filter mechanism

Table 5.1 summarizes the differences between both presented mechanisms. Ca-
pabilities, requirements and filters are useful in order to prevent bundles form
even starting or a system preventing from being assembled if not all needed
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parts are in place. Properties and filters can be used to prevent a complete sys-
tem from malfunctioning due to components being assembled in the wrong
way.

5.2.4. OSGi Registry and Proxies

Until now we presented two different concepts that can be used to restrict which
bundles my be started in combination, i.e., requirements and capabilities, as
well as to be used for fine-grained component selection during reference in-
jection, i.e., ComponentPropertyTypes. What is missing is a mechanisms that
allows us to also enforce specific rules for the interplay of components at run-
time, i.e., not only at the time of reference injection but also for the time when
the service of a component is actually used by another component.

This is where OSGi’s Service Hook Service Specification [77] comes into play.
These hooks enable arbitrary code to participate in the OSGi framework’s ser-
vice primitives: publish, find and bind. One capability of those hooks that is
especially intriguing is the possibility to proxy another service transparently
for a specific bundle. Or in general proxy all service calls and thereby adding
cross-cutting functionality to all bundles in one place.

For this to work properly a bundle has to register a service that implements
the interfaces EventHook and FindHook. A EventHook is called every time a
service is registered, modified or unregistered, thus being the perfect place for
adding proxies for those services to the system. A FindHook in contrast is called
every time a service is requested, e.g., when a new component comes up and
has a reference to another service. Therefore, this is the perfect place to hide
existing services and replace them with their respective proxy. For creating ar-
bitrary proxies, Java already offers several predefined concepts, see [78], like
InvocationHandlers or the Proxy class with its static factory methods.

In order to illustrate the usage of those concepts we defined a proxy for all ser-
vices in an OSGi runtime in Listing 5.8 that shows how to log every service
invocation that is happening during runtime without changing the code of the
service itself. Therefore, we defined a class LogEventHook which registers a
proxy for all services that are registered. The class LogFindHook removes the
proxied service from the find result so that another component will not see the
service itself, but only the proxy which is added to the find results. Finally,
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an invocation of a method on the service is delegated to our proxy implemen-
tation LoggingHandler which implements the InvocationHandler interface
from Java’s java.lang.reflect package. This InvocationHandler is now called
everytime a service is invoked and subsequently logs this method call via re-
trieving the called method’s name via reflection.

@Component
2 public class LogFindHook implements FindHook {

...
4

@Override
6 public void find( BundleContext bc , String name , String filter , boolean

allServices , Collection references ) {
references . remove ( proxiedService );

8 references .add( proxy );
}

10 }

12 @Component
public class LogEventHook implements EventHook {

14 ...

16 @Override
public void event ( ServiceEvent event , Collection contexts ) {

18 proxy = Proxy . newProxyInstance ( classloader , interfaces , new
LoggingHandler ());

}
20 }

22 public class LoggingHandler implements InvocationHandler {
private static Logger LOGGER = LoggerFactory . getLogger (

DynamicInvocationHandler . class );
24

@Override
26 public Object invoke ( Object proxy , Method method , Object [] args) throws

Throwable {
LOGGER .info(" Invoked method : {}", method . getName ());

28 return method . invoke (...) ;
}

30 }

Listing 5.8: Simplified service proxying
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5.3. Mapping

In this section we show how developers can benefit from the usage of OSGi in a
generated, modular code base with regard to enforce contracts that go beyond
the syntactical level of simple interfaces and their declared types for method
parameters and their return values. First, we will introduce several capabili-
ties that serve as examples for what can be done with OSGi’s requirement and
capability model, accompanied by corresponding component property types.
The defined capabilities serve as contracts at buildtime, while the component
property types are used at runtime during the dependency injection phase for
each component. Finally, we will show how the contracts defined by require-
ments, capabilities and component property types can be leveraged by a central
component to enforce those contracts at runtime throughout each service invo-
cation. This will be done by leveraging OSGi’s service hooks and Java’s proxy
mechanisms.

5.3.1. Compile Time and Dependency Injection Time Contracts

In order to enable developers of SCSS to easily show the semantic equivalence
of two or more components within a system, we will provide four different ca-
pabilities and their corresponding properties that will leverage OSGi’s resolver
in order to automatically show satisfaction or rejection of a component or bun-
dle intended to be a substitute for another one. For bundles those capabilities
can be used to enforce semantic equivalence as guaranteed by a developer at
compile time, while the corresponding component property types enforce this
contract at runtime, more precisely at dependency injection time, i.e., when-
ever a reference to another service is injected. In the following we use the word
"capability" in order to describe both, capability and its corresponding proper-
ties.

The four capabilities target different scenarios that can be mapped onto a gen-
eral requirements, capabilities, properties and filtering system as presented in
subsection 5.2.2. The first capability targets type ranges for primitive types that
are used as parameters or return values in methods of components. A range of
values can be specified that is accepted by the respective method. The second
capability can be regarded as an extension of the first one and maps pre- and
post-conditions that can be given for a specific method. This enables developers
to define a range of states within which their method will work as intended as
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well as the possible range of outcomes that can be expected by a caller. The third
capability targets functional requirements as jitter and latency. This capability
defines the maximum amount of time a method may execute and a range within
which this execution time may vary. Finally, we present a hardware capability
that complements the aforementioned one as usually the time a method needs
to execute depends on the hardware it is running on.

Those four capabilities are explained in detail in the following subsections. For
each capability we first define the namespace and its attributes, followed by a
detailed example on how to apply the capability to either a method or a bun-
dle.

5.3.1.1. Value Range Capability

Components of a SCSS often represent sensors, actuators or other parts of the
real hardware of the system. Due to physical restrictions those parts often only
work under specific conditions, e.g., an actuator only works within a specific
temperature range as, if it gets too hot or too cold, the mechanical parts run the
risk to malfunction or even get irrevocably damaged. Especially a damage to
a non-reachable embedded system, e.g., a satellite or spacecraft, would pose a
significant risk, be it financial or safety-critical in terms of human lives.

Thus, we will offer a capability that enables developers of such components to
specify ranges of values they are able to work with, e.g., a specific temperature
range, whereby we only support primitive types, due to restrictions of OSGi
and because complex types or any sort of collection would go beyond the scope
of this work.

de.unia.smds;
2 de.unia.smds= typerange ;

class . interface : String ;
4 class . method : String ;

parameter .x. range . minimum [. excluding ]: double ;
6 parameter .x. range . maximum [. excluding ]: double ;

parameter .x. regex : String ;

Listing 5.9: Definition of a type range capability

In Listing 5.9 we provided a capability that can be leveraged to describe the
allowed type range of method parameters, thus enabling a developer to re-
strict the usage of this method to a limited set of possible input parameter val-
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ues. The capability is defined within the namespace de.unia.smds, with name
typerange and provides five different attributes.

The first one, i.e., parameter.interface, is of type String and together with
class.method, also of type String, is used to unambiguously define the inter-
face of a component and method to which this capability belongs to. class.in-
terface for example would be the fully qualified class name, e.g., de.unia.-
smds.contracts.RestrictedTypesInterface, whereas class.method would ref-
erence the name of the respective method within this class, e.g., restricted-
TypesMethod. RestrictedTypesInterface is one of possibly several interfaces
a class within the bundle implements. We chose to rather use the interface
instead of a class as otherwise we would leak implementation details to other
bundles. Therefore, we adhere to the best practices of OSGi which registers im-
plementation classes with their respective interfaces and only expose one of
those interfaces to other bundles.

The other three attributes, i.e., parameter.x.range.minimum, paramter.x.range-
.maximum and paramter.x.regex, can then be used to describe the different
primitive parameters of a method. Depending on the type of each parameter ei-
ther the use of paramter.x.range.minimum and paramter.x.range.maximum is
appropriate, i.e., when describing the possible values of a numerical paramter,
e.g., long or float, or the use paramter.x.regex is appropriate in order to de-
scribe the possible values of a String or char parameter.

Bundle -Symbolic -Name: RestrictedTypesBundle
2 Provide - Capability :

de.unia.smds;
4 de.unia.smds= typerange ;

class . interface : String =de.unia.smds. contracts .
RestrictedTypesInterface ;

6 class . method : String = restrictedTypesMethod ;
parameter .0. regex : String =[0 -9A-Z]*;

8 parameter .1. range . minimum : double =0;
parameter .1. range . maximum : double =20;

Listing 5.10: Type range capabilities within bundle manifest

Per default paramter.x.range.minimum and paramter.x.range.maximum are in-
cluding if not explicitly defined otherwise by extending this attribute to parame-
ter.x.range.minimum.excluding or paramter.x.range.maximum.excluding re-
spectively. The x within the attribute names refers to the position of a parameter
within the method signature starting at 0, e.g., given a method restrictedTypes-
Method(String input1, Long input2), then the typerange attribute for input1
is parameter.0.regex:String. There is no explicit attribute for boolean values,
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as there is no sense in restricting a binary parameter. In case of a boolean pa-
rameter being restricted, the code of the method per default can assume this
value to be either true or false, but has not to explicitly define this fact.

An application of this capability within a bundle manifest can be seen in List-
ing 5.10. Within the manifest a Provide-Capability header is declared with
our capability and the parameters set to match the interface and its imple-
mentation shown in Listing 5.11. The first parameter input1 is defined to only
accept inputs in form of an arbitrary combination of numbers and upper letter
characters and the second parameter input2 only accepts values between 0 and
20, whereby both are included.

public interface RestrictedTypesInterface {
2 public void restrictedTypesMethod ( String input1 , long input2 );

}
4

@Component
6 public class RestrictedTypesImpl implements RestrictedTypesInterface {

@Override
8 public void restrictedTypesMethod ( String input1 , long input2 ){ ... }

}

Listing 5.11: Interface and implementation for restricted types

As already mentioned in section 5.2, by using capabilities and requirements a
developer can only express contracts on a bundle level between single bundles.
This way a system still is able to be set up wrong, i.e., components that reference
the wrong service, although the right one is provided by the system. Therefore,
we also defined the corresponding properties for components in order for those
to be referenceable by other components.

In Listing 5.12 we depicted two ComponentPropertyType annotated annotations,
i.e., TyperangeNumeric and TyperangeString, that can be used to annotate com-
ponents that want to restrict service method parameter values. As their bun-
dle level counterpart capability TyperangeNumeric and TyperangeString they
define virtually the same attributes, i.e., method for the method name, param
which is the same as x in the capability and the respective attributes to define
the range of each parameter. The attribute class.type is omitted, as it is im-
plicitly given by the component itself which implements the interface that is
normally referenced by this attribute. If a component is annotated with this
ComponentPropertyType then other components can reference it via defining a
target filter for the corresponding @Reference annotation.

The application of this annotation is also shown in Listing 5.12. The class
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RestrictedTypesImpl is annotated with TyperangeString and TyperangeNumeric
in order to restrict the parameters of its service interface to be an arbitrary se-
quence of numbers and upper letter characters for input1 and a double between
0.0 and 20.0 for input2.

@ComponentPropertyType
2 public @interface TyperangeNumeric {

String method ();
4 long param ();

double max ();
6 double min ();

exclude_min () default true;
8 exclude_max () default true;

}
10

@ComponentPropertyType
12 public @interface TyperangeString {

String method ();
14 long param ();

String regex ();
16 }

18 @Component
@TyperangeString ( method =" restrictedTypesMethod ", param =0, regex ="[0 -9A-Z]*")

20 @TyperangeNumeric ( method =" restrictedTypesMethod ", param =1, min =0.0 , max =20.0)
public class RestrictedTypesImpl implements RestrictedTypesInterface {

22 @Override
public void restrictedTypesMethod ( String input1 , long input2 ){ ... }

24 }

26 @Component
public class UserOfRestrictedTypes {

28 @Reference ( target ="(
&

30 ( typerange . numeric . method = restrictedTypesMethod )
( typerange . numeric . param =0)

32 ( typerange . numeric . regex =[0 -9A-Z]*)
...

34 )")
RestrictedTypesInterface restricted ;

36 }

Listing 5.12: Definition of type range property annotations and their usage

Those properties are then used by UserOfRestrictedTypes to reference an im-
plementation of RestrictedTypesInterface with those specific restrictions via
a target filter which is only shown in a shortened form here, i.e., only targeting
the first parameter. This way several implementations of RestrictedTypesIn-
terface can be present in a running system, each having different restrictions
regarding the parameter values they can work with, while a developer can rest
assured that he only gets the implementation that adheres to his specific restric-
tion requirements. If there is no such implementation, OSGi could not satisfy
the requirements of the component and therefore the component would not be
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able to start. Thus, there is no way to ever run a system that might malfunction
due to inappropriately calling methods with wrong parameter values.

5.3.1.2. Pre-/Post-Condition Capability

As already mentioned in subsubsection 5.3.1.1, components of a SCSS often rep-
resent sensors, actuators or other parts of the real hardware of the system and
therefore, have to to specify ranges of values they are able to work with, e.g., a
specific temperature range, due to physical restrictions of those parts.

In subsubsection 5.3.1.1 we have shown how such a restriction might look like
for parameters of methods. However, not only the parameters of a method are
of interest for a developer of a SCSS but also its return value. Thus, in this
subsection we enhance the capability presented in subsubsection 5.3.1.1 with
additional attributes that can be used to restrict the return value of a method.
By adding this additional attribute we partially enable a pre-/post-condition
semantic for methods which is an already field-proven methodology to enforce
semantic restrictions without declaring the inner workings of a method. How-
ever, our approach is not only usable for methods, but also for describing sort
of pre-/post-conditions on a bundle level.

return . regex : String ;
2 return . range . minimum [. excluding ]: double ;

return . range . maximum [. excluding ]: double ;

Listing 5.13: Return range attributes within type range capability

As our new capability is merely an enhancement of our previous capability,
we will only depict the additions we have made instead of defining the whole
capability again. This means we are reusing the namespace de.unia.smds as
well as the capability name typerange of our previous capability.

In Listing 5.13 we therefore, depicted only the additional attributes return.regex
of type String and the corresponding attributes for numerical values, i.e., return-
.range.minimum and return.range.maximum, both of type long. Those attributes
are used exactly the same way as their parameter counterparts defined in sub-
subsection 5.3.1.1, i.e., defining either a regex that denotes the form of a returned
String or the range of returned numerical value, per default including the mini-
mum and maximum value. The x part of the parameter capabilities was omitted
as there is only one return value for Java methods.
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Bundle -Symbolic -Name: RestrictedTypesBundle
2 Provide - Capability :

de.unia.smds;
4 de.unia.smds= typerange ;

...
6 return . regex : String =[0 -9]*;

Listing 5.14: Return range attribute defined within bundle manifest

As for our previous capability, we also define the corresponding properties that
can be used in conjunction with components and references. The definition of
return range properties is shown in Listing 5.15. As well as their capability
counterpart those look very similar to the type range property types shown in
Listing 5.12, apart from the fact that ReturnrangeNumeric and ReturnrangeString
both do not define a parameter attribute. This is due to the same reason men-
tioned before: Java methods only have one return value.

@ComponentPropertyType
2 public @interface ReturnrangeNumeric {

String method ();
4 double max ();

double min ();
6 exclude_min () default true;

exclude_max () default true;
8 }

10 @ComponentPropertyType
public @interface ReturnrangeString {

12 String method ();
String regex ();

14 }

Listing 5.15: Definition of return range property annotations

The usage of these ComponentPropertyTypes is the same es already shown in
Listing 5.12, i.e., they can be used to annotate a component implementing a
service interface and then be referenceable by another component through
the corresponding @Reference’s target filter.

By using this enhanced version of type ranges for both, bundles and compo-
nents, a developer is now able to define proper pre- and post-conditions for
each method defined in a service interface on component and bundle level.
Currently, this approach is restricted to primitive types, i.e., String and numer-
ical values.
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5.3.1.3. Timing Capability

Another functional requirement, besides accepting and returning only specific
value ranges, that is often posed on SCSS, is a response within a given time.
This sort of requirements falls into the category of real-time requirements and
have been introduced in subsection 2.3.2 as latency and jitter. Latency has been
defined as "[...] a measure of time between a particular event and a system’s response
to that event [...]" [24] and jitter as "[...] the variation or unsteadiness in a measured
quantity." [24].

In our current context this means the time a specific method takes to execute
and return results as well as the variation of this time, e.g., the aforementioned
method restrictedTypesMethod might take 10ms to execute and this time might
vary between 8ms and 12ms.

For the capability defined in the following subsection we decided to only use
Latency as an attribute, but in a special form: WCET. Effectively, this is the
utmost latency value measured for an execution of a method, usually added
with an additional threshold, e.g., in case of restrictedTypesMethod this would
be 12ms plus an additional threshold of 2ms resulting in a WCET of 14ms. The
threshold usually is either an empirical value derived from experiments or a
captured value for similar methods.

Bundle -Symbolic -Name: WCETBundle
2 Provide - Capability :

de.unia.smds;
4 de.unia.smds=wcet;

interface : String ;
6 method : String ;

wcet:long;

Listing 5.16: Definition of a WCET capability

The WCET capability is shown in Listing 5.16. Similar to the typerange capa-
bility the WCET capability is defined within the namespace de.unia.smds but
with wcet as name instead of typerange. Also similar to the typreange capa-
bility we need an unambiguous way to define the interface and the method
for which a WCET capability is provided, thus we have to define the two at-
tributes interface and method that are used the same way as in the typerange
capability. The last attribute, i.e, wcet finally defines the WCET for this method
in milliseconds.
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As the application of this capability follows the same rules as shown in the
previous subsections we refrain from showing it again, but directly define the
corresponding ComponentPropertyType definition.

@ComponentPropertyType
2 public @interface WCET{

String method ();
4 double wcet ();

}

Listing 5.17: Definition of a WCET property annotation

This definition is shown in Listing 5.17. The attribute method of type String is
used as its capability counterpart to define the method this WCET applies to.
The WCET is given by the eponymous attribute wcet which is of type double
and is used to define the WCET in milliseconds. The name of the interface is
again given implicitly, as the WCET annotation will be used to annotate a compo-
nent that implements a service interface.

This WCET capability can now be used by developers to even further restrict the
semantics of methods on component and bundle level. Given the requirements
of a hard real-time guarantee then a bundle or component can require the sys-
tem to provide another bundle or component to provide a specific method not
only with restricted type ranges but also to always answer within specific time
bounds. This capability will be supplemented with our last capability in the
next subsection, which deals with hardware restrictions a component or bundle
can pose to a system they are running in.

5.3.1.4. Hardware Capability

The last of our four capabilities deals with hardware requirements a bundle or
component can have. Those hardware requirements must be satisfied by the
system the bundles or components are running in, e.g., a bundle is only able
to run on a specific processor architecture, because it uses native libraries that
are compiled only against x86, or it requires a minimum amount of RAM in
order to be operable. The list of possible hardware requirements can be rather
exhaustive, therefore we restricted our approach to only address the most com-
mon ones, i.e., RAM, CPU frequency, architecture, disk. Those are features that
are usually offered by any platform. Others might be specific sensors or actua-
tors, graphiccards or external conditions, as available bandwith for an internet
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connection.

Bundle -Symbolic -Name: HardwareBundle
2 Provide - Capability :

de.unia.smds;
4 de.unia.smds= hardware ;

architecture : String ;
6 cpufreq :long;

ram:long;
8 disk:long;

Listing 5.18: Definition of a hardware capability

As out other capabilities before, the hardware capability defined in Listing 5.18
uses de.unia.smds as namespace and defines its own name within it, i.e., hard-
ware. The four properties target the aforementioned general properties of a sys-
tem. architecture describes the architecture of a system, e.g., x86 or ARMv7,
in form of a String. cpufreq defines the frequency the CPU of the system works
at in Hertz, e.g., 1000000 would describe a CPU with frequency 1MHz. This ex-
cludes all CPUs working at a lower frequency than 1Hz, but we believe that this
is sufficient for the vast majority of systems out there today. ram is used to de-
scribe the amount of RAM a system has in terms of Byte, e.g., 1024 would define
a system to have one KByte. Finally, disk is used to also express the amount of
memory, but this time for disk memory, which is usually larger than RAM. It is
also given in Byte.

Although, the hardware capability is not bound to a specific method or inter-
face it can still be used at component level to describe components that repre-
sent the system a SCSS is running on. Therefore, we also defined a Component-
PropertyType for hardware, as can be seen in Listing 5.19.

@ComponentPropertyType
2 public @interface Hardware {

String architecture ();
4 long cpufreq ();

long ram ();
6 long disk ();

}

Listing 5.19: Definition of a hardware property annotation

The previously described attributes of Listing 5.18 are repeated in Listing 5.19.
As there is no coupling to an interface it has not be implicitly derived by the
interface of the class Hardware is annotated to.

The capability and ComponentPropertyType defined in this subsection can be
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used by a developer to unambiguously describe the capabilities of the system
the SCSS is running on. Thus, bundles and components can define requirements
on hardware level that have to be satisfied in order to run them appropriately.
This eliminates the risk of running a component or a bundle on hardware that
is not fit to run it. This could be the case for a too slow processor that is not
able to execute all methods within their defined WCET and therefore will break
the scheduling that would be working on an appropriate machine. Also out of
memory situations could be handled by this capability by exactly defining how
much RAM and disk space bundles and components expect to be available.

5.3.2. Runtime Contract Enforcement

In the former subsection we illustrated several capabilities together with their
corresponding component property types that enable a general contract defi-
nition for different use-cases, e.g., type value ranges, pre-/post-conditions and
even hardware dependencies and WCET for methods.

However, until now all those contracts rely on the thoroughness of a developer
who has to write those contracts by hand. No third party is involved yet that
ensures the compliance of the written or generated code with the stated values
of the contract. Therefore, in this subsection we propose an additional runtime
component that is able to check some of the above named capabilities at run-
time, thus enforcing the compliance of deployed code with contracts that they
are bound to.

This component makes heavy use of OSGi’s service hooks and Java’s proxying
mechanisms, see subsection 5.2.4. For the sake of brevity, the component will
only support String type value ranges, but could be easily adapted to also sup-
port pre- and post-conditions or other types of contracts defined by a developer.
In order to enforce value range types at runtime we will have to proxy all ser-
vices that declare such a contract. Therefore, we have to register an EventHook
that takes care of registering a proxy for each of those services. In Listing 5.20
we depicted the event method of such an EventHook, which is called before
event delivery, i.e., registered, unregistered, modified. First, we check if the
service even needs proxying by looking for the property method which should
be present if the respective component property type annotation was used at
compile time. If that is the case, then we make sure this service is not already
proxied, thus preventing an infinite proxy loop. Finally, we extract the prop-
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erties relevant to the proxy, i.e., param, denoting the position of the parameter
within the method and regex which defines all possible values this parameter
might represent. Those are subsequently passed to the method that creates the
proxy for this service.

@Override
2 public void event ( ServiceEvent event , Collection contexts ) {

final ServiceReference serviceReference = event . getServiceReference ();
4 String method = serviceReference . getProperty (" method ");

boolean isProxied = serviceReference . getProperty (" isProxied ");
6 if ( method = null && ! isProxied ) {

Bundle bundle = serviceReference . getBundle ();
8 switch ( event . getType ()) {

case REGISTERED : {
10 String regex = serviceReference . getProperty (" regex ");

int parameter = serviceReference . getProperty (" param ");
12 String [] propertyKeys = serviceReference . getPropertyKeys ();

Properties properties = buildProps ( propertyKeys , event );
14 String [] interfaces = ( String []) serviceReference . getProperty (

" objectClass ");
Class [] toClass = toClass ( interfaces , bundle );

16 proxyService (bundle , toClass , properties , this. getClass ().
getClassLoader () , new StringContractProxy (bc ,
serviceReference , method , parameter , regex ));

18 break ;
}

20 ...
}

22 }
}

Listing 5.20: Scetched EventHook for a contract enforcement component

In Listing 5.21 we depicted the proxy that is actually enforcing the contract,
i.e., StringContractProxy. First, the regex given to this proxy is compiled to
a regex pattern which then is used during method invocation to check if the
passed string adheres to the regex defined withing the contract. If it matches
then the actual service is called with the given value and the proxy returns the
same value as the original method would have. Otherwise, a message is printed
stating a contract violation has happened and a null value is returned. This is
a rather simplistic default behavior, but could easily be adapted to be a more
sophisticated, centralized contract violation handling facility.

public class StringContractProxy implements InvocationHandler {
2 ...

private Pattern pattern ;
4

public StringContractProxy ( ... String method , int parameter , String regex
) {

6 ....
this. pattern = Pattern . compile ( regex );
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8 }

10 @Override
public Object invoke ( Object proxy , Method method , Object [] args) throws

Throwable {
12 Object invoke = null;

if( pattern . matcher (args[ parameter ]). matches ())
14 invoke = method . invoke ( bundleContext . getService ( serviceReference ),

args);
else

16 System .out. println (" Contract Violation !");
return invoke ;

18 }
}

Listing 5.21: StringContractProxy enforcing contracts at runtime

In order to force all components in a system to really use our proxy, at least
in sensible cases, we finally have to define our own FindHook that intercepts all
calls to the OSGi registry whenever a bundle or a component asks for references
to a specific service. In Listing 5.22 we depicted such a FindHook implementa-
tion. This implementation is somewhat simplified as it merely checks if the
property isProxied is set to false and if so removes this service from the re-
turned list of possible target services. Given the case that more than one type
of proxy is deployed to a system, then this implementation might leave them in
the returned list too. The implementation also ignores the target filter entirely.
However, in our small example this FindHook implementation would only re-
turn proxied services which subsequently would enforce the contracts posed on
theses services.

@Override
2 public void find( BundleContext bc , String name , String filter , boolean

allServices , Collection references ) {
Iterator iterator = references . iterator ();

4 while ( iterator . hasNext ()) {
ServiceReference sr = ( ServiceReference ) iterator .next ();

6 if (sr. getProperty (" isProxied ")) {
iterator . remove ();

8 }
}

10 }

Listing 5.22: FindHook find method implementation removing all non-
proxies
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5.4. Related Work

In this section we first examine approaches that are also promoting contracts
for component-based design in general, followed by approaches that are used in
practice for Java as it is our target language. Finally, we demarcate our approach
from OSGi contracts, which are an already standing concept but do not fulfill
the requirements we had for our definition of contracts.

5.4.1. General Contract Concepts

In [79] an approach is proposed to write contracts for components either in form
of pre- and post-conditions or in the form of interface state machines via the
Abstract State Machine Language that is proposed by the authors. The Ab-
stract State Machine Language is based on Abstract State Machines as defined
by [80] and enables the full behavioral description of a component. The ap-
proach targets the .NET runtime, i.e., languages like C#, VisualBasic.NET and
many other languages running on top of the Common Language Runtime. In-
stead of static checking during compile time the authors of [79] intend to check
contracts during runtime by using monitors that check a specific implementa-
tion against its specification, whereas our approach targets both, compile time
checks so that incompatible bundles can not be started together and also run-
time checks, enabled by OSGi that ensure a specific component is not started
as long as its requirements are not satisfied and given the case it is started its
contract is dynamically monitored. Another difference is the targeted language
or virtual machine. [79] targets the Common Language Runtime, whereas our
approach is targeting the JVM and specifically OSGi on top of it. Although, [79]
therefore targets a broader range of languages, where we only target Java, [79]
has no default mechanisms for describing components other than as methods
or objects in general, where we rely on OSGi as a rather restrictive framework,
specifically aiming at component-driven development.

[81] and [82] both propagate a similar approach, i.e., the annotation of interfaces
in Java to enforce semantic contracts between implementation of an interface
and user of an interface, rather than solely relying on syntactical contracts
posed by the interface itself. The annotations of both approaches slightly dif-
fer from each other. [81] proposes comment-style @Pre, @Post and @Invariant
annotations that have to be declared within a comment of a method declaration
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in an interface (or a class) as shown in Listing 5.23. Those – sort of – an-
notations are processed by an external tool and are translated into source code
which, at runtime, checks if the respective pre-/post-conditions and invariants
hold true during execution. In case of a violation of the contract an exception is
thrown.

public interface Person {
2 /**

* @post return > 0
4 **/

int getAge ();
6

/**
8 * @pre age > 0

* @invariant age > 0
10 **/

void setAge (int age);
12 }

Listing 5.23: Definition of a contract as defined in [81]

[82] proposes real annotations similar to those presented in Listing 5.23 but with
an additional @Contract annotation that has to be present on an interface in
order to annotate its methods with either @Pre, @Post or @Invariant. The rest
of the process is similar to the approach of [81], although IDE support of [82]
is partially better as they are using annotations that a compiler can understand.
In contrast to our approach, both approaches target only runtime and only pre-
/post-conditions, where our approach targets also compile time checks and can
be applied to a broader range of possible contracts.

Both, [82] and [81], are rather old approaches dating back to 1998 and 2006
respectively. Current approaches that are used in practice are mainly found in
tests rather than production code, e.g., AssertJ [83]. AssertJ is mainly used in
unit testing to assert a specific state, i.e., a precondition, before the test starts.
At the end of a test other assertions can be used to define the state at the end
of the test, i.e., post-conditions. If used during a test, assertions can be seen as
invariants that have to hold true during each invocation of a test. Although,
AssertJ can also be used to assert specific conditions at runtime, developers
refrain from using the library this way, as it encompasses a non-neglectable
impact on runtime performance. In contrast to our approach, AssertJ is mainly
used during integration or unit tests, whereas our approach specifically targets
compile time and runtime checks.

In the context of microservices and their often REST-oriented interface design,
contract solutions like Pact [84] emerged during the last years.
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"Pact is a contract testing tool. Contract testing is a way to ensure that
services (such as an API provider and a client) can communicate with each
other."[84]

Pact provides a Domain-Specific Language (DSL) to define consumer driven
contracts, i.e., contracts that only test parts of the communication that are actu-
ally used by the consumer. Contracts that are written with Pact DSL are regis-
tered with a mock service. A consumer then fires a request to a mock provider
which compares this request with an expected request (as defined by the con-
tract). Given the request is valid the mock provider returns a minimal expected
response (as defined by the contract) which can then be verified by the con-
sumer. In contrast to our approach Pact usually is used in unit tests to verify the
part of a REST API consumers interact with, where our approach targets com-
pile time and runtime checks. Also, Pact only can be used to verify contracts
that are implemented as REST interfaces, where our approach, although not
technology independent, is not bound to any specific interface technology.

5.4.2. OSGi Contracts

A system in OSGi usually consists of a number of bundles, each encapsulating
a specific functionality. Each of of those bundles usually declares services that
shall be registered in the OSGi registry and usually those services depend on
each other. Those dependencies are reflected within the bundle manifest by
a specific header called Import-Packages, where the packages of those service
are listed that the services of the respective bundle depend on. Such a header
is depicted in Listing 5.24, where bundleA depends on classes or interfaces
defined in the package de.unia.smds.exported.package.

Bundle -Symbolic -Name: bundleA
2 ...

Import - Packages : de.unia.smds. exported . package
4 ...

Listing 5.24: Import-Packages header in bundle manifest

Another bundle bundleB exports exactly this package via declaring another
header, i.e., Export-Packages, in its manifest file, as depicted in Listing 5.25.
When bundleA is installed into an OSGi system, then a resolver tries to resolve
those dependencies before starting bundleA. If the dependency can be resolved,
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then bundleA is started, if not, then it stays in the Installed state until bundleB
is installed in the system too.

Bundle -Symbolic -Name: bundleB
2 ...

Export - Packages : de.unia.smds. exported . package
4 ...

Listing 5.25: Export-Packages header in bundle manifest

In addition to package names a bundle depends on, each package can have
a version range, e.g., [1.0.0,2.0.0) meaning all versions including 1.0.0 and
excluding 2.0.0. Those versions are based on semantic versioning [75], which
exactly defines when to increment major, minor or macro part of the versioning
scheme, thus enabling an automatic baselining approach if all bundles of a sys-
tem adhere to this versioning scheme. Unfortunately, the Java platform itself
does not version its packages and therefore breaks OSGi’s mechanism of auto-
matic resolving and baselining. Therefore, OSGi itself has introduced so called
Portable Java Contract Definitions (PJCD) [85]. This is important because those
contracts are not what we will utilize for our approach, but could easily be mis-
taken as an alternative approach based on the naming alone. OSGi’s PJCD deal
with the problem introduced by Java platform bundles that do not adhere to the
rules of semantic versioning and thus breaking the above explained mechanism
of fine grained import and export dependencies between bundles.

Therefore, PJCD enabled a developer to depend not only on exported packages
of another bundle, but also on arbitrary contracts. So instead of listing all pack-
ages a bundle depends on, it is now also sufficient to only depend on one spe-
cific attribute of another bundle. In Listing 5.26 this is exemplarily depicted for
bundleC, which now provides a general osgi.contract capability Servlet in
version 3.0., but not all the different packages that usually come with this spec-
ification and which are usually not listed by a Java platform bundle. A bundle
depending on the Servlet capability can now easily declared this by adding a
corresponding Require-Capability header in its manifest.

Bundle -Symbolic -Name: bundleC
2 ...

Provide - Capability :
4 osgi. contract ;

osgi. contract = Servlet ;
6 version ="3.0"

Listing 5.26: Contract in bundle manifest
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In order to enable PJCD the same mechanism also import and export headers
are based on was leveraged: requirements and capabilities. Although this is the
same mechanism our approach is based on, OSGi contracts target a completely
different use-case, i.e., wrong defined dependencies.
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5.5. Evaluation

For the evaluation of our approach we reused the running example presented
in section 2.1. As we already compared aadl2osgi against aadl2rtsj and the
golden standard in the former chapter, we here only compare our new approach
against aadl2osgi. As this approach does not add new mapping concepts re-
garding code generation, but only handwritten code and additional runtime
components we leave out the comparisons of generated code size as those might
vary significantly from use-case to use-case and therefore a general comparison
would make no sense. However, we again examine the throughput of our ap-
proach compared against a plain aadl2osgi solution, as well as we provide a
qualitative evaluation on different aspects of our approach for scenarios like
adding or replacing components.

5.5.1. Quantitative Evaluation

In order to evaluate our contract approach we deployed two different contract
enforcement components into our system. Both resemble in structure the ex-
ample described in subsection 5.3.2, i.e., consist of an EventHook, FindHook and
an InvocationHandler implementation which serves as a contract proxy. The
first proxy is shown in Listing 5.27 and serves as a proxy for methods that have
numbers, more precisely integer numbers, as parameters.

public class NumberContractProxy implements InvocationHandler {
2 ...

private int upperBound ;
4 private int lowerBound ;

6 public NumberContractProxy ( ... int upperBound , int lowerBound ) { ... }

8 @Override
public Object invoke ( Object proxy , Method method , Object [] args) throws

Throwable {
10 Object invoke = null;

int value = args[ parameter ];
12 if( lowerBound <= value && upperBound >= value )

invoke = method . invoke (...) ;
14 else

System .out. println (" Contract Violation !");
16 return invoke ;

}
18 }

Listing 5.27: NumberContractProxy enforcing contracts at runtime
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The proxy is given an upperBound and a lowerBound, both inclusive, that deter-
mine the value range a given parameter may be in. Given the case a parameter
is within this range the method invocation is executed, otherwise a message is
printed. This structure is similar to the one of StringContractProxy used in
subsection 5.3.2 which also is our second proxy under consideration.

For both contracts we ran message throughput benchmarks, similar to those
executed in subsection 4.5.1 in order to determine their impact on message
throughput. The results of those benchmarks can be seen in Figure 5.2.

In this figure we depicted three different calldepths, i.e., 1, 5 and 10 for three
different settings. The first setting is a normal setup as already used in subsec-
tion 4.5.1 with no contract enforcement in place, thus serving as a reference
we can compare our contract enforced solution against. The results of this
setting are labeled 1, 5 and 10 respectively. The second setting, i.e., with our
above shown NumberContractProxy in place, is labeled as n1, n5 and n10 while
the numbers again denote the calldepth. Finally, the last setting, i.e., with a
StringContractProxy in place instead of a NumberContractProxy, is labeled as
s1, s5 and s10 accordingly.

To no surprise the application of runtime contract enforcement comes at a cost
materializing in a lower throughput of both, NumberContractProxy and String-
ContractProxy setting. However, the throughput of our NumberContractProxy
still is significantly higher than the one of StringContractProxy. This differ-
ence in throughput probably stems from regular expression pattern matching
being a more costly operation than a primitive greater/smaller than compari-
son. Nevertheless, both NumberContractProxy and StringContractProxy suf-
fer from an increased calldepth as the origin aadl2osgi solution already did.
Whereby, StringContractProxy seems to suffer less than NumberContractProxy.
This difference though we can not explain and thus ascribe it to under-the-hood
optimizations of the JVM regarding strings.

It remains to be said that in general number comparisons tend to be faster than
string comparisons. Hereby, a solution with number contracts, depending on
the calldepth, runs at 1/3 the speed of a solution without contract enforcement,
where a string contract solution only runs at 1/15 of the speed of a solution with
no contract enforcement.
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Figure 5.2.: Throughput aadl2osgi without/with number/with string contract
enforcement and different calldepths

5.5.2. Qualitative Evaluation

Aside from a purely quantitative evaluation we also played through different
scenarios that put the contract based solution in contrast to the generated, mod-
ular solution in terms of restrictiveness and semantic equivalence. We will again
reuse the running example defined in section 2.1.

193



5. CERTIFIABILITY THROUGH CONTRACTS

Functional/Non-Functional Requirements For our first use-case we have cho-
sen PitchControl, RollControl and YawControl to serve as example compo-
nents that can benefit from the additional possibilities offered by our contract
based approach presented in this chapter.

All three control one degree of freedom of the quadrocopter. PitchControl con-
trols how much the quadrocopter needs to tilt in the direction of its movement
or the opposite direction and thus usually controls the speed of the quadro-
copter. RollControl does the same but for the directions shifted 90° to the
movement direction. Finally, YawControl controls the direction in which the
quadrocopter is looking by turning it around the z-axis. In order to work prop-
erly all of them need information about the current position within space of the
quadrocopter. In our running example presented in section 2.1 this informa-
tion is provided by a simulation. In reality such information usually is given by
sensor hardware, e.g., a gyroscope. Therefore, in a real-world setting our three
controllers would need a gyroscope to be present in order to work properly.
Such a requirement we are now able to express via a capability that develop-
ers can define. For the sake of simplicity we assume the hardware capability
presented in subsubsection 5.3.1.4 also has defined an attribute for sensors that
needs to be present. In such a setting our three controllers each could use such
an attribute to express their need for a gyroscope sensor to be present in order to
function properly. Otherwise the system would be prevented from even start-
ing, which, considering an autonomous flying quadrocopter with no sense of
its position whatsoever, might be just the result we would want from the very
beginning.

Another requirement could be the unit of measurement used by the compo-
nents internally. Usually it is not a good idea to combine several modules to
solve complex computations when some of those modules use other units of
measurement for physical entities than others. This is vividly shown by [86],
which mentions "[...] thruster performance data in English units instead of metric
units [...] in the software application code [...]" as one of the root causes of the
disastrous loss of Mars Climate Orbiter in 1999.

In comparison, within the setting of our former approach we weren’t able to
express such requirements at all. Therefore, a quadrocopter with no gyroscope
would have been successfully started and, once airborne, probably eventually
crashed. Thus, our approach obviously is a better fit for use-cases where soft-
ware needs to pose requirements that target its surrounding hardware or other
functional/non-functional requirements that could not be expressed directly in

194



5.5. EVALUATION

code, than an approach where those expressions are not possible.

Semantic Equivalence Aside from preventing components from starting when
their surroundings do not meet their requirements, we also explained how a
centralized component can enforce such requirements at runtime, i.e., after a
component is started. For this use-case we chose the AltitudeController to
serve as an example component. Given the case an implementation of Altitude-
Controller only works within a certain value range, e.g., 0 - 1000 meter, then
we could deploy an external component as shown in Listing 5.27 to enforce this
contract at runtime.

In such a setup the implementation of AltitdueController either is given the
right values to work with, i.e., values between 0 and 1000, or the central Number-
ContractProxy signals a contract violation which might result in a graceful sys-
tem shutdown, i.e., landing the quadrocopter immediately. The point is, the
behavior for a contract violation is defined within an external component that
monitors each component that claims to adhere to this contract. Now, given the
case a component violates the contract the system is still able to react to such
cases, e.g., via shutdown or replacing the malicious component. If such an ex-
ternal component is written and certified once, this would greatly enhance the
certification of new components that are monitored by this component.

First, the contract stated by a developer is checked at system startup and, if
the component does not resolve, prevents it from even starting. Secondly, this
component is proven to work correctly by the (certified) runtime monitor which
is able to prevent the component from doing harm to the system. Which should
assist developers at showing semantic equivalence of different components.
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5.6. Conclusion

In this section we presented an extension to our former approach aadl2osgi,
targeting not only a modular code base by design but also a concept to ex-
press dependencies between modules and their surrounding hardware as well
as other contracts. This approach enables developers of a SCSS to not only shift
structure, timing and communication-related concerns into design phase and
to create a highly modular, runtime reconfigurable system by design, but also
to express arbitrary contracts for each component which the overall system has
to satisfy in order to run them. Additionally, we proposed a concept on how
to enforce such contracts at runtime and therefore, easen the demonstration of
semantic equivalence for newly added or exchanged components. Advantages
explained in our former approaches still hold true, i.e., being able to perform
analyses regarding communication and timing during design phase, while rest-
ing assured that the implementation will reflect their design choices, as well as
enhanced maintainability and better configurability.

Within the evaluation of this approach we have shown, that those additional
benefits come with a cost, e.g., runtime contract enforcement comes with an
additional computing cost resulting in 1/5 to 1/15 the throughput of the orig-
inal system, depending on the type of contract, i.e., string based comparisons
or merely the greater/smaller than check of an integer. Applied to the autopi-
lot implementation of our former approaches, this means slower performance
during runtime, but with a simplified provision of evidence in terms of con-
tract compliance or semantic equivalence of newly added or exchanged com-
ponents.
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The first two approaches described in this work can be seen as a prototypi-
cal implementation of a model-driven, modular-by-design SCSS development
methodology. The third approach complements this methodology by further
strengthen module boundaries by declaring simple contracts between those
modules, checking them at compile time and enforcing them at runtime.

Although those three approaches present a working prototype, they are prob-
ably not complete nor sufficient to support developers of SCSS during their
everyday work. Therefore, in this chapter we present several different enhance-
ments that in our opinion could be added to our approach in order to make it
usable for real-world development scenarios.

The rest of this chapter is structured as follows: In section 6.1 we will show
which additional parts of AADL should be added to the subset of source lan-
guage constructs in order to enable the sufficient definition of a SCSS within
AADL. In section 6.2 we will elaborate our thoughts on inter-process commu-
nication as this subject has been neglected in the aforementioned approaches.
Finally, in section 6.3 we propose additional contract types that would be sen-
sible, especially in a SCSS context and also elaborate on how to enhance devel-
oper experience of our contracts with additional tooling.
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6.1. Extended Subset of AADL

In the aforementioned chapters we used merely a subset of AADL which we
considered sufficient for our different approaches. This was done due to scope
restrictions of this work, but also due to limitations posed by the chosen target
language, i.e., RTSJ, and framework, i.e., OSGi. This subset however did neither
capture the semantic possibilities given by AADL nor exhaust all capabilities of
target language and framework. Therefore, we now give a glimpse of what
other language features of AADL might be sensible to investigate further in
order to leverage the most of AADL’s semantic capabilities for SCSS.

The presented AADL subset in section 2.2 has been structured into three dif-
ferent sections, i.e., components, features and connections and properties.
The proposed subset components encompassed packages, processes, threads,
data and subprograms, where subprograms and data only played a minor role
in our approaches so far. The first extension we would propose to our approach
would therefore, be to encompass subprograms and data further into the exist-
ing approach.

Currently, subprograms are only used implicitly for the business logic executed
during different lifecycle phases of a thread, e.g., start, stop or dispatch,
where they also could be used to describe the structure of whole programming
libraries, e.g., a Math library that can be used by business logic within the life-
cycle phases of a thread, but whose code is not tied to one specific thread im-
plementation. Listing 6.1 exemplarily depicts such a library described by the
components subprogram group, subprogram, as well as by new features in
and out parameter and provides subprogram access. The definition of such
libraries would therefore, result in encompassing not only subprograms but also
subprogram groups into the extended AADL subset as subprogram groups are
used to group subprograms into sensible collections of functions that seman-
tically belong together. Subprogram groups can also be used to group other
subprogram groups, thus enabling authors of SCSS to structure their libraries
hierarchically. Method parameters and return values can also be modeled by
using in and out parameters, but might have to be restricted to only one out
parameter per subprogram as many programming languages, including Java,
only allow one return value per method. Another solution might incorpo-
rate a code generator that transforms subprograms defining more than one out
parameter into Java methods with return parameters that have to be passed by
reference. However this would then exclude primitive types, e.g., Base_Types
in Listing 6.1, from being a valid data type for an out parameter.
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subprogram group Math
2 features

sub: provides subprogram access Sub;
4 add: provides subprogram access Add;

end Math;
6

subprogram Sub
8 features

input_one : in parameter Base_Types :: float ;
10 input_two : in parameter Base_Types :: float ;

result : out parameter Base_Types :: float ;
12 end Sub;

14 subprogram Add
features

16 input_one : in parameter Base_Types :: float ;
input_two : in parameter Base_Types :: float ;

18 result : out parameter Base_Types :: float ;
end Add;

Listing 6.1: Definition of Math library via subprograms and subprogram
group

Such trade-offs must be made in order to incorporate subprograms into our
existing approaches.

The data component also would be a great addition to our approaches, as a
developer of a SCSS then would be able to declare access and provisioning of
shared data within other structures, e.g., subprograms, threads or processes.
Currently, data is only used as type descriptor in the context of data ports,
whereas data components in general can also be used to describe data struc-
tures that components can hold as global or local variable, e.g., to represent state
or for sharing data with other components via shared data access. Such an ac-
cess to a shared state variable is shown in Listing 6.2, where two subcomponents
subcomp1 and subcomp2 access the same data sharedState, kept by their par-
ent component process.impl. as can be seen in this example not only would an
incorporation of data encompass processing additional properties like Concur-
rency_Control_Protocol or Access_Right but also additional features, i.e.,
data access. Similar to the aforementioned trade-offs, the incorporation of
data components into the code generation would come with similar difficulties
regarding their mapping onto target language and framework.

process implementation process .impl
2 subcomponents

sharedState : data SharedState { Concurrency_Control_Protocol => Semaphore
;};

4 subcomp1 : thread Comp1 ;
subcomp1 : thread Comp2 ;

6 connections :
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access1 : data access subcomp1 -> sharedState ;
8 access2 : data access subcomp2 -> sharedState

end process .impl;
10

thread Comp1
12 features

sharedState : requires data access SharedState { Access_Right => Write_Only
;};

14 end Comp1 ;

16 thread Comp2
features

18 sharedState : requires data access SharedState { Access_Right => Read_Only
;};

end Comp2 ;

Listing 6.2: Definition of shared data in AADL

Aside from the aforementioned extensions to our approaches we would also
recommend to include the following AADL language constructs into a further
developed approach:

• Event Ports/Event Data Ports: Currently, our approach merely sup-
port synchronous communication through data ports and event ports
are only used for triggering mode transitions. The inclusion of event
ports and event data ports would extend our approach to be able to
support asynchronous communication. Therefore, also constructs as mes-
sage queues, queue overflows and similar mechanisms for event-based
communication must be considered, as far as they are already dictated
through AADL language constructs, e.g., through properties like Queue_-
Size, Overflow_Handling_Protocol or Queue_Processing_Protocol.

• Dispatch_Protocol: Currently, only periodic is supported for threads,
due to the scope of this work. Other protocols should be part of an ex-
tended approach in order to support sporadic, aperiodic or background
threads. Of course the inclusion of such protocols recursively implies the
inclusion of other language constructs like event ports as for example
sporadic threads are purely event triggered.

• Hardware components: Currently, we only support software related com-
ponents like process, thread or data ports. In conjunction with our ap-
proach presented in chapter 5 it would be sensible to include hardware
components too, e.g., processor, or memory which then can be used for
the values of contract properties. Given the case a software component
references a specific memory component, then the properties of this memory
component can be used to determine the amount of memory needed by
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this software component and therefore, a contract could be generated,
stating this amount of memory to be a mandatory requirement.
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6.2. Inter-Process Communication

Another rather large enhancement would be the integration of inter-process
communication into the existing approach. Until now we only have presented
a transformation from AADL to RTSJ and OSGi that implies all software com-
ponents to run in one process. Inter-process communication has been excluded
due to the scope of this work, but not due to the capabilities offered by target
language and framework. On the contrary, OSGi offers sufficient mechanisms
that directly target the distribution of software components, i.e., bundles and
components, over several processes, i.e., usually different machines or comput-
ing nodes. These mechanisms encompass OSGi’s Remote Services [87] as well
as the Remote Service Admin Service Specification [88]. Both can be found in
OSGi’s compendium specification and address the distribution of services over
remote processes. Newer specifications even further enhance OSGi’s distribu-
tion capabilities, namely the Cluster Information Specification [89] which can
be utilized to monitor the resources of a remote process, e.g., CPU and mem-
ory consumption, and the REST Management Service Specification [90] which
offers a standardized REST endpoint on each of the remote processes through
which new bundles and services can be installed, started and stopped. Now,
we first show how to export a formerly local-only service and then explain the
concepts of the Remote Service Admin Service Specification which enables the
export.

The export of a service in OSGi is fairly simple as can be seen in Listing 6.3.
All a developer has to do is to add the property service.exported.interfaces
to its component properties. The value of this property defines which of the
component’s services shall be exported and thus being able to be discovered by
a remote process. In this case we decided to export all services, i.e., interfaces,
by using the wildcard operator *.

@Component (
2 property = {" service . exported . interfaces =*"}

)
4 public class ExportedService implements IExportedService { ... }

Listing 6.3: Definition of an exported service

The different components of an implementation of the Remote Service Admin
Service Specification then take care of exporting the respective services and
making it visible to other OSGi frameworks that have their own Remote Service
Admin Service Specification implementation running. This way a developer
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of a component is freed completely from tasks like network communication,
service discovery or endpoint registration. Those are handled by additional
components like the Remote Service Admin, Topology Manager or a Discovery,
whose interplay is depicted in Figure 6.1.

Figure 6.1.: Remote Service Admin Entities [88]

Topology Managers are responsible for the distribution policies of an OSGi
framework, i.e., they listen to local services and decide which to expose. For
each service that shall be exported a Topology Manager advises the Remote
Service Admin to do the actual export. Topics like fail-over, monitoring or load-
balancing can be addressed here transparently by using a suitable Remote Ser-
vice Admin for these tasks.

A Remote Service Admin provides the basic mechanisms to import and export
services, i.e., the RemoteServiceAdmin interface defines methods like export-
Service(), importService() and its counterparts getExportedServices() and
getImportedServices(). Once advised by a Topology Manager to export a lo-
cal service a Remote Service Admin will expose this service as a remote end-
point. Vice versa, when a Topology Manager advises the Remote Service Admin
to import a Service it will create a local proxy for a remote endpoint.

Finally, a Discovery discovers remote endpoints and notifies local endpoint lis-
teners about their presence as well as it publishes local endpoints for other OSGi
frameworks.

Those three components and the mechanisms they provide for access to remote
services can be used in a transformation from an AADL model that contains
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more than one process in order to enable the communication between thread
components within them. Such a case is depicted in Figure 6.2 which is taken
from subsubsection 2.2.3.3.

Figure 6.2.: Remote connection between two processes

Here, a sender thread within the senderProcess communicates with two re-
ceiver threads, i.e., threadA and threadB, that reside within another process,
i.e., receiverProcess. Within Java those processes would usually be two dif-
ferent JVMs, each running in its own process, probably even on different phys-
ical machines. Therefore, a transformation from AADL to OSGi would have to
take care of distributing the generated components and bundles accordingly. It
must also ensure that the components can find each other and subsequently be
able to communicate with each other in order to build a working system.

Currently, we translate each part of a semantic connection into an OSGi compo-
nent, thus the transformation would need to decide within which process con2
would have to reside, or in larger scenarios where not only one part of a seman-
tic connection is outside of a process, how to aggregate those connections into
one logical unit. As soon as a decision is made whether the part of a semantic
connection that resides outside of any process is integrated into either sender
or receiver, the transformation can then apply the aforementioned property
service.exported.interfaces to this part of the semantic connection. Addi-
tionally, both processes have to incorporate implementations of the Remote Ser-
vice Admin Service Specification, so that the remote service, i.e., a component
representing con2, appears as a local one to the components residing within the
other process.
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This way, large systems spanning several processes could be defined within
AADL and easily be transformed into a working OSGi system that is subse-
quently deployed to the respective physical machines.

However, this approach surely will pose several challenges in order to work de-
pendably, e.g., additional metadata must be generated describing the deploy-
ments for each machine, encompassing not only the generated code, but also
additional components necessary to form a working system, e.g., all compo-
nents of an implementation for the Remote Service Admin Service Specification
or additional components implementing specific communication protocols if
needed. Also the logic deciding which parts of a semantic connection that are
not defined within the boundaries of a process in AADL to deploy on which
physical machines might pose challenges that are not yet obvious regarding
edge-cases.
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6.3. Enhanced Contracts

The last enhancements we propose affect the contracts presented in chapter 5.
First, in subsection 5.3.1 we presented several possible contract types that we
consider sensible in the context of SCSS. However, the presented ones only pose
a fraction of what is possible or even sensible in the first place. Therefore, in
order to enhance this approach even further we would propose several different
topics that should be covered by future contract types. One good example for
such additional contracts might be different Security Integrity Level (SIL) that
can be attached to different components.

In this context we will use Automotive Security Integrity Level (ASIL) level,
taken from ISO 26262, which can take a alphabetic letter value ranging from
A to D, where D is the highest SIL and A the lowest one, respectively. Given
the case we defined an additional contract for those, then a developer is able
to force one component of a specific SIL to only be usable in conjunction with
other components of the same or lower SIL. This way a developer can set a
maximum SIL for the platform the components are running on, which can help
during certification, as the platform usually has to certified for the highest SIL
any of its component has.

Other additional contracts might be the extended hardware contract we used
during evaluation, see section 5.5, where not only CPU and RAM are given by
the contract, but also a generic description of sensors or actuators the compo-
nent needs to be runable.

Another rather large enhancement would be the addition of a generator for
those contracts right from the AADL model. Some of the information needed
for the contracts proposed in this work are already contained within the AADL
models, e.g., used hardware and also type value ranges would be possible. Oth-
ers would need the definition of an additional property set in AADL. Property
sets are an extension mechanism provided by AADL so a developer can de-
fine his own properties for specific AADL component types, e.g., a property of
type String called pre-condition for all components of type subprogram, or its
counterpart a post-condition.

Those additional properties then could be used during transformation to auto-
matically generate requirements and capabilities or component property types
accordingly for the different components. Thus, freeing the developer from
writing those capabilities/requirements/component property types by himself.
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7. CONCLUSION AND OUTLOOK

This work presented three stacking approaches.

First, we presented an approach that offers a transformation between AADL
and plain RTSJ, while keeping the semantics defined in the AADL model un-
touched. This approached aimed at proving the general feasibility of such
a transformation in order to achieve a more abstract goal defined in subsec-
tion 1.2.1, i.e., providing a methodology for SCSS, which enables developers to
reduce common errors and enables them to discover uncommon errors during
early stages of the development process.

The solution proposed in chapter 3 therefore, offers a possible solution to tackle
the accompanying problems also defined in subsection 1.2.1, i.e., increasing
cost of maintenance and operations in relation to cost for actual development,
time wasted for discovery of failures found during testing instead of during de-
sign phases and delayed delivery resulting from the two aforementioned prob-
lems. Our approach enables developers of SCSS to shift structure, timing and
communication-related concerns into design phase. Hence, they are able to per-
form analyses regarding communication and timing during design phase, while
resting assured that the implementation will reflect their design choices. The ap-
plication of our approach is shown via the implementation of an autopilot for
quadrocopter and shows three advantages of this approach over an implemen-
tation without code-generation, i.e., the speed-up of development by letting the
programmer focus on application logic, a less error-prone transition from the
design of a system to its implementation and the possibility of an earlier detec-
tion of timing- or communication-related errors in the system.

Second, we tackled shortcomings of the first approach regarding maintainabil-
ity of the generated code base while at the same time tackling the challenge de-
fined in subsection 1.2.2, i.e., providing a possibility for developers of SCSS, to
enhance maintainability of the final system by design and enabling hot updates
of running systems during design time. In order to overcome this challenge we
introduced an additional layer of indirection to our technology stack by intro-
ducing OSGi as an underlying runtime framework but also as a methodology
for common issues regarding modularity of Java code, like encapsulation on .jar
level, dependency injection or a matured dependency model between .jars. By
using OSGi as an underlying modularity framework we had to change some
basic transformation rules formerly established by our first approach in favor
of a more modular generated code base, i.e., how inheritance is handled or how
features are represented within the generated code. This approach enables
developers of a SCSS to not only shift structure, timing and communication-
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related concerns into design phase, but also enables them to create a highly
modular, runtime reconfigurable and, most important, a more easy to main-
tain system by design. Advantages explained in our former approach still hold
true, i.e., being able to perform analyses regarding communication and tim-
ing during design phase, while resting assured that the implementation will
reflect their design choices, whereby new advantages, i.e., enhanced maintain-
ability and better configurability are added on top. Problems as stated in sub-
section 1.2.2, i.e., updates being not allowed to restart the system or not being
allowed to affect other parts of the system, as well as systems not being easily
extendable, could be solved as was shown during our evaluation. However,
during the same evaluation we also have shown that those additional benefits
come with a cost, e.g., configurability comes with an additional computing cost
as well as an increased memory consumption. Therefore, the benefits provided
by our approach always have to be evaluated against its drawbacks within the
context of a specific system design.

Third, we enhanced the semantic expressiveness of pure interfaces of OSGi
services by providing different requirement-capability definitions that can be
leveraged during runtime by an OSGi resolver to determine if a new service im-
plementation is semantically equivalent to an old one. The proposed requirement-
capability definitions encompass pre-/post-conditions as well as WCET state-
ments and also hardware dependencies, so that not only dependencies between
software modules are expressible, but also dependencies between software mod-
ules and the underlying hardware that is a mandatory requirement to run these
software modules. Finally, we introduced a concept allowing us to enforce the
contracts of modules at runtime and centralizing contract violation handling
independently from the components defining the respective contract. This ap-
proach tackled the challenge defined in subsection 1.2.2, i.e., enable developers
of SCSS to easily show semantic equivalence of their updates in order to easen
the certification of partial updates of existing systems. The approach shown
in chapter 5 thus provides developers with a possibility to narrow down the
semantic borders of a component so far that a partial certification is easend in
terms of demonstrating that one component can only be exchanged with an-
other if it is semantically equivalent to another one. The feasibility of our ap-
proach was shown through a set of qualitative, scenario-based evaluation cases.
Additionally, a qualitative evaluation was done which examined the impact of
runtime contract enforcement on message passing in comparison to a solution
without contracts. This evaluation indicated roughly a 80% performance loss in
comparison to a non-contract solution.
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7. CONCLUSION AND OUTLOOK

The presented approaches form an appropriate foundation for the aforemen-
tioned enhancements of model-driven development of highly modular SCSS
and thus, serve as a suitable basis for further research.
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Part IV.

ANNEX





List of Abbreviations

AADL Architecture Analysis and Design Language

RTSJ Real-Time Specification for Java

OSGi Open Services Gateway initiative

JSE Java Standard Edition

MDD Model-Driven Development

JVM Java Virtual Machine

.jar Java Archive

SLOC Source Lines of Code

USAF United States Air Force

JIT Just In Time

AOT Ahead Of Time

JSR Java Specification Request

LED Light Emitting Diod

JNI Java Native Interface

API Application Programming Interface

JRE Java Runtime Environment

DS Declarative Services

CDI Contexts and Dependency Injection



LIST OF ACRONYMS

DI Dependency Injection

OS Operating System

DS Declarative Service

LDAP Lightweight Directory Access Protocol

FODA Feature-Oriented Domain Analysis

UML Unified Modeling Language

LoC Lines of Code

UML Unified Modeling Language

REST Representational State Transfer

SCSS Safety-Critical Software Systems

CGSS Consumer-Grade Software Systems

SysML Systems Modeling Language

CB Connection Broker

SCR Service Component Runtime

JMH Java Microbenchmark Harness

BPEL Business Process Execution Language

WSDL Web Service Description Language

JDL JHipster Domain Language

IDE Integrated Development Environment

PJCD Portable Java Contract Definitions
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LIST OF ACRONYMS

WCET Worst-Case Execution Time

DSL Domain-Specific Language

JMH Java Microbenchmark Harness

SIL Security Integrity Level

ASIL Automotive Security Integrity Level

EAST-ADL Electronics Architecture and Software Technology -
Architecture Description Language
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