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Abstract—Resource allocation, in terms of balancing supply
and demand, is a common problem in many mission-critical
systems, such as smart grids. If the participants’ contribution
is subject to inertia, they have to solve the problem for a
specific time span in advance, that is, create schedules on the
basis of demand predictions. To improve the system’s stability,
the participants not only have to anticipate the predictions’
inherent uncertainties, but also provide an appropriate amount
of degrees of freedom, i.e., reserves, that enable reactive contri-
bution adjustments. Reserves are of particular interest because
the problem’s complexity and uncertainty call for rather coarse-
grained schedules and an anticipation can turn out to be wrong.

In this paper, we present an approach to robust resource
allocation in self-organizing hierarchical systems that is flanked
by an auction-based algorithm. To deal with uncertain demand,
agents learn characteristic prediction errors and create schedules
for different possible developments of the demand. This allows the
agents to choose the most suitable schedule at runtime. Further,
they schedule feedback-driven reserves to be able to cope with
unforeseen situations. Based on the example of creating power
plant schedules in decentralized autonomous power management
systems, we show that our auction-based algorithm clearly
outperforms a regio-central approach.

Index Terms—Resource Allocation; Uncertainty; Electronic
Markets; Online Stochastic Optimization; Smart Grids

I. RESOURCE ALLOCATION UNDER UNCERTAINTY

In a resource allocation problem (RAP), the goal is to

stipulate the contributions of the system components in a way

that their sum satisfies a given demand. Solving such a RAP

is the main issue in several technical systems. In gas pipeline

and water supply systems, for instance, the challenge is to

maintain the system’s pressure at a certain level. Regarding

district heating systems, the network temperature has to be

kept between specific bounds. Similarly, the main task in

power management systems (PMSs) is to maintain the balance

between power production and consumption at all times [1].

In this paper, we address a one-good RAP without exter-

nalities [2] that has to be solved by a large set of agents

A = {a1, . . . , am}. The primary goal is to find an allocation

so that, in each time step t, the sum of the individual agents’

contributions matches a demand – that is imposed by the

environment – as accurately as possible. Further, the costs of

satisfying the demand should be kept low. Because we assume

that the demand exceeds the limited resources of a single agent,

the agents have to solve the RAP in cooperation.

In various systems that control physical devices, the agents’

possible behavior is subject to inertia. In such cases, the agents’

contribution might not change quickly enough to reactively

adapt to the demand in all situations. Consequently, their

contribution has to be specified proactively in the form of

schedules for all N time steps contained in a scheduling
window W that defines a fixed time span. In PMSs, this

problem is also known as economic load dispatch [3] or unit
commitment [4]. It can be solved, e.g., by centralized [5], [6],

market-based [7], or decentralized [8] algorithms.

In particular in large-scale systems, the scheduling problem

introduces two central and interconnected challenges:

1) Scalability: Solving the scheduling problem is NP-

hard [9]; both with regard to the number |A| of agents
involved and time steps N schedules are created for in

advance, resulting in a likely complexity of O
(
2|A|·N

)
.

2) Uncertainty: The RAP has to be solved in spite of uncer-

tainties. These are introduced by the environment in the

form of inaccurate demand predictions as well as by the

system participants themselves. In this paper, we focus

on uncertain demand, i.e., unintentional uncertainties.

Regarding scalability, hierarchical problem decomposition has

been proposed as a generic approach to deal with large-scale

systems prohibiting a centralized solution [10], [11]. As we

showed in [12], agents can establish and maintain appropriate

hierarchical system structures using self-organization. While

this addresses the exponent |A|, a too fine-grained schedule
resolution Δπ (we define Δπ as a multiple of the difference

Δt between two successive time steps t and t + 1), which
unnecessarily increases the number of time steps N in W =
{tnow + i ·Δπ | i ∈ {1, . . . , N}}, should also be avoided to

further deal with the problem’s complexity. At the same time,

a too fine-grained schedule resolution is not useful because,

given that demand predictions tend to become more accurate

as a future point in time approaches, uncertainties require that

schedules are periodically revised at runtime. A recalculation

is needed at least after N ·Δπ time steps.

Especially in mission-critical systems, such as supply sys-

tems, the ability to deal with uncertainties becomes a major

concern because their failure can have massive consequences

for people, industries, and public services. In such cases, the

system’s stability and availability is of utmost importance,

meaning that the demand has to be satisfied despite fluctuations

and unexpected events. In PMSs, for example, our RAP’s

demand corresponds to the so-called residual load which is

defined as the difference between the overall non-dispatchable

consumption and the output of all non-dispatchable power
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plants. The dispatchable prosumers have to fulfill the residual

load in spite of fluctuations originating from changing weather

conditions and stochastic consumer behavior (we use the term

“prosumer” to refer to producers and consumers). As for un-

expected events, dispatchable prosumers might not be able to

comply with their schedules in the light of technical difficulties.

For this reason, uncertainties not only have to be anticipated

but also quantified in order to obtain meaningful schedules

that allow the system to operate more robustly and efficiently.

Since uncertainties are subject to change over time, they must

be assessed at runtime. Trust-based scenarios (TBSs) [13] have
been proposed as an approach to probabilistic model creation.

As other approaches based on the social concept of trust,
TBSs assume that prior observations are indicative of future

behavior. On the basis of past experiences, TBSs calculate the

empirical discrete probability distribution reflecting an agent’s

or the environment’s behavior. Each TBS thus represents an

expected behavior over a series of future time steps and has a

certain probability of occurrence. Since such an expectation

can turn out to be wrong, we presented the idea of improving

robustness by creating schedules for multiple TBSs in [14].

This approach allows to (1) anticipate aleatoric, i.e., intrinsic
random and irreducible, uncertainties and (2) reduce epistemic,
i.e., systematic, uncertainties by putting more effort into the

optimization of likely scenarios. That way, the agents self-

improve their flexibility in dealing with expected uncertainties

as they can choose the most appropriate schedule at runtime.

Using expectations, uncertainties manifest themselves in the

form of deviations between the anticipated demand (i.e., the

“presumed realization” of the demand) and its (actual) realiza-

tion. To maintain the balance between supply and demand, we

have to allow the agents to temporarily disregard their scheduled

contributions in order to reactively compensate for these

deviations, especially for the following three reasons: (R1) Due
to complexity and uncertainties, we calculate schedules for

a coarse-grained time pattern of multiples of Δπ, whereas
the demand has to be satisfied in a fine-grained time pattern

of Δt ≤ Δπ. In the synchronous grid of Continental Europe,

for instance, schedules are typically created with a resolution

of Δπ = 15 minutes, whereas imbalances have to be detected

and compensated for within seconds to ensure the grid’s stable

operation [1]. (R2) Some agents might contribute according

to the wrong scenario. Such a mistake is caused by a false

expectation how the demand will develop, e.g., from tnow
until tnow +Δπ. (R3) The system must be able to deal with

unforeseen developments of the demand, i.e., even those that

are not captured in a TBS. In [15], we showed that TBS-based

schedules can proactively guide reactive decisions, i.e., self-

adaptation, of inert agents, thereby improving the system’s

efficiency and stability. Increasing the agents’ available degrees

of freedom by scheduling reserves strengthens their ability to

cope with unforeseen situations, i.e., aleatoric uncertainties.

All these aspects, anticipating uncertainties, scheduling for

several possible scenarios, and incorporating reserves aim at

increasing the system’s robustness with respect to epistemic

and aleatoric uncertainties. Because of the problem’s dynamic

Top-Level
AVPP

Fig. 1. Hierarchical system structure of a future autonomous and decentralized
power management system: Prosumers are structured into systems of systems
represented by AVPPs that act as intermediaries to decrease the complexity of
control and scheduling. AVPPs can be part of other AVPPs.

and uncertain nature, optimal solutions are not relevant and not

even desired, though. The effort would be out of proportion to

the benefit. This justifies the application of heuristics.

With regard to these challenges, the contributions of this

paper are threefold: (C1) We outline a robust formalization of

the scheduling problem on the basis of TBSs, online stochastic
optimization [16], and feedback-driven reserves (see Sect. III).

(C2) For its scalable solution in large-scale systems of systems,

we present a regionalized auction-based mechanism based

on [7] (see Sect. IV). (C3) In our evaluation (see Sect. V),

we show that it outperforms a regio-central approach that is

based on a state-of-the-art optimizer. Throughout the paper, the

problem of creating schedules in a decentralized autonomous

PMS serves as illustrative example (see Sect. II). Related work

is discussed in Sect. VI, before we conclude the paper and

give an outlook on future work in Sect. VII.

II. CASE STUDY

The wide-spread installation of weather-dependent power

plants as well as the advent of new consumer types like

electric vehicles put a lot of strain on power grids. Additionally,

small dispatchable power plants (e.g., biogas plants) owned

by individuals or cooperatives feed in power without external

control. To save expenses, gain more flexibility, and deal with

uncertainties, future autonomous PMSs have to take advantage

of the full potential of dispatchable prosumers by incorporating

them into the scheduling scheme. Further, uncertainties have to

be (1) anticipated when creating schedules and (2) compensated

for locally to prevent their propagation through the system.

In [17], we presented the concept of Autonomous Virtual
Power Plants (AVPPs) as an approach to meet the challenges

of future PMSs. AVPPs represent self-organizing groups of

two or more power plants of various types. Each AVPP has

to satisfy a fraction of the overall demand by periodically

calculating schedules for its dispatchable power plants (see

Sect. III). The overall demand is the sum of the demand in

each AVPP’s local environment consisting of non-dispatchable

prosumers. Depending on its composition, an AVPP’s local

demand is either positive or negative. To avoid affecting other

parts of the system, each AVPP’s dispatchable power plants

have to reactively compensate for deviations resulting from

fluctuations of the uncertain local demand.

To be able to hold the balance between energy supply

and demand despite changing AVPP-internal or environmental

conditions, AVPPs autonomously reorganize their structure at
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runtime. In particular, if an AVPP cannot repeatedly satisfy its

assigned fraction of the overall demand or compensate for its

local uncertainties, it triggers a reorganization. The goal is to

form a structure of similar AVPPs that are likely to feature

a heterogeneous composition. This promotes robustness in

two ways: (1) By distributing unreliable power plants among

AVPPs, the chance of fluctuations is reduced and the system’s

robustness increases. (2) By balancing the AVPPs’ degrees of

freedom (e.g., by mixing different generator types), their ability

to locally deal with uncertainties, i.e., fluctuations, is promoted.

To cope with the vast number of dispatchable power plants,

we proposed a self-organizing hierarchical structure in which

AVPPs act as intermediaries (see Fig. 1). By decomposing

the system, the number of subordinate1 dispatchable power

plants (including AVPPs) each AVPP controls is reduced, which

results in shorter scheduling times for the overall system.

While we focus on power generation in this paper, both

dispatchable and non-dispatchable power consumers can easily

be integrated into AVPPs as well as the presented algorithms.

III. ROBUST HIERARCHICAL RESOURCE ALLOCATION

In this section, we formalize the problem of robust schedule

creation from a “regio-central” perspective. We start with the

top-down creation of TBS-based schedules in Sect. III-A. In

Sect. III-B, we extend this problem by scheduling reserves.

A. Scheduling on the Basis of Trust-based Scenario Trees

With regard to the hierarchical system structure, the agents

autonomously create schedules in a regionalized and top-down

manner. In this setting, inner nodes act as intermediaries λ ∈ I
(with I ⊂ A). We refer to the root of the hierarchy as the

top-level intermediary Λ ∈ I. Each intermediary λ represents

the group of its subordinate agents Aλ ⊂ A (e.g., if I = {Λ},
AΛ = A\{Λ}), i.e., a subsystem. As the hierarchy constitutes

a tree, the sets of subordinate agents are pairwise disjoint.

When creating schedules, the top-level intermediary Λ first

determines the overall expected demand DT
Λ for the scheduling

window W by aggregating the local demand the intermediaries

expect in their local environment. Afterwards, Λ distributes DT
Λ

to its subordinate agents a ∈ AΛ in the form of schedules ST
a

(Λ’s own schedule ST
Λ is equivalent to DT

Λ ). Λ’s subordinate

intermediaries λ ∈ IΛ (with IΛ = AΛ ∩ I) are, in turn,

responsible for redistributing the demand DT
λ stipulated in

their schedule ST
λ to their own subordinate agents Aλ etc.

Ultimately, the overall expected demand is distributed in the

form of schedules to all agents a ∈ A in a top-down manner.

As stated before, the (local) demand is based on a stochastic

process driven by the environment (consider, e.g., meteoro-

logical influences). To improve the satisfaction of the actual

demand, i.e., its realization, intermediaries have to quantify and

anticipate possible uncertainties. To this end, we propose that

intermediaries use the concept of TBSs [13]: Each intermediary

measures the accuracy of its local demand predictions for a

scheduling window W as a sequence of deviations from the

1“Subordinate” plants are those an AVPP is directly responsible for, i.e.,
those on its next lower level in the hierarchy.
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Fig. 2. An illustration of a TBST representing the demand DT
λ an

intermediary λ has to distribute among its subordinate agents Aλ in the course
of the schedule creation: Each path from the root r to a leaf is a TBS that
embodies a possible development of the demand λ is accountable for. Except for
r, every node thus represents an expected demand (all values in MW) in a future
time step in the scheduling window W = {tnow +Δπ, . . . , tnow +4 ·Δπ}.
The values at the TBST’s edges indicate the conditional probabilities that the de-
mand changes from one value to another. We define the probability p(n) that a
node n occurs as follows: p(r) = 1, n �= r → p(n) = p(n | f(n)) ·p(f(n)),
where the function f returns the parent of a node n. Hence, a TBS’s probability
of occurrence is equal to that of the corresponding leaf. With regard to the
illustration, assume that λ’s assigned demand for tnow +Δπ is 9MW with
an additional local demand of 1MW with probability 0.7 and −1MW with
probability 0.3, resulting in a demand to distribute of 10MW and 8MW.

actual local demand in the N time steps in W . By classifying

the deviations (by means of bins, i.e., intervals, of a predefined

size), each intermediary obtains an individual empirical proba-

bility mass function representing the uncertainties in its local

demand predictions.2 The presumed probability that a specific

sequence of deviations occurs depends on how often it was

observed relative to the occurrence of other sequences. Each

observed sequence represents a TBS. Together with an arbitrary

root, the set of TBSs can be combined to a so-called trust-based
scenario tree (TBST), whose transitions are annotated with

conditional probabilities. Branches result from common prefixes

of the sequences of deviations representing TBSs. Every time

schedules are calculated, intermediaries update their discrete

probability distributions on the basis of their latest experiences.

To achieve a stable operation of the overall system, i.e.,

to satisfy the overall demand as accurately as possible, each

intermediary λ takes responsibility for scheduling its subordi-

nate agents Aλ in a way that allows them to reactively and

locally compensate for uncertainties in λ’s local demand. For

this purpose, λ uses the above-mentioned discrete probability

distribution in conjunction with its assigned demand, i.e., its

schedule ST
λ , and its local demand prediction to determine

multiple scenarios for the future demand it is accountable

for (for details, we refer the interested reader to [14]). In

combination, these demand scenarios yield the TBST DT
λ , that

is, the demand that λ has to distribute to its subordinate agents

Aλ. An example of such a tree is depicted in Fig. 2.

When calculating schedules, λ stipulates the contribution

ST
a [n] of each subordinate agent a ∈ Aλ for each node n ∈

DT
λ \ {r} (the root r of ST

a reflects a’s current state and is

therefore not considered). The schedule ST
a of an agent a is

thus a tree that has the same shape as DT
λ since it captures

the uncertainties of λ’s local demand. This allows λ to encode

2Note that intermediaries intentionally do not anticipate uncertainties
resulting from the local demand of subordinate intermediaries. This is not
necessary because an intermediary that cannot compensate for its local
uncertainties within its subsystem is indicative of an improper system structure.
Instead, a reorganization has to be triggered that re-establishes a suitable
distribution of uncertainties and degrees of freedom among the subsystems.
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strategies for possibly necessary contribution adjustments.

The online multi-stage stochastic optimization prob-
lem (cf. [16]) that is solved by each intermediary λ ∈ I to

create schedules can be formalized in the form of a constraint
satisfaction optimization problem (CSOP) [18] (note that we

do not assume the domains to be finite) as follows:

min
ST
a [n]

αΔ · E(Δ) + αΓ · E(Γ) (1)

s. t. ∀a ∈ Aλ, ∀n ∈ DT
λ \ {r} : Smina ≤ ST

a [n] ≤ Smaxa ,
−→
S min

a

(
ST
a [f(n)]

)
≤ ST

a [n] ≤
−→
S max

a

(
ST
a [f(n)]

)
,

with E(Δ) =
∑

n∈DT
λ \{r}

p(n) · |ST
Aλ
[n]︸ ︷︷ ︸

∑
a∈Aλ

ST
a [n]

−DT
λ [n]|,

E(Γ) =
∑

a∈Aλ, n∈DT
λ \{r}
p(n) · κa(S

T
a [n])

In this optimization problem, the scheduled contributions ST
a [n]

for subordinate agents a ∈ Aλ and nodes n ∈ DT
λ \{r} are the

decision variables. An agent’s present contribution is included

in ST
a [r]. Since scheduling is performed for the time span

defined by the scheduling window W , each node n ∈ DT
λ can

be assigned to a specific time step in W∪{tnow}. As stated in

Sect. I, the intermediaries’ objective is to find an allocation that

meets the demand as closely and cost-effectively as possible.

Since each node n ∈ DT
λ has a probability of occurrence

p(n), an intermediary can achieve the primary objective by

minimizing the expected total demand violation E(Δ), which is

defined as the expected value of the absolute deviation between

the total scheduled contribution ST
Aλ
[n] and the demand DT

λ [n]
over all n ∈ DT

λ \ {r} (since we sum up absolute violations,

negative and positive deviations cannot cancel each other out).3

Similarly, the secondary objective is achieved by minimizing the

expected total costs E(Γ) that are based on agent-specific cost

functions κa. We use the parameters αΔ and αΓ to establish

the desired prioritization of the two objectives. We assume that

the contribution of each agent a ∈ A is subject to a minimal

Smina and maximal Smaxa contribution. The property of inertia

is regarded by the functions
−→
S min

a and
−→
S max

a that further

restrict a’s contribution ST
a [n] for a node n depending on its

contribution ST
a [f(n)] in n’s parent f(n).

To attain a scalable regio-central solution, each intermediary

λ′ ∈ I \{Λ} uses model abstraction [19] to deduce a compact

representation of the behavior of the represented collective,

i.e., its subordinate agents Aλ′ , at runtime and transfers this

model to its superior λ. As this reduces the number of decision

variables and constraints λ has to consider when solving the

CSOP, we obtain a complexity of O
(
2|Aλ|·N)

.

By taking account of DT
λ ’s structure and scheduling contribu-

tions for nodes (note that multiple TBSs might share a path from

the root to a node within the TBST) depending on the scheduled

contributions in the corresponding parent and child nodes, our

3Technically, we calculate the expected value of the demand violation over
all time steps given the probabilities of TBSs. It can be shown that our
formulation based on nodes is equivalent to that, although p(n) is not a
probability distribution over all nodes.

TBST-based schedules always represent feasible solutions. This

means that we ensure that the transitions from one node to

another comply with the regarded agent’s control model. For

instance, interpreting the TBST in Fig. 2 as a schedule ST
a ,

the transition from r to 10MW as well as from r to 8MW is

guaranteed to be feasible for a. That way, agents can defer

their decision which contribution to make until the time step a

branch in their schedule ST
a has to be taken. By heading for the

most promising direction, the system self-improves its ability

to deal with uncertain demand. As we optimize expectations

E on the basis of empirical discrete probability distributions,

we obtain robust solutions [20], meaning that the system can

operate efficiently and effectively in various likely situations.

B. Scheduling Reserves in Hierarchical Systems

As motivated in Sect. I (see (R1), (R2), (R3)), it is crucial to
enable the agents to deviate from their scheduled contributions

in order to balance supply and demand. In [15], we discussed

how the subordinate agents a ∈ Aλ of an intermediary λ can

use their schedules ST
a as a blueprint for how to reactively

adjust their contribution to compensate for differences between

λ’s actual and anticipated local demand. Although TBST-based

schedules always contain feasible transitions, due to inertia,

spontaneous switches (i.e., those after a branch had to be taken)

from one targeted contribution to another (w.r.t. our example,

from the scheduled 8MW to a new target for tnow +Δπ of,

e.g., 9MW) are only possible if the agents feature an adequate

amount of reserves in the form of additional degrees of freedom.

With regard to the scheduling problem, incorporating re-

serves, i.e., flexibility, is an additional objective that must

not hinder an intermediary λ from satisfying its demand DT
λ .

Because the provision of reserves comes at a price, we propose

that each intermediary λ uses its knowledge about prior reactive

contribution adjustments as feedback to estimate its locally

required negative Rreq,−
λ [n] and positive Rreq,+

λ [n] reserves
that should be available between two nodes f(n), n ∈ DT

λ .

When creating schedules, λ now not only distributes the

demand DT
λ but also reserves to its subordinate agents a ∈ Aλ.

In the following, we describe the scheduling of reserves from

the perspective of an arbitrary intermediary λ, taken from

somewhere in the hierarchy. We only refer to positive reserves

in our explanations. The provision of negative reserves is

analogously defined. Note that the expectations E(Rvio) and
E(Rvio↓) defined below actually refer to the expected sum of

positive and negative reserve violations.

The reserves Rdis,+
λ [n] that λ has to distribute to Aλ are

defined by the sum of the locally required reserves Rreq,+
λ [n]

and λ’s assigned reserves Rass,+
λ [n]. The latter are prescribed in

λ’s schedule ST
λ . When scheduling reserves, λ tries to minimize

the expected violation E(Rvio) of Rdis,+
λ [n] (see Equations 3

and 5). λ’s ability to schedule reserves in n ∈ DT
λ \ {r}

hinges on the additional reserves Radd,+
a [n] λ’s subordinate

agents a ∈ Aλ can promise to provide for λ in n (see Eq. 6).

Radd,+
a [n] is subject to a’s available reserves Ravl,+

a [n], which
mainly depend on a’s scheduled contribution in f(n) and n,
as well as the reserves Rreq↓,+

a [n] required by a’s subsystem
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(with Rreq↓,+
a [n] = Rreq,+

a [n] +
∑

λ′∈Ia R
req↓,+
λ′ [n] for inter-

mediaries (i.e., if a ∈ I), and Rreq↓,+
a [n] = 0 otherwise).

To ensure that each subsystem represented by a subordinate

intermediary λ′ ∈ Iλ has the chance to schedule sufficient

reserves itself, λ additionally tries to minimize the expected

value E(Rvio↓) of the violations Rvio↓,+
λ′ [n] of its subordinate

subsystems’ required reserves Rreq↓,+
λ′ [n] (see Equations 4

and 7). To preserve the subsystems’ autonomy and for a local

compensation for deviations, we regard the minimization of

E(Rvio↓) as more important than the minimization of E(Rvio).
Again, we use the parameters αRvio↓ and αRvio to obtain this

prioritization. While the satisfaction of the demand remains

paramount, we degrade the minimization of the costs to reflect

our risk-averse attitude. Hence, we extend the objective function
of the scheduling problem formalized in Eq. 1 as follows:

min
ST
a [n],

R
ass,+
a [n]

αΔ · E(Δ) + αΓ · E(Γ) (2)

+ αRvio · E(Rvio) + αRvio↓ · E(Rvio↓)

with E(Rvio) =
∑

n∈DT
λ \{r}

p(n) ·
(
Rvio,+

λ [n] +Rvio,−
λ [n]

)
, (3)

E(Rvio↓) =
∑

λ′∈Iλ, n∈DT
λ \{r}
p(n) · (Rvio↓,+

λ′ [n] +Rvio↓,−
λ′ [n]) (4)

and Rvio,+
λ [n] = max

{
0, Rdis,+

λ [n]−
∑
a∈Aλ

Radd,+
a [n]

}
, (5)

Radd,+
a [n] = max

{
0, Ravl,+

a [n]−Rreq↓,+
a [n]

}
(6)

Rvio↓,+
λ′ [n] =

∣∣∣min
{
0, Ravl,+

λ′ [n]−Rreq↓,+
λ′ [n]

}∣∣∣ (7)

(analogously for Rvio,−
λ [n], Radd,−

a [n], Rvio↓,−
λ′ [n])

In Fig. 3, we illustrate the reserves Ravl,+
a [n] an agent a ∈ A

can provide between two nodes f(n), n ∈ DT
λ . Our calculations

assume that reserves can be mobilized from one time step to

another, i.e., from t to t + Δt. Finally, an intermediary λ
prescribes the assigned reserves Rass,+

a [n] for each agent a ∈
Aλ proportionally to Radd,+

a [n] and inversely proportional to

Radd,+
total [n] :=

∑
a′∈Aλ

Radd,+
a′ [n] (with Rass,+

Λ [n] := 0):

Rass,+
a [n] =

⎧⎨
⎩
0 if Radd,+

total [n] = 0

Radd,+
a [n] ·min

{
1,

Rdis,+
λ [n]

Radd,+
total [n]

}
otherwise

(8)

The evaluation of alternative strategies for assigning reserves

that could take additional optimization criteria into account,

such as the agents’ costs, are subject to future work.

Because the optimized provision of reserves exacerbates the

search for high-quality solutions (see Sect. V), we present an

auction-based heuristic for the robust solution of the RAP in

hierarchical systems that does not require intermediaries to

minimize E(Rvio↓) in the following section.

IV. ROBUST AND COOPERATIVE RESOURCE ALLOCATION

In this section, we propose TruCAOSR, an auction-based

algorithm that solves the scheduling problem in a cooperative

and regionalized manner. As the provision and consumption

of resources, such as electricity, are already subject to re-

wards and costs in real systems, a market-based approach

Time

Contribution

t−Δπ t−Δt t

Smax
a

Smin
a

ST
a [n1, t−Δt]

Cmax,+
a [n2]

Cmax,+
a [n1]

ST
a [f(n)]

ST
a [n1]

−→
S max

a (ST
a [f(n)])

Ravl,+
a [n1]

ST
a [n2, t−Δt]

ST
a [n2]

Ravl,+
a [n2]

Fig. 3. Two illustrations of the positive reserves Ravl,+
a [n] an agent a ∈ A

can provide between two nodes f(n) and n ∈ {n1, n2} (indicated by the

gray areas): The amount of Ravl,+
a [n] is subject to a’s scheduled contributions

ST
a [f(n)] and ST

a [n] as well as its control model. The latter captures a’s inertia

represented by the function
−→
S max

a as well as its minimal Smin
a and maximal

Smax
a contributions, among others. With regard to its scheduled contributions

ST
a [f(n)] and ST

a [n] (we assume a linear change of a’s contribution between

f(n) and n), Ravl,+
a [n] denotes, e.g., the minimum (in case of a pessimistic

approach) of the maximal additional contributions that a can mobilize within

the single time steps between f(n) and n. In this context, Cmax,+
a [n] is

the maximal contribution a can provide between f(n) and n if it increases
its contribution as much as possible from one time step to another. Clearly,

Cmax,+
a [n] is bounded by Smax

a . If ST
a [f(n)] > ST

a [n] (case n = n2 in our
illustration), a can provide more reserves than in case of ST

a [f(n)] < ST
a [n]

(case n = n1 in our illustration) because we also include reserves that result
from not decreasing a contribution from one time step to another.

is a natural choice. TruCAOSR is based on TruCAOS+ [7].

While TruCAOS+ primarily focuses on how to deal with an

uncertain provision of scheduled resources, i.e., contributions,

we concentrate on uncertain demand in this paper. Hence,

TruCAOSR substantially differs from TruCAOS+ in its ability

to obtain robust solutions by (1) creating schedules on the basis

of TBSTs for the demand and (2) optimizing the provision of

required reserves in the form of additional degrees of freedom.

Sect. IV-A gives an overview of TruCAOSR’s basic procedure,

before Sect. IV-B highlights how it obtains robust solutions.

A. Basic Procedure

Similarly to the general explanation in Sect. III, TruCAOSR

determines schedules in a top-down manner: The schedule

creation is triggered by the top-level intermediary Λ and

subordinate intermediaries λ ∈ I \ {Λ} are responsible for

recursively distributing their fraction DT
λ of the overall demand.

In TruCAOSR, this is achieved by enabling all agents a ∈ Aλ to

sell or buy resources to or from their superordinate intermediary

λ according to the demand DT
λ that λ has to distribute. This is

done in an iterative and incremental process that, in its basic

form, is reminiscent of an iteratively performed first-price

sealed-bid auction (see, e.g., [21]). As before, DT
λ captures

the uncertainties of λ’s local demand and is derived from λ’s
schedule ST

λ , that is, the result of taking part in the auction of

its superordinate intermediary.

In all bidding iterations, an intermediary λ has the goal to

increase the expected satisfaction of DT
λ by announcing an

auction in which the agents a ∈ Aλ can bid for a part of the

remaining demand Drem
λ that λ has to distribute (note that

Drem
λ might also be negative in some nodes). The correspond-

ing call for proposals (CFP) contains a fraction g ∈ [0, 1] of
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Drem
λ and is sent to all a ∈ Aλ. If g < 1, the demand is

distributed among the best bidders in the course of multiple

bidding iterations, resulting in a fairer allocation of resources.

Each agent a ∈ Aλ that receives the CFP and wants to sell

or buy resources to or from λ responds with a proposal Spro
a ,

i.e., a proposed schedule, that includes a promised contribution

as well as the costs, i.e., a remuneration, for providing the

contribution. Note that a proposer could also offer money to

its intermediary, e.g., if it wants to lower its contribution or

buy resources. Having gathered the proposals of all bidders in

a set P , λ completes this bidding iteration by identifying and

accepting one or more suitable winner proposals Pw ⊆ P as

explained in Sect. IV-B. All other proposals are rejected. In the

possibly following bidding iteration, all proposers – including

the “winners” – are allowed to send new proposals.

The most recently accepted proposal of an agent a defines its

schedule ST
a , which is a contract between a and its intermediary

for all time steps in the regarded scheduling window W : a has

to comply with its schedule in exchange for payment. For this

reason, whenever a wants to change its scheduled contribution,

it has to make a proposal Spro
a that, if accepted, replaces

the previously accepted schedule. In TruCAOSR, a schedule

ST
a does not become invalid if a new schedule creation is

started. Instead, it is refined in the course of successive schedule

creations. As a result, intermediaries, acting as auctioneers, as

well as proposers can rely on their negotiated contracts. When

initializing Drem
λ , λ therefore subtracts the existing schedules

of all subordinate agents a ∈ Aλ from the demand DT
λ that

has to be distributed. However, due to dynamic uncertainties

in λ’s local demand, the shape of DT
λ can change from one

schedule creation to another and thus differ from the shape

of the existing schedules of λ’s subordinate agents. For such

situations, we use a greedy algorithm to find an adequate

mapping of the scenarios of existing schedules to those in DT
λ .

Such a mapping is determined by each intermediary before the

first bidding iteration. For nodes that were not regarded in the

previous schedule creation (i.e., those outside the previous

scheduling window), auctioneers and proposers assume a

neutral contribution of zero. Because the resulting schedule

might contradict an agent’s control model, there is a dedicated

phase in which the agents can correct their schedules. As

described in [7], minimally inverse corrections are incentivized.

This ensures that the agents do not misuse this feature for their

own sake, which might impair the quality of the solution.

Each agent a ∈ A creates its proposals Spro
a by solving a

CSOP that is very similar to the one specified in Equations 1

and 2: Proposals depend on a’s constraint model, its current

state, and the demand specified in the CFP. However, since

each agent now only has to determine the scheduled contri-

bution for itself, TruCAOSR mitigates the scalability issues

discussed in Sections I and III-A. Instead of O
(
2|Aλ|·N)

, the

complexity of solving the RAP for a subsystem Aλ is only

O
(
jtotal ·

(
|Aλ| · 2N + 2|Aλ|)), where |Aλ| = |P|, jtotal is

the total number of iterations needed to solve the RAP, and

O
(
2|Aλ|) the complexity of selecting the winner proposals

Pw from P . Note that we still benefit from a hierarchical

approach due to the complexity of proposal selection. Because

intermediaries submit bids before their subordinates, they have

to be aware of the capabilities of their collective to avoid

infeasible schedules that would have to be corrected. As ex-

plained in Sect. III-A, model abstraction ensures that the above-

mentioned complexity holds for the entire hierarchy. Because

intermediaries do not impose schedules on subordinates in

TruCAOSR, they can even use these abstract models to create

their own proposals in O
(
2N

)
.

The iterative process of distributing the remaining de-

mand Drem
λ terminates either if it is sufficiently satisfied, i.e.,

if its absolute values are below a predefined threshold Drem
max,

or if λ did not receive any proposals (i.e., P = ∅), or if there
is no proposal that increases the satisfaction of DT

λ , or if a

maximum number of bidding iterations jmax is exceeded. The

information about termination originates from the top-level

intermediary and propagates downwards in the hierarchy.

B. Obtaining Robust Solutions

To identify one or more suitable winner proposals Pw ⊆ P ,
an intermediary λ could simply sort the proposals in P in

descending order of their price-performance ratio – which we

define as the ratio between the expected total contribution and

the expected remuneration – and declare that the proposal with

the best ratio that improves the remaining demand’s satisfaction

wins the auction. While this merit order approach leads to low-

priced allocations, it is computationally inefficient because it

clearly needs a large number of bidding iterations to satisfy the

demand and does not allow to take advantage of synergy effects

that can result from accepting a combination of proposals. The

latter is especially beneficial in the context of multi-objective

optimization. We therefore decided for a compromise between

the number of bidding iterations and resulting monetary costs:

To ensure that acceptable proposals and thus the overall result

feature a sufficient quality, intermediaries filter, i.e., reject,

proposals with a price-performance ratio worse than a historical

average, calculated as a moving average over the last kppr
schedule creations. While this procedure does not yield minimal

costs, it ensures that the average costs do not increase. If

no such proposal exists, only the proposals with the best

price-performance ratio pass the filtering stage. As unsuitable

proposals are rejected, the complexity of the combinatorial

optimization problem that is solved to determine Pw is reduced.

An intermediary λ chooses Pw in such a way that there is

no other combination that yields a greater expected gain in

satisfaction of the remaining demand. In this context, λ’s sec-
ondary and tertiary goals are to minimize the expected violation

E(Rvio) of the reserves Rdis,+
λ [n] = Rreq,+

λ [n] + Rass,+
λ [n]

it has to distribute in all n ∈ DT
λ (the same holds for

negative reserves Rdis−
λ [n]) and to minimize the expected

costs, respectively. Note that these objectives as well as their

lexicographical order correspond to those defined in Eq. 2.

The only but important difference is that λ does not have

to care about the satisfaction of the required reserves on

subordinate system levels by minimizing E(Rvio↓) because

each subordinate a ∈ Aλ determines suitable contributions
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and additional reserves Radd,+
a [n] it can provide for λ itself.

As λ is merely informed about Radd,+
a [n] in the agents’

proposals, computational costs are reduced. Analogously to

Eq. 8, TruCAOSR assigns the reserves Rass,+
a [n] proportionally

to Radd,+
a [n] and inversely proportional to Radd,+

total [n].
While, in general, each agent a ∈ A could incorporate

individual and variable objectives when generating proposals,

we assume that a generates its proposals as follows in order to

remain competitive: According to the intermediaries’ primary

objective, a creates proposals that maximize the expected

satisfaction of the demand announced in the CFP. Maximizing

the expected additional reserves Radd,+
a [n] that can be provided

to its intermediary λ is secondary. In case a is an intermediary,

suggesting Radd,+
a [n] makes sure that a has sufficient flexibility

to satisfy the reserves Rreq↓,+
a [n] required by its subsystem Aa

when it is its turn to calculate schedules. This procedure leads

to a top-down propagation of assigned reserves. As in Eq. 1,

we assume that agents stipulate their remunerations according

to their cost functions κa.

V. EVALUATION

The goal of our evaluation is to investigate if TruCAOSR is

more suitable for obtaining robust solutions than the regio-

central approach explained in Sect. III (hereinafter called

RegioC). For this purpose, we evaluate TruCAOSR as well

as RegioC in three different modes in the context of our case

study: In the first mode, called “E-nu”, demand predictions

are not subject to uncertainties. In the second and third

mode, called “E-nr” and “E-r”, uncertainties are present but

reserves are only scheduled in E-r. All modes were performed

in combination with four different hierarchies of AVPPs,

amounting to 12 evaluation scenarios. For each evaluation

scenario, we performed 100 runs.

A. Test Bed

We base our evaluation on a hierarchical structure of AVPPs,

consisting of 173 dispatchable and 350 non-dispatchable

power plants of different types (hydro, biofuel, gas power

plants as well as solar plants and wind generators). While

each power plant is modeled as an individual agent, we use

a single agent to represent all non-dispatchable consumers

that is assigned to Λ’s local environment. The demand, i.e.,

residual load, originates from weather-dependent power plants

and the consumers. For physical power plant data (such

as production boundaries), load curves, and weather data

influencing the output of weather-dependent power plants, we

use real world data.4 Each dispatchable power plant’s inertia

is defined within typical boundaries. The production costs,

i.e., the average costs of providing a contribution, range from

6.50EUR cent
kWh

to 17.50EUR cent
kWh

. The evaluation is implemented

in a sequential, round-based execution model in which each

round corresponds to a specific time step t ∈ T . Power plants
have to satisfy a prescribed residual load over a period of half

a day, corresponding to |T | = 240 discrete time steps, each

4See EnergyMap (2012, http://www.energymap.info/), LEW (2012,
http://www.lew-verteilnetz.de/), and LfL (2010, http://www.lfl.bayern.de/).

representing Δt = 3min. Every 15min, AVPPs update their

TBSs and create schedules for the next hour with a resolution

of Δπ = 15min (i.e., N = 4) on the basis of residual load

predictions. Uncertainty in these predictions is generated by

means of Markov models that randomly modify the actual

behavior of non-dispatchable power plants and the consumers.

To reflect time-dependent behavior, the prediction error of a

specific time step depends on prediction errors of previous time

steps. The accuracy of predictions of non-dispatchable power

plants within the same AVPP is coupled as is the case with

weather predictions for different locations. Given that schedules

are recalculated every 15min, required reserves only have to

be scheduled for the next 15min, i.e., for all TBST nodes

n ∈ DT
λ that map to a time step t ∈ W with t− tnow = 15min.

Each AVPP λ ∈ I uses the maximum of its negative and

positive reactive contribution adjustments within the last 30min

as required negative Rreq,−
λ [n] and positive Rreq,+

λ [n] reserves.

The optimization problems that have to be solved to generate

proposals and determine winner proposals in TruCAOSR as

well as those of RegioC are formulated as mixed integer

linear programs and solved by IBM ILOG CPLEX5. Regarding

Eq. 2, the parameters αΔ, αΓ, αRvio↓ , and αRvio are fixed

in a way that establishes the desired prioritization among

the different objectives. For TruCAOSR, we initialize the

parameters introduced in Sect. IV as follows: kppr = 5,
Drem
max = 5kW, g = 0.2 if Drem

λ · g > 1000kW, else g = 1. To
keep the runtime of RegioC within reasonable bounds, AVPPs

stop the schedule creation after 15s if a valid solution is present.

If not, they give CPLEX another 10min. If this threshold is

exceeded, no solution is found and the run is aborted.

We examine the following three questions of interest:

(Q1) Does TruCAOSR outperform RegioC in terms of runtime?
(Q2) Does TruCAOSR obtain better results w.r.t. expected
demand satisfaction, provision of required reserves, and costs?
(Q3) How does the hierarchical system structure affect quality
and runtime? To investigate the impact of hierarchical system

structures on TruCAOSR’s and RegioC’s performance, we

performed our evaluations on four different structures called

“superflat”, “flat”, “deep”, and “deeper” of height 1, 2, 3, and 5,

and with an average number of 173, 14.23, 6.44, and 2.42

dispatchable power plants per AVPP, respectively. All these

structures were generated offline on the basis of the same set

of power plants. In our experiments, we disabled the system’s

self-organization to be able to analyze the influence of these

predefined structures on the algorithms’ performance.

B. Results

Table I shows the results for modes E-nr and E-r in

combination with the four different system structures. First

of all, we observe that, with regard to a specific combination

of system structure and mode, TruCAOSR and RegioC had

to deal with quite the same degree of uncertainties in E-nr

and E-r, mirrored in the number of TBSs in each schedule

5IBM ILOG CPLEX Optimizer, Version 12.4, 2011: http://www-01.ibm.
com/software/commerce/optimization/cplex-optimizer/
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RegioC TruCAOSR

superflat flat deep deeper superflat flat deep deeper

E-nr E-r E-nr E-r E-nr E-r E-nr E-r E-nr E-r E-nr E-r E-nr E-r E-nr E-r

#Runs Exceeding the Max.

Scheduling Time
39 68 0 20 0 7 0 5 — — — — — — — —

#TBSs per Schedule
1.62

(0.96)

1.65

(0.97)

1.98

(1.30)

1.97

(1.29)

1.95

(1.32)

1.97

(1.34)

1.83

(1.32)

1.85

(1.34)

1.75

(1.15)

1.76

(1.18)

1.95

(1.29)

1.96

(1.31)

1.92

(1.30)

1.96

(1.36)

1.83

(1.32)

1.82

(1.31)

Max. Seq. Scheduling Time [s]
46.37

(77.51)

126.38

(129.21)

0.43

(0.34)

111.80

(213.37)

0.22

(0.10)

27.94

(59.84)

0.20

(0.07)

16.68

(20.15)

1.10

(0.79)

1.45

(1.09)

1.23

(0.85)

1.64

(0.91)

1.87

(0.55)

2.66

(0.78)

2.98

(0.65)

4.61

(1.18)

Scheduling Time per AVPP [s]
46.37

(77.51)

126.38

(129.21)

0.14

(0.17)

10.20

(64.49)

0.06

(0.04)

1.51

(11.37)

0.03

(0.02)

0.25

(2.11)

1.10

(0.79)

1.45

(1.09)

0.34

(0.31)

0.42

(0.38)

0.28

(0.20)

0.36

(0.30)

0.15

(0.16)

0.20

(0.25)

Exp. Violation of the Ass. Residual

Load per Schedule Creation [kW]

10.92

(127.28)

60.04

(1464.10)

457.95

(1066.28)

1131.58

(11309.59)

8212.31

(5100.85)

13250.51

(13672.30)

39572.63

(13010.64)

52904.41

(20112.41)

0.54

(0.98)

0.45

(0.93)

156.77

(477.06)

164.28

(516.05)

1123.09

(1637.33)

1089.03

(1704.78)

13756.14

(9831.97)

12526.38

(7893.77)

Exp. Costs of Schedule [1000 EUR]
150.67

(38.45)

149.69

(38.09)

163.44

(33.83)

161.67

(34.04)

165.50

(32.45)

166.92

(31.95)

177.16

(28.80)

175.29

(29.36)

153.85

(38.69)

153.92

(38.54)

167.47

(32.31)

167.06

(32.39)

162.66

(35.98)

163.38

(36.03)

177.41

(26.33)

177.73

(26.09)

Avg. Exp. Violation of Req. Reserves

over Schedule Creations in Run [kW]

41679.20

(2101.53)

9.93

(24.63)

64017.60

(3298.07)

15805.11

(2417.76)

66985.54

(3371.81)

27095.42

(2667.58)

73376.43

(3929.13)

42192.57

(3734.92)

41556.09

(2595.41)

1.50

(14.96)

74053.92

(4961.36)

8678.90

(1637.53)

70029.36

(2957.42)

7886.57

(1352.67)

87332.14

(9571.86)

20106.47

(2686.00)

TABLE I
EVALUATION RESULTS OBTAINED BY TRUCAOSR AND REGIOC FOR MODES E-NR AND E-R AS WELL AS DIFFERENT HIERARCHIES. “#RUNS EXCEEDING

THE MAX. SCHEDULING TIME” DENOTES THE NUMBER OF REGIOC RUNS THAT WERE ABORTED DUE TO AN EXCEEDED MAXIMAL SCHEDULING TIME OF

10MIN. ALL OTHER RESULTS ARE AVERAGED OVER THE 100 RUNS PER EVALUATION SCENARIO. VALUES IN PARENTHESES DENOTE STANDARD DEVIATIONS.

creation. Variations between different system structures result

from different local environments. Compared to E-nu – the

mode without uncertainties –, E-r’s average maximal sequential

runtime (i.e., the maximum of the sums of the scheduling times

in each branch originating from the root of the AVPP structure)

over all structures increased from 0.87s (σ = 0.52s) to 2.59s
(σ = 1.26s) in case of TruCAOSR and from 1.51s (σ = 2.39s)
to 70.70s (σ = 48.83s) in case of RegioC. This demonstrates

that robustness comes at the price of longer runtimes.

With regard to RegioC and E-r, we notice that RegioC’s

average max. seq. runtime significantly declines with the height

of the hierarchy; from 126.38s to 16.68s. This comes along

with a decrease in the average scheduling time per AVPP

from 126.38s to 0.25s as well as a remarkably drop in the

number of runs without a solution, i.e., those that had to be

aborted by RegioC due to an exceeded maximal scheduling

time of 10min. While this highlights the benefit of problem

decomposition, it also shows that the system must be able

to find suitable structures at runtime: The expected violation

of the assigned residual load increases with the height of

the hierarchy from 60.04kW to 52.90MW (the mean residual

load was about 1.5GW). The same applies to the costs of a

schedule which rise by about 25k EUR from “superflat” to

“deeper” (we imposed a penalty of 17.50EUR cent
kWh

for violated

assigned residual loads), and the violation of required reserves.

All this can be attributed to a higher degree of the system’s

fragmentation and errors introduced by model abstraction [19].

While “deeper” has the least number of aborted runs, “deep”

yields an acceptable tradeoff between quality, runtime, and

aborted runs for E-r. The same observations can be made

for E-nr, where “flat” yields an acceptable tradeoff. Due to

the optimization of the provision of reserves in E-r, RegioC’s

violation of reserves is considerably smaller in E-r than in E-nr.

However, compared to E-nr, E-r’s number of aborted runs is

significantly higher. Moreover, E-nr obtains a shorter average

max. seq. runtime, which is between 46.37s and 0.20s, and a

lower average expected violation of the assigned residual load,

ranging between 10.92kW and 39.57MW.

With regard to TruCAOSR, we also notice that problem

decomposition leads to a decline in the average scheduling time

per AVPP; from 1.10s to 0.15s in case of E-nr and from 1.45s
to 0.20s in case of E-r. In contrast to RegioC, TruCAOSR’s max.

seq. scheduling time increases with the height of the hierarchy,

though. We explain this behavior by the overhead introduced

by additional hierarchy levels: First, due to the complexity

of the AVPPs’ control models, AVPPs need more time for

generating proposals than physical power plants. Second, the

computationally expensive selection of winner proposals, which

scales exponentially with the size of AVPPs (see Sect. IV-A),

has to be accomplished top-down and thus sequentially. So

there is definitely a tradeoff between the size of AVPPs and the

height of the hierarchy. In spite of this behavior, TruCAOSR

does not only achieve much lower max. seq. runtimes for E-r

(1.45s for “superflat”) than RegioC (27.94s for “deep”), but it
also obtains better solutions in terms of the violation of the

assigned residual load. While fragmentation also leads to a

growth of the expected violation of the assigned residual load

with the hierarchy’s height, it only increases from 0.54kW to

13.76MW in case of E-nr and from 0.45kW to 12.53MW in

case of E-r. In particular, the values for “superflat” and “flat” are

remarkably low. Compared to RegioC, TruCAOSR’s accuracy in

case of E-nr comes at the expense of higher max. seq. runtimes

though: 1.10s for “superflat” and TruCAOSR compared to 0.43s
in case of “flat” and RegioC. Further, TruCAOSR is able to

satisfy the required reserves in E-r’s “superflat” runs very

accurately; also note that TruCAOSR completed all runs as

opposed to RegioC. Compared to RegioC, the average violation

of reserves of 7.89MW in case of “deep” is also very low.

Given that RegioC’s average expected costs range between

approximately 150k EUR and 177k EUR, TruCAOSR achieves

very promising results of about 154k EUR for “superflat”. The

benefit of TruCAOSR’s price-performance filtering discussed

in Sect. IV-B becomes evident when disabling its functionality:

Then, the costs rise to 180k EUR in case of “superflat” and E-r.

To sum up, TruCAOSR significantly outperforms RegioC in

terms of solution quality and runtime when creating schedules

in uncertain environments. While we observed that hierarchical

organizations support the timely calculation of robust solutions,

suitable structures have to be formed at runtime to achieve a

suitable tradeoff between quality and runtime.

VI. RELATED WORK

In the body of literature, there are several approaches that

solve problems similar to the RAP presented in this paper.
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However, to the best of our knowledge, our approach is unique

in the way we combine online stochastic optimization, self-

organized hierarchical problem decomposition, and a market-

based mechanism to achieve a robust and scalable solution.

In the field of operations research and in the context of

RAPs, online stochastic optimization [16] is often used to cope

with uncertainties of different sources. Most of such scenario-

based solutions (cf. [22], [23]) formalize the problem as a two-

stage decision problem due to the computational complexity

of solving multi-stage decision problems with a centralized

optimizer [24]. Complexity is reduced in two ways: (1) Two-

stage approaches either assume that there is no uncertainty

in the the first stage (cf. [23]), that is, the next time step

schedules are created for, or capture uncertainties in a single

expected value which is often only weakly informative (cf. [22]).

(2) Although the second stage considers uncertainties in the

form of scenarios for the remaining time steps in the scheduling

window, so-called non-anticipativity constraints that would treat

the scenarios as a tree are not regarded. Apart from that, [22]

further does not take the scenarios’ probability into account.

In contrast to these centralized solutions, our approach uses

self-organization and a hierarchical market-based mechanism

to deal with the complexity of multi-stage decision problems.

As we have shown in [14], [15], scenario-tree-based schedules

are an enabler for efficient self-adaption in order to achieve a

stable operation of the overall system. While [23] also schedules

reserves to increase the system’s robustness, they are considered

as hard constraints instead of an objective.

[25] presents a centralized scheduling heuristic for solv-

ing a combinatorial RAP under uncertain energy demand

and renewable supply. While [25] improves robustness by

maximizing the expected outcome, scenarios are not learned

at runtime but sampled from a fixed probability distribu-

tion. Similar to TruCAOSR’s price-performance filtering, a

greedy algorithm creates schedules according to the price-

performance ratio of proposed contributions. In addition to

the unintentional uncertainties we focus on in this paper, [25]

addresses intentional uncertainties on the basis of the principle

of incentive-compatible mechanism design [26]. In the context

of supply and demand management in smart grids, various

market-based approaches use mechanism design to prevent

uncertainties arising from strategic misbehavior and gambling

through pricing mechanisms (e.g., [27], [28]). To reactively

deal with unintentional prediction errors, [28] proposes an

additional online balancing mechanism that compensates for

deviations between demand and contributions. The mechanism

presented in [27] mitigates unintentional uncertainties by form-

ing coalitions of agents such that prediction errors cancel each

other out. Our self-organized formation of AVPPs mentioned

in Sect. II has a similar goal, but additionally balances degrees

of freedom to promote the ability of reactive contribution

adjustments. In [29], Dash et al. introduce a payment function

that reduces the risk that bidders overestimate their contribution

if it could unintentionally turn out to be lower than expected.

Underestimations that also lead to imbalances are not penalized.

Other market-based approaches that solve problems similar

to our RAP are presented in [30], [31], [32]. DEZENT [30] is

a bottom-up market-based mechanism in which agents balance

energy supply and demand by negotiating and concluding

contracts within fixed price frames that are tightened from

one iteration to another. A further approach based on a

hierarchical system structure is PowerMatcher [31] in which

the root balances supply and demand by determining an

equilibrium price, based on aggregated demand, supply, and

price predictions, to establish a market equilibrium. The

auctioneer is thus a central component of the system. Unlike

TruCAOSR, DEZENT and PowerMatcher only create schedules

for the next instead of multiple future time steps. Stigspace [32]

is a coordination mechanism that uses a blackboard, called

stigspace, as the medium of communication between distributed

energy resources in order to create schedules in an iterative

process. Initially, the stigspace is used to announce the demand

that has to be fulfilled by the distributed energy resources. These

in turn revise their schedule in order to minimize the remaining

demand. The new schedule is then posted to the stigspace where

the remaining demand is updated accordingly. This process

is repeated until the demand is sufficiently satisfied. Because

every schedule posted to the stigspace is “accepted”, only the

RAP’s primary objective – to allocate resources according to a

given demand – might be achieved. In contrast to TruCAOSR,

the above-mentioned approaches do not deal with uncertainties.

In [8], Hinrichs et al. present a decentralized heuristic, called

COHDA2, for solving a combinatorial optimization problem.

The algorithm is based on a neighborhood structure in which

agents iteratively adjust their configuration, i.e., state, in order to

achieve a global as well as individual objectives. The former can

be thought of as the objectives of our RAP. In COHDA2, every

time an agent changes its configuration, it informs its neighbors

about its new configuration as well as the currently known

configuration of its neighbors and the neighbors’ neighbors etc.

it received in a prior time step. Although each agent only has

current information about its direct neighborhood, it synthesizes

a complete representation of the configuration of all agents in

the system over time. To decide on suitable own configurations,

the agents take this locally perceived global configuration into

account. While COHDA2 solves a combinatorial optimization

problem in a truly decentralized manner, we use a market-based

approach on the basis of a self-organizing hierarchical system

structure. Further, COHDA2 does not consider uncertainties.

VII. CONCLUSION

In this paper, we presented an approach for robust resource

allocation in large-scale systems in the light of uncertain

demand and agents exhibiting inert behavior. This requires

the RAP to be solved proactively by creating coarse-grained

schedules on the basis of demand predictions. To allow the

agents to anticipate uncertainties and, at the same time, be

able to reactively self-adapt their contributions at runtime,

we proposed to combine techniques from online stochastic

optimization with the provision of feedback-driven reserves.

Scenario-based schedules based on empirical discrete probabil-

ity distributions of prediction errors allow the agents to cope
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with different possible developments of the demand. To deal

with systems of large size, we formalized the problem for self-

organizing hierarchical system structures. Further, we outlined

a market-based solution, called TruCAOSR, that solves the RAP

in a robust manner. Based on a case study from decentralized

autonomous power management, we empirically demonstrated

that TruCAOSR clearly outperforms a regio-central approach

that utilizes a state-of-the-art optimizer.
In future work, we will investigate the interaction of schedule

creation and the self-organizing hierarchy in more detail. As

for TruCAOSR, we want to enable heterogeneous agents, e.g.,

peaking and base load power plants, to follow individual

preferences and learn strategies for making proposals that

correspond to their type, thereby increasing the overall system’s

performance. Moreover, we will examine TruCAOSR’s ability to

simultaneously deal with uncertain demand and contributions.
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