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Abstract—Over the last decade, there has been a trend
towards component-based systems in robotics software engi-
neering. Although the aspect of real-time is important to control
manipulators with high velocities or forces, it has often been
neglected. In this paper, we present a runtime environment
for real-time component systems in robotics. It allows for
a generic specification of computation tasks and employs a
flexible, rule-based mechanism for composing and coordinating
multiple components. Moreover, the runtime environment is
capable of seamlessly re-orchestrating the composition of real-
time components at run-time to adapt to new tasks – even when
the robotics system is moving with high speed. For illustration,
two examples are given.

I. INTRODUCTION

Building robotics software today often means to develop
software for single components that represent some algo-
rithms or tasks. The overall system itself is comprised
of a set of single components which should ideally be
reusable. This trend towards component software engineer-
ing in robotics is obvious since about a decade now (e.g.,
see [1], [2], [3]) and manifests in the widespread and of
course component-based Robot Operating System (ROS) [4]
which is currently the de-facto standard in the research
community. However, real-time is important in robotics to
safely control the devices – especially with high velocities or
force control. In ROS, for example, all real-time issues must
be handled inside a single component [5]. To handle real-
time requirements in robotics, the OROCOS framework [6]
or aRDx [7] can be used which allows for implementing and
executing real-time components. When using OPRoS [8] or
OpenRTM [9] it highly depends on the communication layer,
whether real-time issues must be handled inside a single
component.

As stated above, real-time requirements should actually
be essential for safe and high-performance robotics applica-
tions. However, a real-time component system should not be
static, but be able to change the structure at runtime to adapt
to new tasks – even when controlling devices with high-
speed. When this re-orchestration is possible, automation
tasks can easily be rearranged or adapted in a service-
oriented manner – as suggested by Industry 4.0 initiatives.
Hence, the main contribution of this paper is a flexible,
rule-based mechanism to compose and coordinate real-time
component systems. Furthermore, we introduce a runtime
environment which is able to use this mechanism in order

to re-orchestrate the structure of its real-time component
system at run-time. Overall, this paper presents concepts,
techniques and implementation notes how to realize such a
rule-based re-orchestration.

The above mentioned runtime environment is based on a
software architecture [10] which is geared towards realizing
complex, sensor-guided manipulation tasks of single robots
or small teams of robots. The main idea is that robotics soft-
ware is developed against the modular Robotics API [11] and
robot operations are executed with hard real-time guarantees
on the underlying Robot Control Core (RCC) [12]. Thus, the
RCC takes care of all real-time critical parts of the robotics
systems and is responsible for controlling hardware devices.
However, to fulfill the demanding requirements imposed by
the software architecture mentioned above, the RCC has
been designed to be a flexible runtime environment for
composing and coordinating real-time components.

To promote a separation of concerns for robotic compo-
nent systems, the idea of 5 Concerns (5Cs) was introduced
by Prassler et al. [13] and refined later (cf. [14] and [15]).
The idea was inspired by Radestock and Eisenbach [16]
where different concerns (4Cs) have been identified to
facilitate the designing of large maintainable distributed
systems. According to this, there are five different concerns
in robotics to cope with in order to develop maintainable
software:

• Computation defines the continuous behavior of an
individual component. Hence, it represents the algorith-
mic or functional part of the system and its implemen-
tation provides an added value to the system [14].

• Communication is responsible for transporting required
data to computational components.

• Configuration allows to influence the behavior and
performance both of computation and communication.

• Composition describes how single components are con-
nected to achieve an overall system behavior. However,
the coupling between single components should be
minimized.

• Coordination describes how connected components
work together to achieve an overall system behavior.
According to [14], coordination provides the discrete
behavior of the system.

Each of the five concerns (5Cs) is used to describe the
runtime environment and its concepts and ideas for building
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Figure 1. Device drivers are responsible for hardware control, whereas
Net Executor components can execute generic computation tasks. The
composition and coordination of computation tasks is realized by the Net
Coordinator which can stop an active computation task (e.g., Data-Flow
Net 3) and start a scheduled task instead (e.g., Data-Flow Net 4). A
drawn line between two ports indicates active communication of two real-
time components. Dotted lines between two components indicate future
connections which will be established as soon as the scheduled component
will be activated.

and re-orchestrating a real-time component system. It is
worth mentioning that the RCC has a generic data-flow
language to specify computation tasks and a declarative
mechanism to compose and coordinate such computation
tasks with synchronization rules. As a consequence, it allows
for a re-orchestration of real-time components at run-time –
even when a robotics system is moving with high speed.

The main concepts are shown in Fig. 1 incorporating
each of the five concerns. Computation tasks, for example,
can be specified in a data-flow language and are executed
with reusable real-time executor components. The details
can be found in Sect. II. For communication, there are
different possibilities available depending on the purpose.
For example, data-flow nets or their wrapping components
respectively can communicate with each other in a generic
and yet real-time capable way over dedicated ports. All
communication options as well as configuration possibilities
are described in Sect. III.

The composition is given by the set of currently active
or scheduled net executors with data-flow nets and corre-
sponding device drivers. A scheduled net executor is already
loaded, but not yet executed. However, depending on a
set of rules it can be started immediately and, e.g., can
control a moving device by starting to communicate with
its device driver. Accordingly, active net executors can be
stopped. Because the set of active or scheduled data-flow
nets can evolve slowly over time or even change rapidly,
the composition of the overall system can change to adapt
to new tasks. The coordination between components can be
specified in a declarative way by synchronization rules. Such
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Figure 2. Computation tasks are specified in a data-flow language and
composed of real-time primitives. Different means for communicating
or signaling internal state are available. Each data-flow net is executed
periodically by a Net Executor with real-time guarantees. Hence, it is
possible to specify and execute arbitrary computation ranging from sensor
processing to actuator control. A drawn line indicates communication
between real-time primitives inside a data-flow net. Dotted lines indicate
external communication established through ports of the Net Executor.

a synchronization rule describes under which circumstances
running components or – to be precise – their data-flow nets
should be stopped and scheduled ones should be started.
Details are given in Sect. IV.

Moreover in Sect. V, the paper will present some notes
about implementing such a runtime environment in order
to seamlessly re-orchestrate real-time components at run-
time. A short evaluation and two examples using industrial
manipulator arms are introduced in Sect. VI – each example
highlighting a different aspect of the presented approach.
Finally, the paper will conclude with Sect. VII.

II. COMPUTATION

Computation defines the continuous behavior of an individ-
ual component and can thus be specified using a data-flow
language (see Sect. II-A) and executed periodically (see
Sect. II-B). Real-time components for controlling devices
– thus constantly communicating with them – are treated
separately (see Sect. II-C).

A. Specification of Computational Tasks

To be able to specify flexible computation modules, the
Realtime Primitives Interface (RPI) was introduced in [17].
It consists of a data-flow language with a formal semantics,
both inspired by Lustre [18]. The main concept of RPI
are data-flow nets which describe a piece of real-time
computation (see Fig. 2). Before the execution of a data-
flow net can start, it must be completely specified, i.e., no
further structural changes are possible. Hence, a data-flow
net consists of basic building blocks – called primitives –
which can be connected by links to transfer data from one
primitive to another. The execution is performed cyclically,
i.e., every contained primitive is executed once in each
execution cycle.



Primitives can have both input and output ports and
configuration is possible using parameters. In each execution
cycle, all values from the input ports are read, and new
values for the output ports must be provided. Primitives
can perform very basic operations such as logical oper-
ators (∧, ∨, etc.), mathematical functions (add, subtract,
multiply, etc.), but also more complex operations such as
calculating trajectories. Although arbitrary computation can
be performed, all operations must be real-time safe such that
every primitive can guarantee a worst case execution time.
Furthermore, primitives may have an internal state which is
preserved between two execution cycles. This can be used
for example to interpolate trajectory in order to provide new
set-points in each execution cycle.

Devices are also represented as primitives: Sensors are
modeled as primitives with only output ports, whereas
actuators are primitives with only input ports (cf. Fig. 2).
Input and output ports are strictly typed, and only ports
with matching types can be connected. Basic types such
as Boolean, integer or double, but also more complex types
(e.g., Cartesian coordinates) are possible. It is also possible
to use a special null value to indicate that no valid data is
available.

Links are used to connect identically typed ports of two
primitives. Each input port can be connected to exactly one
output port, however an output port may be connected to
several input ports. The output value of a primitive is always
transmitted to the input port of the following primitive before
the execution of the latter is started. This allows for a fast
propagation of values through the data-flow net, e.g., values
received from sensors can be processed and delivered to
actuators within a single execution cycle. Links may not
form unguarded cycles, i.e., it is not possible to reach a
primitive again by purely navigating links from output to
input ports without coming across a special Pre primitive.
Such cycles would imply that the input for a primitive
instantaneously depends on the result of this very same
primitive. Pre primitives delay the propagation of values to
the next cycle and thus can break up cycles when necessary.

Each data-flow net can have typed communication ports
(provided by special primitives) which can be used to
transmit data from and to other nets, devices or external
systems (cf. Sect. III-A). Furthermore, there are also Boolean
state ports which allow a running computational task to
report its current state to the Net Coordinator which is used
for coordination of multiple tasks (cf. Sect. IV-B).

B. Execution of Computational Tasks

Each computational task, specified as a data-flow net, is exe-
cuted in a dedicated real-time component, the Net Executor.
Hence, a Net Executor is responsible for executing exactly
one computational task at a time. Execution is performed
periodically, i.e., all primitives contained in the data-flow
net are executed once in each cycle. Typical execution

frequencies are 0.5 kHz to 1 kHz. As multiple data-flow nets
can run in parallel and are executed independently using
their own real-time executor, different execution frequen-
cies and priorities are possible. For example, a monitoring
task reporting measurements to an human-machine-interface
(HMI) may have lower frequency and priority than a closed-
loop controller.

According to the input-process-output model, each exe-
cution cycle is split into three separate phases which are
executed sequentially:

1) Reading sensor values (over communication ports)
2) Performing computation
3) Writing actuator values (over communication ports)

While phases 1 and 3 are mainly for communication (cf.
Sect. III-A), the computation is completely performed in
phase 2. During the first phase, all primitives connected to
sensors are requested to update their current sensor values,
which usually includes communication with the respective
device driver (cf. Sect. II-C). This allows to retrieve con-
sistent sensor values, i.e., all values are provided for the
same point in time. This is necessary as the execution order
of primitives is generated by topologically sorting the data-
flow net, which could put sensor primitives near the end of
an execution cycle. As actuators are only provided with new
set-points in phase 3, no changes to the system are made in
both previous phases. This allows to interrupt the execution
of a data-flow net during any time before the third phase
has been started which is important for switching between
different behaviors in real-time as Sect. IV-B will show.
Phase 3 mainly consists of providing new data to actuator
drivers over communication port. Potentially time consum-
ing communication with hardware devices must be done
within the actuator drivers and not within a computation
task. Therefore, the execution of phase 3 quick compared to
phase 2.

The real-time component of a data-flow net can have
several states during its life-cycle (cf. Fig. 3). Once a data-
flow net has been successfully loaded, it is in state Ready.
However, it also can be Rejected, if it is syntactically invalid
or at least one primitive is not available. Being Ready,
a data-flow net can either be directly started entering the
state Running, or scheduled for later execution. Scheduled
data-flow nets are started using synchronization rules and
allow real-time transitions between multiple data-flow nets.
More details are explained in Sect. IV-B. Once a data-flow
net has finished its computational task, cyclical execution
is stopped and the state changes to Terminated. The same
applies if it was canceled, e.g., by a supervisory application
or component.

C. Device Drivers

Hardware devices can be controlled from computational
tasks by using specific actuator primitives. Since compu-
tational tasks can run using different frequencies, and also
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Figure 3. Life-cycle of a data-flow net running inside a Net Executor

different parts of hardware may require set-points at different
levels, each device is controlled by its own real-time driver
component. Usually, device drivers are also running cycli-
cally with a device-specific frequency and issue set-points to
the underlying hardware at given points in time, e.g., using a
fieldbus technology such as EtherCAT or Ethernet. To ensure
that computational tasks can have exclusive access to devices
(e.g., actuators), special locking or reservation mechanisms
must be taken into consideration (cf. Sect. V).

Similar to computational components, device components
also have different states depending on the connection to the
underlying hardware. If no connection exists, the component
is Offline where it is neither possible to retrieve current
sensor values (e.g., joint angles) nor to issue new set-points.
Some device drivers offer a state called Safe-Operational
in which it is possible to read all sensor values, but no
control is available. Finally, all device drivers must support
an Operational state in which actual hardware control is
possible.

To improve the reusability of device drivers, specific
device interfaces have been created which abstract from
the concrete underlying hardware. For example, there is
a generic device interface for robot joints which can be
used in data-flow nets for joint-level control. The same
actuator primitive can be used for any type of joint which
supports this specific interface, such as robot joints, linear
units or turn-and-tilt tables. Using configuration mechanisms
(cf. Sect. III-B), it is possible to adjust computational tasks
to hardware specifics without the need to change the overall
structure of a data-flow net.

III. COMMUNICATION & CONFIGURATION

This section will give an overview of the different commu-
nication means that are available (cf. Sect. III-A). More-
over, different possibilities for configuration are shown in
Sect. III-B.

A. Communication

Communication is an important aspect in several areas of
the runtime environment as shown in Fig. 4. To facili-
tate communication, these aspects are always handled in a
generic way, i.e., the components and, thus, data-flow nets
can rely on provided mechanisms for their communication
requirements.

1) Intra-net communication: Communication within a
single data-flow net is performed using links as described in
Sect. II-A. Data exchange is performed during the execution
and is strictly synchronous. Data provided in an execution
cycle is available for the consumer within the same cycle.

2) Inter-net communication: Communication between
different data-flow nets is performed using special inter-
net comm primitives (cf. Fig. 4). Similarly, communication
with device drivers (i.e., sensor and actuators) is realized.
Nets providing data can write new values in each execution
cycle to a sink primitive, which stores this value during the
third phase of the execution cycle. Receiving data-flow nets
use source primitives which read new values during the first
phase. Depending on the frequencies of both data-flow nets,
different latencies occur. The worst-case latency however
is bounded, since all data-flow nets are executed with a
guaranteed real-time cycle time.

3) Communication with further components or applica-
tions: Both intra-net as well as inter-net communication
is performed with bounded latencies. Further components
or applications however may not be running with real-time
guarantees (e.g., ROS nodes). Although no timing guaran-
tees can be given, communication with them is nevertheless
required. For example, status information during execution
of a data-flow net can be provided to an application which
allows, e.g., to display useful information to the user such
as a progress indicator. Furthermore, an application can
influence a running data-flow net, e.g., by setting a new
global velocity override for testing. However, data-flow nets
must always be designed to function safely, even if no
external data is arriving. Communication between a data-
flow net and further components or applications is performed
using the similar primitives as for inter-net communication
(cf. Fig. 4).

4) Communication with devices: As the communication
with sensors and actuators is highly device-specific, there
are no built-in mechanisms. It is rather the responsibility
of a real-time device driver to establish a stable and ef-
ficient proprietary connection with the hardware as shown
in Fig. 4. However, to facilitate the implementation, there
are several low-level driver (e.g., for Ethernet or CAN) and
protocol stacks (e.g., for EtherCAT or CANopen) which
can be reused [19]. If multiple devices access a common
communication medium, the low-level driver is responsible
for synchronizing access properly.
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Figure 4. The runtime environment, i.e., the Robotics Control Core, handles different ways of communication inside, between and beyond data-flow
nets with different timing guarantees. For this purpose, a Net Executor component offers different ports to device drivers, other Net Executors, or further
components. Special or proprietary communication with devices (e.g., using EtherCAT or CAN) has to be handled separately by device drivers.

B. Configuration

Device drivers are required to support configuration in order
to specify a unique device identifier or the parameters of
its proprietary communication. Although drivers usually are
device-specific, several device models can be controlled
using the same mechanism, e.g., different sized robot arms
by the same manufacturer. To allow for such differences,
device drivers also have parameters which describe the
hardware in details, such as Denavit-Hartenberg parameters
for an industrial robot.

Furthermore, configuration is required to adjust the com-
putation components to their specific purpose. By chang-
ing the parameters of a data-flow net, computational tasks
can be adjusted to a specific device which includes, e.g.,
different acceleration or jerk limits. Moreover, by adapting
the primitives or changing its structure, a data-flow net can
be rearranged to reflect a (slighly) different computation.
If necessary, even the frequency and priority of the Net
Executor can be adjusted. Beyond this, the composition of
data-flow nets and, thus, real-time components is highly
dynamic. As Sect. IV will show, it can easily be changed if
required. Hence, a flexible configuration of running real-time
components is possible, too.

IV. COMPOSITION & COORDINATION

The composition of real-time components and their inter-
action which needs to be coordinated defines the overall
behavior of the robotics system. The proposed approach
allows for a flexible composition of changing computation
tasks (cf. Sect. IV-A) and their declarative coordination using
synchronization rules (cf. Sect. IV-B). The re-orchestration
of real-time components is based on and triggered by a set
of rules. These rules, however, are specified and activated by
some sort of high-level application (cf. [11]) or by further
work-flow supervisory components (cf. [20]).

A. Composition

The composition is primarily given by operational device
drivers and by the data-flow nets currently executed in Net
Executors. The composition which is defined by device
drivers is usually stable, i. e., it will only slightly change
over time. However, the computational tasks are somehow
volatile as they can be started, scheduled or stopped quite
regularly. Hence, the composition is subject to change which
allows to implement an evolving real-time component sys-
tem. From our point of view, this is important because
the tasks and/or the environment conditions for a robot
are permanently changing (e.g., in service robotics or in
Industry 4.0 scenarios). The underlying component system
or its composition must be able to adapt in order to react
properly.

Using a data-flow language for defining computation tasks
and the possibility to execute them with timing guarantees is
an important aspect for composition. However, composition
is also defined by the connections established between
components for communication. To facilitate this, special
primitives (e.g., for inter-net data exchange or device access)
are introduced which allow for real-time communication
with bounded latencies (cf. Sect. III-A). Hence, the set
of data-flow nets and device drivers in combination with
communication channels in between defines the composition
at a very instant of time. This composition can change
immediately by defining new data-flow nets and implicitly
their connections. However, the overall behavior of the
system is only influenced when the interaction between com-
ponents is changed by activating or stopping the appropriate
computation tasks.

B. Coordination

A computational task should be designed for one certain
basic action, e.g., one motion in joint or Cartesian space.



«coordination»
Net Coordinator

«real-time component»
Net Executor A

«computation»
Data-Flow Net 1

ACTIVE

«real-time component»
Net Executor B

«computation»
Data-Flow Net 2

ACTIVE

«real-time component»
Net Executor C

«computation»
Data-Flow Net 3

ACTIVE

«real-time component»
Net Executor D

«computation»
Data-Flow Net 4

SCHEDULED

«real-time component»
Net Executor E

«computation»
Data-Flow Net 5

SCHEDULED

𝜎1
𝜎2

«real-time component»
Device Driver

Actuator

«real-time component»
Device Driver

Actuator

(a) Composition with two scheduled computation tasks and their according
synchronization rules σ1 and σ2.

«coordination»
Net Coordinator

«real-time component»
Net Executor A

«computation»
Data-Flow Net 1

ACTIVE

«real-time component»
Net Executor B

«computation»
Data-Flow Net 2

ACTIVE

«real-time component»
Net Executor C

«computation»
Data-Flow Net 3

FINISHED

«real-time component»
Net Executor D

«computation»
Data-Flow Net 4

ACTIVE

«real-time component»
Device Driver

Actuator

«real-time component»
Device Driver

Actuator

«real-time component»
Net Executor E

«computation»
Data-Flow Net 5

SCHEDULED

(b) Composition after synchronisation rule σ1 was successfully triggered and,
thus, synchronisation rule σ2 was discarded.

Figure 5. By specifying computation tasks (with data-flow nets) and scheduling them on the runtime environment, the structure of real-time components
can be determined. The Net Coordinator is able to change the current composition of real-time components immediately by activating and deactivating
components as well as updating communication structures. The coordination is specified using synchronization rules between data-flow nets only.

For real-world applications, it is necessary to switch from
such basic actions to other basic actions to coordinate the
overall functionality. From a component-based point of view,
it is necessary to re-orchestrate the components in order to
obtain a system. If all computational tasks are completely
self-contained, re-orchestration can happen offline, i.e., there
are no timing requirements for changing from one task to
another. In the robotics domain however, there are many
cases where hard timing constraints exist for switching
between two actions. If a computational task terminates and
no other task immediately takes up control, all actuators
must be in a safe and stable state, which usually means
they must not be moving and must not apply force to
the environment. In some applications, it is not desirable
to always bring the actuators to standstill for switching
basic actions. For example, multiple independent motions
are often blended into each other to save time. In this
case, the following motion task must take over the previous
motion while the robot moves with considerable velocity.

The runtime environment implements synchronization
rules to allow switching from one set of computation tasks
to other sets of computation tasks with guaranteed latencies.
A synchronization rule is defined as 4-tuple

σ = (C, ω, φ , α)

where C denotes the synchronization condition, a propo-
sitional logic formula with Boolean variables defined in
data-flow nets (using Boolean state ports). If C evaluates
to true, all data-flow nets contained in ω are immediately
terminated and all nets in α are started. Furthermore, the nets

contained in φ are requested to terminate gracefully (i.e., to
cancel). A locking mechanism is used to ensure that once
a synchronization condition evaluated to true, no data-flow
net contained in the condition C may enter execution phase
3 (cf. Sect. II-B). Since variables contained in the condition
may only be changed in that phase, a consistent snapshot of
the system is ensured.

A separate real-time component, the Net Coordinator
(cf. Fig. 5), is used to monitor the current value of all
synchronization conditions available in the system. If a
condition becomes true, it is also responsible for taking
all actions such as terminating running tasks and starting
new ones. Once a new synchronization rule is created, all
Boolean variables used in the synchronization condition are
looked up (without real-time requirements) and pointers to
the variables are stored in a data structure within the Net
Coordinator. This allows for a fast evaluation of the current
value of the condition each time a variable could have
changed. Since these Boolean variables are only changed
during phase 3 of the life-cycle, it is sufficient to evaluate
a synchronization condition every time one of the nets
contained in the condition finishes with phase 3.

Switching between two computation tasks always happens
between two execution cycles. If a synchronization rule is
triggered, a running computation task which needs to be
affected can be in several states:

1) Not currently performing any work, i.e. having fin-
ished all work (including phase 3) for the current
execution cycle. In this case, the computation task will



not be executed again. If applicable, a computation
task from α will be executed in the next execution
cycle, offering a seamless transition.

2) Currently in phase 3. The computation task will be
allowed to complete phase three, afterwards the com-
putation task is dealt with as in case 1). It should be
noted that the affected computation task cannot be part
of the synchronization condition C that triggered the
re-orchestration. Due to the locking mechanism, either
the computation task will have been prevented from
entering phase 3, or the evaluation of the condition
C would have been delayed until phase 3 has been
completed.

3) Currently execution phase 1 or phase 2. In this case,
the execution of the computation task can be inter-
rupted immediately. Since phase 3 has not yet been
started, work done so far in this execution cycle
cannot yet have had any impact on the system. If a
computation task from α has to take over, this must
be done within the same execution cycle and not be
delayed to the next one.

To allow for a hard real-time transition in case 3), the
combined WCET of both computation tasks must be smaller
that the applicable cycle time (plus some overhead time for
switching execution). In cases 1) and 2), no such restriction
exists.

Special care must be taken for actuators which are con-
trolled from multiple computational tasks. Most actuators
only allow being controlled by exactly one task. Switching
from one set of tasks to a new set of tasks therefore must
only occur if all devices required by the new tasks are either
free or controlled by the nets contained in ω . If this cannot
be guaranteed (e.g., because one device is still controlled
by another task), re-orchestration is not performed. In this
case, all data-flow nets contained in ω will continue running
and are responsible for maintaining a safe situation (e.g.,
gracefully braking a robot or keeping a defined contact
force).

Fig. 5 shows two subsequent states of the runtime en-
vironment during re-orchestration of computational tasks
using synchronization rules. In Fig. 5a, the base state is
shown where Data-Flow Net 1, 2 and 3 are currently running
and controlling two actuators. Data-flow Net 4 and 5 are
scheduled and can be triggered by either synchronization
rule σ1 or σ2. Both data-flow nets require the same actuator
and thus are mutually exclusive. For some Boolean state
ports x and y in Data-Flow Net 3, the synchronization rules
are as follow:

σ1 = (net3.x,{net3} , /0,{net4})
σ2 = (net3.y,{net3} , /0,{net5})

In Fig. 5b, synchronization rule σ1 has been triggered. As
a result, Data-Flow Net 3 has been terminated while Data-

Flow Net 4 has been started. Synchronization rule σ2 has
been discarded, since its condition did not hold during the
last evaluation and Data-Flow Net 3 has been terminated
preventing further changes to its Boolean state port y. Data-
Flow Net 5 is still scheduled as further synchronization rules
can be created using it.

V. IMPLEMENTATION NOTES

The Robot Control Core has been implemented using C++
and is running on the Linux operating system with Xenomai
real-time extensions. Each Net Executor is implemented as
a separate real-time thread and executes one computational
task at a time. Creating multiple independent threads allows
multiple computational tasks to employ modern multi-core
systems and thus to increase the overall system performance.
When a new computational task is created, a new thread
is only started if there is not already a thread which can
be reused for execution. In [19], an algorithm is introduced
which handles the allocation of threads and tries to minimize
the number of idle threads running by maximizing reuse.

The Net Executor which will be used for execution is
assigned during the creation of a data-flow net. To determine
whether a new executor is required or an existing one
can be reused, a table containing all currently existing
Net Executors is maintained. This table contains a list of
hardware resources which are exclusively assigned to a
certain executor. During the creation of a data-flow net, the
table is searched for an executor where the intersection of
resources assigned to the executor and required by the data-
flow net is not empty. If such an executor is found, it can be
safely assumed that this executor is available for execution,
since at least one mutually exclusive resource is shared with
all other nets assigned to the executor. To assign the data-
flow net, the newly created intersection of resources must be
stored in the table. If no viable executor is found, a new Net
Executor is created and the list of required resources for the
new net is stored in the table. If a data-flow net terminates,
the resource list for its executor is recalculated by creating
the intersection of required resources for all remaining nets
previously assigned to the executor. If no further data-flow
net is assigned, the Net Executor is terminated. Data-flow
nets which do not require any resources (e.g., monitoring
tasks) cannot be handled using the described algorithm, since
nothing can be said about the concurrency of those tasks.
Hence, a New Executor is always started.

By assigning threads based on the required resources,
switching from one task to another task controlling the same
hardware most of the time reuses the same thread, thus
guaranteeing instantaneous switching without any delay for
the next execution cycle. If two independently controlled
hardware devices, e.g., are joined into a single common task,
one thread will not be reused. If both execution threads
were running with a slight delay, at most one cycle time
delay may occur during the switching process. This delay



is usually handled by the underlying device drivers (e.g., by
interpolating).

VI. EXAMPLES

A prototypical implementation of the component based
robotics framework, including the synchronization mech-
anism, has already been implemented and first test are
very promising. Unfortunately, there are more tests and
experiments needed to provide a high quality evaluation,
including precise timing measurements for switching ac-
tions. All experiments have been done using a cycle time of
2 ms. Typical tasks such as point-to-point or linear motions
(including a analytical inverse kinematics) can be executed
on standard PC hardware in less than 0.2 ms. Therefore,
even case 3) for switching of tasks (cf. Sect. IV-B) can be
achieved.

The following examples show some of the capabilities
of the component-based robotics framework. All real-time
switching actions in these examples have been done using
a preliminary variant of the synchronization concept as it
was introduced in [12]. This variant provides less flexibility
(one computational task can take over work from exactly one
other task), but also requires higher computational effort for
each single task.

A. Example: Synchronized Robot Motions

To demonstrate the ability of re-orchestration while robots
are fast moving, we have created the so-called spaghetti
challenge. In this application, two industrial robots (a KUKA
KR-16 and a Stäubli TX90-L) in a common workspace are
geometrically linked by creating a common base coordinate
system. Both robots are positioned in a way that a raw
spaghetti can be fixed between both flanges. The application
then creates a series of linear motions for one of the robots,
while the other is instructed to maintain a fixed position
relative to the other robot’s flange. Each linear motion
consists of one computational task which calculates the
trajectories of both robots. For a continuous application,
all linear motions are prematurely terminated by the Net
Coordinator using synchronization rules and replaced by
the following computational task which takes over the (fast
moving) robots, calculates a blending path and continues
with the next motion.1

Because two robots of different manufacturers with very
different control protocols have been used and no documen-
tation about exact latencies within the robot controllers is
available, the synchronization can only achieve a certain
quality. However, the quality achieved after some experi-
ments for fine-tuning of the system is sufficient to carry
the spaghetti without either losing or crushing it. Using an
optical tracking system consisting of four Vicon MX-40s
cameras and IR-reflecting markers on the robot, a maximum

1The video attachment is available at: http://video.isse.de/spaghetti/

deviation for the distance of both flanges in the range of
±1 mm has been measured (with velocities up to 2 ms−1).

B. Example: Sensor Processing

We have been using the proposed re-orchestration of
real-time components for applications in human-robot-
collaboration using capacitive sensors [21]. These sensors
can be easily mounted on a robot arm and provide interesting
features for safely detecting humans in a robot’s workspace.
However, the main issue with capacitive sensors is, that
not only humans, but generally any conductive material
influences the sensor. Hence, we are using an environment
model containing information about static objects in the
workspace which allows a reliable detection of humans. To
store and query a previously recorded environment model,
we are using the Fast Library for Approximate Nearest
Neighbors (FLANN, cf. [22]). As the environment model
needs to provide persistent data, FLANN was integrated
into the RCC as Device Driver. At runtime, a data-flow
net is specified which performs a nearest-neighbor search
once every cycle to find the data-set closest to a given
joint position. The corresponding data-set of sensor values
is provided using inter-net communication (cf. Sect. III-A).

An additional data-flow net is specified for the distance
estimation of every capacitive sensor, i.e., the current and
the expected sensor value (from the environment model) are
compared and based on this difference the distance to an
obstacle is estimated [21]. Hence, this real-time computation
component needs the data provided by the above mentioned
environment model component. Finally, another data-flow
net computes in every cycle an appropriate reaction of the
robot, e.g., a global velocity override based on the lowest
estimated distance. All three data-flow nets run as real-time
computation components permanently and provide data us-
ing inter-net communication. Changing motion commands,
which are also specified as data-flow nets and executed using
rules (cf. [11]), can use these data sources, e.g., to decelerate
in case of an obstacle. An advanced reaction strategy takes
the current direction of every sensor into account when
calculating the global velocity override. The computation
whether a sensor is moving towards or away from a potential
obstacle is specified by another data-flow net and executed
as a real-time component, too.

VII. CONCLUSION

In this paper, we presented an approach and a runtime en-
vironment for re-orchestrating real-time component systems
in robotics. It was described along each of the 5 Concerns
(5Cs) for robotic component systems [13]. The approach
allows for a generic specification of computation tasks and
incorporates a flexible, rule-based mechanism for composing
and coordinating multiple components. As a consequence, it
is possible to re-orchestrate the composition of running real-



time components at run-time to adapt to new tasks – even
when a robotics system is moving with high speed.

Distributing large applications while still being real-time
safe is a key requirement for further increasing the scalability
of the approach. Although several robots can be controlled
by a single RCC, scalability is naturally limited by the
available computing power. Hence, the real-time component
system – in particular the RCC – will have to be distributed
across multiple computers. The goal is to create a distributed
Net Coordinator which allows to use synchronization rules
for data-flow nets which are running on different systems,
while still providing a similar level of real-time guarantees
as it is possible for a single system at the moment.
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