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Abstract. Complex robot applications or the cooperation of multiple
mobile robots are use cases of increasing popularity where software distri-
bution becomes important. When developing mobile robot systems and
applications, software structure and distribution has to be considered
on various levels, with effects on the organization and exchange of data.
With respect to structure and distribution, this work proposes to distin-
guish between real-time level, system level and application level. Ways of
structuring the software, as well as advantages and disadvantages of dis-
tribution on each level are analyzed. Moreover, examples are given how
this structure and distribution can be realized in the robotics frameworks
OROCOS, ROS and the Robotics API. The results are demonstrated
using a case study of two cooperating KUKA youBots handing over a
work-piece while in motion, which is shown both in simulation and in a
real world setup.

Keywords: Mobile Robots, Cooperative Manipulators, Software Distri-
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1 Introduction

With service robotics getting more and more important, robot demand has ex-
tended from factory automation towards mobile robot systems. Thus, the topic of
mobile robotics has become important, and a lot of research has been performed.
However, in some cases a single mobile robot is not sufficient to execute a task
or deal with all problems [22]. For example, Knepper et al. [20] introduced the
IkeaBot which is a coordinated furniture assembly system with multiple KUKA
youBots. Based on that work, a flexible assembly system with cooperative robots
was suggested in [12]. When multiple robots work together, cooperative mobile
manipulation becomes important and poses new challenges – especially to the
software structure.

Already in the 1990s, Dudek et al. [13] and Cao et al. [9] described a classifi-
cation for cooperative mobile robotics. Dudek et al. [13] defined a taxonomy for
multi-agent mobile robotics, where such a system can be e. g. differentiated by
the number of agents, the communication range, topology and bandwidth as well
as the reconfigurability and the composition of homogeneous or heterogeneous
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(a) Simulated scenario (b) Real world scenario

Fig. 1. Case study of two cooperating youBots

agents. Similarly, Cao et al. [9] defined research axes such as the differentiation,
the communication structure or different types of modeling other agents. More-
over, they made a distinction between centralized and decentralized control in
the software for mobile robots. Later, Farinelli et al. [14] added a classification
based on coordination, where they compared cooperation, knowledge, coordina-
tion and organization of agents in multi-agent systems. This classification defines
aware multi-robot systems where each robot knows that it is cooperating with
other robots.

Concentrating on aware systems, this work analyzes which software structure
and distribution can be used. However, there is not only one software structure
and distribution that is possible in cooperative mobile robotics. From our point
of view, there are different levels and aspects in the software architecture of a
multi-robot system that can be distributed, ranging from the application level
to low-level real-time device control. Typical early software architectures such
as 3T [6] include reactive behavior as well as planning and execution, but are
limited to single robot systems. The decision to distribute the software solution
on one of the mentioned levels may affect the other levels and the complexity of
the solution. Every possible solution, i. e. the chosen distributed software archi-
tecture, has its advantages but also its shortcomings that must be considered.
For example, in current robotics systems component-based software frameworks
which facilitate transparent distribution (e. g. ROS) are commonly used (cf. [7]).
However, although communication between distributed components is easy us-
ing these frameworks, the decision about distribution as well as the assignment
of responsibilities to certain components affects the overall capabilities of the
solution (e. g. support for hard real-time).

In this work, we introduce a taxonomy for distributed software architectures
in cooperative mobile robotics. However, the concepts are not specific to mobile
robots, but also apply to other cooperating robots such as teams of industrial
robots in automation systems. Hence, we are interested in finding a generalized
representation and description of distributed robotics systems that can be used



to classify and compare software architectures of distributed robots. Addition-
ally, we give advantages and disadvantages of applying distribution on different
levels. It is important to be able to compare distributed robotics systems as the
chosen software architecture often influences or sometimes even determines the
complexity of the solution.

For experimental results, a case study is used where two KUKA youBots [3]
physically interact with each other to transfer a work piece from one robot to
the other. This scenario is inspected in different levels of difficulty. In simula-
tion (cf. Figure 1a), both robots can be coordinated in real-time, exact position
information is available and all control inputs and trajectories are exactly fol-
lowed. Initially, workpiece transfer happens while the first robot is standing still,
and then while both robots are moving. As some of the assumptions made for
simulation are not valid for real robots, a second scenario with real youBots is
analyzed (cf. Figure 1b). There, a youBot platform (left, without arm) is ini-
tially carrying a workpiece, which is then picked up by the second youBot (right)
while both youBots are moving. The youBots and the workpiece are tracked ex-
ternally using a Vicon optical tracking system, so precise position information
is available.

In Section 2, the different levels for structuring and distribution of software
for (mobile) robots is introduced. Subsequently, the identified levels (i. e. the real-
time, system, and application level) are discussed in Sections 3 to 5. Implications
on the world model of robotics software are addressed in Section 6. To show the
general validity of the suggested taxonomy, the possibilities of structuring and
distribution on each level are explained using three different robotic frameworks
in Section 7. Experimental results with different possible solutions of the case
study are presented in Section 8. Finally, Section 9 concludes this work and gives
an outlook.

2 Different Levels of Structuring Robotics Software

When designing a software architecture for a distributed robot scenario, we pro-
pose to group the software components into different layers as illustrated in
Figure 2. Each of the hardware devices present in the robot solution is repre-
sented and controlled by a device driver which is defined as the component that
communicates with the hardware device through the vendor-specific interface.
Additionally, the device driver is responsible for exchanging data with the sur-
rounding software components. It has to derive control inputs and forward them
to the device, as well as receive feedback from the device and make it available
to other software components.

Each device driver can belong to a real-time context where data transfer and
coordination between components occur with given timing guarantees. Depend-
ing on the implementation, the real-time context can contain only one device
or span over multiple devices. Within a real-time context, reactions to events
or the processing of sensor data can be guaranteed to happen before a given
time limit. This allows to handle safety-critical situations that require timing
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Fig. 2. Software structure for distributed robots

guarantees (e. g. to stop the robot if an obstacle occurs), or to execute precise
behaviors (such as actions that happen at a given point on a trajectory).

Above the real-time level, one or multiple real-time contexts belong to a
system where all knowledge is shared between the components. Hence, all com-
ponents within one system are allowed to access each other’s data, as well as to
communicate with and send commands to each other. This allows components to
directly include other components’ data into planning or computation, however
no real-time guarantees are given unless the communication is handled within
one real-time context.

To perform a desired task, systems can be controlled from applications that
coordinate the work flow. Within an application, data is read and commands
are sent to the controlled systems, so that the corresponding devices execute
the task. However, if data from one system is required for an action in another
system, it is the responsibility of the application or the deployment to facilitate
the data transfer, as there is no concept of implicit shared data between sys-
tems. The overall behavior of cooperating robots results from the interplay of
all applications that coordinate the robots.

Each application performs its work based on its world model, i. e. the knowl-
edge about the controlled devices and systems, as well as about the environment
including other (cooperating) devices. This includes geometric information such
as positions and orientations of the relevant objects, as well as also physical
data (such as mass and friction), shape data (such as 3D models for visualiza-
tion or collision checks), semantics and ontologies. Information from the world
model can be stored and used in applications, systems or real-time contexts,
and can also be shared between different applications and systems. Structurally,
the world model data can be differentiated into dynamic and static knowledge,
with static knowledge (e. g. maps, shapes and ontologies) being valid everywhere,



while dynamic knowledge (such as positions and sensor data) may be known in
only one system or be different in different systems.

Depending on the requirements and technical limitations of the robot solu-
tion, the size and distribution of real-time contexts, systems and applications
and thus the structure of the software can vary. The following sections discuss
different design decisions concerning this structure based on the examples of the
case study and using the three popular frameworks OROCOS, ROS and the
Robotics API. OROCOS as a component framework mainly targets control sys-
tems with real-time guarantees [8]. The main focus of ROS is to be a component
framework with transparent distribution, which over time has collected a large
amount of algorithms as reusable components [23]. The Robotics API focuses
on high-level robot programming using modern programming languages (such
as Java) while still providing real-time guarantees [1].

3 Real-time Level

First, the existing hardware devices and device drivers have to be grouped into
one or more real-time contexts. Within a real-time context, reactions to events
or the processing of sensor data can be guaranteed to happen before a given time
limit. Having hard real-time guarantees allows to control precise behaviors or to
handle safety-critical situations that need strict timing. In the mobile manipu-
lator example of the case study, the available device drivers have to be grouped
into real-time contexts, especially focusing on the two youBot platforms and one
or two arms.

3.1 Software Structure on the Real-time Level

Generally speaking, there are five different choices to structure these devices (and
their device drivers) into real-time contexts. In the first case (i. e. the real-time
context in Figure 3a), the device driver software is written without real-time
in mind. Here, the real-time context only spans the (possibly real-time capable)
firmware or controller present in the device itself. For the youBot arm, this could
mean that only the position control mode of the arm motor controllers is used.
Thus, it is sufficient to give one joint configuration that the robot is expected
to move to. While easy to implement, no synchronization between the joints or
support for precise Cartesian space motions is possible. Moreover, no guarantees
can be given regarding the interpolation quality of user-defined trajectories or
the timing of reactions to events (unless supported directly by the device).

In the next case (cf. Figure 3b), the device driver and the communication
with the device is implemented in a real-time capable fashion. This requires to
use a real-time operating system (RTOS) and more care when implementing the
device driver, but allows to execute precise custom trajectories and handle sensor
events with timing guarantees. Besides the device driver, additional real-time
logic (cf. Figure 3c) can be present that implements control, trajectory tracking
or coordination of the device. For example, a real-time capable driver running at
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Fig. 3. Variants of real-time contexts

250 Hz can be implemented for the youBot Platform on a RTOS such as VxWorks
or Xenomai. It provides the motor controllers with smooth control set points
for velocity or torque control, which allows precise user-defined trajectories or
custom feed-forward or feedback control laws. However, as a drawback only
information that is provided by the device itself can be included in the control
law. For example, only the wheel position can be controlled exactly, but the
position of the entire robot in Cartesian space is inaccurate (due to wheel slip
and other factors limiting odometry precision), and the platform motion cannot
be synchronized with the arm motion.

Increasing the real-time context, multiple devices can be combined up to all
devices that are physically connected to the controlling computer (cf. Figure 3d).
Both the youBot arm and the platform – connected to the onboard computer via
EtherCAT – can be controlled from a real-time capable software on a RTOS. In
this way, coordinated motions between platform and arm are possible by com-
bining the five joints of the arm and the three degrees of freedom provided by
the omni-directional platform. This allows, for example, to execute Cartesian
space motions of the end-effector relative to a point in Cartesian space known
to the youBot (such as the position where the youBot started assuming that
odometry exactly provides the current position relative to this origin based on
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Fig. 4. Examples for distributing real-time contexts

wheel rotations). Additionally, one device can react to events that occur at other
devices or are detected by other sensors. However, in order to be able to specify
these reactions, either this part of the real-time logic has to be changed for a spe-
cific application, or a flexible specification language is required in the real-time
logic [24]. To enable easy cooperation between multiple robots, the devices of all
robots could be combined into one real-time context (cf. Figure 3e). However, if
the corresponding devices are connected to different PCs, real-time distribution
becomes important to establish this kind of real-time context.

3.2 Distribution of Real-time Contexts

In the simplest cases, all devices structured into one real-time context are con-
nected to the same computer (cf. Figure 4a), which requires no distribution.
Regarding our case study where both youBot platforms are not connected to
one computer using a single (wired) EtherCAT bus, the real-time context has to
be distributed in order to achieve this structure (cf. Figure 4b). However, to dis-
tribute a real-time context, special real-time capable communication is required.
For stationary robots such as manipulators or automation systems, as well as
for complex mobile robots where different devices are connected to the different
on-board computers (such as the PR2 or DLR’s Justin), this is possible through
Ethernet or a field bus like EtherCAT. In the automation domain, standard
equipment such as PLCs are used, while in robot research software frameworks
such as aRDx [15] or OROCOS [8] are preferred. But between mobile robots,
using a wired connection usually is no option, and standards for general pur-
pose real-time capable wireless connections are not yet common, so providing a
single real-time context is not yet widely usable. In summary, while distributing
a real-time context over multiple computers can improve the scalability of the
solution (w. r. t. processing power or device connectivity), the need for determin-
istic communication implies special requirements (such as field bus hardware or
dedicated networks) that make the solution more complex or expensive.
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4 System Level

Proceeding to the system level, one or more real-time contexts can be grouped
into one system. Within a system, all components are allowed to access each
other’s data, and to communicate with and send commands to each other. This
allows components to directly include other components’ data into planning or
computation, though no real-time guarantees are given (unless handled within
one real-time context).

4.1 Software Structure on the System Level

Working with the two youBots, three different structures of systems are possible:
As shown in Figure 5a, each youBot can work in its own system optionally
together with further logic used in the system. Then, no implicit data transfer
occurs between both youBots. The second option is to group both real-time
contexts for the two youBots into one system (cf. Figure 5b), in addition with
further computation logic. Then, the system introduces communication between
both real-time contexts that however does not provide real-time guarantees.
Finally, one real-time context spanning both youBots can be used in a system
(cf. Figure 5c), which allows real-time cooperation of the youBots. However, this
may require a distribution of the real-time context.

Using a big system spanning all robots (cf. Figures 5b and 5c) has the advan-
tage of simplifying application programming or deployment: All the data that
any component might need is made available everywhere in the system. Hence, no
manual data transfer is required. This especially covers the world model. Within
one system, a consistent world model is possible, because the best knowledge
about the world is available to every component. Moreover, every change to the
common world model is available to every component immediately.

However, there can be various reasons to use multiple systems: The sheer
amount of data present in a big (multi) robot system can be a technical reason.
Scalability can be limited by the management overhead induced by the data
transfer between a great amount of components, and the addressing or mapping
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of data to components can become problematic. Furthermore, network band-
width or reliability can be a limiting factor. In particular, this can be a problem
when multiple robots are used that cooperate in varying teams. While for con-
stant teams the corresponding robots could be joined into one system, varying
teams quickly increase the required system size as all robots that might work
together in a team at any time have to be within the same system.

But also more political reasons can opt for the separation into multiple sys-
tems, if cooperating robots belong to different people or parties. In this situation,
not everyone might want to provide access to all of the robot’s data, or allow ev-
eryone else to control the robot. Then, matters of trust or access control become
important that do not fit into the share-everything theme of a system. However,
these reasons do not occur between the different devices within one robot (such
as the arm and the platform of one youBot), so grouping them into two different
systems does not really make sense and has been omitted in the figure.

4.2 Distribution of Systems

Looking at the distribution aspect of a system, some constraints are given by
the real-time contexts: As the real-time contexts have to communicate with the
corresponding hardware devices, the assignment to a certain computer is usu-
ally given. Depending on the devices and their connectivity, this can lead to a
solution without distribution (cf. Figure 6a), if all devices are connected to the
same computer. In this case however, further logic components can be moved to
a different computer as shown in Figure 6b, based on performance deliberations.
When the devices are connected to different computers and are not handled
within a distributed real-time context, distribution of the system is required.
Here, each real-time context’s assignment is given, while the further logic com-
ponents can be assigned to the different computers based on further requirements
(cf. Figure 6c). For communication between the different components and real-
time contexts, no timing guarantees are required. When data is to be exchanged
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between components on the same computer, communication can be performed
locally, while otherwise network connections can be used to transfer the corre-
sponding data and make necessary information available. Therefore, standard
communication methods including wireless ones such as WiFi are applicable,
however reliability or bandwidth can be limiting factors.

5 Application Level

To perform a requested task, one or multiple systems have to execute actions that
are controlled and coordinated by one or multiple applications. There are various
ways to specify applications: Mainly sequential workflows can well be expressed
as a programming language control flow. For reactive behavior, model-based
approaches such as statecharts (e. g. [1], [19] and [27]) or Petri nets (e. g. [11])
can be more appropriate. Solutions offered by different robotics frameworks are
discussed in Section 7.

5.1 Software Structure on the Application Level

Figure 7 gives the different possibilities to structure the application(s) for con-
trolling two youBots. One way is to control all robots from one application as
shown in Figure 7a. This defines all the interaction present in the solution in
one place and thus makes it easier to understand. However, if varying teams are
needed in a certain scenario, the corresponding application has to coordinate all
robots at the same time. This can become confusing if the concurrent execution
of multiple subtasks is encoded in one control flow or sequential state machine.



Thus, separating concerns into subtasks, one for each team, should be considered
within the application.

Another way is to use multiple applications, e. g. one for each controlled robot
(cf. Figure 7b). In this way, team behavior can be implemented by only locally
and independently describing the behavior of each robot. However, the appli-
cations have to coordinate, either through explicit communication or through
observation of the environment or other robots. As a third way, a further appli-
cation coordinating both applications is a possible solution (cf. Figure 7c), which
however leads to a coordination application similar to the one in Figure 7a. Us-
ing separate applications can also be required for political reasons, as described
in Section 4.

In a multi-application cooperation scheme, however, the resulting behavior is
not easily understandable by looking at one place, but only by examining the in-
teraction of all different applications involved. In multi-agent robot systems (e. g.
[2] and [10]) every agent is controlled by one application. The overall behavior is
given by the agents’ interaction. As shown by Hoffmann et al. [17], this can lead
to self-organizing properties making the overall solution more robust. It is even
possible that the application for each robot only implements low-level behaviors,
and the resulting behavior completely emerges from the interaction [21].

Another structuring approach looks at the relation between applications and
systems. It is possible to control (different devices of) one system from multiple
applications (cf. Figures 7b and 7c), one system from one application (cf. Fig-
ures 7a and 7e) or multiple systems from one application (cf. Figure 7d). The
software framework should allow an application that was intended for use with
multiple systems (e. g. Figure 7d) to also work when all corresponding devices
exist in one system, while the distribution aspect on the system and real-time
level is handled by deployment (e. g. through configuration). This may however
not be possible the other way round, if the application relies on having one
system (or even real-time context).

5.2 Distribution of Applications

When looking at the application level, different possible variants of distribution
can occur. An application can run on another computer than the controlled
system(s). In this case, network communication is required to transfer data be-
tween the system(s) and the application. However, this kind of distribution is
equivalent to distribution on the system level, when seeing the application as
a component in the system. When multiple applications are used, they can be
executed on different computers. Then, coordination between the applications
has to be implemented in a way supporting remote communication. Finally, a
single application can be distributed onto multiple computers. Therefore, pro-
gramming language concepts such as remote procedure calls or service-oriented
architectures can be used, which can however be used in a standard fashion and
do not require any special, robotics-related treatment.
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6 World Model

If a robot is expected to cooperate with another robot, it needs the relevant
data about that other robot. In the easiest case, both robots belong to the same
system, thus the required information is already accessible. Then we refer to
both robots as controlled robots within this system. Once robots from multiple
systems are to be coordinated from one application, the world model becomes
more complex. The information about robots in other systems can originate
either from communication or observation. If the other system provides (maybe
read-only) access to the information, then we term the other robot a remote robot.
However, if the information is only available through observation, we define the
other robot as an observed robot. Thus, the world model has to keep (a descending
amount of) information about controlled, remote and observed robots.

When working with two youBots, each of which belongs to its own system,
some information (e. g. the robot positions) is available in different systems with
varying precision, and has to be organized. One way is to keep one world model
per system. Figure 8a shows an example of two resulting world models. The
figure concentrates on geometric information, with coordinate systems (frames)
indicating positions of objects in Cartesian space, while arrows represent posi-
tions or transformations between these frames. Solid arrows indicate controllable
positions, while dashed arrows indicate positions retrieved through measurement
or communication. Orange arrows (i. e. L1 to L3) belong to the system of the
left youBot, while blue arrows (i. e. R1 to R3) belong to the right youBot sys-
tem. The frames could be augmented by additional information such as shape
data, which is omitted here for clarity. In this case, the system of the left youBot



knows information about the left youBot’s start position together with the dis-
tance traveled, as well as current position information about the right youBot.
On the right youBot system, the opposite situation occurs.

Using separate models has the advantage that multiple systems can just
use different instances of the same world model, which allows to re-use models
designed for single systems to a large extent. However, for cooperation a lot of
information has to be duplicated, such as robot models of robots that occur as
controlled robot in one and as a remote robot in another system. Additionally,
the different world models have to be kept consistent. For example, a workpiece
that is grasped and moved in one system also has to appear as grasped and
moved in the other system.

The second way is to keep one global world model with all the objects and re-
lations, and to provide access to the different transformations or sensor values for
each system (cf. Figure 8b). This has the advantage that the world model is al-
ways consistent (as far as topology and static information is concerned, however
different systems can still disagree about object transformations), and structural
changes performed in one system are automatically present in other systems.
However, this scheme lacks flexibility when dealing with observed robots: While
a mobile robot can keep track of its movement since the start through odom-
etry measurements, an observer has no way to achieve this information from
outside. Thus, the frame graph contains two transformations for controlled and
remote robots (cf. R1 and R2 in Figure 8a), while for observed robots only one
transformation is available (cf. R3 in Figure 8a).

To solve this problem, we propose a mixed world model scheme (cf. Figure 8c).
In a mixed world model, the static data is shared between all systems, while
dynamic data can be different for each system. For example, information about
physical objects (such as youBot geometry) as well as static connections (such
as the position of the youBot arm relative to the youBot platform) are shared.
Dynamic connections (such as the position of the youBot relative to the origin,
or the fact that the youBot is positioned relative to the world origin or youBot
origin) can be different for each system. Still, in both systems it should be
possible to compute the transformation of the left youBot to the right youBot,
using the data and topology present in each system (and to use it for planning
and execution). This combines the advantages of a shared world model with the
flexibility to include limited observations, while still allowing the application to
address one youBot in a uniform way.

7 Support in Software Frameworks

When looking at the different software frameworks, a different focus becomes
obvious. ROS itself puts no emphasis on real-time guarantees, so typically a
real-time context only spans one device (cf. Figures 3a to 3c), where a single
device is encapsulated into a ROS node, providing an interface to execute the
required local commands. Sometimes multiple devices (such as a youBot arm and
platform) are combined into one node, however this leads to higher coupling. On



the system level, all nodes that run using the same ROS master are seen as a
system. In this situation, all these nodes can subscribe to any data published by
other nodes, and post messages or actions, thus providing the transparent data
exchange required for a system.

To implement applications in ROS, Python scripts can be used for sequential
workflows, while SMACH state machines introduced by Bohren and Cousins [5]
allow reactive behavior. However, communication with multiple ROS masters
from one application is not natively supported. To share data between different
systems (i. e. ROS masters), concepts like multimaster or foreign relay [25] can
be used to forward topics between multiple masters. The forwarded topics have
to be configured during deployment. Additionally, working with multiple masters
is one of the new use cases motivating ROS 21. Within one ROS system, the
world model is managed through data periodically published by different nodes.
It includes transformation data as provided by the tf service, as well as robot
models and data (e. g. sensor values) from other nodes.

In OROCOS usually most devices are combined into one real-time context
(cf. Figures 3b to 3e), because the framework targets real-time capable compo-
nent systems with device drivers implemented in C++ on a RTOS. When using
multiple robots, wired connections are used to ensure one real-time context,
sometimes even for mobile systems [18]. Looking at the system level, OROCOS
as a framework does not contain features for non-real-time communication, how-
ever often ROS is used to combine multiple real-time contexts into one common
system [26] that allows for non-real-time communication and data sharing. Con-
sequently, OROCOS does not provide direct support for access to multiple sys-
tems. Control flow can be expressed in LUA scripts, while complex coordination
is possible using rFSM statecharts as suggested by Klotzbücher and Bruyninckx
[19]. World models are usually implemented as components in an application
dependent manner within the real-time context, which can include geometry,
semantics and history [4].

Using the Robotics API, the underlying Robot Control Core [28] is imple-
mented in C++ for Xenomai and includes real-time capable drivers for devices
connected to the corresponding computer. Additionally, the Realtime Primitives
Interface [28] allows for the flexible definition of real-time logic to execute user-
defined tasks. In this way, all devices physically connected to the computer can
form a real-time context (cf. Figures 3c to 3e). The system term here refers to
the concept of a RoboticsRuntime, which represents one real-time context and
makes the data available to applications in a non-real-time way as well as to
other devices in the same context for real-time reactions. Control flow can be
expressed directly in Java applications, as well as through statecharts, e. g. by
using Java libraries for SCXML. It is easily possible to use multiple systems
in one application (as in the Factory 2020 case study [1]) and to share limited
amount of data between different systems or applications – either through com-
mon data sources (such as a Vicon system connected to both youBots through
WiFi) or through explicit direct transfer. The frame graph [16] contains semantic

1 http://design.ros2.org/articles/why ros2.html
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Fig. 9. Software structure for the example application

information such as the relation between frames (e. g. if they are static, tempo-
rary or have a transformation that can change during execution). With further
information about physical objects (e. g. their physical properties or shape), it
serves as a world model in an application and can be used for planning as well
as task execution.

8 Experimental Results

The simulation experiments described in the case study have been performed
using the Robotics API as a framework and its corresponding simulation and vi-
sualization engine. A single application as shown in Figure 9a was used to control
one system (cf. Figure 5c) containing a single real-time context (cf. Figure 3e). In
this real-time context, both youBot arms and platforms were simulated, as well
as the youBot grippers. The application was programmed in an object-oriented
fashion, referring to the robots and work pieces as software objects. Moreover,
the application used a single world model and expressed all interaction in the
control flow of a Java method. Its initial version, where the first robot was not
moving during transfer, was easily extended into the second version where both
platforms were moving. This extension mainly consisted of adding commands to
move the first platform, and to make the second platform synchronize its motion
to the position and movement of the first platform. This showed the simplicity
of programming and synchronizing robots in the idealized simulation case where
every device belongs to the same real-time context and can be synchronized, and
where exact positioning is available.



Transferring the results from simulation to reality, various changes had to
be done. The tests were conducted on two KUKA youBots using a Vicon opti-
cal tracking system for external localization. A straightforward approach would
be to combine both youBots into one real-time context. Then, the same distri-
bution scheme as in simulation could be re-used, as well as large parts of the
implementation. However, lacking real-time communication over wireless net-
works (cf. Section 3.2), this was not easily possible. On the other hand, while for
stationary manipulators adding a common real-time context greatly simplifies
and improves the precision of physical cooperation, in the mobile case the gains
are less clear. This is because precise cooperation does not only require exact
timing synchronization, but also exact spatial synchronization. For stationary
manipulators, this can be achieved by appropriate calibration procedures. For
mobile systems, this is in general more problematic due to sensor inaccuracies.
External positioning systems – e. g. the Vicon system used here – can mitigate
this problem. However, wireless real-time communication becomes a problem
again when it comes to transmitting the position information to the youBots.

Thus, we decided to choose an alternative distribution approach as shown in
Figure 9b. On each internal computer an instance of the Robot Control Core was
running, which formed the real-time context (cf. Figure 3d) as well as the system
for the corresponding youBot. On the system level, this structure corresponds to
Figure 5a. Vicon tracking data for both youBots and the workpiece was streamed
to both youBot systems through a WiFi connection from an external PC running
the Vicon software. Looking at the application level, each youBot was controlled
from a separate application (cf. Figure 7e). The motion of the platform carry-
ing the workpiece was controlled through teleoperation. The other youBot was
controlled by a Java method similar to the one in the simulation case.

However, both applications used separate world models (cf. Figure 8a). The
workpiece and the other youBot platform were not modeled as Java objects,
but only the Vicon position data was used to synchronize the motion and find
the grasp position. The youBot arm used joint impedance control to mitigate
position inaccuracies. Still, the experiment succeeded and the work piece could be
transferred. Instead of separate world models, a single application with a mixed
world model could have been used, which would be closer to the (single) world
model in the simulation case. This way, changes to the world model topology
(e. g. the information that the object has been grasped) would have automatically
been transferred to the second youBot’s system and static position data would
be known to both youBots.

9 Conclusion and Outlook

In this paper, we introduced different levels for structuring the software for dis-
tributed robot applications: real-time, system, application level. Moreover, im-
plications on the world model have been discussed. The structure on the different
levels can be used and combined independently, motivated by technical as well
as political constraints. The different options for structuring and distribution



have been explained based on a case study of cooperating mobile manipulators
and various robot frameworks, and evaluated both in simulation and in real
world setup with two KUKA youBots. In the example applications, different
ways to distribute the software on different levels have been introduced, and the
advantages and drawbacks for the given scenario have been shown.

Overall, it became clear that there is not a single optimal way of structuring
and distributing the software. The levels presented in this work will hopefully be
a starting point that can help developers in designing and discussing their soft-
ware architecture. Based on non-functional requirements to the developed solu-
tion (e. g. reactiveness, synchronization quality, data privacy, trust), the choice
of the appropriate distribution scheme and framework(s) for implementation
should become easier. As next steps, we plan to implement the mentioned other
ways of distribution and to evaluate the gains for the given scenario. This es-
pecially includes the use of a mixed world model, as well as ways to share a
world model between multiple applications or to synchronize relevant structural
changes.
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