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Abstract

Nowadays, simulation is the key technology to shorten
development times, while increasing the functionality
of products. In this context simulation is always used
in order to verify characteristics of the product under
consideration. In the past simulation was mostly done
offline, i.e. not synchronized to real-time. Due to the
increased computing power, the relevance of real-time
simulation has increased in the last years. Therefore,
several simulation environments offer a toolchain for
real-time simulation, e.g. the Real-Time Workshop in-
tegrated in Simulink. In this paper such a toolchain
(although not yet fully automated) for the OpenMod-
elica Compiler (OMC) is presented using a hydro-
mechanical system as an example. Thereby, this pa-
per describes a modular C++ Simulation-Runtime for
the OMC including a numerical integration method
suitable for real-time simulation as well as modeling
details of the example system using Modelica.Key-
words: real-time; simulation; runtime; OpenModelica

1 Introduction

Simulation is always based on models. These models
can be mind-models, scaled physical models or mathe-
matical models. No matter what kind of model is used,
the purpose of simulation is mostly the validation of
characteristics of physical systems. Nowadays, even
detailed mathematical models can be simulated in rel-
atively short time. Hence, computer-simulation is an
important tool in the mechatronic development cycle
and helps to reduce costs by shorten the development
process. The mechatronic-development cycle involv-
ing the validation process is visualized in the V-Model
in figure 1.
Clearly, the level of detail of the employed model
plays a very important role. To obtain a model with
a higher level of detail, more modeling effort has to be
invested and one has to expect longer simulation times.

Figure 1: V-Model of the mechatronic development
cycle

A proper model is as simple as possible, but still com-
plex enough to reproduce the physical effects under
consideration [9]. However, there exist tasks that can
not be fulfilled satisfactorily with the help of non-real-
time simulations regardless of which level of detail is
used. These are among others:

• Setting up Simulators (e.g. driving simulator),

• Controller testing,

• Physical Component testing.

Real-time simulation refers to a mathematical model
of a physical system including a numerical integra-
tion method that can execute at the same rate as ac-
tual "wall clock" time. Hence, using real-time sim-
ulation, the real system can be replaced by a virtual
system which makes real-time simulation suitable for
the applications mentioned above. Due to this pos-
sibility and the increased available computing power,
real-time simulation became very popular in the recent
years.
Consequently, many commercial simulation tools of-
fer a complete toolchain for real-time simulation. Such
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a toolchain consists of a modeling environment, a
simulation-runtime and a compiler which can compile
the model for a real-time-target. Simulink together
with the Real-time Workshop form the toolchain of-
fered by The MathWorks. Some other tools do not
offer an own compiler, but an export to Simulink, so
that the real-time Workshop can be used. There are
also tools which offer an integrated solution. However,
currently the OMC lacks such an automated toolchain
at all. In this paper a C++ Simulation-Runtime is
presented which forms the basis for a toolchain for
real-time simulation. This modular C++ Simulation-
Runtime contains a numerical integration method suit-
able for real-time simulations of hydraulic systems and
can also be used for co-simulation.
This contribution is structured as follows. In section 2
the C++ Simulation-Runtime and its structure is pre-
sented. After that the toolchain for real-time simula-
tion is explained using an application example in sec-
tion 3. Here, the C++ Simulation-Runtime is compiled
together with the application example for the real-time
operating system Scale-RT [2] and executed on a real-
time-target after that. The paper closes with a conclu-
sion and an outlook.

2 A C++ Simulation-Runtime for
OpenModelica

In order to set up an automated toolchain for real-time
simulation, a new C++ Simulation-Runtime was de-
signed. The design-guidelines were chosen to obtain a
simulation-runtime that is easy to

• maintain,

• extend,

• configure.

Therefore, it is much easier to add new numerical inte-
gration methods, extend its functionality with new al-
gorithms (e.g. for initialization) or just to fix bugs. In
order to obtain a simulation-runtime that realizes these
design-guidelines, the solver-component which imple-
ments the numerical integration method is separated
from the system-component which represents the sys-
tem of differential-algebraic equations (DAE). Note,
that this design is completely contrary to the idea of
inline-integration which was invented in order to in-
crease the computational efficiency [8]. In the next
section a general overview is given. After that the
Event-Handling strategy is explained. In section 2.4

the chosen numerical integration method for real-time
simulation is described.

2.1 Components Overview and General In-
terface Description

SolverSystem

SimManager

Settings
«component»

«component»

«component» «component»
IContinuous

IEvent

ISystemProperties

ISystemIntialization

ISolverSettings

IHistory ISolver IGlobalSettings

Figure 2: Components of the C++ Simulation-
Runtime

In figure 2 the component diagram of the
C++ Simulation-Runtime is pictured. The solver-
component consists of a set of integration methods,
e.g. CVode from the Sundials library [12]. The
SimManager-component controls the simulation. Be-
sides standard-tasks like starting and stopping of the
simulation, the SimManager is able to synchronize dif-
ferent systems and solvers and hence allows for co-
simulation. The settings-component is used to con-
figure the simulation, e.g. set solver-tolerances. The
system-component represents the DAE and therefore
includes the Modelica-System class. This class is gen-
erated by a new code-generation module inside the
OpenModelica compiler [10]. As mentioned above
the solver-component is separated from the system-
component and thus interfaces are used (see figure 3).

«interface»«interface»«interface»«interface»

IContinuous ISystemProperties ISystemInitialization

EventHandling Modelica System

SystemDefaultImplementation

is generated by the
OpenModelica Compiler

IEvent

11

Figure 3: Modelica-System class

The C++ Simulation-Runtime is able to handle sys-
tems with a lot of different properties as shown in fig-
ure 4. Some of the properties (likeisAlgebraic) are
standard properties and used to automatically select
a suitable numerical solution method for the corre-
sponding system. Other properties are not yet reported
by the OMC to the C++ Simulation-Runtime. A flag to
use a symbolic jacobian for the numerical integration
is part of current work. The generation of the symbolic
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jacobian is described in [5]. The interfaceISystemI-replacements

«interface»
ISystemProperties

+ hasConstantMass() : Boolean

+ hasStateDependentMass() : Boolean

+ isAlgebraic() : Boolean

+ isAutonomous() : Boolean

+ isExplicit() : Boolean

+ isODE() : Boolean

+ isTimeInvariant() : Boolean

+ provideSymbolicJacobian() : Boolean

Figure 4: ISystemProperies Interface

nitialization is used to initialize the Modelica-System
at the beginning of the simulation. Since the efficient
initialization of models is part of current work [6],
the currently implemented algorithms are rather basic.
However, due to the design of the C++ Simulation-
Runtime, new initialization-algorithms can be easily
added. The communication between solver and sys-

«interface»

IContinuous

+ getDimRHS(index : const INDEX =ALL_VARS) : Integer

+ getDimVars(index : const INDEX=ALL_VARS) : Integer

+ giveRHS(f : Double[*]{ordered}, index : INDEX=ALL_VARS)

+ giveVars(z : Double[*]{ordered}, index : INDEX=ALL_VARS)

+ setTime(time : Double)

+ setVars(z : Double[*]{ordered}, index : INDEX=ALL_VARS)

+ update()

Figure 5: IContinous Interface

tem is defined by the interfaceIContinuous(see fig-
ure 5). The methodgiveVarsreturns the state-vector
z. The state-vector is sorted according to the variable-
index (see table 2.1) and hence it is possible to access
a corresponding part of the state-vector by passing the
variable-index. This sorting allows for efficient gen-
eration of the jacobian [11]. The remaining methods

Variable Index Description
VAR_INDEX0 States of systems of 1st order
VAR_INDEX1 1st order States of systems of 2nd order,

e.g. positions
VAR_INDEX2 2nd order States of systems of 2nd order,

e.g. velocities
DIFF_INDEX3 Constraints on position level only
DIFF_INDEX2 Constraints on velocity level only
DIFF_INDEX1 Constraints on acceleration level only
ALL_RESIDUALS All constraints
ALL_STATES
ALL_VARS

Table 1: The Variable Index

are basic methods needed for the numerical integra-

tion process.
In case that the OMC returns algebraic equation

«interface»

«interface»

IAlgLoopSolver

IAlgLoopNewton

Modelica System

AlgLoop System
is generated by the
OpenModelica Compiler

1

1

1

*

Figure 6: Solving Non Linear and Linear Systems

systems (as shown in figure 6), an instance of the
AlgLoop-System class is created for each equation
system. Once again, the Algloop-System class pro-
vides a method which allows to choose an adequate
numerical solution method.
The simulation results are currently stored in a tabu-
lator separated text-file. The Modelica-System class
uses an instance of typeIHistory to store the simula-
tion results. Moreover, the storing instance uses a pol-
icy class for the implementation of the storing behav-
ior [3]. This allows an extension of the output mecha-
nism of simulation results, e.g storing the results in a
buffer for further processing. In the future simulation
results will be stored in the new Modelica result-file-
format.

2.2 Integration Loop

setTime setVars

ẋ(t) = f(t,x(t),p,u(t),λ (t))
0

︸︷︷︸

żi

= g(x(t), t)
︸ ︷︷ ︸

f(ti ,zi ,p,ui )

Solver System

update

giveRHS(̇zi = f(ti ,zi ,p,ui ))

writeOutput

ti

ti+1
zi+1

zi =

[
xi

λ i

]

zi+1 = zi +hi · żi

yi+1 = h(ti+1,zi+1,p,ui )

Figure 7: Integration loop in the C++ Simulation-
Runtime

A scheme of the integration loop for a semi-explicit
DAE

ẋ(t) = f(t,x(t),p,u(t),λ(t)), (1a)

0= g(x(t), t), (1b)
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can be seen in figure 7. Here,x denotes the states,λ
is the vector of algebraic variables,p are the param-
eters andu(t) are the system inputs. The time-step
starts by setting the previously calculated state-vector
and the current time. The right-hand-side of equation
1a is evaluated by callingupdate. Note that algebraic
loops are solved within this call. After thatgiveRHS
gives the right-hand-side to the numerical integration
method which performs the integration step (e.g. using
Forward-Euler).

2.3 Event-Iteration

«interface»

IEvent

+ checkConditions(index : Integer, all : Boolean=False)

+ checkForDiscreteEvents()

+ getDimZeroFunc() : Integer

+ getTimeEvents(events : TEVENT_TYPE[*]{ordered})

+ giveConditions(conditions : Boolean[*])

+ giveZeroFunc(f : Double[*])

+ handleSystemEvents(events : Boolean[*]{ordered})

+ saveConditions()

+ setConditions(conditions : Boolean[*]{ordered})

+ saveVars()

Figure 8: IEvent Interface

To handle discontinuities the Modelica-System im-
plements theIEvent interface (figure 8). For each
continuous event from the Modelica model, a zero-
crossing- function and a corresponding condition vari-
able is created. Thereby, the zero-crossing-functions
are interpreted as transitions in a state-graph. To be
more precise, the zero-crossing-functions are always
negative as long as no event occurs. A positive zero-
crossing-function indicates an event and in the con-
sequence the event is handled (and the event-iteration
is started) such that the corresponding zero-crossing-
function is negative again. Note, that this is funda-
mental difference to the treatment of events in the cur-
rent C Simulation-Runtime and allows the use of the
built-in zero-detection algorithms of the Sundials li-
brary. These algorithms are very efficient since all
ODE/DAE solvers of the Sundials library are multi-
step methods and hence the solution polynomial is at
hand with no additional effort.
When a zero is found an event-iteration is started as
pictured in figure 9. The input of the event-iteration

is an event-vectore indicating which zero-crossing-
function (i.e. transition) is active. The relevant relation
expressions are evaluated and stored in a condition-
vector usingcheckConditions. This condition-vector is
used in theupdatemethod to evaluate the right-hand-
side of equation 1a. The methodsaveVarsis called to
save the predecessor values of all variables.

zerostate= EQUAL_ZERO

zerostate=ZERO_CROSSING

Zero search method Continue integration

check conditions of active events ine

update()

checkForDiscreteEvents()

checkConditions(0,true)

ni ++

condition or discrete var changed
andni < max

saveConditions()

saveVars()

Event iteration inside system

Figure 9: Event Iteration within an integration step

2.4 Real-time Simulation

Real-time Simulation refers to a mathematical model
of a physical system including a numerical integra-
tion method that can execute at the same rate as actual
"wall clock" time. Hence, two requirements have to be
met:

• The simulation has to be faster than the "wall
clock" time.

• A predictable worst-case runtime is required.

The first requirement is a requirement on the compu-
tational complexity and hence a requirement for the
model as well as for the numerical integration method.
An approach for the generation of models suitable for
real-time simulation can be found in [13]. The choice
of the numerical integration method is even more re-
stricted by the second requirement which is mostly
harder to meet than the first one. A predictable worst
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case runtime can only be obtained with non-iterative
algorithms. To be more precise implicit numerical in-
tegration methods can not be used (without modifica-
tion) inside a real-time process. Note that this require-
ment is rather problematic in the context of stiff ODEs
and DAEs. Furthermore, step-size control produces a
non-predictable runtime and can thus also not be used.
The same holds for many algorithms for the detection
of zero-crossings.
Since explicit numerical integration methods are not
suited for many practical problems and implicit meth-
ods are not allowed inside a real-time process, linear-
implicit integration methods with fixed step size are
very common for real-time simulation [4]. Using a
linear-implicit integration method, not a non-linear,
but a linear system of equations has to be solved. This
operation can be performed with an upper bound for
the computational effort and hence linear-implicit in-
tegration methods can be used in real-time processes.
Linear-implicit methods can for example be obtained
by linearizing the numerical integration method. In
that case linear-implicit methods inherit the stability
properties of the corresponding implicit method due
to the linearity of Dahlquist’s test equation [11].
The most popular linear-implicit integration scheme is
the linear-implicit Euler-method due to its simplicity
and stability properties, i.e. it is A- and L-stable like
the Backward-Euler [7]. These properties make it bet-
ter suited for practical (i.e. stiff) problems than ex-
plicit methods. Unfortunately, it is of the same order as
Backward-Euler which might be problematic in com-
bination with a fixed-step size for low tolerances. An
alternative is the linear-implicit trapezoidal-rule. This
method has the same complexity as Backward Euler
but is of order two. However, the linear-implicit trape-
zoidal rule is not L-stable due to the stability properties
of the trapezoidal-rule and should thus not be used for
stiff problems.
The C++ Simulation-Runtime offers an A- and L-
stable linear-implicit integration method of order three
which will be called LI3 in the following. This method
was designed for the solution of discretized un-
steady incompressible Navier-Stokes equations orig-
inally and has not been used for real-time simulation
yet (to the author’s knowledge) [14]. For an ODE as

in equation 1a the method can be written as

k1 = xn+
2h
3

L · f(xn, tn), (2)

k2 = L(xn−
h
2

J ·k1+
h
3

f(xn, tn)+
h
3

f(k1, tn+
2h
3
)),

(3)

k̄ =
9
4

k1−
3
4

k2−
1
2

xn, (4)

k3 = L(xn−
h
2

J · k̄ +
h
4

f(xn, tn)+
3h
4

f(k1, tn+
2h
3
)),

(5)

xn+1 = L(xn−
h
2

J · k̄+
h
4

f(xn, tn)+
3h
4

f(k2, tn+
2h
3
)),

(6)

where

L = (E−

h
2

J)−1
. (7)

HereJ denotes the jacobian off (or at least an approx-
imation) andh is the step-size. Thus, one time-step
requires three evaluations of the right-hand side of the
ODE. Moreover, four linear systems of equations of
the same dimension asx have to be solved. Thus, the
structure of LI3 is similar to the structure of a linear-
implicit method obtained from a diagonally-implicit
Runge-Kutta method. Note that the solution of these
four systems is computationally cheaper than solving
a system of dimension 4· dim(x) which would result
from a linear-implicit method obtained from a implicit
Runge-Kutta method. The proof for the stability prop-
erties as well as for the order can be found in [14].
Clearly, a time-step with LI3 is computationally more
expensive than a time-step with the linear-implicit
Euler-method. However, LI3 allows to use larger step-
sizes due to the higher order. This is expressed in
the engineers rule of thumb that a method of orderp
should be used for a tolerance of 10−p.
Consequently, stability properties, order and computa-
tional complexity make LI3 suitable for real-time sim-
ulation of stiff problems and hence hydro-mechanic
systems.
Since no iterative algorithm for the detection of zero-
crossings can be used, the zero-crossing is assumed to
be in the middle of the last solution interval. Note that
this leads to an increase in the worst-case runtime of a
factor of three.

3 Application Example

In the last section a C++ Simulation-Runtime for the
OMC was presented. This simulation-runtime forms
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Figure 10: Pieter Schelte (picture taken from [1])

the basis for an automated toolchain for real-time sim-
ulation. The workflow of this toolchain is explained in
this section using a hydro-mechanical heavy-duty sys-
tem as an example. In the next subsection the set-up of
the real-time simulation is explained. After that some
modeling details and simulation results are given.

3.1 Real-Time Simulation Set-Up

The toolchain consists of the OMC as a Model-
ica Compiler, the C++ Simulation-Runtime, a cross-
compiler for ScaleRT and the real-time operating sys-
tem itself. The hardware setup to execute the real-time
simulation of the Modelica model using SCALE-RT
requires a host and a target PC. The host PC is stan-
dard Windows PC while the target PC uses ScaleRT
(Linux with Xenomai real-time extension).
The output of the OMC is coupled to the ScaleRT in-
terface and cross-compiled for ScaleRT. The automa-
tion of this step is part of future work. After that the
code can be transfered to the target and started via the
ScaleRT software in a graphical-user-interface.
Note that in contrast to the OMC neither ScaleRT nor
the coupling of the C++ Simulation-Runtime to the
real-time interface is Open Source.

3.2 Modeling of the Example System

The application example is a part of a hydro-
mechanical heavy-duty system, which is designed to
operate on a ship for the installation and removal of
oil-platforms. The ship is currently under construc-
tion and is pictured in figure 10. The complete hydro-
mechanical system consists of eight beams, each with
a clamp (or gripper) at the end. During operation the
beams move towards the legs of a platform and grip

Figure 11: Object diagram of the Y-drive

them. After that the platform can be lifted and re-
moved (details can be found at [1]). Each beam can
be divided into a Y- and a Z-drive. In this paper only
the Y-drive is modelled and simulated. The Y-drive is
used to compensate sea motion, driving the beam to-
wards the leg and applying a constant force towards
the leg in case of a contact (in order to avoid hammer-
ing). It consists of

• a hydraulic cylinder,

• a 3-way hydraulic valve,

• an electrical drive,

• the beam,

• gears,

• and a force controller.

The electrical drive moves the beam towards the leg
using position control, while the cylinder applies a
constant force towards the leg during contact using
force control.
The Y-drive was modeled in Modelica, where custom
models were set up for all Rexroth specific compo-
nents of the system. Thereby, an incompressible fluid
is used. The object diagram is shown in figure 11.
Here the hydraulic unit consists of a tank, a pressure
source and a three way valve. In order to deal with the
large forces inside the system a special kind of cylin-
der is used and modelled. The flat model consists of
360 equations, while the translated model has 25 state
variables and two algebraic loops. The algebraic loops
exhibit real as well as discrete variables.
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3.3 Simulation Results

Real-time simulation requires a predictable worst case
runtime. Therefore, the number of Newton-iterations
in the algebraic loop solver had to be limited. Unfor-
tunately, by doing so it is not guaranteed that a ad-
equate solution is found. Nevertheless, for the used
scenario (parameters and inputs) and step size (1ms)
a maximum of 4 iterations was required. Hence, the
maximum number of iterations was set to 6. The LI3
method described in the previous section was used as
numerical integration method. In figure 12 the posi-
tion of the clamp is shown. The blue line represents
the solution computed on the real-time target, while
the red line shows the solution computed offline using
the C++ Simulation-Runtime and CVode as numerical
integration method. It can be seen that the two lines
are nearly overlaying. The same holds for the velocity
of the clamp shown in figure 13.

4 Conclusion and Outlook

In this contribution the basis for a toolchain for real-
time simulation using the OMC is presented. There-
fore in section 2 a new C++ Simulation-Runtime was
shown that is easy to extend and maintain. Moreover,
this Simulation-Runtime includes numerical integra-
tion methods, that are suitable for real-time simulation.
Due to its flexibility new solvers and algorithms (e.g.
multi-rate integration, mixed-mode integration) can be

integrated in the future.
In section 3 the C++ Simulation-Runtime was cou-
pled to the interface of the real-time operating system
ScaleRT. That coupling enabled the execution of the
C++ Simulation-Runtime together with simulation-
code generated by the OMC on a real-time target. The
toolchain was demonstrated using a hydro-mechanical
heavy duty example system.
In the future this toolchain will be automated, in or-
der to be in the position to generate code for real-time
simulation just by a few mouse-clicks. Moreover, cou-
pling of external hardware (e.g. a electronic control
unit) is part of future work. This will allow for virtual
commissioning using a low-cost toolchain.
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