
Adaptive Tests for Adaptive Systems:
The Need for New Concepts in Testing for Future Software Systems

Benedikt Eberhardinger, Hella Seebach, André Reichstaller, Alexander Knapp, and Wolfgang Reif

Institute for Software & Systems Engineering, University of Augsburg, Germany

{ eberhardinger, seebach, reichstaller, knapp, reif } @isse.de

Abstract Software testing plays a major role for engineer-
ing future systems that become more and more adaptive
to their environment. In order to fulfill the high demand,
test automation is needed as a keystone. However, test
automation, as it is used today, is counting on capture-
and-replay-like scripting and is thus not able to keep up
with intelligent systems. Therefore, we ask for an adaptive
test automation and propose a model-based approach that
enables self-awareness as well as awareness of the system
under test which is used for automation of the test suites.

1 A Plea for Adaptive, Self-Aware
Test Automation

With the growing adoption and resulting ubiquity of
adaptive, autonomous software systems, be it in the
Internet of Things or in Industry 4.0, quality assurance
and testing of these systems becomes of increasing im-
portance. The challenges of delimiting adaptation,
integrating continual context changes, or handling
learning and reasoning, to name just a few (see Si-
queria et al.’s survey [1]), not to the least part affect
test automation controlling test execution. When exe-
cuting a test case, previous test effort may have caused
adaptation or may have influenced the perceived con-
text of the adaptive system.

We therefore propose that test automation for adap-
tive systems needs also to become autonomous and
adaptive in order to adapt itself to the system under
test (SuT). A prerequisite for adaptation and auton-
omy is to establish awareness, awareness of the test
system, the test automation, as well as the SuT. This
awareness could be used for autonomous decisions like
which test case to be executed next or even to learn
from test execution and the evolving SuT how to evolve
the tests. For this purpose, test automation needs to
be able to adapt, execute, and maintain itself to the
ever-changing SuT.1

This paper, an extension of [2], includes the follow-
ing contributions:

1. Self-aware test automation to adapting test strate-
gies

2. Run time models to achieve awareness in test au-
tomation

3. A concept for test case diversity optimization

The paper is structured as follows: Section 2 intro-
duces the Znn.com case study used throughout the

1These goals are adapted form the Keynote of Jeff Offutt at
the ICTSS’16 in Graz, Austria, where he is also appealing to
the community for more research in intelligent test automation.

paper. Within Sect. 3 we describe our approach for
self-aware run time models in test automation imple-
mented within the S# framework. Section 4 describes
how the self-aware test automation enables an adap-
tive selection of logical test cases and how these are
instantiated by a planner. The approach is incorpo-
rated into the related work in Sect. 5 and concluded
in Sect. 6.

2 Case Study: Znn.com

We use the Znn.com case study that has been widely
established as the standard case study for self-adaptive
systems. The following description of the case study
is therefore an excerpt of Cheng [3] who defined the
case study first. The Znn.com case study is an on-
line service serving news content to its customers, like
cnn.com or sz.de. Architecturally, Znn.com is a client-
server system with a multi-tier architecture model.
Znn.com uses a load balancer to equilibrate requests
across a pool of servers, the size of which is dynami-
cally adjusted. The business objectives at Znn.com
are to serve news content to its customers within a
reasonable response time range while keeping the costs
of the server pool within its operating budget. From
time to time, due to highly popular events, Znn.com
experiences spikes in news requests that it cannot serve
adequately, even at maximum pool size. To prevent
unacceptable latencies, Znn.com opts to serve mini-
malist textual content during such peak times instead
of providing its customers no service. The adaptation
decision is determined by observations of overall av-
erage response time versus server load. Specifically,
four adaptations are possible, and the choice depends
not only on the conditions of the system, but also
on business objectives: (1) switch the server content
mode from multimedia to textual and (2) vise versa,
(3) increase the server pool size, and (4) decrease the
server pool size. Within the Znn.com case study, the
self-adaption allows automation of adaptations that
strikes a balance between multiple objectives.

For the proof of concept we implemented a sim-
ple version of the Znn.com case study in C#. The
implemenatition incooperates a simple, adaptive load
balancer which is based on the describtion of Cheng [3].
The evaluation setting runs on one single computer;
the servers do not deliver real content but simulate
different workload depending on what mode is active.
The implementation of our approach runs within the
S# framework (cf. Sect. 3.1) on the same computer as
the Znn.com implementation.



3 Run Time Models for
a Self-Aware Test Automation

Our approach is based on the concept of run time
models. They are used to reflect the actual state of
the SuT and of the test system in order to establish
a self-aware test automation. Based on the aware-
ness the test automation is able to adapt itself in an
autonomous way by a reasoner and instantiate new
test cases by a planner, as shown in Sect. 4. Within
this approach we integrate two different possible test
strategies that build the foundation of the adaptation
and the autonomy of the test automation. The first
strategy is based on operational profiles used for gener-
ating continuous test input for the SuT by simulating
the environment. The second strategy is a fault-based
test strategy where test cases are defined by environ-
ment faults that cause the actual system for action.
Both strategies have been proven to be effective in
revealing failures within autonomous software systems
(cf. [4] for the first and [5] for the latter) and are now
combined for test automation for end-to-end tests. We
show how the S# modeling framework is used to build
run time models for the self-aware test automation
which is combining of these to strategies.

3.1 The S# Framework:
Executable Models

The S# framework incorporates an integrated, tool-
supported approach for modeling and analyzing com-
ponent-oriented systems [6]. It provides a component-
oriented domain specific language embedded into the
C# programming language. S# inherits all of C#’s lan-
guage features and expressiveness, including all state-
of-the-art code editing and debugging features pro-
vided by the Visual Studio development environment.
It is the foundation for our model-based approach for
test automation since both of the used test models
are implemented in S#. Listing 1 shows an excerpt
of the model of the server in the Znn.com case study.
The model describes the internal state of a server as
well as further information that are used in the test
automation. The faults are representing logical test
cases described in the model by overwriting the actual
functionality. Note that in this example, for the sake of
simplicity, the actual implementation is also included
in the model as C# code. For instance, the Activate

function which sets the isServerActive attribute to
true could be overwritten by the fault implementation
which is empty and does not change the state of the
attribute, similar for the AddQueries function. The
CannotExecuteQueries fault is annotated by its acti-
vation criterion that states that this fault should be
active if the proxy has few servers available. Further,
the selected server is set to auto which means if a set
of server instances matches to this criterion the plan-
ner within the test automation will determine which
and how many of the set of servers should be selected
for the fault activation. The actual property that is

class Server : Component {
Proxy _connectedProxy; bool _isServerActive;
List <Query > _executingQueries;

public void Activate () { _isServerActive = true; }
public void AddQueries(List <Query > queriesToExecute) {

_executingQueries.AddRange(queriesToExecute);
}
[Transient] class ServerCannotActivate : Fault {

public void Activate () { }
}
[Activation("TooFewServers", selectedServer="auto")]
[Persistent] class CannotExecuteQueries : Fault {

public void AddQueries(List <Query > queriesToExecute) { }
}
/* ... */

}

Listing 1: Partial S# component representing a server of
Znn.com case study.

linked by the activation criterion is not shown here. It
is formulated as a boolean function in S#. Thus, the
fault is a logical test case with many different possible
concrete test cases that could be executed by the test
automation. The planning module is helping by this
process.

3.2 Building and Using Run Time Model
in Test Automation

A model is a simplified effigy of the reality. The sim-
plification is achieved by abstraction resp. reduction
of the reality with a certain pragmatism. We use the
models in our approach to gain a gray-box view of the
SuT. Therefore, we seek for an appropriate represen-
tation that enables selection, adaption, combination,
ordering, execution, and evaluation of tests based on
the current state of the system. The model is used
to easily query the current state of the SuT and its
environment, but also to query the current state in
order to evaluate it with a given online oracle (for
a detailed description of the used online oracle see
[7, 4, 5]). Further, the models are not limited to query
the current state they are also used to execute tests,
i.e., the models have to be executable in order to stim-
ulate the SuT as described by the tests to be executed.
We use a multistage strategy that first queries the
current state, uses that information in the rule-based
reasoning to gain tests to execute, executes the tests,
updates the model at run time, and evaluates the state
of the SuT by applying the oracle on the model. The
main requirements for the model that we derive are,
that the model has to represent the current state of
the SuT in an abstract manner, the models need to be
executable, and the models needs to provide sufficient
information for reasoning and evaluation by the oracle.
For this reason, we use executable run time models,
provided by S#. The models consist of a static de-
scription of the SuT, whereas, the static description is
instantiated and continuously updated by the current
state of the SuT. In our Znn.com case study the client
is a component of the context model and the server
pool of the SuT model. Mapping the actual state of
the SuT in this context incorporates, among other
things, to update the current servers within the pool.
This information of the model is used by the reasoner



to check whether a certain number of servers has been
added or removed to the server group that triggers a
rule that activates a test. The models of the context
and the SuT differ: the context model also includes
dynamic information that enables it to execute dif-
ferent usage profiles of the test suite. In the case of
the client a certain instance has a state machine with
states such as idle, requesting, and waiting, that are
selected according a profile that defines a probability
of switching between the different states. The gain is a
simulation of the environment that is executed on the
SuT; the evolvement of the SuT enables it to execute
the situational aware tests that activate faults.

4 Adaptive Test Execution
@RunTime

The main constituent of our test automation is the
adaptive test execution which is based on the self-
awareness originated from the run time model estab-
lished in the section before. Two main test strategies
the execution is relying on: (1) a simulation of the
SuT’s environment and (2) an interface for activating
component faults in the controlled environment of the
SuT. The first strategy enables to continuously trigger
the SuT and keep it operating and possibly evolving.
This is the basis for strategy (2) where a given set of
test cases is executed by activating component faults of
the controlled enviroment which is an established tech-
nique for testing autonomous systems (cf. [5]). In this
way it is possible to define different adaptation rules
for the test execution within the model that trigger
which of the anticipated behaviors of the environment
to be simulated and which fault to be activated. The
first set concerning the simulated environment is com-
posed of probability functions that map a probability
to a transition from one environment state to another
that is formally described as a Markov chain. An ex-
ample for the relevant environment in the case study
is the client requesting content. The S# model of the
client therefor includes a state machine with the states
idle, requesting text, and requesting media where it
is possible to get from each state to every other and
each transition has a certain probability, gained from
user surveys. The second set contains the injected
faults that might be activated under some conditions.
It is based on faults or set of faults modeled in the
components of the S# model. Considering the exam-
ple of Listing 1 different kinds of faults are shown:
persistent faults and transient faults. The first kind
of fault indicates that once the fault is activated it
remains active for the rest of the execution whereas
the later one might be deactivated. Note that in the
test automation we expect on the one hand side that
a model of the SuT’s environment is given by a test
engineer that is used to generate continual test input
and on the other hand we expect explicit test cases
with an activation criterion designed by a test engineer.
The test automation is using these two inputs as a test

suite for the adaptive test execution.

4.1 Rule-Based Reasoning for Adaptive
Test Execution

The adaption is enabled by the awareness of the cur-
rent state by the test model and is used by a rule-based
reasoning engine which makes the execution adaptive.
Thus, it is possible to evaluate the current state of the
test system and the SuT and select an appropriated
test case for execution in the current situation. As
described before, we use two strategies. The simula-
tion of the environment is driven by an probabilistic
Markov model of the environment which is used to de-
scribe the environment’s common behavior. The faults
instead are activated based on situational patterns,
the activation criteria, evaluated by the reasoner. The
activation criteria are described in form of constraints
that are annotated to the tests, like shown in listing 1;
it could be said: the tests know their purpose. Based
on the sets of rules it is possible to reason at run time
over the current state of the model and select the next
test step based on the rules defined. Another impor-
tant component in the framework is the planner that
enables to enhance the test suite at run time.

4.2 Planning Optimal Rule Instantiations

Depending on the chosen system configuration, a par-
ticular rule may subsume quite a number of concrete
implementations. The question, which of them to
choose, i.e., which test step to execute if there are
many, resembles the challenge of instantiating logical
test cases by concrete ones in traditional testing. Let
us, for instance, consider the rule which introduces the
persistent fault “CannotExecuteQueries” in listing 1.
At test execution, this fault needs to be instantiated
for one out of all the servers which are deployed in
the considered configuration. As typically huge en-
vironmental state spaces prevent us from demanding
manual solutions for resulting decision processes from
the tester, we propose to equip the rule-based reasoner
with a planning module that is able to automatically
solve this job. In the aforementioned example this
module is activated by the keyword “auto” at activa-
tion “TooFewServers”. This marks the choice of which
server to be affected as being non-deterministic and
thus to be decided by the planning module.

Parametrized with some goals, which we assume to
be given by the test engineer, the planning module uses
the executable models to search for optimal decisions
concerning the rule instantiations. An exemplary goal
might be a kind of action diversity, which we see as a
counterpart of code coverage criteria in the context of
proactive, adaptive systems. This test indicator, based
on the behavioral distance metric introduced in [8] and
[9], can be used to measure the difference between the
system traces which are expected to be triggered by
particular rule instantiations. Maximizing the action
diversity thus means to maximize the difference of



triggered traces. As shown in [8], the underlying be-
havioral distance function can be learned on-the-fly by
simply observing the system under test in simulation.
This process can be directly integrated within our S#-
models. Given the function, the planning module tries
to find those traces which maximize the distance to the
traces that were already seen. Note that the planner
module is not limited to our notion of diversity but
is generally able to cope with arbitrary quantifiable
goals.

5 Related Work

Our approach extends current test automation con-
cepts by a notion of adaptiveness (w.r.t. system and
context states). Self-aware test models enable us to de-
sign a new kind of automatable test cases that incorpo-
rate situational aspects, purpose, but also information
about the correct system state.

As can be seen in [10], current approaches primar-
ily execute test scripts, mostly without any context
description, or replay captured scenarios that have
been recorded through manual testing. Though they
strive to optimize effectiveness in test execution, this
is often at the cost of reactiveness and adaptiveness in
regards to changing context or system states. There
is, however, a need for reactive tests – especially when
dealing with systems that are able to change their
internal structure in response to contextual changes
for themselves; or in other words: adaptive systems
need adaptive tests. We solve this by using models as
run-time reflection of the current state. This approach
is inspired by the model@runtime community (cf. Ben-
como et al. [11]), even if they are rather concerned
with adapting system strategies instead of testing.

Existing approaches for testing adaptive systems
are focused on test case generation and the usage of
the test output to tweak the system performance (cf.
Siqueira et al. [1]). The concrete automation of tests
was previously only done for dedicated test cases, not
in a general approach as we propose it. Consequently,
we propose a new and thorough approach for intel-
ligent test automation that is especially needed for
autonomous system testing.

6 Conclusion & Outlook

In order to cope with future software systems, test
automation needs to become self-aware, adaptive, and
evolving in its execution. In present work, we ap-
proached these requirements building on run-time mod-
els of the SuT and its context. In future work, we will
evaluate our findings and concepts in a bigger, indus-
trial case study. Therefore, we prepare an Apache
Hadoop cluster to test in a Docker environment that
uses an adaptive resource manager. The evaluation
will take place in a distributed setting. Beside that, we
are going to extend the planning module with abilities
to plan even new fault-based test cases for execution.

Acknowledgment This research is sponsored by the
research project Testing Self-Organizing, Adaptive Systems
(TeSOS) of the German Research Foundation.

References

[1] B. R. Siqueira, F. C. Ferrari, M. A. Serikawa,
R. Menotti, and V. V. de Camargo, “Charac-
terisation of challenges for testing of adaptive
systems,” in Proc. 1st Brazilian Symp. on Sys-
tematic and Automated Software Testing, SAST,
pp. 11:1–11:10, ACM, 2016.

[2] B. Eberhardinger, A. Habermaier, and W. Reif,
“Toward adaptive, self-aware test automation,” in
Proc. 12th IEEE/ACM Int. Wsh. Automation of
Software Testing, AST@ICSE 2017, pp. 34–37,
2017.

[3] S.-W. Cheng, Rainbow: Cost-Effective Software
Architecture-Based Self-Adaptation. PhD thesis,
CMU, 2008.

[4] B. Eberhardinger, G. Anders, H. Seebach,
F. Siefert, A. Knapp, and W. Reif, “An approach
for isolated testing of self-organization algorithms,”
CoRR, vol. abs/1606.02442, 2016.

[5] B. Eberhardinger, A. Habermaier, H. Seebach,
and W. Reif, “Back-to-back testing of self-
organization mechanisms,” in Proc. 28th IFIP
Int. Conf. Testing Software and Systems (ICTSS),
Springer, 2016.

[6] A. Habermaier, J. Leupolz, and W. Reif, “Exe-
cutable Specifications of Safety-Critical Systems
with S#,” in Proc. of DCDS, IFAC, 2015.

[7] B. Eberhardinger, H. Seebach, A. Knapp, and
W. Reif, “Towards testing self-organizing, adap-
tive systems,” in Proc. 26th IFIP Int. Conf. Test-
ing Software and Systems (ICTSS), vol. 8763 of
LNCS, Springer, 2014.

[8] A. Reichstaller and A. Knapp, “Transferring
context-dependent test inputs,” in Software Qual-
ity, Reliability and Security (QRS), 2017 IEEE
International Conference on, pp. 65–72, IEEE,
2017.

[9] A. Reichstaller and A. Knapp, “Compressing uni-
form test suites using variational autoencoders,”
in IEEE Int. Conf. Software Quality, Reliability
and Security Companion (QRS-C), pp. 435–440,
2017.

[10] M. Polo, P. Reales, M. Piattini, and C. Ebert,
“Test Automation,” IEEE Software, vol. 30, no. 1,
pp. 84–89, 2013.

[11] N. Bencomo, R. B. France, B. H. C. Cheng, and
U. Aßmann, eds., Models@run.time - Foundations,
Applications, and Roadmaps, vol. 8378 of LNCS,
Springer, 2014.


