
SYSTEMATIC AND METHODICAL

ANALYSIS, VALIDATION AND

PARALLELIZATION OF EMBEDDED

AUTOMOTIVE SOFTWARE FOR

MULTIPLE-IEU PLATFORMS

DISSERTATION
FOR THE DEGREE OF

DOCTOR OF NATURAL SCIENCES (DR. RER. NAT.)

JULIAN KIENBERGER

UNIVERSITY OF AUGSBURG
Department of Computer Science

Software Methodologies for Distributed Systems

1st Examiner: Prof. Dr. Bernhard Bauer
Department of Computer Science, University of Augsburg, Germany

2nd Examiner: Prof. Dr. Theo Ungerer
Department of Computer Science, University of Augsburg, Germany

Advisor: Stefan Kuntz
Continental Automotive GmbH, Regensburg, Germany

Defense: Thursday, 2nd May, 2019

Copyright c© Julian Kienberger, Augsburg, February 2019

Abstract

In the past decades, the automotive industry has been seeking to include
more and more features in its vehicles while simultaneously attempting to
reduce the number of “Electronic Control Units” (ECUs) that execute the
corresponding embedded software. As technical and economic limitations
prevent furthermore rising the single-core computing power, the migration
of ECU software to target platforms featuring multiple “Independent Ex-
ecution Units” (IEUs), e.g., processor cores, is enforced and the necessary
paradigm shift towards multi-core technology is in full swing.

In order to eventually exploit the extra processing power, there is much ad-
ditional effort needed for coping with the tremendously increased complex-
ity of such systems. This is largely due to the elaborate parallelization pro-
cess consisting of partitioning, mapping and scheduling software parts as
tasks on different IEUs. The associated, rapidly growing number of possible
solutions results in a combinatorial explosion and thus spans a vast search
space. Mastering this challenge requires both the prevention of impend-
ing data inconsistencies caused by race conditions and the avoidance of ad-
ditionally required synchronization effort originating from the distributed
execution of an application across different IEUs.

Therefore, there is a strong need for innovative concepts, methods and a
continuous tool chain to, on the one hand, support the migration of legacy
software by efficiently parallelizing it (i.e. first partition and then distribute
the obtained parts to different IEUs) and, on the other hand, ease the cre-
ation of embedded multiple-IEU applications from scratch. In addition, it
is crucial to support the development process of software being compli-
ant with the leading standard “AUTomotive Open System ARchitecture”
(AUTOSAR).

This PhD thesis starts with a description of the circumstances and factors
leading to this situation before stating correlating challenges and deriving
concrete objectives to eventually cope with them. In addition, a demonstra-
tive running example is introduced that bases on a car’s wheel speed mea-
surement function and is intended to illustrate ideas and methods through-
out the thesis. Afterwards, basic knowledge, applied concepts and tech-
niques are covered in order to provide a sound basis for the later pre-
sented methodology. Prior to the main chapter, relevant existing research
approaches are introduced, categorized and evaluated with regard to their

iii

iv

significance for the suggested methodology and conducted case studies.

The pivotal notion of the presented approach is to utilize a tool-aided data
dependency analysis performed on AUTOSAR system descriptions (re-
ferred to as “models”) to eventually determine advantageous partitions as
well as initial task-to-IEUs mappings. Therefor, the analysis’ results are used
for a verification and validation process that modifies the model to achieve
“multiple-IEU robustness”. This robustness is universally valid – irrespec-
tive of a specific partitioning and mapping solution.

Based on this and following the overarching methodology’s concepts, con-
crete partitioning strategies and algorithms are applied in order to effi-
ciently identify advantageous disjoint subsets even within highly complex
models. The succeeding mapping step then distributes the obtained model
parts to available IEUs in an expedient manner.

Afterwards, the determined solutions serve as input for the simulation
within a timing tool for embedded multi-core systems. Here, this initial so-
lution is evaluated with respect to scheduling quality (e.g. fulfillment of task
deadlines) and metrics like cross-IEU communication rate, communication
latencies, memory consumption or load distribution. Lastly, a subsequent
optimization process enhances the initial solution, iteratively generates im-
proved variants and enables a comparative assessment.

In order to demonstrate the realization as well as to prove practicability
and benefit, three case studies are presented that illustrate the feasibility
and usage of the methodology by means of real-world examples coming
directly from the industry. The added value is shown with the respective
evaluations, e.g., via reduced effort and increased solution quality achieved
with sticking to the introduced concepts and methods.

In conclusion, the proceeding is summarized and originally formulated ob-
jectives are confronted with the reached achievements. Finally, an outlook
on currently prevalent trends within the automotive industry is given just
before the concluding depiction of impending tasks as well as promising
concepts for further development.

Zusammenfassung

In den vergangenen Jahrzehnten hat die Automobilindustrie enormen
Aufwand betrieben um Fahrzeuge mit immer umfassenderer Funktionali-
tät auszustatten. Parallel dazu wurde versucht, die Anzahl der verbauten
Steuergeräte (“Electronic Control Units” – ECUs), auf denen die dazuge-
hörige eingebettete Software ausgeführt wird, zu verringern. Da sowohl
technische als auch wirtschaftliche Beschränkungen eine weitere Steigerung
der Single-Core-Rechenleistung verhindern, wird die Migration der ECU-
Software auf Zielplattformen mit mehreren unabhängigen Ausführungs-
einheiten (“Independent Execution Units” – IEUs) forciert. Der dafür
notwendige Paradigmenwechsel hin zu Multi-Core-Techniken befindet sich
bereits in vollem Gange.

Damit die hinzukommende Rechenleistung letztendlich genutzt werden
kann, ist ein erheblicher Mehraufwand nötig um der enorm gestiegenen
Komplexität solcher Systeme beizukommen. Dieser Mehraufwand ergibt
sich in erster Linie durch den anspruchsvollen Parallelisierungsprozess,
der aus der Partitionierung, dem Mapping und dem Scheduling von Soft-
wareteilen als Tasks auf unterschiedlichen IEUs besteht. Die damit ein-
hergehende, sprunghaft wachsende Anzahl an Lösungsmöglichkeiten führt
zu einer kombinatorischen Explosion und umfasst daher einen gewaltigen
Suchraum. Die Bewältigung dieser Herausforderung erfordert zum einen
die Verhinderung von drohenden Daten-Inkonsistenzen, die von Race Con-
ditions verursacht werden, sowie zum anderen die Vermeidung des zu-
sätzlich erforderlichen Synchronisationsaufwands, der bei der über ver-
schiedene IEUs verteilten Applikationsausführung entsteht.

Folglich besteht ein großer Bedarf an innovativen Konzepten, Methoden
sowie einer durchgängigen Werkzeugkette, um einerseits die Migration von
Bestandssoftware mittels effizienter Parallelisierung zu unterstützen (d. h.
partitionieren und dann erhaltene Softwareteile an unterschiedliche IEUs
zuweisen) und um andererseits die Neuerstellung eingebetteter Multi-IEU-
Applikationen zu erleichtern. Zudem ist es von zentraler Bedeutung, den
Entwicklungsprozess von Software, die zum maßgeblichen “AUTomotive
Open System ARchitecture”-Standard (AUTOSAR) konform ist, zu unter-
stützen.

Diese Dissertation beginnt mit der Beschreibung von Umständen und Fak-
toren, die zu dieser Situation geführt haben. Im Anschluss werden damit

v

vi

einhergehende Herausforderungen erläutert sowie Ziele zu deren Bewälti-
gung abgeleitet. Des Weiteren wird ein durchgängiges Beispiel eingeführt,
das auf der Messung der Raddrehgeschwindigkeit eines Autos basiert und
mittels dessen die Ideen und Methoden der Dissertation veranschaulicht
werden. Nachfolgend werden Grundlagen sowie angewandte Konzepte
und Techniken behandelt um eine solide Basis für die später dargelegte
Methodik zu schaffen. Außerdem werden im Vorfeld des Hauptkapi-
tels dafür relevante, bereits bestehende Forschungsansätze beschrieben,
kategorisiert und hinsichtlich ihres Stellenwerts für die vorgeschlagene
Methodik und die durchgeführten Fallstudien bewertet.

Der zentrale Gedanke des vorgestellten Ansatzes ist die Nutzung einer
werkzeuggestützten Datenabhängigkeitsanalyse auf AUTOSAR-System-
beschreibungen (hier als “Modelle” bezeichnet) um günstige Partitionen
und (initiale) Task-zu-IEUs-Mappings zu ermitteln. Dafür werden die Re-
sultate der Analyse für einen Verifikations- und Validierungsprozess ver-
wendet, der das Modell modifiziert um “Multi-IEU-Robustheit” zu er-
reichen. Diese Robustheit ist universell gültig – unabhängig von einer
konkreten Partitionierungs- und Mapping-Lösung.

Darauf aufbauend und den Konzepten der übergeordneten Methodik
folgend, werden konkrete Partitionierungsstrategien und -algorithmen
angewendet um selbst in hochkomplexen Modellen vorteilhafte, disjunkte
Teilmengen auf effiziente Weise ausfindig zu machen. Der nachfolgende
Mapping-Schritt verteilt die erhaltenen Modellteile dann zielführend auf
verfügbare IEUs.

Anschließend dienen die so ermittelten Lösungen als Eingabe für die Si-
mulation in einem Timing-Werkzeug für eingebettete Multi-Core-Systeme.
Hierbei wird die initiale Lösung hinsichtlich der Scheduling-Qualität (z. B.
Erfüllung von Task-Deadlines) und anhand von Metriken wie der IEU-
übergreifenden Kommunikationsrate, Kommunikationslatenzen, Speicher-
verbrauch oder Lastverteilung bewertet. Schließlich bereitet ein darauf
folgender Optimierungsprozess die initiale Lösung auf, erstellt iterativ
verbesserte Varianten und ermöglicht eine vergleichende Bewertung.

Um die Umsetzung zu demonstrieren sowie die Praxistauglichkeit und den
Nutzen nachzuweisen, werden drei Fallstudien vorgestellt, die die Durch-
führbarkeit und die Verwendung der Methodik anhand realer Beispiele
aus der Industrie illustrieren. Mit den jeweiligen Evaluationen wird der
Mehrwert gezeigt, der mit der Einhaltung der beschriebenen Konzepte und
Methoden erzielt wird und der sich z. B. im verringerten Aufwand und der

vii

gesteigerten Lösungsqualität widerspiegelt.

Zum Schluss wird das Vorgehen zusammengefasst und die anfangs for-
mulierten Ziele werden den erreichten Ergebnissen gegenübergestellt. Der
abschließende Ausblick beschreibt die aktuell in der Autoindustrie ton-
angebenden Trends und skizziert sowohl anstehende Arbeitsfelder als auch
vielversprechende Konzepte für die Weiterentwicklung.

Acknowledgements

First and foremost, I would like to express my deep gratitude to Prof. Dr.
Bernhard Bauer for giving me the opportunity to join his team and to grad-
uate under his supervision at the SMDS professorship. His kind support,
versed guidance and especially his affable manner are forming outstand-
ingly pleasant working conditions and thus provide an ideal basis.

I am also heavily indebted to Stefan Kuntz and Continental Automotive
AG. I want to sincerely thank Stefan for taking time for fruitful discussions
and providing me with valuable insights in industrial practice as well as his
long-term experiences. Continental Automotive AG has been an important
sponsor of my dissertation, thus I am very grateful to the management for
fostering me in the course of the company’s doctoral candidate program.

Furthermore, I would like to cordially thank the Timing-Architects Em-
bedded Systems GmbH (TA) – represented by their CEO and co-founder
Dr. Michael Deubzer – for giving me the opportunity to use their software
within the “TA Research Partner Program”. This has been a great help for
me – especially for conducting the case studies and evaluation. Concern-
ing the latter, I would like to additionally thank Stefan Schmidhuber for his
skilled feedback and support in his role as fellow PhD student as well as TA
employee.

Last but not least, special thanks go to all my colleagues of the SMDS pro-
fessorship for their companionship and for providing a uniquely cheerful
working atmosphere that I enjoyed very much.

ix

Contents

1 Introduction 1

1.1 Motivation and Context . 2
1.1.1 Complexity Rise . 2
1.1.2 The Beginning Multi-Core Era 3
1.1.3 Multi-Core Potential and Use Cases 4
1.1.4 Migration Issues . 6
1.1.5 Conditions in the Automotive Sector 8
1.1.6 Arising Needs and Consequences 10
1.1.7 Running Example . 12

1.2 Problems and Challenges . 14
1.2.1 Identification of Vital Elements as Analysis Basis 14
1.2.2 Correctness and Data Consistency 15
1.2.3 Partitioning, Mapping and Granularity 16

1.3 Objectives . 19
1.4 Publications . 21

2 Basics 25

2.1 Concepts and Techniques . 26
2.1.1 AUTOSAR . 26
2.1.2 Artop . 33
2.1.3 Data Dependency Analysis on Models 33
2.1.4 Conflicts and Backward Dependencies 34
2.1.5 Handling Upcoming Multiplicities 34
2.1.6 Starting Conditions . 36
2.1.7 Refined Example . 37

2.2 Aggravating Factors . 38
2.2.1 From Single Chains to Multiple Paths 38
2.2.2 Preservation of Freedom 38
2.2.3 Complexity Rise Aspects 39
2.2.4 Optimal Partitions and Strategies 39
2.2.5 Adjusted Partitioning 40
2.2.6 Numerousness of Possible Distributions 41
2.2.7 Task Embedding and Scheduling 42

3 Related Work 43

3.1 Partitioning Frameworks . 44

xi

xii Contents

3.2 Limited Approaches . 45
3.2.1 Optimization of AUTOSAR Synthesis Process 45
3.2.2 Allocation with OCL . 45
3.2.3 Mapping Rule Set . 46
3.2.4 Mapping Optimization Issues 47
3.2.5 Partition and Sequencing Heuristics 47

3.3 Comprehensive Approaches . 48
3.3.1 Hierarchical Task Graphs and Cost Models 48
3.3.2 AMALTHEA and Critical Path 49
3.3.3 RunPar and Timed Implicit Communication 50

3.4 Overview and Comparison . 53

4 Approach 55

4.1 Principles & General Approach 56
4.1.1 Principles . 56
4.1.2 Overview . 59

4.2 Data Dependency Analysis, Verification & Data Validation . . 68
4.2.1 General Approach . 68
4.2.2 Principles & Steps . 69
4.2.3 Data Dependency Analysis 70
4.2.4 Timing Constraints . 71
4.2.5 Verification & Data Validation 72

4.3 Partitioning & Mapping . 77
4.3.1 Conditions & Approach 77
4.3.2 Partitioning . 80
4.3.3 Mapping . 91

4.4 Simulation & Optimization . 95
4.4.1 Prerequisites & Preparations 95
4.4.2 Simulation . 97
4.4.3 Optimization . 99

5 Case Studies & Evaluation 103

5.1 Realization . 104
5.1.1 Bringing the Principles to Fruition 104
5.1.2 Graphical Representation 105
5.1.3 Search for Partition & Mapping Solution 106
5.1.4 Conclusion . 107

5.2 Real World Examples . 113
5.2.1 EMS Characteristics . 113
5.2.2 Applied Metrics . 113

Contents xiii

5.2.3 Analysis, Partitioning & Mapping 114
5.2.4 Scheduling & Simulation 115
5.2.5 Optimization . 116
5.2.6 Results & Evaluation . 117
5.2.7 Conclusion . 120

5.3 In-Depth Optimizations and Evaluation 122
5.3.1 Setup . 122
5.3.2 Results . 127
5.3.3 Evaluation . 127

6 Conclusion 131

6.1 Summary . 132
6.2 Achievement of Objectives . 134

6.2.1 Identification of Vital Elements as Analysis Basis 134
6.2.2 Correctness and Data Consistency 134
6.2.3 Partitioning, Mapping and Granularity 135

6.3 Outlook . 136
6.3.1 Main Drivers . 136
6.3.2 Heterogeneous Architectures 137
6.3.3 Distributing and Merging Applications 137
6.3.4 Model-Based Collaborative Development 138
6.3.5 Adaptive AUTOSAR . 138
6.3.6 Dynamic Integration, Allocation and Scheduling 140

6.4 Future Work . 142
6.4.1 Extending Existing Functionality 142
6.4.2 Including Untapped Timing Constraints 144
6.4.3 Discussing New Constraints 146
6.4.4 The Multi-Rate Problem 148
6.4.5 Logical Execution Time 149

7 Annex 153

Bibliography . 155
List of Listings . 173
List of Figures . 175
List of Tables . 177
Glossary . 179

1
Introduction

This chapter initially defines the context and states relevant aspects that
form the motivation and working basis for this thesis (Section 1.1). Af-
terwards, central challenges arising from this situation are depicted (Sec-
tion 1.2). Based on this, the concrete objectives of this thesis are derived
(Section 1.3). Finally, already published publications that include parts of
this thesis are presented (Section 1.4).

1

2 Introduction

1.1 Motivation and Context

The demand for increasing performance is an inevitable trend that affects
the whole spectrum of computing and applies in particular for embedded
systems.

The automotive domain cannot evade this course as it incessantly attempts
to enhance driving dynamics, extend infotainment features, raise traveling
comfort and improve the security and safety characteristics of their vehicles.
Therefore, challenges like parallelization and multi-core platforms have to
be addressed in order to enable, e.g., highly automated driving and car-to-x
communication that pose new challenges for automotive software systems
concerning aspects like dependability or cloud interaction [Für16].

1.1.1 Complexity Rise

However, adding further functionality like “Adaptive Cruise Control” or a
“Lane Assist” generally increases complexity as well as required processing
performance [DHM+10,SZ10]. In addition, the functions themselves are en-
larging while their inner structure is becoming progressively intricate. One
of the reasons is that car domains do evermore correlate, which is – among
others – due to growing requirements in terms of environmentalism and
safety, which leads to, e.g., the entanglement of “the active collision mit-
igation, adaptive cruise control, and electronic stability control functions”
that now “share I/O devices such as the brake, throttle, and many oth-
ers” [YPS13].

Subsequently, collateral effort is incurred due to required surveillance, plan-
ning and resource management measures [YPS13]. A further cause is the
ongoing complexity transfer “from the electrical/electronic architecture to
the hardware and software architecture of the ECUs” [MNBSL12] which
eventually leads to a “software-defined car”.

This results in a need for additional ECUs, although there is a prevalent
endeavor to save space and reduce weight by decreasing their number
[Ebe16, MNBSL12]. The latter can be achieved by replacing ECUs with dis-
tinctly less (but more powerful) “domain controllers” [Mac15, Gra15].

Facing the expectation that ten times as much processing power as currently
available will be needed in only ten years (cf. [Mad15]), the existing cir-
cumstances drive the automotive companies’ pursuit of finding a possibility

1.1 Motivation and Context 3

for boosting the available computing performance in order to stay competi-
tive.

1.1.2 The Beginning Multi-Core Era

The rising demand has exceeded the capabilities of single-core technology
whose processing power is almost completely exhausted and does not sig-
nificantly increase anymore [GS12, KMKB14, Sut05]. This can be ascribed to
the problem that further raising the clock speed (the “frequency”) as “stan-
dard way to increase the performance of a processor” [SDM+14] is now
unreasonable from an economical and technical point of view: It inevitably
leads to a disproportionate growth of processor power consumption (the
so-called “Power Wall”), to an enormous rise of corresponding heat dissipa-
tion efforts (requiring expensive active cooling in some cases) and therefore
to significantly higher costs when trying to further reduce the transistors’
size [Sut05, Ebe16, MNBSL12]. Moreover, the addressed active cooling in-
volves additional effort to realize and its possible failure poses another risk
that would have to be taken into consideration especially for safety-critical
applications like an “Engine Management System” (EMS) [SDM+14].

According to the current state of research, embedded architectures featur-
ing multiple cores (or as already broached and more generally speaking
– IEUs1) are the most promising and maybe only solution having the po-
tential to meet existing and upcoming requirements in terms of providing
processing performance as well as minimizing size, weight and power con-
sumption [PKQ+14, MNBSL12, SDM+14]. Or to put it more generally: “In
the era of stalling CPU clock speeds, exploiting parallelism is probably the
most important way to accelerate computer programs from a hardware per-
spective” [BMS+16].

Facing escalating complexity, it is thus hardly surprising that both multi-
core architectures and parallelization – which compulsory comes along with
it – are becoming increasingly important [Wir11, MPS07].

In the area of desktop computing, the transition towards them started about
ten years ago (and was quite successful), whereas the automotive sector was

1Though “multi-core” is the prevailing term when referring to such architectures, it is just
one specific solution that is frequently used to vicariously represent the whole idea of
parallel computing [BSER11]. As more correct and abstract term, “IEU” encompasses
processing units that are independent of each other within the system’s scope (like a
core, a processor or an ECU).

4 Introduction

rather recently forced to start migrating its ECU software in order to pave
the way for further technical advancement, because – based on experience –
automotive microcontrollers follow “common” information technology sys-
tems with a delay of roughly five to eight years due to the typical develop-
ment cycle times of cars [Gra15]. Currently, multi-core processors are al-
ready employed in the automotive domain (cf. [PKQ+14]), but this is at the
moment rather the exception than the rule.

1.1.3 Multi-Core Potential and Use Cases

Potentially gained computing power coming along with this progress can
be utilized in different ways. There are in particular some safety-related
applications:

• “Separation” and “Segregation” are concepts that are lacking com-
monly accepted definitions clearly distinguishing them. Both are des-
ignated for distinctly distributing certain functionalities of an applica-
tion to different IEUs in order to prevent them from interfering with
each other. Generally speaking, the higher the level of parallelism is
the more segregation is enabled [MNBSL12].

• “Diverse Redundancy” is employed to increase a system’s reliability
by performing additional calculations to raise a result’s correctness
probability via using different calculation methods, e.g., for determin-
ing the exact acceleration value from a gas pedal [Stefan Kuntz, per-
sonal communication, 2013].

• “Isolation” enables slivering an especially safety-critical software
part2 to run on its own IEU. Another practice is that a “core can be
dedicated to a specialized usage” [MNBSL12].

These utilizations are especially relevant when ensuring to meet the require-
ments of “ISO 26262” – an international “standard for functional safety of
electrical/electronic systems in road vehicles” [Sin11].

However, taken as a whole, safety does not automatically benefit from
multi-core computing. It is rather appropriate to state, that there is basi-
cally an equilibrium of risks and chances when parallelized and distributed
processing is introduced. As there is per se no guaranteed execution time

2A “program/software part” can be a whole process, a thread, a method or even a task
that consist of only one instruction.

1.1 Motivation and Context 5

with, e.g., multiple threads, the inherent indeterminate “Worst Case Execu-
tion Times” (WCETs) may render multi-core approaches unsuitable for, e.g.,
an “Anti-lock Braking System” (ABS). In this context, the crucial point is to
fully employ the multi-core potential as countermeasure clearly outweigh-
ing possible drawbacks, e.g., by focusing on proper verification and data
validation (V&V) methods as well as tools that support the development of
parallel software.

Besides safety aspects, the expected core benefit of multiple-IEU platforms
is to save space and reduce weight by performing the same work on less
ECUs than before. Beyond that, there is also a need to raise a vehicle’s over-
all computing power.

According to the well-known laws of Amdahl and Gustafson (cf. [Gus88]),
the theoretical speedup of a now parallelized and distributed applica-
tion can be tremendous depending on the number of employed IEUs (cf.
[Ebe16]):

• “Amdahl’s Law”, formulated in 1967, delineates the theoretical
speedup for a task with fixed problem size (a constant workload)
chiefly pertaining to applications with a considerable amount of non-
parallelizable code. It describes the (limited) possible reduction of
execution time when migrating to multiple IEUs.

• “Gustafson’s Law”, originating from 1988, quantifies the theoretical
speedup for a task within a fixed time frame, being especially applica-
ble for applications with a considerable amount of parallelizable code.
It determines the (unlimited) augmentation of the problem size with
the aid of multiple execution units.

A fundamental difference between them is that for Gustafson’s Law the
parallel portion grows together with the problem size. Thus, the non-
parallelizable amount becomes smaller when the number of execution units
is increased. In a nutshell, it boils down to different focuses: shortening the
latency (Amdahl) versus increasing the throughput (Gustafson).

However, in the context of (automotive) real-time applications, simply
shortening the execution time does not increase software quality and “might
impact correct system behavior” [Här16]. The mere rise of computing
power does not solve problems on its own as their exponentially growing
complexity is not manageable by brute force methods [Rad17]. Therefore,
Amdahl’s Law is not very helpful for real-time purposes [Här17]. Conse-
quently, speeding up an application’s processing time is – in the majority of

6 Introduction

cases – no more than a minor goal.

As opposed to this, additional performance is rather used to cope with
high-performance applications, e.g., “Advanced Driver Assistance Sys-
tems” (ADAS) including sophisticated real-time image processing or a mod-
ern EMS for electric or hybrid powertrains [MNBSL12].

In the context of these examples, both fundamental purposes of “multi-core
ECUs” are applicable: uniting previously distributed applications to run on
a single ECU (“application level parallelism”) or the parallelization of the
hitherto sequential processing of one (rather complex) application (“func-
tion level parallelism”) [PKQ+14].

In the former case, it seems natural to put already strongly connected soft-
ware parts from different applications on one common IEU. This concept
– also referred to as “pooling” – benefits from the fact that the communi-
cation between cores of one processor (mostly realized with shared mem-
ory) is considerably faster than the communication between ECUs via field-
buses [NBN09, NNB10, SKS10].

The latter case (parallelization of one application) is significantly different,
because it focuses on the inner structure of an application. Here, the once
strictly consecutive execution order of its parts can be altered causing ad-
ditional effort to ensure that its original behavior is preserved [Cor13]. A
broad rule is, that as long as software parts are not explicitly sequential,
they can by implication be parallelized.

1.1.4 Migration Issues

Current automotive software (operating systems as well as applications)
was usually neither designed for being executed in parallel on functional
level (as mainly addressed in this thesis) nor on application level. By con-
trast, it is most often based on a sequential execution model [NBN09].

Faced with multiple IEUs, different clock rates as well as significant changes
in the memory and communication architecture, the timing behavior of
applications turned out to be completely different on multiple-IEU plat-
forms [GHKF11].

As “constraint satisfaction is a crucial aspect [...] in the design of embed-
ded systems” [ABG+13], preserving a software’s original behavior can be
enforced by imposing timing constraints that have to be met. Unfortu-

1.1 Motivation and Context 7

nately, adding constraints also exacerbates the important allocation step
(distributing software parts to IEUs) and thus further increases complex-
ity [ABG+13]. A proper migration is therefore a very challenging task
[Mad15, Für15, GLI15].

Overcoming these difficulties involves a “disruptive paradigm shift due
to the introduction of true concurrency” [SBR10] as aspects like cross-core
communication, synchronization overheads, shared resources, significance
of memory location and the complex scheduling of software parts come into
play when processing is distributed and sequential data consistency3 has to
be guaranteed [Mac15, Sch15a, Sch15b]. Therefore, the central “multi-core
challenge” can be outlined as finding an expedient distribution of the soft-
ware parts, i.e., one that meets its timing requirements and comes with min-
imal additional synchronization and communication overhead [Cor13].

In order to achieve the latter without producing unnecessary interference
(i.e. overhead) among IEUs, it is crucial to appropriately determine the
software’s fragments in the first place (“partitioning”) and to skillfully dis-
tribute them on the IEUs afterwards (“mapping”). These activities consti-
tute enormous additional effort and pose the central downside of the migra-
tion process despite the fact that the succeeding creation of an appropriate
execution plan (“scheduling”) is certainly not a simple task either.

That is because it is in general intricate to coordinate multiple IEUs at exe-
cuting parts of a common application: Due to dependencies between sep-
arately processed but still intertwined software fragments, problems like
race conditions, dead locks, non-determinism and insufficient load balanc-
ing (seeking equal workloads for each IEU) can emerge [PD13,Pat10,May16,
Ebe16, Cor13].

The occurring “multi-core overhead” can thus be ascribed to the additional
effort “to synchronize the control flow, to exchange data and to protect
shared data” [GHKF11] as well as to compensate for mistakes within the
implementation of the corresponding mechanisms, such as (cf. [Här16]):

3We define “data consistency” as both “functional coherence” (processed data has uni-
form age) and “stability” (data is steady during processing), cf. [MFCM16].

8 Introduction

• ordering failures, e.g., not sticking to a specific execution order that
is necessary for correct processing (violation of precedence relation or
mutual exclusion resulting in race conditions),

• synchronization failures, e.g., through faulty usage of synchronization
caused by nested locking (which again leads to livelocks or deadlocks)
and

• interleaving failures, e.g., induced by unwanted side effects like mode
or shared data inconsistencies (e.g. due to cache inconsistencies
[Ebe16]).

An additional form of synchronization overhead is the so-called “Inter-Core
Communication” (ICC). It deals with coordinating accesses between IEUs
that are mainly attributable to priority-based core interruption and do result
in often unnecessary long wait times [Fuk18]. In many cases, ICC appears
unexpectedly, e.g., as communication among now distributed components,
and thus poses the “key to exploit multi-core performance” [Neu16].

The aspects described in this subsection cause a complexity rise that is di-
rectly correlated with the count of software parts to be handled, because
both numbers of possibilities grow exponentially: the one for determining
the software fragments to be distributed in the first place (partitioning) as
well as the ways for their succeeding allocation on IEUs (mapping).

These circumstances result in a vast search space and, by association, also
in a hardly comprehensible design (solution) space, which renders an ex-
haustive “design space exploration” infeasible. Consequently – and due to
shortage of time – solutions are often found with the help of heuristics. As
there is no guarantee that such a proceeding leads to a proper solution, ad-
verse approaches can even issue into a deterioration of latency or through-
put (“negative speedup”, cf. [Ebe16]), especially when the design space’s
density, i.e., the rate of beneficial solutions, is rather low.

1.1.5 Conditions in the Automotive Sector

The latter is generally considered to be the case for embedded real-time
applications like the combustion EMS employed in the case studies of this
work (cf. Sections 5.2 and 5.3).

Basically, such embedded automotive software falls into the class of hard
real-time systems [SDM+14]. This means primarily that the correctness of

1.1 Motivation and Context 9

a calculation does not only depend on the absence of errors but also on
complying with the specified time span in which the result has to be pro-
vided [RTS16].

Thus, missing a deadline within a hard real-time system – like electronic
steering or braking systems – equals to total system failure and may be ac-
companied by the violation of safety goals. As opposed to this, not adhering
to deadlines in so-called “firm” or “soft” real-time systems is tolerable as it
may just degrade their quality or performance, but will probably not go
against safety requirements, e.g., for vehicle light systems [RTS16].

Automotive applications are subject to specific limitations like strongly re-
duced supply of energy, low clock rates (i.e. little computing power) as well
as sparse internal memory and disk space. Therefore, the corresponding
functional and non-functional requirements, such as dependability, safety
and energy efficiency, do “go far beyond those of general purpose comput-
ing” [DLZV14]. As they must nevertheless be met, the according applica-
tions are – in contrast to typical desktop computing – constructed as highly
specialized software [Cor13].

Hence, the often intricate structure of automotive software itself poses a
considerable development challenge even when multi-core aspects are not
regarded [SVZ15]. The complexity is mainly induced by “the fact that in-
creasingly sophisticated functionalities [...] are causing complex interac-
tions of highly integrated functions, provided by a combination of me-
chanical, electric/electronic, and especially software parts which implement
those functions” [EZV+17]. This is particularly true for larger systems such
as an EMS which is “composed of multiple functional components that are
tightly coupled via numerous communication dependencies and intensive
data sharing” [HDK+17].

In this context, a main driver is the strong trend towards evermore sup-
portive, prescient and autonomously acting systems that inevitably leads to
this highly coupled functionality. Taking this fact into account, both cur-
rently developed as well as upcoming automotive architectures are increas-
ingly structured in a centralized way across established vehicle domains,
which complicates them even further (cf. “domain controllers” in Subsec-
tion 1.1.1) [Sch18].

Now that “multi-core ECUs will drastically change the electrical/electronic
architectures” [MNBSL12], e.g., by pursuing typical multi-core software tar-
gets like scalability (to support product variants) or flexibility (to enable

10 Introduction

easy extensibility as well as efficient load balancing), the automotive com-
panies are suddenly compelled to rethink in general [May16, MNBSL12].

However, after more than 15 years of solely employing single-core hard-
ware, the software development in this sector has become confined to
“single-core specific thinking” [Ebe16]. The crux is that ECU software is
hardly ever re-engineered from scratch but rather constantly refined be-
cause of lacking money and time induced by competitive pressure. The
only exceptions are developing unprecedented functions or advanced re-
search projects in a company (where the tool development never catches
up) [Stefan Kuntz, personal communication, 2015].

Therefore, existing ECU legacy software has to be migrated. Unfortunately,
automotive software is mostly not very suited for being executed in parallel
by multiple IEUs, because its structure “does not necessarily represent a
decomposition into parallel or independent components” [KPQ+16].

Quite the opposite is the case when facing a plethora of functions and sub-
functions that communicate intensively, like it is the case in a typical com-
bustion EMS (cf. Section 5) including up to 8000 “Runnable Entities” (REs),
which are the atomic executable and schedulable units of the “AUTomotive
Open System ARchitecture”4 (AUTOSAR). Here, it is obvious that multi-
core approaches massively increase the internal complexity of ECUs and
finding a favorable partition within such highly interconnected software is
usually costly [Deu15, Für15].

1.1.6 Arising Needs and Consequences

Like already indicated in Subsection 1.1.4, a paradigm shift was initiated
in the course of introducing multi-core technology in the area of mobility
domains [DLZV14].

There is broad consensus among experts that innovative concepts for cop-
ing with emerging issues are required when facing the challenges associ-
ated with this change (cf. [SWL+09, Eiß12, Arb11]), for example (follow-
ing [SMD+10, Für15, Mac15, Mad15, SVZ15]):

4AUTOSAR standardizes “an open software architecture for automotive electronic control
units (ECUs)” [AUT14a], cf. http://www.autosar.org.

http://www.autosar.org

1.1 Motivation and Context 11

• finding suitable leverage points and heuristics for the process of mi-
grating to parallelized versions of existing application software and

• supporting this process with tools that automatize as much work as
possible and illustrate detected problems to the engineer in a mean-
ingful way.

The need for automated migration and visualization becomes clear when
casting a glance at, for example, Continental’s former workflow: “Conti-
nental has hitherto tackled this task using design studies linking the func-
tion components and the technical components using an external spread-
sheet tool” [EZV+17]. Being confronted with a “growing amount of func-
tionality” and “an increasingly complex design space” [SVZ15], solving this
challenge with a manual approach seems to be – by all indications – grossly
inefficient. Therefore, Continental endeavors “to enable a highly automated
tool-assisted complex system design process which captures all system de-
sign decisions explicitly” [EZV+17].

Apart from these new requirements emerging in the course of the “multi-
core era”, a well-known aspect remains crucial: The heavy focus on mod-
els and their active inclusion (i.e. not only as supplement) in the whole
process of software development and deployment is indispensable to keep
an overview [Deu15, Flä15]. This becomes clear when taking a closer look
at the work process in the automotive sector (cf. Subsection 6.3.4), which
is characterized by multiple iterations V-Model development, several re-
leases with strongly differing maturity and quality as well as being to a
high degree based on the division of labor (even across different compa-
nies) [MFCM16]. The latter is not unusual as supporting model-driven de-
velopment to enable “cross-enterprise” collaboration has already been an
important research topic for several decades [RBM06, BMR04, BRM05].

For example, there are usually several hundred engineers working on an
EMS since its multitude of interconnections with other ECUs makes it ex-
ceedingly complex [Stefan Kuntz, personal communication, 2016]. Efficient
collaborative working on such a system is hardly possible without proper
organizational structures and suitable work items like models.

Under these circumstances, there is apparently – and for all working steps
– an urgent need for “complex tools [...] which should interpret the infor-
mation given from each partner in adequate and standardized exchange
formats” [MFCM16]. Ideally, such tools also provide and handle mod-
els on different levels of abstraction, e.g., separate models for architec-

12 Introduction

ture, design, implementation and operation [Kun17]. The main advantage
is that a model-based approach “enables a variety of front-loading meth-
ods” [EZV+17] allowing, e.g., models of computation, validation of deploy-
ments (mapping of software parts to IEUs) or load balancing. Eventually,
this approach is worthwhile with regard to “costs savings due to early inte-
gration of analysis and synthesis techniques enabling early identification of
design errors” [EZV+17].

To sum up, a model-based workflow facilitates solving problems rather
early (i.e. beginning on abstract levels, cf. [Ebe16]), systematically (“by de-
sign”) and more targeted than hitherto in a unspecific manner and prefer-
ably via standard solutions. Correspondingly, the authors of [Här16] identi-
fied changing trends in the automotive sector’s “development mindset”:

• Concurrency: distribution on different cores now obviously super-
sedes preemption

• Memory: task-specific memory is used rather than global variables

• Consistency: consistency needs are specified instead of using explicit
lock mechanisms

• Real-time: assured by checking the system requirements as opposed
to exhaustive testing

Facing complexity becoming rampant, model-based approaches massively
gained significance and have eventually “become a de facto standard in re-
cent years” [EZV+17].

1.1.7 Running Example

Concerns and problem statements are illustrated throughout this thesis by
constantly modifying and refining a model example that describes dual us-
age of speed data delivered by several wheel speed sensors. Its basic struc-
ture is shown in Figure 1.1.

The “Wheel Speed System” (WSS) example consists of seven functional
blocks, each acting as either sensor, controller or actor. The four sensors
in the middle each write a variable (“speed-x”) representing the speed of
the respective wheel (“outgoing arrows”). The post-positioned bracketed
“i” indicates different sensor instances. The variables are read (“incoming
arrows”) by the controller of the ABS in order to calculate if intervening

1.1 Motivation and Context 13

is necessary to keep the vehicle controllable (i.e. to maintain tractive con-
tact). They are also consumed by the speedometer’s controller to determine
the value to be displayed, which is passed on to the succeeding actor (the
speedometer needle).

Figure 1.1: Basic structure of the “Wheel Speed System” example

14 Introduction

1.2 Problems and Challenges

This section describes typical problems and challenges emerging when soft-
ware engineers try to include concurrency aspects in embedded real-time
systems. Basically, three core challenges are addressed in this thesis:

The first one is to efficiently analyze a given complex model in a method-
ological way by determining timing-relevant elements, finding existing data
and control flow dependencies among them as well as illustrating deter-
mined connections in a clear manner (cf. Subsection 1.2.1).

The second one deals with working out a concept for a systematic inter-
pretation of obtained information by evaluating a model’s integrity (and
thus its suitability for a consistent parallelization process), identifying all
possible problems with regard to parallel execution as well as effectively
supporting their resolution (cf. Subsection 1.2.2).

The third challenge is about finding (scalable) strategies to efficiently split
up complex models into preferably independent parts, to skillfully deter-
mine appropriate granularities (sizes of its parts) as well as to distribute
them on multiple IEUs while minimizing synchronization overhead (cf.
Subsection 1.2.3).

1.2.1 Identi�cation of Vital Elements as Analysis Basis

In software engineering, there is a broad consensus that finding weaknesses
early is desirable when building, altering or migrating systems. Therefore,
it seems reasonable to perform preparatory actions prior to actually trying
to parallelize an application.

In the context of embedded real-time systems, it is especially important to
firstly check a model’s integrity as a whole (roughly corresponding to its
syntax) in order to ensure having a sound basis for later working steps.

Afterwards, it is crucial to have a methodology clearly depicting which
model elements are relevant in terms of logical correctness and timing, en-
abling a later reasoning. Thus, it is inevitable to determine a minimum set
of information that has to be contained (if necessary, apportioned according
to specific levels).

Subsequently, it is possible to distinctly analyze the parsed model elements
and to discover existing dependencies between them, already aiming at the

1.2 Problems and Challenges 15

later revelation of potential weaknesses, so that developers are able to prop-
erly counteract as early as possible.

As a final step, working up the processed information and represent them
in a meaningful way is a demanding, but most certainly greatly beneficial
task. If done skillfully, it effectively supports gaining an overview as delin-
eated in [GS12], where the goal is to collect all dependencies that blend into
an “overall picture” facilitating to draw conclusions about an appropriate
system architecture.

1.2.2 Correctness and Data Consistency

In order to harness the information obtained by the preceding analysis
(which are assumed to be detailed enough), it is necessary to interpret col-
lected data in a well-founded manner.

A prerequisite for the following migration of a system is its integrity con-
cerning the presence of mandatory model elements as well as their correct-
ness. An according verification approach is therefore needed to check the
soundness of specified elements as well as the relations among them with
respect to an appropriate (standard) specification, e.g., AUTOSAR.

Subsequently, an application needs to be split up in parts that can be dis-
tributed and executed in parallel. As sequential programs were never in-
tended to be processed by more than one IEU simultaneously, additional
effort is required to ensure maintaining the program’s behavior as well as
the results’ validity.

This is usually achieved by synchronization, which is defined as “restoring
of data communication of sequential programs” [Moy13], which boils down
to establishing and keeping multiple copies of a data set consistent. In other
words, synchronization manages competitive accesses on shared resources
like data structures, variables or peripheral devices and aims at ensuring
data consistency (respectively validity), which was previously described as
data stability and data coherence [GS12].

Unfortunately, synchronization on code level is demanding, costly, hardly
avoidable (e.g. by architectural design patterns) and can easily bring along
“side effects” like priority inversion, bad performance and further code
complexity, e.g., by enforcing sequential access on shared data via “Mu-
tual Exclusion” (“Mutex”) mechanisms which can again cause deadlocks

16 Introduction

[Moy13, GS12].

Pursuing this approach to ensure determinism compels to detect and re-
solve all conflicts that can lead to violations, which is very complicated
to achieve (cf. [GS12]) as it requires a deep understanding of the system’s
functionality and thus cannot be done automatically (except for some triv-
ial cases).

Hence, finding a feasible (and automatable) way to preserve an applica-
tion’s original behavior is necessary. In the context of model-based analy-
ses, it is important to determine a concrete proceeding to use its results for
drawing conclusions on potential data consistency conflicts with respect to
any execution order (e.g. overlapping or completely parallel).

Utilizing timing constraints like those specified by AUTOSAR (cf.
[AUT14d]) seems promising, as adding, modifying or removing them (ac-
cording to a particular rule set) can iteratively lead to a model that distinctly
excludes all unwanted behavior despite how it is split up and finally dis-
tributed among available IEUs.

In order to cope with huge (complex) models too, the mentioned rule set (or
“solution strategy”) must be sound and precise to enable automated pro-
cessing.

Without drawing on “active” synchronization, such an approach would be
independent from concrete code fragments and would reduce the synchro-
nization complexity considerably. In addition, the succeeding partitioning
can be done without re-thinking about synchronization and data consis-
tency.

1.2.3 Partitioning, Mapping and Granularity

After conducting the verification and data validation, the application
should be properly prepared and ready for its partitioning.

As opposed to this, an inevitable precondition for speeding up a program’s
execution via parallel computation are program parts whose processing can
either be allocated to different IEUs or whose order can be changed, both
without corrupting the overall result. In other words, the application must
not consist completely out of atomic parts that do each consecutively de-
pend on their particular direct predecessor. Assuming this as given con-
dition, it is basically possible to split the program up (partitioning) and to

1.2 Problems and Challenges 17

distribute its parts to multiple IEUs (mapping).

In a nutshell, partitioning aims at creating disjoint subsets according to a
specific goal. In case of parallelization, this goal is usually independence (cf.
[CHS12]), i.e., preferring partitions with a low degree of coupling between
its parts.

Although this does not appear complicated, partitioning is considered to be
the “single most difficult part of moving to multi-core paradigm” [Moy13]
and “one of the fundamental algorithmic operations” [BMS+16] as it in-
volves identifying available concurrency (via analysis) as well as break-
ing (via partitioning) and repairing (via validation) dependencies. Be-
ing confronted with evermore larger and intricate applications, partition-
ing “becomes more and more important, multifaceted, and challenging”
[BMS+16].

Consequently, there is a need for an efficient partitioning concept especially
on complex models as they represent an enormous challenge when trying to
skillfully split up while causing a minimum of additional synchronization
(cf. Subsection 1.1.4). This might include configurable strategies for a scal-
able partitioning search being applicable to all kinds of models and which
reliably yields exploitable results. The same holds true for mapping: de-
termining the actual distribution of found parts to IEUs has to be done in
accordance with a substantiated and yet to be developed method.

In addition, figuring out and justifying on which level to conduct these two
activities, e.g., code level or task level, is significant for the whole paral-
lelization process as it heavily influences the arising computational effort,
the size of the search space to cover as well as the expressiveness of ob-
tained results.

These results might – according to a specific model’s properties – include
varying part sizes (granularities) as well as nested parts. This is due to the
insight that a fixed granularity size is usually adverse as it most commonly
cannot properly reflect the according model’s structure in terms of, e.g., cou-
pling or cohesion.

Subsequently, offering solutions with differing granularities to choose from
affects the mapping process as the number of possible solutions further
rises. Therefore, it seems sensible to adapt and employ already established
distribution algorithms and to assess their suitability for this “bin packing
problem” when determining solutions aiming at, e.g., an adequate load bal-
ancing.

18 Introduction

In order to being able to examine the added value of found solutions, there
has to be an agreement on how to store and transfer determined partitions
and mappings, so that a third party simulation/optimization tool can easily
import the information enabling an evaluation of the results. In this context,
using already existing standards is desirable.

Finally, there is a need for finding expressive assessment criteria to deter-
mine the suitability of a partition and mapping in general (i.e. for a yet un-
known target platform) or with regard to a specific hardware configuration,
because “there is no ideal way to split up a program” [Moy13] and optimiza-
tion is always done according to a certain target platform (cf. [GS12]).

1.3 Objectives 19

1.3 Objectives

Taking the presented problems and challenges as basis enables the deriva-
tion of concrete research objectives focusing on supporting the migration of
complex automotive software to multiple-IEU platforms:

1. Identification of Vital Elements as Analysis Basis: Apply data depen-
dency analyses on sufficiently detailed (low-level) models, find struc-
tural problems (model validity), identify relevant elements and enable
a proper visualization/filtering system in order to facilitate gaining an
overview of highly complex systems (cf. Subsection 1.2.1).

2. Correctness and Data Consistency: Hint at structural shortcomings
of models, identify potential data consistency conflicts, offer concrete
solutions, support automated conflict solving and thus prepare a sys-
tem for being distributed and executed in parallel by multiple IEUs
(cf. Subsection 1.2.2).

3. Partitioning, Mapping and Granularity: Find a fast and scalable
method to identify an advantageous partition, appropriate granulari-
ties (with respect to flexibility) as well as an expedient mapping pro-
cedure for huge models, so that the synchronization overhead is mini-
mized (cf. Subsection 1.2.3).

These specific objectives contribute to the overall goal to provide a suitable
methodology that effectively supports the preferably automated paralleliza-
tion and deployment of real-time automotive applications by:

• stating a distinct proceeding,

• assisting in finding and treating crucial system parts,

• illustrating how migration can be supported by proper visualization,

• providing expedient support for the partitioning and mapping,

• following scalability as guiding principle and

• putting emphasis on preserving the original system behavior.

The overarching approach and the objectives are depicted in Figure 1.2.

20 Introduction

Figure
1.2:O

verview
ofthe

approach
and

objectives

1.4 Publications 21

1.4 Publications

Some parts of the approach and results of this thesis have already been pub-
lished in other disseminations.

The papers and reports (cf. [KMKB14, KK15, KSKB16, KSS+17]) have been
written in collaboration with colleagues at the professorship Software
Methodologies for Distributed Systems (SMDS) of Prof. Dr. Bernhard Bauer
at the University of Augsburg, employees of Continental Automotive GmbH
and Timing-Architects Embedded Systems GmbH (meanwhile part of Vector In-
formatik GmbH).

The contributions to the ARAMiS II outcome documents (“project deliver-
ables”, cf. [ARA19a,ARA19b]) contain adjusted and refined contents mainly
derived from the publications mentioned above.

The following listing shows the corresponding publications of the author
together with an outline of his contribution.

1. J. Kienberger, P. Minnerup, S. Kuntz, and B. Bauer. Analysis and
Validation of AUTOSAR Models. In Proceedings of the 2nd Interna-
tional Conference on Model-Driven Engineering and Software Development
(MODELSWARD), pages 274–281, IEEE, 2014.
The author of this thesis considerably contributed to the concepts,
application conditions and scenarios as well as the case study. He
planned and implemented the region search approach based upon
previous research at the SMDS professorship. He acted as correspond-
ing author and presented the work at the MODELSWARD Conference.

2. J. Kienberger and S. Kuntz. Systematic and Methodical Data-
Dependency Analysis for Multiple-IEU Platforms. ARAMiS Final Re-
port – Continental Automotive GmbH, pages 41–77, 2015.
The author of this thesis planned the scope, defined the approach and
parts of the challenges as well as the outlook in coordination with Ste-
fan Kuntz. He outlined and realized the motivation, the conceptual
basis and the prototypical implementation on his own.

3. J. Kienberger, C. Saad, S. Kuntz, and B. Bauer. Efficient Paralleliza-
tion of Complex Automotive Systems. Proceedings of the 7th Interna-
tional Workshop on Programming Models and Applications for Multicores
and Manycores (PMAM), pages 40–49. ACM, 2016.

22 Introduction

The author of this thesis distinctly extended and enhanced the ap-
proach of “1.” (cf. [KMKB14]) and ideas of “2.” (cf. [KK15]) in terms
of coping with highly complex models. Therefor, he worked together
with Stefan Kuntz for further developing the conceptual basis and
synchronized with Christian Saad in order to properly integrate the
improvements into the software platform that was under construction
back then.
The author of this thesis acted as corresponding author and presented
the work at PMAM Workshop held in conjunction with the PPoPP Con-
ference.

4. J. Kienberger, S. Schmidhuber, C. Saad, S. Kuntz, and B. Bauer. Par-
allelizing Highly Complex Engine Management Systems. Concurrency
and Computation: Practice and Experience – Special Issue, 29(15), 2017.
Together with the co-authors – especially Stefan Schmidhuber –, the
author of this thesis led the refinement of the approach of “3.” (cf.
[KSKB16]) and extended both the scheduling and optimization parts
which served as basis for the afterwards conducted broadened in-
depth case study.
The author of this thesis acted as corresponding author for this exten-
sive journal paper.

5. ARAMiS II Research Project Consortium. E3.2 Design Space Ex-
ploration – Achievement (outcome document, version 3). German
Aerospace Center (DLR – project executing organisation). 2019.
Based on his previous research, the author of this thesis adapted and
integrated his approaches and findings into the sub-project’s scope
and goals considering model analysis, verification and data valida-
tion. The contributions appear as clearly separated sections that the
author of this thesis is solely accountable for.

6. ARAMiS II Research Project Consortium. E3.3 Partitioning of Soft-
ware Components – Achievement (outcome document, version 3).
German Aerospace Center (DLR – project executing organisation).
2019.
Based on his previous research, the author of this thesis adapted and
integrated his approaches and findings into the sub-project’s scope
and goals considering partitioning, mapping and deployment. The
contributions appear as clearly separated sections that the author of
this thesis is solely accountable for.

1.4 Publications 23

Ideas, concepts, approaches, case studies and conclusions that have al-
ready been published in one of these publications are not additionally cited
throughout this thesis.

2
Basics

This chapter discusses fundamental ideas, conditions and practices forming
the basis for the later built approach and methodology (Section 2.1). After-
wards, typical difficulties arising in the course of the parallelization process
– like broached in Subsections 1.1.4 and 1.1.5 – are specified and elaborated
(Section 2.2).

25

26 Basics

2.1 Concepts and Techniques

In order to understand the approach and chain of thought, it is essential to
provide an understanding of employed concepts and techniques.

2.1.1 AUTOSAR

A first step to manage the complexity rise (like addressed in Chapter 1) is to
agree on a common working basis, which was undoubtedly advantageous
even when multi-core approaches were still in their infancy. Nevertheless,
it was clear that including more and more features in vehicles raises both
size and “spread” of embedded software. Therefore, several leading manu-
facturers, suppliers and vendors of the automotive sector started a collabo-
ration in 2003 and developed AUTOSAR.

AUTOSAR specifies a uniform software architecture and defines interfaces
for communication as well as configuration formats which facilitate the
exchange of ECU software, assure its possible reuse and make it scal-
able [AUT13, RN16]. In addition, it provides a standardized development
methodology that facilitates the collaboration between various partners
(e.g. companies) as well as a real-time operating system [Gra16, SBR10].

All this is guided by the principles of “Model Driven Engineering” as
AUTOSAR’s development process “is based on the use of models defined
through meta-models and provides a development process based on pro-
gressive refinement of models” [WMM+13].

In summary, AUTOSAR represents an “effective way to manage growing
system-level complexity, keep costs affordable and protect for future in-
novation” [AUT14a] by simplifying the exchange of application software
[Gra16].

Sticking to AUTOSAR has become virtually mandatory for both OEMs5 and
suppliers, because it has enormously gained in significance since its intro-
duction. As no other commonly accepted alternative is available (nor is in
prospect), this state and trend are unlikely to change.

5As the term “Original Equipment Manufacturer” (OEM) is ambiguous, its specific mean-
ing depends on the context. In the automotive sector, it usually refers to an end-product
producer/seller (like Audi or BMW) who integrates subsystems from other companies
(suppliers like Continental or Denso) in its own products.

2.1 Concepts and Techniques 27

In conclusion, it can be stated that AUTOSAR provides a suitable basis to
evaluate the added value of the approach presented in Chapter 4. Consider-
ing that, the succeeding paragraphs give an overview by outlining essential
notions and aspects, namely AUTOSAR’s structure (2.1.1.1), synthesis pro-
cess (2.1.1.2), multi-core capabilities (2.1.1.3) and correlation with a high-
level description language pre-dating it (2.1.1.4).

2.1.1.1 Software Stack

The layered architecture of AUTOSAR is shown in Figure 2.1. It can be
roughly divided into three layers: the “Basic Software” (BSW) in the lower
half (upon the actual hardware), the “Runtime Environment” (RTE) above
and “Application Software” (ASW) on top.

The BSW consists of an “operating system” (OS) and services like in-
put/output handling, memory management and hardware abstractions
[AK13]. The “Complex Device Drivers” column on the right side is dedi-
cated to unmediated hardware access, e.g., direct access on BSW functions
or even communication without employing the RTE [SKS10].

The RTE above is the ECU-specific implementation of the “conceptual com-
munication mechanism” [LLP+09] referred to as “Virtual Functional Bus”
(VFB). Therefore, the RTE is the realization of the interfaces (and thus
the communication) between “Software Components” (SW-Cs) on differ-
ent IEUs and is responsible for, e.g., signal buffering or RE triggering
[SKS10, Gra16, AK13]. In AUTOSAR, communication takes place via two
basic approaches (according to [PKQ+14, LLP+09]):

• In the “Client/Server” pattern, a defined set of server operations can
be called by one or multiple clients, i.e., provided services are invoked
from other REs.

• For the “Sender/Receiver” pattern, a defined set of data elements can
be sent and received via the VFB using global shared memory.

Communication is realized via buffering mechanisms, i.e., by copying the
data in task-local buffers before processing them [MFCM16]. This approach
is intended to preclude data races right from the outset (“by design”).

As a direct result of the layered architecture, the actual applications (the
SW-Cs on the ASW layer) are independent from the underlying infrastruc-
ture (the specific hardware) [LLP+09, AK13].

28 Basics

Figure 2.1: The layered architecture of AUTOSAR (from [AUT14e])

2.1.1.2 Synthesis Process

As already indicated, AUTOSAR “defines a synthesis process of software
components and their connections in a set of fixed-priority OS tasks dis-
tributed over a network of ECUs” [WMM+13]. In other words, the func-
tional architecture is transitioned into a (synthesized) real-time architec-
ture. This process mainly contains four basic activities (cf. [WMM+13,
PKQ+14]):

1. Allocation comprises the mapping of SW-Cs to ECUs, including con-
tained REs, ports and accessed variables (signals).

2. Partitioning is the disjoint assignment of REs (as they are the atomic
schedulable units) together with the signals in OS tasks.

2.1 Concepts and Techniques 29

3. Scheduling is about creating an execution plan for these tasks as well
as setting static priorities for them.

4. Ordering determines a sequence of REs in tasks taking heed of im-
posed constraints.

In the course of this process, there are – according to [AUT14d, WMM+13,
PKQ+14] – some typically applied practices, namely:

• the specification of “end-to-end” timing constraints between ports (al-
ready) on the highest abstraction level,

• the refinement of these constraints considering chains of REs (time
span from stimulus to response),

• the calculation of emerging response times of REs chains to check if
imposed constraints are met and

• the re-configuration of constraints if they are violated.

Based on experience, these steps are – to a considerable extent – carried out
manually which makes the whole approach rather cumbersome and time-
consuming. Therefore, there is again great potential for optimization.

2.1.1.3 Multi-Core Capabilities

Roughly nine years ago, the AUTOSAR consortium released version 4.0 of
the standard [SKS10]. Since then, AUTOSAR supports distributed execu-
tion via partitions for the purposes of multi-core and safety (e.g. isolating
safety-critical parts) [Sie16, Gra16]. That means in effect that the mapping
of SW-Cs to different IEUs is enabled, which offers more freedom compared
with distributing only SW-Cs to ECUs as before [ZG11, SKS10].

Although it is possible to assign REs from several SW-Cs to different tasks,
AUTOSAR does – however – not allow to map these tasks to different IEUs
and thus permits to distribute an SW-C across IEUs [BKL16]. This condition
can be ascribed to complying with the guideline that safety imperatively
requires decoupling (cf. [Sie16]), so that a “mixture” of different applications
on a common IEU is not desirable.

Unfortunately, treating SW-Cs as atomic scheduling units limits both the
integration flexibility as well as optimization capabilities. The former leads
to an unnecessary often re-design of applications (e.g. due to reduced load
balancing possibilities) while the latter complicates implementing “mixed

30 Basics

architectures” [Sie16]. Furthermore, only the ASW can be distributed while
the BSW must be run on one specific IEU in its entirety, which could turn
out to be a significant “bottleneck” [SKS10].

Facing these limitations, many companies have developed own solutions
to circumvent potential obstacles, e.g., in “PowerSAR”, which is Continen-
tal’s “powertrain implementation of AUTOSAR standards” [Con16], SW-C
distribution across cores is enabled [Sie16].

In terms of scheduling, AUTOSAR pursues a static mapping approach,
meaning that there is one scheduler per core (or OS instance) [Neu16,
SBR10]. This corresponds to the partitioned scheduling pattern as opposed
to global scheduling where “tasks are scheduled by a single scheduler based
on their priorities and each task can be executed on any core” [NBN09],
which means that task migration is enabled.

Cross-core interrupts and inter-core locking are possible, thus AUTOSAR
uses the “Priority Ceiling Protocol” (PCP) in order to prevent priority inver-
sion and deadlocks [Neu16, SBR10]. Since PCP is not working with parti-
tioned scheduling, AUTOSAR’s OS provides spinlocks for multi-core syn-
chronization [SBR10]. Unfortunately, spinlocks can – without further mea-
sures taken – nevertheless result in priority inversion [Cor13]. In addition,
it is possible to implement a multiprocessor variant of PCP in AUTOSAR
[Neu16].

In the future, several improvements and extensions with regard to the
multi-core capabilities of AUTOSAR are planned in order to meet market
needs. This mainly addresses the following aspects (cf. [Asm17]):

• the portability of SW-Cs and their distribution (and synchronization)
across cores,

• increasing the “depth” of the specification,

• achieving more independence on the microcontroller architecture,

• reducing implementation assumptions in the specification,

• support of the “Logical Execution Time” concept (LET – cf. Subsec-
tion 6.3.6),

• enhancing the distribution of BSW,

• improvements for inter-core communication and

• multi-core exchange formats.

2.1 Concepts and Techniques 31

2.1.1.4 Relation to EAST-ADL

As explained, AUTOSAR “provides means to describe software architecture
architectures [sic]” [QCLT11], namely hardware entities and topology, SW-
Cs with REs as well as their mapping to tasks and IEUs [MAE13b].

However, AUTOSAR is not intended to cover all abstraction levels of a typ-
ical development process. Rather, it is distinctly embedded in a method-
ology called “Electronic Architecture and Software Tools – Architecture
Description Language” (EAST-ADL), that was designed to complement
AUTOSAR with higher levels of abstraction as well as with additional con-
cepts [Sei09, MAE13b, MAE13a, QCLT11].

Being confronted with increasing system complexity and criticality that
eventually endanger quality and safety, EAST-ADL’s motives are similar
to those of AUTOSAR: Effectively supporting the development of auto-
motive systems by collaboration on tools, methods and exchange mod-
els [MAE13b, MAE13a]. This is also reflected by the fact that both have
the same meta-model, which consequently means that adding capability to
EAST-ADL corresponds to doing the same to AUTOSAR [MAE13b].

Initially developed in the course of the “EAST-EEA”6 research project,
EAST-ADL draws on established modeling approaches like “SysML”7 to
provide a common basis for model-based embedded systems development
[CFJ+07, QCLT11, MAE13a].

As illustrated in Figure 2.2, EAST-ADL is structured in horizontal layers as
well as vertical cross-cutting concerns [MAE13a]. The layers are organized
from the most abstract one on top to the implementation level at the bottom
(cf. [MAE13b, CCG+07, CFJ+07, Sei09]):

• Vehicle Level: The features of the vehicle are represented by the
“TechnicalFeatureModel” involving use case diagrams, activity dia-
grams and dynamic aspects, e.g., time and frequency.

• Analysis Level: Here, the “FunctionalAnalysisArchitecture” contains
abstract functions and defines context by means of system bound-
aries together with an environmental model. It delineates logical parts
of the system like dependencies of functional components via inter-

6“Electronic Architecture and Software Tools – Embedded Electronic Architecture”
project: https://itea3.org/project/east-eea.html

7“Systems Modeling Language”: https://sysml.org/

https://itea3.org/project/east-eea.html
https://sysml.org/

32 Basics

Figure 2.2: Abstraction levels of EAST-ADL (from [BLH+13])

faces/ports, data models and business objects as well as the commu-
nication between memory and bus.

• Design Level: As further refinement, this level’s “FunctionalDesign-
Architecture” comprises interaction with environment and end-to-end
functional definitions – thus first implementation-oriented aspects are
brought in. Subsequently, the “HardwareDesignArchitecture” repre-
sents the hardware topology with an allocation of concrete functions
to hardware elements.

• Implementation Level: Taking heed of the constraints resulting from
decisions made on higher levels, the instantiated implementation is
represented by a specific software architecture, e.g., AUTOSAR.

In addition, the depicted environmental model and the extensions are ver-
tically arranged in order to represent aspects like requirements, timing, de-
pendability, traceability and – in order to enable feature modeling and prod-
uct line management – variability [CCG+07, CFJ+07, MAE13a].

2.1 Concepts and Techniques 33

2.1.2 Artop

As already implied, there is a strong demand for tools that both harness
the advantages of AUTOSAR and support the complexity handling when
migrating to or constructing new architectures that feature multiple IEUs
[SMD+10, GNN+06]. As AUTOSAR “only” provides a common basis for
a variety of tools but lacks a ready-to-use implementation, the “AUTOSAR
Tool Platform” (Artop) was created [Art12]. Artop serves as Eclipse infras-
tructure and virtually acts as “persistence layer” enabling common base
functionality like easy access on AUTOSAR models that adhere to spe-
cific meta-model versions. Therefore, Artop facilitates the construction of
AUTOSAR tools. Its major components include features like meta-model
implementations, model comparison, model validation, explorers, editors
and a code generation infrastructure [Art12].

2.1.3 Data Dependency Analysis on Models

Like further elaborated in Section 5.1, Artop is utilized to build a tool that
performs a data dependency analysis on AUTOSAR models.

Dependency analysis is often considered to be a decisive step within the
automotive development process [Fuk18]. This common opinion primarily
arises from the goal to help mastering the vast complexity. Therefore, it is
very useful to examine which program parts interact, what data is trans-
ferred and how often communication takes place.

Gathering such information is crucial in order to determine unintentional
effects like corrupted data validity when shifting to a multiple-IEU environ-
ment. Moreover, it enables to clearly visualize a system’s data dependencies
by means of a directed graph with nodes representing functional blocks,
compositions including disjoint node sets and edges indicating pairwise
node dependencies. The latter are either “variable accesses” (VAs) between
two nodes or timing statements that affect both of them.

The crucial point is how to interpret and evaluate this information. Making
basic statements about the degree of interconnection between certain nodes
is pretty easy, whereas it is much more challenging to find out whether
a certain dependency might compromise the system’s functionality when
the execution order of the functional blocks in the migrated (multiple-IEUs)
system differs from the original single “Execution Unit” (EU) one. This is

34 Basics

usually the case when functional blocks are processed in parallel instead
of well-matched and rigidly consecutive like on a single-EU system. As a
consequence, conflicts like data not being available in time or data being
read inconsistently can occur. Of course, consistency conflicts like this can
arise in single-EU systems too, but multiple-IEUs systems are more prone to
“evoke” them because here it is – due to concurrency – significantly harder
to maintain consistency.

2.1.4 Con�icts and Backward Dependencies

A typical conflicting scenario would be the following situation: Data pro-
duced (i.e. initialized or written) by a functional block “fb-1” is consumed
(i.e. read) by “fb-2”, which uses it to produce new data. This data is then
consumed by “fb-3” which runs on a different IEU and is actually executed
earlier or at the same time as “fb-1”. This results in a conflict due to incon-
sistency, because “fb-3” is forced to use “old” data (i.e. data from a previous
computing cycle8) for its processing.

A data access like the one of “fb-3” on “fb-2” is categorized as “backward
dependency”, because it is virtually directed against the major program
flow. A further problem would be “fb-1” reading data produced by “fb-3”,
because this would create a cycle in the dependency graph (cf. Chapter 4 for
details). Figure 2.3 illustrates the described situation for the three functional
blocks mapped on two cores.

Thus, the absence of any backward dependencies means that each pro-
ducer of a certain data element is consistently executed before any consumer
(within one computing cycle). In such a case, no potential multiple-IEU-
induced problems emerge as long as the single-EU system itself was not
defective right from the start.

2.1.5 Handling Upcoming Multiplicities

Unfortunately, it is very unrealistic to assume that no backward dependen-
cies arise when a system is migrated to be carried out on multiple IEUs.
However, a setup like the one outlined in the aforementioned example does

8“Computing cycle” is defined as the time elapsed between two events that involve pe-
riodically activated tasks (sets of functional blocks) being guided by the slowest (least
triggered) task occurring.

2.1 Concepts and Techniques 35

not necessarily lead to serious problems – like wrong calculations or even
a whole system failure – and can yet be unproblematic at all. Nevertheless,
it is inevitable to take care of any potentially unintentional behavior within
a system. The trouble here is the already addressed complexity rise caused
by the exponentially growing number of possibilities to distribute tasks on
IEUs, which leads – together with scheduling – to a tremendous count of
possible execution sequences including many adverse, i.e., conflict-ridden,
ones.

In order to ensure that a system will work properly irrespective of a cer-
tain task-to-IEU mapping, it is required to distinctly exclude all unwanted
behavior (“adverse paths”) and therefore cover every contingency. If it is
not intended, possible or promising enough to change the system structure
itself, a way to achieve “multiple-IEU robustness” is enriching the model
with timing constraints or modifying pre-existing ones. They affect either
sets of functional blocks or specific dependencies (VAs).

Such constraints can, e.g., dictate a rigid execution order between two or
more functional blocks, which is suitable if they are logically (and seman-

Figure 2.3: Possible conflicting scenario for a multiple-IEU system

36 Basics

tically) connected like it is the case in a classical “sensor-controller-actor-
system”, where sensors transfer measurement data to a controller that com-
putes the appropriate action carried out by succeeding actors (e.g. brakes in
an ABS). Another possibility to solve potential conflicts via constraint im-
position is to mark a backward dependency as unproblematic, meaning to
allow that certain accessed data originates from a previous computing cy-
cle. This is in particular legit if the reading functional block does not require
current data to work correctly, e.g., a speedometer – like in the WSS example
– that cannot (and is not intended to) react within milliseconds due to the
speedometer needle’s inertia (cf. Chapter 4 for details).

After this process of eradicating all potential multiple-IEU problems, a
model is ready to be split up safely into functional blocks that can be
mapped on different IEUs. This is usually done according to a specific goal,
e.g., only having little coupling between the functional blocks and there-
fore rather few communication, or assuring certain safety requirements, like
with distinctly separating highly critical functional blocks. Finding an “op-
timal” partition is ranked as NP-hard problem and as the number of possi-
bilities to distribute the functional blocks to IEUs grows quickly, this task is
one of the biggest challenges for multiple-IEU systems [Sar87].

2.1.6 Starting Conditions

A final aspect to help overviewing multiple-IEU data dependency analyses
is to take different initial conditions into consideration. Here, a model’s
degree of abstraction is one key factor, because it has essential influence
on the expressiveness of the results. The analysis described here is carried
out on the most fine-granular level for application software in AUTOSAR,
namely on its smallest executable units – the REs9.

As opposed to this, analyses on a more coarse-grained level, e.g., inspecting
SW-Cs and neglecting the REs they encapsulate, would not reveal as much
information but could provide a useful overview especially when dealing
with huge models.

Another basic point is the “degree of predefinition” within the analyzed
model, which denotes how many constraints are imposed from the start.

9As ASW’s atomic units, REs are distinguish from “Basic Software Module Entities”
that are their counterpart in BSW (providing infrastructural functionalities of an ECU)
[AUT14b].

2.1 Concepts and Techniques 37

Such constraints can already define an execution order. Depending on this
conditions, an analysis can have very different goals:

• Constraint-free models: trying to specify a proper execution order on
the basis of the obtained dependency graph

• Constrained models: trying to specify a proper execution order with
respect to the imposed constraints and check the constraints’ validity

• Constrained models with a given execution order: find cycle problems
within the corresponding data dependency graph

As described in Chapter 4, the approach is designed to cope with each of
these conditions.

2.1.7 Re�ned Example

Figure 2.4 shows an enriched WSS according to AUTOSAR semantics.
The seven functional blocks each represent an RE that belongs to a spe-
cific SW-C. Data accesses within an SW-C are indicated via dashed lines,
whereas solid lines depict read/write operations that cross SW-C bor-
ders. The latter are represented in a simplified form (without AUTOSAR’s
“Ports” and “Connectors”). Furthermore, the gray boxes show how often
the RE is triggered. As no constraints are imposed yet, every execution or-
der – obtained by permuting the REs arbitrarily – is feasible (cf. calculation
examples in Subsections 2.2.6 and 4.3.2).

Figure 2.4: The Wheel Speed System with AUTOSAR semantics

38 Basics

2.2 Aggravating Factors

Generally speaking, there are sundry factors that can exacerbate gainful
and expressive dataflow analyses (and succeeding partition searches) on
AUTOSAR models. A start is made by explaining those that were broached
in the previous sections.

2.2.1 From Single Chains to Multiple Paths

At the beginning, it can be quite difficult to determine differences between
the behavior of a single-EU “source system” and a migrated one featuring
multiple IEUs. In the former case, the execution order of the functional
blocks was usually carefully designed and tested according to detailed
knowledge and acquired experiences about execution frequencies and com-
puting cycles.

For the latter case, it is necessary to take numerous contingencies into con-
sideration that were per se excluded in the single-EU system with its one
rigid execution chain. By enabling the capability of processing functional
blocks actually parallel (and not “quasi-parallel”), a multiple-IEU system
opens up many additional possibilities.

2.2.2 Preservation of Freedom

Unfortunately, many of these new “paths” are not expedient. Changing the
original processing order can lead to a functional block reading invalid data
because every data element has to be produced before it can be consumed.
However, a fixed order cannot be maintained when migrating to multiple
IEUs because there is a need for more freedom concerning the execution or-
der of the functional blocks when they are processed distributed. Thought-
lessly sticking to the rigid order of a single-EU system would result in either
using only one IEU or would cause needless latencies by forcing the IEUs to
incessantly wait for each other.

Therefore, one challenge is to find a golden mean between ensuring that a
multiple-IEU system will work correctly by imposing constraints and simul-
taneously leaving sufficient freedom to enable parallelization benefits. For a
software engineer, it is a tightrope walk to preserve flexibility while prevent
the system from entering problematic states that can cause, e.g., race con-

2.2 Aggravating Factors 39

ditions, data inconsistencies or dead locks. Experiences show that starting
with imposing only a minimal set of constraints seems suitable concerning
classic migration goals like load balancing, because many rigidly dictated
sequences are prone to complicate the search for an expedient partition.

2.2.3 Complexity Rise Aspects

As indicated earlier, the complexity rise is probably the biggest challenge
within the whole field of dealing with multiple IEUs. Assuming that avail-
able software and models are ready for parallelization (which can cause
much extra effort), complications are mainly arising from two factors:

• It is difficult to find a partition (a set of disjoint executable units) that
splits up the software into parts coping with several demands like ap-
propriate chunk size, preferably few cut dependencies or aiming at
a fixed number of fragments (irrespective of the specific software’s
structure).

• The number of possibilities to distribute the tasks on IEUs grows ex-
ponentially according to their count and as a consequence thereof, the
number of execution sequences escalates too (cf. Subsection 2.2.6).

2.2.4 Optimal Partitions and Strategies

As already referred to in Subsection 2.1.5, it is an NP-hard problem to find
an optimal partition in regard to certain characteristics. By and large, it is
appropriate to start from the premise that cutting as little edges as possible
is desired because every “broken” dependency causes some kind of syn-
chronization effort to preserve the results’ correctness [Moy13]. A common
approach to do so is known as “Sparsest Cut Problem”. It describes the diffi-
culty to bipartition a graph’s nodes aiming at minimizing the ratio “number
of cut edges / number of nodes of smaller partition” [CKK+06].

An established technique to proceed more target-oriented is providing the
edges with weights to differentiate between their relevance for the whole
system. The weight values can, e.g., characterize the criticality of data, its
sheer amount when being transferred or an edge’s usage frequency, which
can be derived from the associated nodes’ recurrence (also called “period”
or “triggering frequency”). The “damage” caused by cutting off edges is
then determined by adding up the edges’ weights. The aforementioned

40 Basics

sparsest cut formula can be adjusted to satisfy this by replacing the numer-
ator with a damage sum.

2.2.5 Adjusted Partitioning

Sparsest cuts are often applied when the obtained chunks are intended to
be (roughly) equal-sized, because this proceeding corresponds to “recur-
sive bisection”, i.e., a divide-and-conquer pattern used to repeatedly split
a graph into two partitions, which leads to a 2x number of partitions. This
proceeding neglects that the graph’s specific structure may not be suitable,
e.g., software components in the automotive sector have structures that dif-
fer strongly according to the purpose of their ECU (according to [Fuk18]
and [Achim Demelt, personal communication, 2014]):

• Passenger compartment software often has many discrete states for,
e.g., the light (“on/off”) or the number of the selected gear. This is
a typical example for open-loop control, which only uses the current
state of the system (and therefore no feedback about the controlled
process) as input for its computation.

• Driver assistance systems like “Adaptive Cruise Control” or road sign
detection predominantly use (rather nested) data structures and are
realized with closed-loop control. The latter makes software in general
more complex and therefore harder to partition.

• Engine Management Systems mostly process floating values for, e.g.,
injection pressure and temperature. They can be regarded as combi-
nation of closed-loop control and open-loop state systems.

Basically, there is a fundamental difference between control applications –
characterized by rather small loops, absent data parallelism and strict real-
time constraints – and typical high performance applications [KBL17].

A simple procedure like recursive bisection will not be able to adapt to such
specific structures, while other approaches are more flexible: For instance,
“Multi-Level Partitioning” (MLP) reduces huge graphs to smaller ones that
represent their global structure (cf. [ACU08, MPS07]):

2.2 Aggravating Factors 41

1. Initially, a graph is “coarsened”, i.e., reduced via contracting edges
while preserving its basic structure. Edge contraction is done by se-
lecting a certain edge (e.g. according to aforementioned weights), re-
moving it and merging the two nodes/vertices that were previously
connected by them.

2. This process is repeated until a certain threshold, e.g., a fixed number
of nodes is reached.

3. Now, the obtained shrunk graph is manageable and can be easily par-
titioned.

4. Afterwards, obtained results are incrementally mapped back by as-
signing “high level” vertices to partitions that match their “lower
level” representatives.

5. The process is complete once the partitioning was applied to the
(huge) original graph.

MLP with its gradual problem approximation is considered “the most suc-
cessful heuristic for partitioning large graphs” [BMS+16], especially as
global approaches have turned out to be too slow and simply yielding in-
sufficient results when being applied to complex graphs [MPS07].

2.2.6 Numerousness of Possible Distributions

After finding a partition, the obtained sets of functional blocks (e.g. RE sets)
have to be distributed. To illustrate the complexity associated with this,
the running example that consists of seven functional blocks is used. Here,
each block corresponds to a task intended to be separately distributed on
multiple IEUs. Thus, having seven tasks and two IEUs leads to 128 (27)
distribution possibilities. Accordingly, the number of options runs up to
2187 (37) for three IEUs and 16384 (47) for four IEUs. This is quite a lot in
regard to the small size of the model.

As already mid-sized models involve trillions of partitions (roughly 1.1 ∗
1012 for 20 tasks and 4 IEUs), it is obvious that engineers cannot look at every
alternative for a complex real-world ECU software like shown in Figure 2.5
from [Hob12] where Continental’s Engine Management System “EMS2” is
illustrated as clustered graph with about 8000 nodes (REs) and a strongly
reduced set of edges (“maximum weighted spanning tree”) indicating the
dependencies.

42 Basics

Figure 2.5: Continental’s “EMS2” as clustered graph (from [Hob12])

2.2.7 Task Embedding and Scheduling

Up to now, “tasks” merely appear as containers for functional blocks. In
fact, embedding in tasks is more than just treating them as “atomic schedul-
ing unit”, because each task has itself a certain recurrence that does not
necessarily satisfy those of the blocks it includes. This can – in theory –
change the whole system’s behavior and might therefore further complicate
the analysis by corrupting its results. An assumption is, that a scheduler
will not act in a malevolent or unduly dumb way by unnecessarily breaking
up partition suggestions (that preferably “cluster” REs with uniform recur-
rences) or providing tasks with recurrences that contradict those of the REs
they represent.

3
Related Work

Within the past decades, various approaches and strategies for a proper
and efficient parallelization process have been developed. This process can
be divided into the optional (preparatory) actions “analysis” and “verifi-
cation/validation” as well as the obligatory main tasks “partitioning” and
“mapping”. Most of the introduced approaches focus on a specific subset of
these activities.

This chapter categorizes and outlines existing research approaches in the
range of parallelization of embedded multiple-IEU systems and shows dif-
ferences in comparison with the methodology (Chapter 4) and case studies
(Chapter 5) from this thesis. In conclusion, an overview and comparison are
given at the end of the chapter (Section 3.4).

43

44 Related Work

3.1 Partitioning Frameworks

Graph partitioning has been a research topic within the field of graph the-
ory for many decades. This is mainly due to its frequent occurrence as
underlying difficulty or subproblem in very different areas such as “cir-
cuit placement, matrix factorization, load balancing, and community de-
tection” [KHKM11]. Its simplest representation – the graph bisection (cf.
Subsection 2.2.5) – can be defined as “the task of dividing the vertices of a
graph into two equally sized subsets such that the number of edges con-
necting vertices from both sets is minimal” [MPS07].

At a first glance, this does not sound exceedingly complex. However, graph
bisection embodies a computationally demanding combinatorial optimiza-
tion problem ranked as NP-hard [KHKM11, MPS07]. As a consequence,
plenty of sophisticated approaches and solutions have been developed that
provide support for this intricate subtask within the parallelization.

In many cases, elaborate research resulted in the generation of frameworks,
e.g., “Karlsruhe High Quality Partitioning”10 (KaHIP) [SS13]. KaHIP’s core
algorithm is based on a “multilevel graph partitioning approach, where the
graph is recursively contracted to create smaller graphs which should reflect
the same basic structure as the input graph” [SS15] (cf. MLP introduced in
Subsection 2.2.5). This coarsening process is continued until the graph’s size
and complexity are manageable, so that it can be partitioned with reason-
able effort. Afterwards, the graph is incrementally rebuilt and its partition-
ing is iteratively refined locally [SS15]. This proceeding draws on an idea
that was published in 1995 by Hendrickson and Leland [HL95].

Similar to other frameworks, e.g., “Scotch”11 that offers a variety of sequen-
tial and parallel partitioning techniques, KaHIP does provide an efficient
solution for the classical “graph partitioning problem”, but lacks – due to
its generic character – necessary adaptations to the special requirements
of embedded real-time systems. The same holds true for well-known and
widely used MLP algorithmic realizations like “Chaco”12 and “ParMetis”13

as parallelized implementation within the “METIS” partitioning software
family [BMS+16].

10http://algo2.iti.kit.edu/kahip/
11https://www.labri.fr/perso/pelegrin/scotch/
12https://www3.cs.stonybrook.edu/~algorith/implement/chaco/implement.shtml
13http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

http://algo2.iti.kit.edu/kahip/
https://www.labri.fr/perso/pelegrin/scotch/
https://www3.cs.stonybrook.edu/~algorith/implement/chaco/implement.shtml
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

3.2 Limited Approaches 45

3.2 Limited Approaches

There are a couple of approaches that are partly relevant and applicable
within the context of this thesis. Considering the methodology described
in Chapter 4, they each can be distinguished from it by a – sometimes de-
liberately – limited scope, by strongly simplifying assumptions or a coarse-
grained abstraction level as well as by insufficient scalability. The latter is of-
ten indicated by small-scale case studies or experiments on purely fictional
models.

3.2.1 Optimization of AUTOSAR Synthesis Process

In [WMM+13], the authors introduce an approach for optimizing the syn-
thesis process of AUTOSAR (cf. 2.1.1.2) and compliant architectures –
namely the allocation of SW-Cs to ECUs and the succeeding assignment
of REs to schedulable tasks. Both is carried out with respect to response
times and resource consumption. Optimization is achieved by employing
“Mixed Integer Linear Programming” (MILP – a wide-spread mathemati-
cal optimization method) and “Genetic Algorithm” (GA) techniques. The
goal is to provide a “holistic approach that considers allocation, partition-
ing, scheduling and ordering together” [WMM+13].

The major shortcoming is that the approach is hardly applicable on com-
plex systems as MILP algorithms do not scale well and the used GA im-
plementation was not yet parallelized. Consequently, the experiments were
conducted on a rather small-sized model including merely nine nodes.

3.2.2 Allocation with OCL

The authors of [PH15] point out that specifying an allocation of software
parts to hardware is a particular intricate task, because it is necessary to
take heed of many dependencies (e.g. concerning topology or timing) as
well as constraints (e.g. arising from memory or routing needs) all at once.
Referring to ILP solutions like in the previous Subsection 3.2.1, they thus
state that “encoding the allocation problem as a linear program is a complex
and error-prone task”.

Therefore, a model-driven allocation approach is presented that is based
on the formal “Object Constraint Language” (OCL), which is a part of the

46 Related Work

“Unified Modeling Language” (UML). It features the newly created “Al-
location Specification Language” (ASL) which is intended to support both
a facilitated specification of sound allocation constraints (for software and
hardware models) as well as an automated synthesis of valid allocations.

In a nutshell, the suggested workflow begins with the allocation specifica-
tion via ASL, proceeds with the derivation of linear equations, their reso-
lution by a solver and finally the inference (and back-transformation) of an
allocation model with a specific mapping of software parts to hardware el-
ements (IEUs).

The approach is described as being particularly applicable and useful for
defining constraints in domains where “constraint satisfaction is a crucial
aspect that needs to be satisfied in order to the system being accepted” –
which is certainly the case in the automotive section. Moreover, it enables
engineers to depict and solve such problems by means of ILP despite having
no further knowledge about it.

However, the authors do not make any statements about the runtime or
scalability of the employed solver as well as the model-to-model transfor-
mations that have to be carried out. As the presented case study, a “Brake-
by-Wire” system modeled with “MechatronicUML”14 merely includes 13
atomic executable (and schedulable) entities, it remains unclear if the ap-
proach can handle complex models in an efficient way.

3.2.3 Mapping Rule Set

Already in 2009, Long et al. described general rules to minimize intra-ECU
communication via skillfully mapping REs [LLP+09]. The optimization
goals are to reduce task switching as well as to avoid data inconsistencies
and unnecessary latencies. By considering possible communication behav-
iors of REs, six rules for a proper mapping are derived, e.g., “Map sender
& receiver to the same task.”, “Map multiple receivers to the same task.”
or “Map multiple senders to the same task.” [LLP+09]. These simple rules
provide a guideline for a basic mapping proceeding.

However, they are barely applicable in terms of consistency and adequacy
when handling sophisticated systems with heavily communicating REs,
which is, e.g., characteristic for powertrain applications. Accordingly, the
performed case study shows how the rules can be applied to a small vehicle
14http://www.mechatronicuml.org/en/index.html

http://www.mechatronicuml.org/en/index.html

3.2 Limited Approaches 47

control application comprising only five SW-Cs with seven REs in total.

3.2.4 Mapping Optimization Issues

In [ZG11], the authors deal with optimization issues in the course of map-
ping AUTOSAR’s SW-Cs to distributed hardware platforms featuring mul-
tiple ECUs. For this purpose, a preparatory analysis is conducted which
determines connectivity between SW-Cs. The process itself comprises the
GA-supported mapping of SW-Cs to ECUs, the succeeding placement of
REs into tasks (with respect to calculated blocking times when the “Prior-
ity Ceiling Protocol” is applied) as well as the assignment of data consis-
tency mechanisms to shared data elements. In this way, schedulability, min-
imized bus load, reduced memory consumption and data consistency are
ensured.

As opposed to the approach of this thesis, this method does not challenge
the assignment of REs to SW-Cs but deploys them as a whole. The asso-
ciated case study shows its application on a very small model: six SW-Cs
with one RE each and two ECUs. Thus it remains unclear if the process’
implementation can also cope with highly intertwined models.

3.2.5 Partition and Sequencing Heuristics

Finally, another interesting approach was presented by Monot et al.
[MNBSL12]. Here, all interdependent REs are grouped into a common task
which can afterwards be scheduled independently from other tasks. Subse-
quently, a separate scheduling is performed by a specific sequencing algo-
rithm for each core of a homogeneous target platform (i.e. featuring equally
equipped IEUs). The main goal of this proceeding is achieving proper
load balancing. As proof of concept, experiments were successfully con-
ducted on complex models, namely on a “body gateway ECU with about
200 runnables [i.e. REs]” from Peugeot [MNBSL12].

However, a basic requirement for this approach to operate is that there exist
only little dependencies among REs, so that enough independent tasks can
be determined and distributed. This assumption is too optimistic and is def-
initely not met for the majority of embedded automotive systems, especially
those in the powertrain domain (cf. case study in Section 5.3).

48 Related Work

3.3 Comprehensive Approaches

Compared with the methods outlined in Sections 3.1 and 3.2, the following
approaches exhibit a broader applicability, a higher degree of maturity or
cover more common aspects with respect to the approach of this thesis.

3.3.1 Hierarchical Task Graphs and Cost Models

The dissertation of Daniel Cordes directly addresses automating the par-
allelization of embedded multi-core systems [Cor13]. Therefor, the funda-
mental idea of splitting the intricate parallelization problem into efficiently
solvable subproblems is applied.

For this purpose, existing research findings on “Hierarchical Task Graphs”
(HTG) have been continued and further evolved. HTGs follow the source
code’s structure and are used as “central intermediate representation”
which embody different (separately processed) levels of hierarchy that
mainly include control flow and dataflow together with corresponding
performance metrics. Hence, the emerging complexity is tackled via this
“divide-and-conquer fashion” to shrink the vast solution space.

Depending on the type of target platform (homogeneous or heterogeneous)
as well as the number of optimization goals, “Integer Linear Programming”
(ILP – the underlying technique of the previously broached MILP) and GAs
are employed as parallelization techniques.

In further consequence, the obtained outcome is utilized to create “High-
Level Cost Models” (HLCM) reflecting task information like execution
times and communication costs. They are used to properly estimate the
“benefit of different parallel solution candidates” which again supports,
e.g., proper load balancing. Among these, the best solution is used to anno-
tate the source code and to eventually implement parallelism.

Embedded within the encompassing parallelization framework, the ap-
proach aims at automatically conducting partitioning and mapping on em-
bedded applications for heterogeneous platforms. It is suitable for – on the
one hand – single-objective parallelization realized via ILP as well as – on
the other hand – for multi-objective parallelization based on GAs, while
they are employed to extract both task-level and pipeline parallelism.

The main difference compared with the methodology presented in Chap-

3.3 Comprehensive Approaches 49

ter 4 is that the analysis is carried out on sequential C code instead of model-
based. Furthermore, the framework uses a profile-driven instead of a static
dependency analysis (like in Section 4.2) due to considerably reduced de-
velopment effort. The approach is illustrated in Figure 3.1.

3.3.2 AMALTHEA and Critical Path

In [HKI15], the authors deal with partitioning and mapping for embed-
ded multi-core systems in the context of the “AMALTHEA Tool Plat-
form”, which is an “open source tool platform for engineering embed-
ded multi- and many-core software systems” [Mac15]. In the meantime,
“AMALTHEA” has become an official Eclipse project and was renamed to
“APP4MC”15.

AMALTHEA’s basis are “Weighted Directed Acyclic Graphs” (WDAG),
which are created with the help of a dependency analysis. This is followed
by a cycle elimination process that takes heed of possibly existing ordering
constraints, so that expected timing, safety and behavior characteristics are
retained [The16]. The actual partitioning is performed following “Earliest
Deadline First” (EDF), “Earliest Start Scheduling” (ESS) or “Critical Path”
(CP) strategies.

According to several experiments, the CP partitioning approach seems to
be the most promising heuristic: Here, an application model is partitioned
according to its crucial sequence – the Critical Path – which “is defined by
runnables and dependencies, forming a path from an entry node to an exit
node, of which the sum of computation and communication costs is the
maximum” [HKI15]. The Critical Path acts as invariable core that is not
distributed in order to avoid additional communication or data exchange
[HKI15]. Based on that, it is determined where – i.e. at which scheduling
position – the remaining “runnables” (equals to AUTOSAR’s REs) can be
properly placed without violating constraints or causing overhead [APP18,
HKI15].

Eventually, this proceeding concentrates on reducing overall response times
[The16]. As opposed to the ESS algorithm, CP partitioning is not commit-
ted to produce a result with a preconfigured number of partitions [APP18].
Therefore, ESS seems to be expedient if the target hardware is known in
advance.

15https://www.eclipse.org/app4mc/

https://www.eclipse.org/app4mc/

50 Related Work

After the partitioning step, the mapping is done based on established ILP
methods and yields optimal solutions with respect to specific goals.

The approach is illustrated in experiments on several models and for differ-
ent target platforms. Among them is also a complex model “derived from
a real automotive engine control system” [HKI15], which consists of over
1200 runnables and is partitioned into 54 tasks in total. For this model, the
best parallelization results in terms of execution time and reached degree of
parallelism were achieved with CP partitioning.

This proceeding bears analogy to the approach of this thesis as a preceding
dependency analysis serves as basis for properly preparing the model for
parallelization. However, invariably imposing only sequencing constraints
to “solve” cycles rather appears as “steamroller approach”. In addition,
the method confines itself to preserve the legacy systems original behavior
(data validation) and does – apparently – not conduct a verification con-
cerning the model integrity. It remains unclear if the approach scales well
as concrete data on the case study models (like the degree of interconnec-
tion) is lacking and there is also no information given on the algorithms’
runtime. Another difference is that the method in Chapter 4 does not draw
on strongly simplifying heuristics like CP partitioning.

3.3.3 RunPar and Timed Implicit Communication

The authors of [PKQ+14, KPQ+16, KQBS15, BKL16] follow the principle of
retaining a single-core application’s original RE-to-task mapping in order to
avoid assumed high effort for re-validating functional correctness.

With regard to the widespread division of migration methods into “recon-
figuring” (changing mappings) and “preserving” (keeping mappings) par-
allelization approaches (e.g. in [KBL17]) they argue that the former are
“ideal for simple applications without strict dataflow constraints, e.g. body
control” [BKL16] as opposed to the latter which are more suitable for com-
plex models.

Accordingly, a comparison between the benefits of RE-level versus task-
level parallelism claims that the former is more suitable for small task
sets and few IEUs while the latter is preferable for many tasks and IEUs
[BKL16].

On RE-level, they first introduced “RunPar”, which is an allocation algo-

3.3 Comprehensive Approaches 51

rithm that assigns single REs as tasks to IEUs while “keeping the sequential
execution of tasks” [PKQ+14]. Thus, RunPar prevents parallel execution of
REs assigned to different tasks and ensures the same functional behavior
as before migration. RunPar is intended to reduce the “Worst Case Execu-
tion Times” (WCETs) of tasks instead of an application’s overall response
time, so it draws on strategies like to firstly allocate the “longest chain of
dependent runnables” [PKQ+14].

Ongoing research led to a complementary task interleaving concept en-
abling the efficient utilization of occurring idle intervals (cf. [KPQ+16]). This
is reached by “combining consecutive [sic] executed tasks into one Super-
task” – a concept based on “Logical Execution Time” (LET – cf. Subsec-
tions 6.3.5 and 6.3.6) [BKL16, KPQ+16].

On task-level, “Timed Implicit Communication” (TIC) is presented, which is
“a communication mechanism that transforms the data flow of the original
task set” [KQBS15], so that the parallel execution of communicating tasks is
enabled by decoupling them. It maintains the original dataflow within the
migrated multi-core version of the applications though causing additional
costs by having to instrument the tasks’ communication with timestamps.

The applicability is illustrated in [PKQ+14] by means of reaching a WCET
speedup of approximately 1.4 for an EMS (12 tasks, 1000 REs) on a homo-
geneous target platform. In addition, TIC is evaluated with a diesel EMS at-
taining WCET speedups of 2.7 (on 4 cores) and 4.5 (on 8 cores) [KQBS15].

As contrasted with the approach from this thesis, the authors assume
that an initial RE-to-task mapping is, firstly, always given and, secondly,
should not be altered due to enormous impending re-validation effort
[PKQ+14, KPQ+16, KQBS15]. As a consequence, RE-level parallelism is as-
sumed as only being suitable for simple models (small task sets and few
IEUs). Both conflicts with the approach presented in Chapter 4, where RE-
level parallelism is consequently exploited irrespective of a model’s com-
plexity and predefined (single-EU) mappings are always challenged.

52 Related Work

Figure
3.1:O

verview
ofthe

H
TG

parallelization
approach

(from
[C

or13])

3.4 Overview and Comparison 53

3.4 Overview and Comparison

The following Table 3.1 summarizes the comprehensive approaches from
Section 3.3 and compares them to the one presented in Chapter 4.

The approaches are arranged vertically (columns), whereas the horizontal
rows delineate their compared properties:

• Working Basis: On which level of abstraction does the approach work?

• Primary Scope: Which type of input data is preferably processed?

• Dependency Analysis: Is the input analyzed in order to support the
parallelization process?

• Verification: Does the approach provide methods for checking the in-
tegrity of the processed input (model or code)?

• Data Validation: Does the approach provide methods for checking and
validating the data consistency (coherence and stability) of the pro-
cessed input?

• Partitioning

– Principle(s): Which methods and principles are employed for the
partitioning process?

– Basic Strategy: Is the original execution order and/or task assign-
ment preserved or does the approach create a new one without
restrictions?

– Level (Granularity): Which is the atomic, schedulable unit that
the approach processes and creates a partitioning and mapping
solution for?

• Mapping: Does the approach provide generic and/or target-specific
task allocation?

• Tool Support: Is the approach implemented/realized as comprehen-
sive tool suite?

• Scalability: Is the approach capable of processing large and/or com-
plex input with an appropriate amount of time and resources?

54 Related Work

Table
3.1:O

verview
and

com
parison

ofcom
prehensive

parallelization
approaches

H
ierarchicalTask

G
raphs

&
H

LC
M

A
M

A
LT

H
EA

&
C

riticalPath
R

unPar
&

Tim
ed

Im
plicitC

om
m

.
A

pproach
of

this
PhD

T
hesis

W
orking

B
asis

code
m

odels
m

odels
m

odels
Prim

ary
Scope

A
N

SIC
A

M
A

LTH
EA

A
U

TO
SA

R
A

U
TO

SA
R

D
ependency

A
nalysis

3
yes

(profile)
3

yes
(static)

7
no

3
yes

(static)
V

erification
7

no
3

yes
7

no
3

yes
D

ata
V

alidation
7

no
3

yes
7

no
3

yes
Partitioning

Principle(s)
ILP

&
G

A
C

P
&

ESS/ED
F

TIC
&

LET
M

LP
derivative

Basic
Strategy

indeterm
inate

a
reconfiguring

preserving
reconfiguring

Level(G
ranularity)

task
&

pipeline
function

(R
Es)

task
b

function
(R

Es)
M

apping
3

yes,generic
&

target-specific
3

yes,generic
&

target-specific
3

yes,generic
&

target-specific
3

yes,generic
&

target-specific
ToolSupport

7
unclear

3
full

7
unclear

3
full

Scalability
7

lim
ited

c
3

high
3

presum
ably

high
d

3
high

aC
onsiders

only
“from

scratch”
m

igration
scenarios

as
no

task
assignm

entis
initially

given.
bO

nly
sim

ple
m

odels
are

processed
atfunction

level.
cD

ue
to

N
P-hardness,the

scalability
ofILP

approaches
is

distinctly
lim

ited
[W

M
M

+
13,D

K
08,M

cD
07].

dA
s

long
as

C
P

is
em

ployed.

4
Approach

This chapter constitutes the core part of this thesis as it elaborates the paral-
lelization approach and the corresponding methodology.

Firstly, underlying principles of the approach are depicted and an outline of
the working steps is given (Section 4.1). Section 4.2 then describes the con-
ducted data dependency analysis and the associated verification and vali-
dation process by reference to AUTOSAR. On the basis of a now achieved
multiple-IEU robustness, Section 4.3 expounds how to efficiently perform
a partitioning and mapping on complex embedded automotive software.
Finally, Section 4.4 shows relevant tasks to properly simulate determined
solutions, to evaluate obtained results and to carry out an expedient opti-
mization.

55

56 Approach

4.1 Principles & General Approach

Most existing parallelization approaches are geared towards high-
performance applications or classical desktop computing and are therefore
hardly applicable for embedded devices [Cor13]. As opposed to this, the ap-
proach of this thesis is intended to particularly address resource-restricted
embedded systems.

Having this in mind, considering the basics imparted in Chapter 2 and cop-
ing with the challenges depicted in Section 1.2, it is now possible to describe
general thoughts as well as specific proceeding steps derived from them in
order to satisfy the central need initially addressed in Chapter 1: specifying
a process to migrate from existing ECU software to a version that is capable
of handling multiple IEUs.

As a result, the core task is to “supply” the software with a consistent tim-
ing model, i.e., providing it with a minimum of timing information and
constraints to ensure the preservation of its original functionality.

4.1.1 Principles

In order to achieve this, the approach builds on two principles – namely to
proceed incrementally and bottom-up. Details are given in the following.

4.1.1.1 Acting Step-by-Step

Like already broached, a variety of possibilities (the design space) emerges
when multiple IEUs are taken into consideration. As it is well-founded that
“the development process of today’s embedded systems is characterized
by a sequence of refinement steps” [EZV+17], it rather suggests itself to ad-
vance incrementally instead of trying to care about all alternatives at once.

This means that – after having identified critical spots – the process of erad-
icating “weaknesses” is carried out in a consecutive way by adding new
or modifying existing timing constraints, whereas the order of the single
steps should be preferably commutable. The latter implies that the result
set (remaining proper sequences) is not affected by the specific succession
of manipulation steps.

As it cannot be enforced to obtain analysis results without intersecting “con-

4.1 Principles & General Approach 57

flict parts”, there will always be a risk of not choosing an optimal path, i.e.,
a certain chance to unintentionally exclude promising solutions from the
set of possible execution sequences. In order to reduce this risk, it is ex-
pedient to have recourse to suitable conflict resolution experiences (“best
practices”) and to tools that facilitate going through different solution pro-
cedures. However, experiences and tools only serve as basis and are far
away from being able to ensure that an acceptable (or even optimal) solu-
tion is found for every setting.

By and large, this incremental approach is clearly more feasible than trying
to find a proper solution off the cuff, because the latter almost inevitably
leads to “stupidly” calculating all possibilities which mostly lacks foresight
and systematic procedure. Furthermore, checking out every possible option
usually takes more time and requires disproportionate computing power.

As already covered in Subsection 2.2.2, the actual decisive criterion is to
stop when all detected conflicts are solved. Afterwards, a search within
the remaining alternatives should be carried out before additionally (and
maybe both needlessly and adversely) constraining the system. This boils
down to gradually approximating the ideal case-related trade-off point (the
“golden mean”), which follows established iterative improvement heuris-
tics employed by many sophisticated solvers, e.g., in the field of graph par-
titioning [BMS+16].

4.1.1.2 Tackling From the Bottom

Assuming that time and money are not main restrictive factors, the ideal
case would being able to build multiple-IEU software from scratch with us-
ing existing solutions only as reference. Unfortunately, this is hardly ever
the case and ECU software is – being confronted with competitive pressure
– rather constantly refined and extended than newly created. Exceptions
are only the development of unprecedented functions or advanced research
projects in a company (where the tool development never catches up) [Ste-
fan Kuntz, personal communication, 2015].

Therefore, a top-down development process that supports abstraction from
low-level data, skillful further decomposition as well as “early” feedback on
system design is hardly applicable here.

As opposed to this, the approach starts from the other side by analyzing
existing software on the most fine-grained level and by delivering feedback

58 Approach

on given structures. The results can be re-used on “adjacent” levels to gain
a more abstract view on the system. For example, knowing about the data-
flow between REs in AUTOSAR allows to re-interpret and apply the results
on the SW-Cs that the REs are assigned to.

This leads to a generalized and – especially for very huge models (cf. Fig-
ure 2.5) – more overseeable view on the system, because communication
within SW-Cs is hidden. If the SW-Cs are not intended to be split up and
being run on different IEUs, such an abstraction can also help to quickly find
an appropriate partitioning. On the contrary, only few bulky SW-Cs may be
inappropriate for being mapped on an IEU. Working and distributing on
the most fine-grained level seems sensible to enable maximum flexibility
and efficiency [Här16, Ste16].

Figure 4.1 shows the WSS from an SW-C view. Looking at it from a
more coarse-grained perspective facilitates to gain an overview fast. Here,
“Runnable Entity Instances”16 (REIs) and the data accesses between them
via “Inter-Runnable Variables” (IRVs) are hidden and only communication
taking place between SW-Cs (via ports) is shown.

Figure 4.1: The WSS from SW-C perspective (without IRVs)

Generally speaking, the process of abstracting from a given to a higher (i.e.
more coarse-grained) level of abstraction can iteratively be carried on as de-
sired. The only restriction is the initial analysis’ range that can vary strongly
from analyzing the data dependencies within, e.g., one ECU’s SW-C to those
in a self-contained system spanning several ECUs. In the end, it is possible
to give feedback on the whole system structure by interpreting “base level”
information.

16This is not an official AUTOSAR element. The existence of REIs arises implicitly from
the component structure where the same RE may appear in different contexts.

4.1 Principles & General Approach 59

4.1.2 Overview

In order to mitigate the complexity of parallelized systems, the endeavor is
to effectively support the goal-oriented migration of legacy ECU software
to a suitable multi-core architecture.

In the course of this, the working basis is not code (but models) and the
intention is not enabling the parallel execution of several “atomic applica-
tions”. Instead, the focus lies on the model-based parallelization of a single
application addressing “function-level parallelism” (also known as “task
parallelism”) – like previously covered in Subsection 1.1.3 (level of paral-
lelism) and argued for in Subsection 1.1.6 (models).

The proposed migration process is depicted in Figure 4.2.

Figure 4.2: Overview of the migration process

The gray box indicates the scope of work described in this thesis. Both ac-
tivities on its left side are supported by the tool “AutoAnalyze” (cf. Sec-
tion 5.1), which is implemented as plug-in based on the “Eclipse Modeling
Framework” and the “Model Analysis Framework” within the “AUTOSAR

60 Approach

Tool Platform”17 (Artop) [Ecl09,Saa09,SB13]. The two activities on the right
side of the gray box can be carried out within several third-party tools that
provide simulation and optimization features for embedded multi-core sys-
tems. The “TA Tool Suite” (TATS) is used for the case studies in Sections 5.2
and 5.3 [Tim15].

In general, there is indispensable information for each specific working step
which is provided in Table 4.1. For each subsequent step, only the addition-
ally required (mandatory or optional) information is listed. The last column
of the table has been adapted from the work of Sailer et al. [SSH+16] and
indicates whether the data exchange formats AUTOSAR, AMALTHEA or
ASAM MDX18 can be used to store and exchange the respective informa-
tion.

17Artop facilitates the construction of AUTOSAR tools by serving as Eclipse infrastructure
and virtually acting as “persistence layer” that enables common base functionality like
easy access on AUTOSAR models that adhere to specific meta-model versions [Art12].

18ASAM MDX stands for “Association for Standardisation of Automation and Measuring
Systems – Meta Data Exchange Format” and “defines a description format for the soft-
ware architecture and data definition of the software of an automotive ECU” [Ass12].

4.1 Principles & General Approach 61
Table

4.1:Lineup
ofrequired

inform
ation

for
the

specific
w

orking
steps

M
andatory

O
ptional

Exchange
form

at
D

ata
D

ependency
A

nalysis,
V

erification
&

D
ata

V
alidation

•
shared

data
definitions

•
R

Es
including

data
ac-

cesses

•
recurrences

ofR
Es

•
SW

-C
s

and
com

positions

•
tim

ing
constraints

•
A

U
TO

SA
R

•
A

M
A

LTH
EA

•
A

SA
M

M
D

X

Partitioning
&

M
apping

•
basic

hardw
are

m
odel

(i.e.num
ber

ofcores)
•

basic
operating

system
m

odel(e.g.scheduling
al-

gorithm
)

•
A

U
TO

SA
R

•
A

M
A

LTH
EA

Scheduling
&

Sim
ulation

•
definitions

of
tasks

and
Interrupt

Service
R

ou-
tines

(ISR
s)

w
ith

R
E

call
sequence

•
basic

O
S

m
odel

•
O

S
configuration

(e.g.
task

and
ISR

priorities
and

preem
ptability)

•
tim

ing
requirem

ents
(i.e.

task
deadlines)

•
precise

hardw
are

and
O

S
m

odel

•
precise

R
E

runtim
es

(i.e.
runtim

e
distribution)

•
precise

task/ISR
activa-

tion
pattern

(e.g.
jitter

and
sporadic

activations)

•
precise

task
call

graphs
(i.e.branches)

•
A

U
TO

SA
R

(only
m

anda-
tory

inform
ation)

•
A

M
A

LTH
EA

O
ptim

ization
&

C
om

parison
•

A
ffinity

C
onstraints

(e.g.
R

E
pairing/separation)

•
A

M
A

LTH
EA

62 Approach

4.1.2.1 Data Dependency Analysis, Veri�cation & Data Validation

The basis of the approach is a preceding data dependency analysis run on
AUTOSAR models, e.g., like proposed in [SBR10]. It is intended to detect,
visualize and solve potential conflicts related to a software’s distributed ex-
ecution on multiple IEUs:

1. The analysis identifies a model’s structural elements such as the afore-
mentioned REs, their variable accesses, their recurrence (also called
“triggering frequency” or “period”), their specific execution time, the
SW-Cs containing the REs as well as already imposed timing con-
straints.

2. The gathered information is assessed, the integrity and soundness of
specified elements are detected (verification) and potential conflicts
regarding data consistency are determined.

3. Integrity and soundness issues are handled by hinting at missing or
incorrectly specified elements.

4. Inconsistencies are addressed by an incremental (stepwise) applica-
tion or modification of timing constraints on the lowest level (i.e. on
REs) for the purpose of achieving multiple-IEU robustness in terms of
data consistency (data validation).

This semi-automatic process provides the software with a consistent tim-
ing model to ensure the preservation of its original sequential (single-EU)
behavior on a multi-core platform. Hereby, data consistency can be guaran-
teed regardless of how the software parts are eventually distributed.

Typical synchronization mechanisms and problems which commonly come
along when trying to achieve similar results on code level are rendered
redundant by the multiple-IEU robustness achieved with this model-level
approach. Accordingly, the author of [Moy13] emphasizes the associated
huge overhead by stating that “fine-grained synchronization [...] can be
1000 times more costly than the cost of the operation”. This is due to
a tremendous effort necessary for handling specific challenges like (cf.
[GS12, Moy13]):

• avoiding deadlocks and livelocks, e.g., by detecting cyclic dependen-
cies via code instrumentation,

• avoiding non-determinism, e.g., by preventing calculation results to
depend on time sequences,

4.1 Principles & General Approach 63

• avoiding data races, e.g., by controlling simultaneous access on shared
variables,

• providing fairness, e.g., by realizing mutual exclusion mechanisms
with queues or

• ensuring scalability, e.g., by eliminating synchronization operations
and keeping critical sections fine-granular.

Taken as a whole, an elaborate conflict detection (both statically and dynam-
ically) as well as achieving and keeping an efficient program flow constitute
considerable additional expense.

4.1.2.2 Partitioning & Mapping

Partitioning and mapping are the core tasks of parallelization. The former
is – like explained in Subsection 1.2.3 – considered to be the key challenge
of migration to multi-core platforms. However, this does not mean that the
latter is simple by implication.

Mapping is a similarly demanding task as finding an appropriate allocation
of software to hardware is guided (and restricted) by often adverse circum-
stances. For embedded devices, limited resources, hard deadlines, hetero-
geneous target platforms and difficult to predict communication behavior
of the underlying network (due to concurrent access on shared resources)
do considerably complicate the software parts’ distribution [KWF15].

Considering the workflow involved by these two tasks, it is apparent that
“facilitating these processes among an automatic, scalable and modular ba-
sis becomes an important issue” [HKI15]. This statement is well-founded
as there is a general consensus that conducting partitioning and mapping
for vehicles systems by hand has become infeasible, because “it is ineffi-
cient and error-prone to perform the mapping manually in a trial-and-error
manner” [ZG11]. One reason is that manual methods often draw on sim-
ple partitioning strategies such as searching for entirely independent tasks
or trying to group all dependent (or all uniformly triggered) REs into one
task, which is not expedient for real-time systems, especially for a strongly
interconnected application like an EMS [PKQ+14, WMM+13, NNB10].

As a consequence, this step’s fundamental idea is to search on AUTOSAR’s
most-fine grained level (REs) for regions (sets of REs) with a relatively low

64 Approach

coupling and to group them into tasks19 in order to create a suitable parti-
tion as well as the subsequent task-to-core mapping. The immense search
space can be remarkably reduced by providing a beneficial starting point for
the simulation and optimization that are carried out to evaluate the initial
solution and to search for further ones. This approach is based on tech-
niques introduced in [JPP94, OO84, Tip95], which were further developed
in [GRLB09].

Since its initial proposition (in [KMKB14]), the partitioning algorithm was
extended to cope with highly complex models:

• Search Tolerance: A configurable tolerance is used to loosen the rather
strict criteria for low-coupled regions, so that RE sets, which violate
the demands to a certain tolerable extent, are not discarded.

• Dependency Weights: The relevance of the connection between two
REs is calculated in order to determine concrete pair-wise weights.
The computed values do in general depend on the number and type
of variable accesses between two REs, their recurrences as well as the
number and type of timing constraints imposed on them.

• Splitting Strategies: Based on experience, analyzing a whole model
often unnecessarily increases the search effort while simultaneously
shrinking the result set. This effect can be attributed to the high degree
of interconnection in large models which exacerbates partitioning at-
tempts [KBL17]. Thus, different splitting strategies are provided that
follow best practices and proven approaches to handle such problems
efficiently (like in [BMS+16]), e.g., dividing the model into parts with
uniform recurrences before running searches on each of them.

• Relevance Partitioning: As these parts often remain highly complex,
the search gradually ignores pair-wise dependencies below a growing
threshold until a sufficient number of regions is found. This parti-
tioning style roughly corresponds to the Multi-Level Partitioning ap-
proach of first “coarsening”, then clustering and afterwards restoring
a graph [ACU08].

• Automated Search: The applied search parameters – namely the men-
tioned tolerance, the partitioning rate target (“coverage”) as well as
according step sizes (the “search granularity”) – can be automatically
determined. In this case, the algorithm dynamically adjusts the search

19Forming tasks is inevitable as the REs usually significantly outnumber the tasks allowed
by the OS [MNBSL12].

4.1 Principles & General Approach 65

parameters to obtain advantageous results according to the currently
analyzed model part’s properties.

The succeeding mapping algorithm is highly adjustable to meet the specific
hardware platform’s requirements (e.g. given by its number of IEUs). As
demonstrated in the case studies (cf. Section 5.2 and Section 5.3), achieving
a certain goal is possible by modifying the preferences when arranging the
tasks and mapping them to a specific number of IEUs, e.g., the preferred
granularity of the regions, a concrete load balancing strategy or enforcing
certain regions to be assigned to the same IEU (via “pairing constraints”).
Furthermore, the mapping can be tailored to meet the features of heteroge-
neous target platforms by independently defining a variety of properties for
involved IEUs and associated local or global memories.

However, the quality of a calculated partition and an according mapping
can hardly be objectively assessed. This is because optima are typically ei-
ther not recognizable as such or are simply unknown and goals for par-
allelization efforts are often contradictory. For example, pooling strongly-
connected software parts (low synchronization overhead), distinctly sepa-
rating functionalities that should not interfere (support safety) and evenly
spreading computational cost (proper load balancing) are usually not simul-
taneously achievable. Thus, obtained solutions mostly constitute a trade-off
between a few personally prioritized goals.

Like previously mentioned, a pooling-oriented partition together with a
mapping that enables satisfactory load balancing is sought. Of course, there
are numerous other factors worth taking into consideration, e.g., if the target
platform’s processor is “homogeneous” concerning equally equipped IEUs
and how many of them are available.

In the end, this step’s purpose is to provide an advantageous starting point
(“initial solution”) which is effectively supporting the following simulation
and optimization in order to find appropriate further solutions in an ade-
quate amount of time.

4.1.2.3 Scheduling & Simulation

The subsequent step employs a third-party simulation tool in order to eval-
uate the usefulness of the provided initial solution using various timing and
performance metrics, e.g., task response times. Regardless of what product
is employed, some preparations have to be made before such a simulation

66 Approach

can deliver expressive results:

1. Importing the validated AUTOSAR model together with the calcu-
lated partition and mapping from the previous working step (initial
solution).

2. Setting up the underlying hardware model, e.g., a generic processor
model or a detailed automotive micro-controller simulation model.

3. Setting up the underlying OS model, e.g., how the cores are man-
aged by the operation system (global/local scheduling, online/offline
scheduling and the scheduling algorithm).

4. Adding basic timing requirements (e.g. task deadlines) to later allow
a general classification into valid and invalid solutions.

Running a timing simulation on highly complex models can take a lot of
time, but eventually yields informative findings about a solution’s general
validity, occurring latencies, overhead caused by necessary synchronization
or a basic statement about a software’s overall degree of potential paral-
lelization (indicating possible speed-up).

Optimizations for practical models typically require the simulation of sev-
eral tens of thousands alternative solutions. As a consequence, the required
time for optimization is mainly dictated by the simulation performance.

Generally speaking, it can be stated that a targeted preceding partition-
ing and mapping facilitates the optimization step considerably which is
particularly important when being confronted with cross-core communi-
cation as a substantial new resource bottleneck [Mac15]. In addition, the
obtained results are expedient for both static as well as dynamic scheduling
approaches. The latter are becoming increasingly important in the automo-
tive sector (cf. Subsection 6.3.6).

4.1.2.4 Optimization & Comparison

Having gained a first glimpse on the initial solution’s quality enables a com-
parison with potential alternatives. The latter’s creation is facilitated by tak-
ing the initial solution as basis to derive modified versions of it. In general,
there are plenty possibilities to do so either manually or with tooling sup-
port. In many cases, the above-mentioned third-party simulation tools also
provide optimization features.

4.1 Principles & General Approach 67

The aforementioned initial solution serves as starting point for further im-
provements by the optimization step. Alternative solutions are hereby cre-
ated by systematically modifying the initial solution in an iterative process.
In order to steer the optimization process, each alternative solution is sim-
ulated to evaluate the improvement compared to the initial solution with
respect to timing and performance criteria. This optimization process can
be carried out either manually or with tooling support.

A focus on “weak spots” discovered by means of interpreting the simu-
lation results can act as beneficial leverage point for model changes, e.g.,
splitting up “chunky” tasks that hamper proper load balancing or enforcing
two heavily communicating tasks to be mapped to the same core.

Having found better solutions in terms of certain characteristics – like re-
duced cross-core communication or a shorter overall cycle time – allows
to “close” the round-trip engineering circle by providing customized data
on advantageous model-specific search parameters for the “Partitioning &
Mapping” step. This iterative proceeding seems sensible in order to effec-
tively broaden the search span by means of a fresh “solution seed”.

68 Approach

4.2 Data Dependency Analysis, Veri�cation &

Data Validation

In the following, the first step of the migration process (cf. Figure 4.2) is
described in detail.

The underlying methods are constituted of static “Verification and Valida-
tion” (V&V) techniques. As opposed to a dynamic proceeding, neither the
execution of the model nor conducting a simulation is needed to obtain ex-
pedient data for the succeeding steps [The15]. This approach has proven to
be advantageous with regard to efficiency especially when being confronted
with increasingly huge and complex models. In general, static V&V tech-
niques collect information on a model’s syntax, structure as well as its data
and control flow which subsequently enables the checking of its integrity,
soundness and consistency [The15].

4.2.1 General Approach

Like previously stated, the central task is to determine a timing model, so
that an embedded application’s original behavior is retained. In this context,
conflicts can occur when functional blocks – originating from legacy (single-
EU) software – are processed in parallel instead of well-matched and rigidly
consecutive like before. This poses a threat to data consistency, which was
previously defined as stability (steady signals/values over a certain period
of time) being paralleled by coherency (signals/values with uniform data
age).

Possible conflicts are, e.g., data not being available in time or data being read
inconsistently. Of course, conflicts like this can occur on single-EU platforms
too, but multi-core systems are more prone to “evoke” them because here it
is – due to concurrency – significantly harder to maintain consistency.

Therefore, it is inevitable to address any potentially unintentional behavior
within a system. The challenge consists of the already mentioned complex-
ity rise caused by the exponentially growing number of possibilities to dis-
tribute tasks on cores, which leads – together with scheduling – to a tremen-
dous amount of possible execution sequences including many adverse (i.e.
conflicting) ones.

To assure that software will work properly irrespective of a certain task-

4.2 Data Dependency Analysis, Verification & Data Validation 69

to-core mapping, it is required to distinctly exclude all unintended behav-
ior, which is accomplished by adding, modifying or removing timing con-
straints in the model.

4.2.2 Principles & Steps

As implied in Section 4.1, the approach as a whole is based on the following
principles:

• Bottom-up: Analysis and validation are both conducted on the most
detailed (lowest) level, which corresponds to REs in AUTOSAR. A
top-down approach would be barely applicable in this case as ECU
software is – due to competitive pressure – rather continuously re-
vised and augmented than created “from scratch”. Additionally, more
general views on a system can nevertheless be built by deriving from
collected low-level data.

• Incremental: Validation is run stepwise instead of all at once in order
to prevent the creation of “fresh” conflicts by overlapping constraint
scopes and to avoid indiscriminately calculating all possibilities at the
very start which would require disproportionate computing power
(and much more time). This corresponds to the step-by-step proceed-
ing of a typical development chain, where receiving feedback after
each step is more beneficial than mindlessly going through all possi-
bilities. As this process simplifies the recognition of ways leading to
proper solutions, it is presumably the most appropriate and sensible
way to overcome wide-ranging solution spaces.

• Minimal: For the purpose of not needlessly restricting the degree of
freedom for subsequent steps (and thus not to unintentionally exclude
promising solutions), only a minimum set of constraints is imposed.

Complying with this concept, a static data dependency analysis is per-
formed directly on AUTOSAR models. Its basic steps are:

1. Parsing the model and analyzing existing connections (data depen-
dencies) between the Runnable Entity Instances included in the SW-Cs
and their potential execution sequences based on already given “Exe-
cution Order Constraints” (EOCs).

2. Drawing attention to either missing elements (or mandatory proper-
ties of them) as well as those that do not conform to a specification,

70 Approach

e.g., AUTOSAR (verification).

3. Classifying detected connections and filtering out potentially conflict-
ing variable accesses among them.

4. Imposing or modifying timing constraints to reduce all possible execu-
tion sequences to a set that timely supplies every REI with its required
input data (data validation).

4.2.3 Data Dependency Analysis

First of all, parsing the AUTOSAR model provides the information basis
needed for further steps: AUTOSAR’s SW-Cs are the main structural ele-
ments as their “Internal Behavior” comprises the contained REs, the com-
munication taking place within the component (between several REs) and
between different SW-Cs of one ECU. Each RE may be instantiated multi-
ple times (e.g. four wheel speed sensors of a car), so every REI has its own
data dependencies, which each arise from the interaction between at least
two REIs. AUTOSAR differentiates seven kinds of variable accesses used
for “local” access as well as for communication that crosses SW-C borders.
All of them are taken into account:

• writing (“outgoing”) VAs:

- dataSendPoint

- dataWriteAccess

- writtenLocalVariable

• reading (“incoming”) VAs:

- dataReceivePointByValue

- dataReceivePointByArgument

- dataReadAccess

- readLocalVariable

The last-mentioned VAs (the “local” ones) indicate “intra SW-C access”,
whereas the others denote communication over SW-C “ports” (SW-Cs’ con-
nection points). The former is represented by IRVs that may be accessed by
all REIs within one common SW-C. The latter is realized by specifying ports
according interfaces and “Assembly/Delegation Connectors” that actually
hook up a pair of ports establishing either a asynchronous “sender-receiver”
communication or a synchronous “client-server” one.

4.2 Data Dependency Analysis, Verification & Data Validation 71

4.2.4 Timing Constraints

Besides those structural elements, AUTOSAR’s timing constraints are iden-
tified: Currently, two out of the seven existing constraints are deployed:
EOCs and “Age Constraints” (ACs) [AUT14d, Flä15]. The former are “used
to specify the order of execution of ExecutableEntities” [AUT14d] (i.e. spec-
ify a fixed order for multiple REs) and the latter “to specify a minimum
and maximum age that is tolerated when a variable data prototype is re-
ceived” [AUT14d] (i.e. determine the tolerated data age of a read vari-
able).

EOCs are applied to predetermine a rigid execution order between two
or more REs (“explicit synchronization”, cf. [Sch15a]). This is appropriate
when they are logically (and semantically) linked like in a classical “sensor-
controller-actor system” where sensors transmit measurement data to a con-
troller which determines a suitable action that is afterwards carried out by
associated actors, e.g., brakes in an “Anti-lock Braking System” (ABS).

By contrast, ACs resolve potential inconsistencies via tagging a possibly
conflicting dependency as unproblematic by allowing that certain accessed
data comes from a previous “computing cycle” (“implicit synchronization”,
cf. [Sch15a]). This is feasible if the reading RE does not imperatively need
current data to work properly, e.g., a speedometer that is not able (and is not
intended) to react within milliseconds because of the speedometer needle’s
inertia and the preservation of its readability by the driver.

As opposed to the imposition of timing constraints, synchronization mech-
anisms do – for example triggered by reaching a barrier or synchronization
point – actively align data that is accessed by various program parts. Here,
the synchronization definition “restoring of data communication of sequen-
tial programs” [Sch15a] fits ideally as it expresses the need for additional
mechanisms to ensure data coherency. A drawback of this approach is that
mechanisms require detecting where synchronization is actually needed in
the first place [Sch15a]. Furthermore, such specific (fine-grained) synchro-
nization is considered to cause much additional effort [Moy13].

This strongly differs from the concept of ACs that show where and to what
extent coarse-grained synchronization is feasible. With the approach pre-
sented in this thesis, active synchronization is made superfluous by de-
sign.

72 Approach

4.2.5 Veri�cation & Data Validation

Before using the data to filter out semantic weaknesses (timing issues), a
verification step is carried out in order to ensure that the analyzed model
is syntactically complete and sound, i.e., it is build correctly (integrity) and
provides all information required with respect to the specification. Here, it
is crucial to highlight problems like erroneously referenced REs that prevent
a well-founded interpretation of a model’s timing behavior. In addition, it is
very helpful to hint at ambiguities, e.g., more than one triggering frequency
for an RE (a so-called “multi-rate network”, cf. Subsection 6.4.4), that are
allowed but can still exacerbate the parallelization endeavor when staying
concealed.

Having verified the model’s integrity now allows to take the gathered in-
formation as a whole into consideration and to map them on a directed
graph illustrating the data dependencies by means of nodes that represent
the REs and edges standing for the variable accesses semantically connect-
ing them.

4.2.5.1 Dependency Classi�cation

A second step harnesses the gathered information, so that the graph can
be used to derive sets of node neighborhood, i.e., successor and predeces-
sor relations between REIs, for the access on a specific variable. These sets
are useful to make statements about possible execution sequences and to ac-
cordingly classify the dependencies in order to find possible inconsistencies,
which are represented by every contingency of unintentionally consuming
data before producing it in the scope of one computing cycle.

As embedded software in the automotive domain (and ECU software in
general) is characterized by running periodic tasks, the given REss’ recur-
rences together with the data on imposed timing constraints can be used to
set the execution of the according REIs into a temporal perspective.

This is done by determining whether the dependencies act as “Forward De-
pendency” (FD) or “Backward Dependency” (BD) with regards to the REIs’
execution order. FDs are marked by the fact that in one computing cycle, a
specific variable is always first written and afterwards read. As opposed to
this, BDs are all dependencies remaining if FDs are not taken into consider-
ation, concerning those data accesses on one variable that are not explicitly
ordered, so it can be first read and afterwards written in the scope of one

4.2 Data Dependency Analysis, Verification & Data Validation 73

computing cycle.

4.2.5.2 Detecting Con�icts

Generally speaking, no problems occur as long as the producer of data is
executed before any consumer. Every BD is considered as potential conflict,
because they offer the possibility to later distribute the tasks (containing
the REs) to the available IEUs in a way that does not prevent reading a
specific variable before writing it, e.g. by parallel executing both accesses
on a variable. This can lead to the processing of “old” values, i.e., data from
previous computing cycles. In such a case, a constraint preventing this is
needed.

Furthermore, it is checked whether existing timing constraints are correctly
applied (valid). EOCs should only be set for REs that have the same recur-
rence, because when dealing with ECU software, static scheduling is still
prevalent. Therefore, a once found execution order stays the same. In con-
trast, EOCs are rather inappropriate for REs with diverging recurrences, be-
cause the execution order of them within a computing cycle can change, e.g.,
when a “consuming RE” is triggered more often than a “producing one”.
Here, an EOC demanding the producing RE to be executed first (within a
computing cycle) can cause extra latency if the consuming RE is triggered
earlier than the producing one. In such cases, ACs are the more adequate
means.

Besides simply missing constraints, typical fault cases are, e.g., EOCs im-
posed on REs with divergent recurrences, EOCs that directly or indirectly
contradict each other by forming a cycle (the easiest case is “(A before B)
&& (B before A)”) or “insufficient” ACs that allow a smaller data age than
effectively arising.

It is important to know that EOCs do heavily restrict the “degree of free-
dom” for mapping the REs (grouped as tasks) to IEUs. Thus, the poten-
tial for parallel execution is greatly reduced when a model is highly order-
constrained. Parallelism can even be entirely prevented if the EOCs’ com-
bination lead to a single-chain execution order. Therefore, as little EOCs
as feasible are imposed, whereby they are preferably set in a local scope
(e.g. being valid only within one SW-C). In the case of imposing constraints
on dependencies that cross SW-C borders, ACs are an appropriate choice,
because their (global) effect is less limiting and they do not per se reduce
the number of possible execution orders (which is advantageous for the

74 Approach

multiple-IEU use case).

The previously described basic dependency classification of “forward” and
“backward” is now reused: Here, FD means that an EOC is imposed on the
associated REIs which guarantees that the specific variable is written before
read within one computing cycle. If the EOC itself is not cyclic or invalid,
the according dependency is thus considered unproblematic. All remaining
dependencies are classified as “backward” and represent possibly critical
paths of the system’s design.

As previously stated, all possible backward dependencies within one com-
puting cycle are inspected and subdivided into “intentional” and “uninten-
tional” ones. The former are characterized by the existence of appropriate
ACs explicitly allowing the transferred data to be “outdated” (i.e. coming
from a previous computing cycle). If no matching AC exists, the BD is prob-
ably unintentional. To sum up, (restricted) permissions for backward execu-
tion are represented by ACs whereas EOCs are used for their prevention.

4.2.5.3 Resolution of Con�icts

These reflections lead to the validation proceeding that takes care of ev-
ery “unhandled” (i.e. backward) dependency. An indispensable prerequi-
site for it is that each RE is triggered according to one invariant recurrence
though multiple ones are possible and even common in some cases (cf. Sub-
section 6.4.4).

• Missing constraints indicate that existing dependencies may form a cy-
cle resulting in a risk to read deprecated data. An AC should be added
if the recurrence of the involved REIs differs or if the corresponding
REI does not necessarily need the most current data for its calcula-
tions, e.g., when it “only” monitors other REs (diagnosis).
If recurrences do not differ, the choice between EOC and AC depends
on a software engineer’s intention. As an EOC affects all dependencies
between two REs, it should rather be imposed if they are deliberately
executed in succession (see example below).

• Redundant constraints can either be harmless, e.g., needlessly set ACs
for REs with uniform recurrence, or they can lead to ambiguity if set
contradictory, e.g., cyclic EOCs. In the latter case, the software engi-
neer has to choose which one best matches the envisaged functionality
and can then remove the other one.

4.2 Data Dependency Analysis, Verification & Data Validation 75

• Invalid constraints denote either EOCs imposed on REIs with diverging
recurrences or insufficient ACs. The obvious solution for the former
is to replace the EOC with an AC if the dependency needs to be con-
strained. In the latter case, the allowed maximum data age of the AC
has to be increased.

If there are multiple ways to resolve a potential conflict, it is not always
obvious which alternative is preferable. In the case of a missing constraint
where imposing both an EOC and/or AC is possible, there is no universally
better way, so it is necessary to have further knowledge about the system in
order to make a well justified decision.

For example, a typical sensor-controller-actor-system like an ABS reads the
rotating speed from the wheel sensors before it processes if actions to adjust
the wheelspin are necessary (like in the WSS). In this context, knowing the
system’s functionality and the importance of the deployed data’s age helps
to decide if it is sensible to enforce the REs being executed in succession
or, e.g., to explicitly allow the use of “old” data for wheel speeds below a
certain threshold.

However, ACs and EOCs are not mutually exclusive, but rather can be very
expedient in combination (depending on the specific situation). This is in
particular the case if a variable is used for different purposes, e.g., the value
of a current wheel speed is frequently read by an ABS but only seldom by
the speedometer.

4.2.5.4 Conclusion & Example

After eradicating all potential conflicts including those that influence par-
allelization behavior, it is possible to ensure a system’s validity with re-
gard to data age and the corresponding model. Having reached this state
of multiple-IEU robustness means that the model is now ready to be split
up safely into functional blocks. These blocks can be mapped on different
IEUs and can be executed in every possible order without corrupting data
consistency.

Figure 4.3 shows a data validated (and verified) WSS which is prepared for
distribution on different IEUs. The green lines indicate EOCs that, e.g., en-
force the wheel speed sensors to be triggered before the ABS controller. The
purple circles with arrows stand for ACs imposed on specific variables.

76 Approach

Figure
4.3:The

validated
W

heelSpeed
System

4.3 Partitioning & Mapping 77

4.3 Partitioning & Mapping

Once the consistency threats have been identified and solved with the help
of constraints, the next logical step is to figure out how the software can be
split up and distributed in an expedient way: At first, “partitioning” breaks
up a model into sets of REs according to a given objective, then the suc-
ceeding “mapping” means to determine concrete tasks within the obtained
partition and to assign them to specific IEUs. Afterwards, their actual exe-
cution can be scheduled.

4.3.1 Conditions & Approach

As a matter of fact, there is no general-purpose approach to find a suitable
partition or mapping and it is difficult to assess whether a specific solu-
tion will satisfy certain properties. Therefore, it is essential to thoroughly
consider the desired aspects of the target system and its according objec-
tives in advance. This is usually done with respect to definite goals like
(cf. [Kun17, EZV+17, Gra17]):

• reaching a preferably low coupling rate between the tasks and there-
fore rather little necessary synchronization as well as communication
(“pooling”),

• ensuring the adherence to safety requirements like distinctly separat-
ing highly critical tasks,

• preserving the processing of logically related software parts on the
same IEU, e.g., REs contributing to one common function,

• providing a certain minimum level of performance or throughput,

• supporting a system’s robustness, e.g., by means of redundancy,

• seeking equal core utilizations (load balancing),

• economizing energy expenditure,

• reducing memory consumption as well as

• minimizing required hardware resources in general.

Reaching several of these goals at once is very hard as there usually is no
overall optimal solution, i.e., one that does not compromise.

78 Approach

Besides, there is a clear trend away from monolithic architectures and to-
ward more fine-grained software parts (cf. [Kun17]) which renders parti-
tioning an even greater challenge.

4.3.1.1 Escalating Possibilities

As there are numerous possibilities to fractionalize a model, finding an
“optimal” partition according to specific goals is ranked as NP-hard prob-
lem [BJ92]. In addition, searching for an advantageous “task-to-core” map-
ping entails traversing an overwhelmingly huge solution space, because
the number of mapping possibilities grows exponentially according to the
amount of given tasks. Together, both activities represent one of the biggest
challenges when trying to build an optimized multi-core system.

It is easy to show that this can quickly escalate: The running example – the
Wheel Speed System – consists of seven REs. Assuming that each RE is
supposed to be mapped separately on one of four IEUs available, there are
16384 (47) different ways to do so (cf. calculation in Subsection 2.2.6). Af-
ter choosing one of these distribution solutions, there are again many pos-
sible execution sequences arising: there are already 5040 (“7!”) different
sequences for executing all REs successively on one IEU.

Taking a rather mid-sized example illustrates the enormous complexity rise:
The “Brake-by-Wire” application from “TIMMO”20 and “TIMMO-2-USE”21

consists of clearly organized 18 REs [TIM09, TIM10].

For this model, the same calculation as for the WSS already results in about
387 million (318) different mappings for a target platform featuring three
IEUs. Each mapping solution involves again a vast number of possible exe-
cution sequences as there are already over six quadrillion (“18!”) sequences
for executing all REs successively on only one IEU. And there are a lot (ex-
ponentially) more options in a multiple-IEU setting, because most REs can
theoretically be processed in parallel (fully or partially overlapping).

Generally speaking, every random set of REs can be simultaneously exe-

20The project “TIMing MOdel” developed “a common, standardized infrastructure for the
handling of timing information during the design of embedded real-time systems in the
automotive industry” [TIM09].

21The project “TIMing MOdel - TOols, algorithms, languages, methodology, and USE
cases” provides “tools, algorithms, languages, methodology, and use cases for dealing
with timing requirements and properties for timing analyses during the development
of distributed embedded automotive systems” [TIM10].

4.3 Partitioning & Mapping 79

cuted as long as it is valid regarding the absence of two REs being inter-
connected by an EOC. The exact count of possibilities depends on the num-
ber of available IEUs (defining the maximum set size), the number of tasks
encapsulating the REs and possibly given minimum requirements for load
balancing (together with execution times).

4.3.1.2 Degree of Freedom

As opposed to this, it can easily be illustrated how initially “much” design
freedom gets quickly decimated by constraints: As a finally found schedule
is only valid if it sticks to the imposed constraints, five EOCs in the WSS
example already lead to a strongly reduced number of 504 legit execution
sequences (out of 5040 initially), which is shown in Figure 4.4.

Figure 4.4: The simplified WSS for calculating possible sequences

In this view on the WSS, data accesses and recurrences are left out to concen-
trate on the number of possible execution sequences remaining after some
EOCs are imposed. The five constraints are sufficient to exclude 4536 out of
5040 possibly successive sequences.

The calculation process is as follows: There are 24 (“4!”) possible sequences
for the sensors and the ABS controller, because the sensors’ order can be
permuted and the controller has to be executed after them. For each of
these specific orders, there are 42 possibilities to insert the two remaining
speedometer REs, where only half of them (21) are valid (fulfilling the EOC):
24 ∗ 21 = 504.

80 Approach

4.3.1.3 General Approach and Added Value

Considering this, the goal is to reduce the number of possibilities with an
appropriate sense of proportion by first providing a beneficial initial parti-
tion and secondly – based on this starting point – an advantageous initial
mapping, which increases the efficiency of the following scheduling, simu-
lation and optimization.

As the partition is created with respect to imposed constraints and existing
dependencies, the necessary computational effort, e.g., done via permuting
all possibilities, as well as reflections on the actual distribution and deploy-
ment are limited to a “corridor” of preferably promising solutions. Since
it cannot be guaranteed that proper paths are not discarded, this process
should be repeated in order to ensure a balance between searching deeply
and broadly.

Without a given partition and if no further knowledge of the system is avail-
able, a simulation tool would be forced to draw on simple strategies to ob-
tain initial tasks, e.g., preferably encapsulating REs with equal recurrences
and therefore creating homogeneous and easily relocatable tasks. Such re-
gions are particularly suitable for being executed on a common IEU, so that
the duration of one “computational iteration” on this IEU is not needlessly
delayed due to REs’ diverging recurrences that are cumbersome to recon-
cile.

However, such a partition can be very adverse too, especially when load
balancing is hampered by strongly differing task sizes or when – as it is al-
most always the case – cross-core communication is an issue and heavily
connected REs are not assigned to the same core. According to gained ex-
perience, this holds particularly true for highly complex models like those
used in the case study (cf. Section 5.3).

4.3.2 Partitioning

Partitioning support is given by advising which model elements are suit-
able for being grouped to tasks. The intention is to speed up the search for
a convenient partition as it serves as basis for a subsequent mapping and
scheduling. Avoiding an adverse partitioning is vital as it is able to spoil
both performance and efficiency.

As stated in 4.1.2.2, “low coupling” (corresponds to “pooling”) acts as stan-

4.3 Partitioning & Mapping 81

dard partitioning objective. It is determined by assessing the dependencies
(i.e. their edge weight, cf. 4.3.2.2) that cross region borders within a certain
partition, i.e., data accesses that are “broken” by assigning the involved REs
to different regions. Restoring these dependencies (preserving their func-
tion) requires additional synchronization effort, because at scheduling, the
execution of the respective REs has to be coordinated according to their spe-
cific “Cross-Linking Degree” (CLD). The partitioning does not depend on
the target system’s processor properties, i.e., both architectures equipped
with “homogeneous” (equal) as well as “heterogeneous” (differing) IEUs
are addressed by this step.

This concept is realized by the “Single-Entry Region Analysis” (SERA) algo-
rithm that searches for relatively isolated RE sets within the model. They are
characterized by a common starting point (the entry node) and by having
preferably few dependencies to outside nodes before a common end point
(a merger node) “closes” the region.

In the beginning, the algorithm used to be not productive enough for highly
complex models as its strict rules were not defined for heavily intercon-
nected graphs. In order to make it applicable to all kinds of models, it was
purposefully extended to meet the emerging requirements.

4.3.2.1 Search Tolerance

Being configurable according to the specific model’s complexity, the algo-
rithm accepts a certain number of “isolation violations” without immedi-
ately discarding the identified RE set. This is useful to perform a search
that takes the “Average Node Degree” (AND – the number of dependencies
per node) into consideration, making it possible to find “hot spots” even in
dense graphs. Based on experience, it is – in most cases – relatively easy
to detect a sensible upper limit for this tolerance, because found groups be-
yond this “turning point” are – often out of a sudden – bulky and evidently
not significant anymore.

4.3.2.2 Dependency Weights

Treating the pair-wise connection between all nodes equally would be ob-
viously not expedient when having to decide which one to “break” while
trying to form RE sets.

82 Approach

Therefore, the first approach was to calculate the weights for the connection
degree of every linked node/RE pair. The respective values could be deter-
mined by using the information usually available in AUTOSAR models: the
REs’ period and the number of dependencies (variable accesses) connecting
them. The weight value rises according to decreasing periods (corresponds
to higher triggering frequencies) and an increasing number of dependen-
cies, resulting in the formula:

weight = (1/period1 + 1/period2) ∗ dependencies (4.1)

It was easily adaptable if further information (like the amount of transferred
data of a specific variable access) is given and used to serve as enabler for
the “relevance partitioning” principle (cf. 4.3.2.3).

However, focusing on the edge cuts is not enough as their number does
not automatically correlate with the actual communication volume and rel-
evance [MPS07, Hen98]. Thus, edge cuts are per se not a reliable indicator
for additionally caused synchronization between software parts whose exe-
cution takes place distributed, e.g., on different IEUs [SKK00].

Therefore, the initial dependency weighting approach was refined in order
to better reflect the implied coherence of pair-wise nodes. The approach
follows the guiding idea of an “architecture-aware partitioning” pointedly
taking heed of “cost of communicating data between a pair of processing el-
ements” [BMS+16]. Correspondingly, it rests on the following principles:

• Type-Specific Weights: The dependencies between a node pair are
now distinguished and specifically assessed according to their type,
e.g., different single weight values in AUTOSAR for

– valid Sender/Receiver (constrained),

– invalid Sender/Receiver (missing AC),

– invalid Sender/Receiver (missing AC or EOC) and

– Client/Server dependencies.

• Execution Order Factor: Predefined (sequential) execution orders are
now treated as separate formula factor, because their relevance is not
intended to depend on the number of variable accesses occurring be-
tween the nodes that they address.
For example, the relevance of EOCs in AUTOSAR decreased accord-
ing to a rising number of VAs due to totaling up the values to one sum

4.3 Partitioning & Mapping 83

when using the initial weighting formula. Now, their weights are fixed
correspondent to their type, e.g., valid, cyclic or invalid EOCs. Setting
high weight values for EOCs equals to imposing affinity or pairing
constraints on tasks.

• Exceptions: Missing recurrences (the nodes’ triggering frequencies),
reflexive dependencies and other special cases are dealt with sepa-
rately. For AUTOSAR, this means that

– there is a base weight for every pair-wise dependency of two REs
(e.g. if there are EOCs imposed but no VA is specified),

– missing periods (recurrences) are compensated with a minimum
base weight (e.g. a fraction of the smallest weight occurring) and

– reflexive edges are weighted 0 as they do not represent a disjoint
pair of REs.

These principles resulted in the following three-part formula:

weight = (1/period1 + 1/period2) ∗ (1+ accessWeightSum) ∗ eocFactor
(4.2)

Following empirical data, suitable parameters for AUTOSAR are the ensu-
ing relative weight factors:

• The formula’s “accessWeightSum” results from adding up data access
weights (including base value 1):

– 2 for Sender/Receiver dependencies that are valid (properly con-
strained),

– 1 for Sender/Receiver dependencies that are possibly conflicting
due to a missing AC (VA between REIs with divergent periods),

– 3 for Sender/Receiver dependencies that are possibly conflicting
due to a missing AC or EOC (VA between REIs with uniform
periods) and

– 1 for Client/Server dependencies.

• The formula’s “eocFactor” complies with the status of the Execution
Order Constraints:

– 10 for valid EOCs as the REIs have to be executed rigidly consec-
utive and are therefore strong candidates for being grouped into

84 Approach

one common task,

– 5 for cyclic EOCs as the order constraints are per se correct, but
there are expected to be less of them after the data validation pro-
cess and

– 1 (identity element) for invalid EOCs as an increased weight is
not justified due to unclear importance.

Elements like Age Constraints or “Parameter Accesses” (providing fixed ini-
tial variable values) are deliberately not associated with own weight factors
as they do not represent dependencies between nodes. The former serve
as given or missing “temporal dependency supplement”, whereas the lat-
ter are lacking coherency semantics as there is no node pair associated with
them.

4.3.2.3 Relevance Partitioning

In most cases, it is rather fruitless to pursue a simple partitioning approach
like “Sparsest Cut” which repeatedly cuts a graph into two (roughly) equal-
sized pieces [CKK+06]. This is due to strongly differing model structures
which are usually not suitable for being strictly divided into a number of 2x

parts.

Thus, a more sophisticated approach vaguely resting on Multi-Level Parti-
tioning is used, which better adapts to specific model structures [ACU08].
MLP reduces a graph via “edge contraction” (“coarsening”) in order to clus-
ter and afterwards restore it (cf. Subsection 2.2.5 for details).

However, the SERA algorithm does not remove nodes/edges, but gradu-
ally increases the relevance threshold for dependencies considered by the
search until the graph is manageable enough to find appropriate RE sets.
This is done based on the dependency weights for the current subgraph
(partial model) determined with the recently described method (cf. 4.3.2.2).
They are used to create an aggregated view (a weight statistic) showing the
frequency distribution of certain weight values as well as their share of all
dependencies. If the partitioning search was not able to achieve the desired
coverage (the target quota of REs assigned to tasks), the weight threshold
for considered dependencies is raised. Taking heed of this, predecessor and
successor lists are re-created deliberately ignoring dependencies below this
new limit. Afterwards, the SERA search is re-run.

4.3 Partitioning & Mapping 85

4.3.2.4 Splitting Strategy

As previously mentioned, it is basically advantageous to identify groups
whose REs have a uniform recurrence. This can be achieved by different
strategies:

• “Split, then analyze”: Experience shows that building subgraphs
which consist of uniformly triggered REs and then running partition-
ing searches on each of them has produced the most valuable results
for highly complex models.
The crucial point is that the number of connections to consider is re-
markably reduced. Consequently, the remaining dependency weights
gain expressiveness as they are calculated solely from relevant neigh-
boring nodes. To the best of our knowledge, this strategy is the most
efficient way to find homogeneous groups.

• “Analyze, then split according to periods”: This strategy takes the
graph as is and assumes that the search finds sufficient groups, which
can afterwards be split according to the number of diverging RE pe-
riods occurring. This is rather suitable for small heterogeneous or for
huge but loosely connected models as the graph’s connectivity is in-
herently preserved.
By contrast, applying the first strategy (“split, then analyze”) to such
models could result in “shattered” subgraphs which hardly possess
exploitable cross-linking. However, the according risk of occurrence
for complex – and therefore rather dense – models is negligibly low.

• “Do not split, discard mixed regions”: Here, identified regions are dis-
carded if they do contain REs with diverging periods. This can be
useful for models with a small amount of different periods that are
nevertheless relatively complex.
This strategy is stricter than the previous one since all “mixed” groups
are discarded instead of being split up into homogeneous ones.

• “Do not split, keep mixed regions”: As pretty simple strategy, this ap-
proach is rather used as starting point to gain an insight into the pos-
sible partitioning degree of a model in general. Since it does not yield
homogeneous REs, the industrial relevance of this strategy is limited.

86 Approach

4.3.2.5 Automated Search

Determining proper search settings is a crucial step when trying to find suit-
able partitioning and mapping solutions. For the approach of this thesis,
there are multiple parameters that have to be set:

• Tolerance: the maximum number of allowed “Single-Entry Regions”
(SERs) violations when trying to identify relatively isolated RE sets

• Coverage Target: the aimed at proportion of nodes/REs assigned to
sets/groups

• Dependency Weights and EOC Factors: the relevance of data accesses
and ordering constraints used when calculating the weight of a node
pair’s dependency

• Step Sizes for Relevance and Tolerance: parameters to adjust the thor-
oughness of the SERA partitioning search

Among them, the tolerance value is the most important parameter: While
too low values often prevent useful coverage rates, high tolerances can un-
necessarily lengthen the search and corrupt its results. In general, it is very
hard to determine suitable parameters without having extensive knowledge
about the model and the applied algorithm.

In order to automate this process, it is important to properly assess a
model’s complexity in the first place. Measuring it by computing the Av-
erage Node Degree is not expedient as it does not necessarily represent a
graph’s complexity. This is due to the fact that reflexive edges/dependen-
cies as well as isolated nodes do distinctly distort the AND.

For the purpose of focusing on the relevant indicators for the interconnec-
tion rate of a model, the complexity is thus expressed by the number of con-
nected node pairs together with the number of REIs that are not isolated.

Like previously mentioned (cf. Subsection 4.3.2), the Cross-Linking Degree
reflects these properties:

CLD = connectedNodePairs/nonIsolatedREIs (4.3)

It is therefore employed to support the automated SERA configuration.

For being able to effectively measure a partitioning solution’s range and
progress, it is moreover crucial to know the rate of nodes assigned to groups
(SERs). In a previous version or the approach and its implementation, the

4.3 Partitioning & Mapping 87

coverage rate was calculated by putting assigned nodes in proportion with
all nodes. As this does not exclude isolated nodes – like it was the issue with
the AND figure – such a coverage rate cannot serve as significant indicator
for the progress of a partitioning process.

For example: The simplified EMS model “AMALTHEA DemoCar” (cf. Sub-
section 3.3.2) consists of 43 REIs with three different periods:

• 9 REIs with period 5 ms,

• 33 REIs with period 10 ms and

• 1 REI with period 20 ms.

When the model is split up according to periods, all of the 5 ms REIs, 27
out of the 10 ms REIs and the single 20 ms REI are isolated. Thus, only 27
out of 43 REIs (about 63 %) are basically assignable if mixed regions shall be
avoided.

Therefore, it is often very hard (and sometimes impossible) to reach high
coverage targets because of scattered subgraphs (partial models). Conse-
quently, searching until high coverage rates are achieved may easily lead
to a reduced solution quality due to enforced high tolerance and relevance
partitioning thresholds.

An effective countermeasure is to calculate the coverage rate for each partial
model considering only actually assignable (i.e. non-isolated) instead of
all REIs and add them up to obtain a “combined coverage” rate across all
partial models. As a result, a globally set coverage target can be reasonably
applied to every partial model. Moreover, a selected coverage target is now
both realistically attainable as well as comparable across different model
types and sizes.

In order to illustrate employed model properties, Figure 4.5 shows data col-
lected from selected test models:

• The “Own Demo Model” has been developed and extended for sev-
eral years in order to verify and test the parallelization approach and
implementation. It contains all detectable types of nodes, dependen-
cies and other elements.

• Both “TIMMO” models are variants of a braking system model created
within the TIMMO project (cf. description and footnotes in 4.3.1.1).

• The “AMALTHEA DemoCar” is a freely available sample project de-

88 Approach

scribing a simplified EMS (cf. Subsection 3.3.2).

• “Bosch EMS” is a synthesized and realistic EMS model provided
within the “FMTV Verification Challenge” initiated by Robert Bosch
GmbH [WAT16, Qui16] (cf. Subsection 5.3.1).

• “Continental EMS” is a partial real-world EMS model.

• “Timing Architects EMS” is a synthesized EMS test model from the
former “Timing-Architects Embedded Systems GmbH”.

Figure 4.5: Model properties used for the automated partitioning search

The values employed for automatically detecting appropriate search param-
eters are highlighted (green background). With an overall CLD of 27.7 as
well as the highest number of dependencies and different periods, the Con-
tinental EMS is clearly the most complex model.

In this thesis, the three basic approaches to determine the important toler-
ance value for such models are:

• “Manual”: Applying a fixed maximum tolerance value on all partial
models following either experience or a trial-and-error principle.

• “Ranges”: Here, the maximum tolerance is fixed as well. It is deter-
mined according to the peak CLD values of the involved partial mod-
els’ coarsely taking the number of them as well as their differing com-
plexity into consideration.

• “Adaptive Formula”: In this approach, the tolerance value is dynam-
ically adapted for each SERA on a partial model according to its re-
spective CLD.

4.3 Partitioning & Mapping 89

The remaining parameters are set as follows:

• Relevance and Tolerance Step Sizes: Starting with traversing each pos-
sible search setting, the step sizes are increased if a certain number of
runs or runtime is reached. Experiments show that this practice’s in-
fluence on the outcome quality is very low, especially if a sufficient
number of runs was already conducted.

• Coverage Target: The automated search takes “80 %” as default cov-
erage value as such a share of assigned nodes preserves a certain –
commonly intended – degree of freedom, e.g., to effectively support a
proper load balancing at the mapping step. In addition, it has turned
out to be a reasonable trade-off between effort (runtime/runs) as well
as achieved coverage. By contrast, trying to group as many nodes as
possible by going for “100 %” yields the most detailed and compre-
hensive results.

• Dependency Weights and EOC Multiplication Factors: As the values
listed in 4.3.2.2 were empirically chosen with care, sticking to them is
suggested in order to gain useful results.

Considering the Adaptive Formula adjusting the tolerance dynamically,
the automated parameter setting is independent from the selected splitting
strategy because the number of (partial) models to be analyzed does not
affect individual results (as opposed to the Ranges approach).

Although the splitting strategy is not an integrative part of SERA, it is worth
considering to include its initial selection within the automated process.
However, the strategy is deliberately not set according to, e.g., a global or
interval (range) CLD value, because there is simply too little information
to reasonably derive the most “expedient” strategy. Since it is the standard
case to seek (temporally) homogeneous groups, “Split, then analyze” acts
as well justified default strategy.

In order to enable a basic quantitative comparison of the three approaches
listed above, a series of test runs was conducted on two EMS models: the
Continental EMS and the Bosch EMS.

As expected, the manual “steamroller” approach achieves the highest over-
all coverage ratio for both models, as it continuously searches for regions
with up to maximum tolerance even in smaller or loosely coupled partial
models. Here, the Adaptive Formula yields slightly lower rates than the
manual approach but by far surpasses the Ranges approach.

90 Approach

In terms of time consumption, the automated approaches do considerably
outperform the manual one as they need significantly less runs and runtime
with similar search depth settings. The same holds true regarding efficiency,
i.e., the ratio of reached coverage and runtime, which becomes particularly
noticeable with the Bosch model.

The quality of the manual solution is distinctly lower as it virtually ignores
the partial models’ specific structure and complexity. However, a solution’s
appropriateness for efficiently migrating software to a multiple-IEUs plat-
form heavily depends on the adaptability of the applied search algorithm.
Accordingly, the “ranges” approach delivers acceptable search parameters,
but does not pay enough attention to strongly differing subgraph structures.
As a consequence, the Adaptive Formula creates the most target-oriented
and accurate results.

4.3.2.6 Conclusion & Example

Due to the dynamic adaption (e.g. automatically rising the tolerance and
dependency threshold until a certain coverage rate is reached) as well as
the automated search, the algorithm can effectively cope with models of
any size and complexity. Although this does not mean that every applica-
tion can be efficiently parallelized, it is always possible to identify a proper
partition according to certain circumstances.

These insights can be applied on the WSS when attempting to maintain
strongly-connected parts in the process of splitting up the model. An ap-
propriate task assignment – guided by similar recurrences and preserving
EOCs – is depicted in Figure 4.6. Here, the dependencies between the four
wheel speed sensors and the ABS controller (“irv-speed-x”) are brought
into action 50 times more frequent than those caused by the speedometer
controller’s reading access on the sensors’ output (“de-speed-x”). In addi-
tion, the former variables are accesses within one SW-C as opposed to the
speedometer’s consuming that crosses SW-C borders and needs to be done
via ports. Taking the added constraints into consideration does also sug-
gest to split up according to existing component allocation, because rigid
sequences imposed by EOC are easier to adhere (schedule) to when their
processing takes place on a common IEU.

4.3 Partitioning & Mapping 91

Figure 4.6: The REs of the WSS distributed into two tasks

4.3.3 Mapping

The size of the parts found by the partitioning, i.e., the granularities, plays a
central role in parallel computing, because they can be adverse in particular
cases and therefore even foil an efficient mapping of program parts to IEUs
right from the start.

The partitioning algorithm determines preferably large RE sets, which can –
hierarchically structured – contain smaller ones. This is done deliberately in
order to maintain RE sets of every size and therefore to retain all granulari-
ties for a later mapping of tasks to IEUs. It is easy to see that the number of
the IEUs (if known) acts as bottom limit for the count of parts the program
should be split into [GS12].

The count for both, the mapping of tasks to IEUs and the possible execu-
tion sequences, strongly depends on the initial number of tasks. Seeking to
prevent a too fine-grained partition (many small tasks) is a sensible trade-
off because fine granularities involve extra effort due to a sharp increase in
workload for distributing, coordinating and synchronizing the parts.

92 Approach

On the contrary, there are several reasons to split up more “fine-grained”
than at least necessary:

• If there is only one rigid target device, the size of the parts should
theoretically enable approximately equal execution times, so that the
IEUs’ workload can be balanced and idle times are avoided. However,
this assumption is rather unrealistic.

• In case of various or even unknown target hardware, it is obvious that
the most probable (or all possible) configurations should be effectively
supported, which is unlikely if the number of available tasks is rather
small and does therefore not provide the necessary flexibility.

• Furthermore, a granularity that turns out to be too fine-grained can
be clustered again, whereas there is no quick solution if the program
parts are bulky.

As opposed to these facts, a coarse-grained partition “can more easily result
in an improvement” [Moy13]. This seems to be an appropriate first step
since only a few big program chunks make partitioning easier and require
fewer management effort. Thus, handling them is less error-prone than co-
ordinating many tiny tasks. However, having only very few large tasks
can make it difficult to distribute them skillfully on different cores without
again causing overhead for additional synchronization, e.g., if being forced
to map two intensively connected partitions on different cores or when try-
ing to achieve even workloads for them (cf. itemization above).

In conclusion, there is no universally valid guideline for identifying the
most convenient granularity as its suitability is affected by a variety of fac-
tors, e.g., the application’s structure (cf. Subsection 2.2.5), the target plat-
form’s properties as well as the later applied optimization goals. In gen-
eral, it is sensible to make the “basic decision”, e.g., going for rather chunky
or fine-grained granularity, as late as possible, i.e., when the partitioning
showed which solutions are expedient anyway and when the mapping step
is imminent.

This decision – as well as the whole mapping process – is crucially facilitated
when the target hardware is known as fundamental information, e.g., num-
ber and performance of available cores, are decisive. Such circumstances
lead to a rather target-oriented proceeding and thus restrict the search space
for an adequate model of parallelism considerably. However, undetermined
target hardware does provide a bigger degree of freedom for the system de-
sign. In the automotive sector, the usual case is – due to intended variability

4.3 Partitioning & Mapping 93

and variants – that applications have to run properly on a variety of possible
hardware combinations and configurations.

Being aware of that, our (mapping) principles remain pooling and load bal-
ancing, because they preserve the possibility to later pursue common opti-
mization goals like:

• minimizing the Inter-Core Communication,

• shortening the duration of certain event chains (e.g. the Critical Path),

• staying below predefined “load distances” (load balancing deviation),

• complying with maximum response times of certain REs and

• reducing hardware costs (e.g. by efficient workloads and small
buffers).

Therefore, it is needed to sensibly choose a suitable size for each available
RE set in order to find the most convenient mapping. This is due to the fact
that a partition does usually not contain groups with uniform size. Con-
sequently, following a rather coarse-grained approach should not lead to
a brute force method like “streamlining” the partition by reducing large
groups.

Eventually, the following aspects are taken into consideration when creating
a mapping:

• Hardware of Target Platform (individually configured or via choosing
a preset like in Subsection 5.2.4):

– global memory

– number of available cores (IEUs), their specific frequency and lo-
cal memory (cache)

– times for global, local and intra-task read/write operations (in
cycles)

• Task Clustering:

– individually chosen regions or desired preference of selected re-
gion size (task granularity) if they are nested

– clustering strategies for “remaining” runnables: own task for
each RE, create clusters w.r.t. to periods, aggregate single REs
in default task etc.

94 Approach

• Task & Core Assignment:

– memory management: default or according to LET, variable as-
signment (preferably local or global, according to specific mem-
ory size)

– task assignment: strategy (e.g. bin packing or Round-robin), task
assignment order (according to period, utilization), assignment
scores (utilization, communication)

– default settings: values for missing periods, execution times and
variable sizes

• Requirements: create requirements for region and/or remaining tasks
(e.g. critical response times)

• Constraints: create constraints for processes (pairing of tasks) and
maximum core utilizations

In AUTOSAR, there are four types of RE execution times given within
the according SW-C’s “ResourceConsumption”: estimated, analyzed, simu-
lated and measured (sorted by descending precision). In case of availability,
the most precise of the specified execution times is used and an RE’s ex-
pected utilization is computed according to the formula

utilization = (reInstances ∗ reExecutionTime) / rePeriod (4.4)

These results are again employed to calculate the according workload of the
comprising tasks in the course of their assignment to IEUs.

Finally, an exporter tool is employed which creates a CSV22 file compris-
ing these aspects. Additionally, it produces basic timing requirements (task
deadlines according to given periods) and sets task priorities in order to
support the succeeding simulation.

22“Comma-separated values” (CSV) denotes specifically structured text files designed to
easily exchange information.

4.4 Simulation & Optimization 95

4.4 Simulation & Optimization

In order to determine the actual benefit when harnessing the information
acquired by the previous two steps, it is necessary to create a final schedule
and to simulate the software’s execution on a multiple-IEU platform. This
step (and the following optimization) can be carried out by use of various
third-party tools that are designed for simulating (and optimizing) embed-
ded real-time software, such as:

• “chronSIM” by Inchron GmbH is a “tool for design, visualization,
quality testing and analysis of embedded systems” [INC15].

• “SymTA/S & TraceAnalyzer” by Symtavision GmbH are “tools for
scheduling analysis, architecture optimization and timing verification
for: ECUs and software integration, Embedded networks and com-
munication, Distributed embedded systems (E/E)” [Sym15].

• “TA Tool Suite” by Timing-Architects Embedded Systems GmbH is a
“discrete, event-based simulation tool” [SSH+16] intended to be inte-
grated in the “whole development process of multi-core systems” and
is used for “designing, developing, and verifying embedded multi-
and many-core-systems” [Tim15].

4.4.1 Prerequisites & Preparations

There are some basic steps that are necessary before being able to perform a
simulation:

4.4.1.1 Model Import

As the data dependency analysis and the consistency validation are con-
ducted directly on AUTOSAR system descriptions, it is crucial that the em-
ployed tool can handle such models by processing its structural elements
(e.g. REs, SW-Cs or VAs) as well as included timing information like the
REs’ recurrence and timing constraints (ACs, EOCs).

In general, every piece of information that can be retrieved further refines
the simulation, e.g., data on the REs’ execution times remarkably improves
a simulation’s accuracy.

96 Approach

4.4.1.2 Include Partitioning and Mapping Data

This information can either be stored directly in the AUTOSAR models (like
described in [KMKB14]) or it can be imported from an external file. Cur-
rently, the latter approach is used to import necessary data from a CSV file:
the assignment of REs to tasks, the mapping of tasks to specific cores, the
tasks’ recurrence and their priorities.

4.4.1.3 Setting Basic Requirements

In addition to the aforementioned data on tasks and their core assignment,
it is essential to add basic timing requirements for them, i.e., upper limits
(deadlines) for the tasks’ response time according to their respective peri-
ods. They enable the basic assessment of a simulated solution regarding its
general validity.

4.4.1.4 Hardware Model Con�guration

Providing the simulation with concrete details on the target hardware helps
to enhance the significance of the results. This includes – among other
things – the number of IEUs, their clock rate (frequency), their cache and
available shared memory.

In addition, existing signals (i.e. the model’s variables) have to be initially
mapped to certain memory modules. In the case study in Section 5.3, the
model of a real-world automotive microcontroller featuring three cores is
used and the signals are assigned to core-local memories according to the
made task-to-core mapping.

4.4.1.5 Selection of Scheduling Algorithm

Most simulation tools provide different algorithms for the static scheduling
of the tasks, whereas dynamic scheduling is virtually never employed be-
cause making “online decisions” during runtime is – concerning real-time
systems – inconvenient due to deteriorated predictability as well as impend-
ing overhead [NBN09, Cor13, MNBSL12].

Popular algorithms are “Rate-Monotonic Scheduling”, “Deadline Mono-
tonic Scheduling”, “Earliest Deadline First” (EDF) or “Proportionate Fair-

4.4 Simulation & Optimization 97

ness” [ABRW93,SSRB12,LL04]. There is no universally valid heuristic help-
ing to select the optimal one according to a certain model. Thus, running
tests with a couple of them seems to be expedient.

In addition, these algorithms can be applied “globally” or “partitioned”
[NNB10,Mel15]. The former’s idea is to conduct a scheduling for all IEUs at
once, whereas the latter employs a scheduling algorithm for each IEU sepa-
rately. Global scheduling usually results in higher utilization, lower average
response times and better load balancing whereas partitioned scheduling is
considered to be more efficient and existing single-core algorithms can eas-
ier be adapted and adopted [NNB10, Mel15]. Moreover, the latter is by de-
sign suitable for static scheduling like supported by AUTOSAR where task
migration to other cores is not intended.

4.4.2 Simulation

In pursuance of evaluating the initial partitioning and mapping solution, a
discrete-event simulation tool is used to conduct the evaluation regarding
valid scheduling (i.e. fulfillment of task deadlines), specific reaction times
of critical execution paths, communication overhead, memory consumption
and core load distribution. Compared to analytical methods, simulation
techniques only yield approximated timing metrics like task response times
[Gri04]. However, analytical methods usually provide very pessimistic esti-
mations resulting in, e.g., overestimated worst-case response times. On the
contrary, simulation techniques allow more realistic typical case approxi-
mations. Additionally, the proposed overall process as presented in Subsec-
tion 4.1.2 incorporates hardware measurements of simulated solutions after
deployment as a final timing verification step.

4.4.2.1 Discrete-Event Simulation

Discrete-event simulators utilize the fact that in-between two consecutive
events, a system cannot change its states [WGG10]. Consequently, only the
discrete points in time where state transitions happen are simulated.

All state transitions which occur during simulation together with the re-
spective time stamps are recorded in a “Better Trace Format” (BTF) trace
[Ecl16].

The simulator operates on the AUTOSAR-compliant and AMALTHEA-

98 Approach

compliant timing model [SDM+14], which consists of abstract descriptions
of the application software, hardware, operating system, runtime environ-
ment and environment (i.e. external stimuli). As already broached in Sub-
section 4.1.1, the simulation needs certain required information.

For example, the operating system model must include a specification of
the schedulers which manage the execution of tasks and “Interrupt Service
Routines” (ISRs) on the respective cores. Moreover, the used scheduling
algorithms and the scheduling-relevant properties of tasks and ISRs (like
priorities) have to be provided.

While simulation is already possible with basic hardware model informa-
tion like the number of cores together with their clock frequency and in-
structions per cycle, detailed vendor-specific processor models greatly im-
prove simulation precision. When the exact memory topology and behav-
ior descriptions including memory modules, caches, bus networks or cross-
bars are provided, memory access times, cross-core communication delays
as well as contention effects can be considered in a simulation.

4.4.2.2 Timing and Performance Metrics

After the application of statistical estimators to the resulting event trace of
a discrete-event simulation, various timing and performance metrics can be
calculated. In the following, the most important metrics required for the
optimization step are introduced:

• maximum Normalized Response Time (mNRT): The mNRT metric
quantifies the relative worst-case response time which occurred in a
simulation [SDM+14]. “Relative” means that the response time of
each task has been normalized with respect to its relative deadline.
If all deadlines are met, the mNRT is smaller than “1” whereas greater
values denote deadline violations during simulation.

• Inter-Core Communication (ICC) Rate: The ICC metric quantifies the
amount of data in bits per time unit which is exchanged between the
cores. It is an indicator for the expected cross-core communication
overhead.

• CPU Load: The CPU Load metric quantifies the average load of a pro-
cessor or individual core over the complete time span covered by the
simulation.

4.4 Simulation & Optimization 99

• Maximum Load Distance: The Maximum Load Distance metric quan-
tifies to what extent the overall load is equally distributed to the indi-
vidual cores. It is the maximum of the absolute differences between
the CPU Load values of each core and the per-core CPU Load value
obtained by dividing the overall load by the number of cores.

• Buffer Size: The Buffer Size metric quantifies the additional required
memory in bits needed to enforce data consistency by a buffering tech-
nique [MFCM16].

• Event Chain Duration: Event Chains – as defined in the AUTOSAR
Timing Extensions [AUT14d] – connect arbitrary subsequent events
like the activation of a task, the termination of an RE or write accesses
to a specific variable. An Event Chain consists of at least a stimulus
and response event but can also be further detailed by segments and
strands. The Event Chain Duration metric quantifies the time span be-
tween a stimulus and response event of an Event Chain. Thus, the
reaction time of critical processing paths in the system, e.g., across
multiple REs of different tasks can be evaluated.

4.4.3 Optimization

After the simulation has returned key figures for the initial solution, fur-
ther ones can be generated by using it as alterable seed. According to the
strategy of the applied optimization software, the initial solution is modi-
fied to a certain extent and then re-assessed in order to learn if the changes
are beneficial.

Some common “leverage points” for variation are, e.g., changing the core
assignment of tasks and – accordingly – the signals’ mapping to core-local
memory, altering task priorities or splitting given (preferably chunky) tasks
at several positions.

The outcome of the optimization is heavily influenced by the set of parame-
ters which can be changed by the algorithm. The approach does not exclude
any part of a solution from being altered. Thus, no limits are set for modi-
fying a model, which allows a variety of different optimizer settings.

In the case studies (Section 5.2 and Section 5.3), the employed third-party
optimizer uses a genetic algorithm to automatically create new “solution
generations”. Doing this manually by inspecting the simulation results and

100 Approach

purposefully varying (now simpler to identify) critical parts is also expedi-
ent yet most likely more time-consuming.

The underlying problem of re-partitioning and re-mapping the software is
equal to the bin-packing problem, which is known to be NP-hard [CJGJ96].
Consequently, an exhaustive search, i.e., evaluating every possible alterna-
tive solution, is not an option in practice. As Genetic Algorithms have been
shown to be particularly suitable for such problems [Deb01], integrating a
genetic optimization tool in the workflow seems promising.

4.4.3.1 Genetic Algorithms

These algorithms simulate natural selection and evolution in an iterative
approach and operate on a set of alternative solutions [KCS06]. This set
(”population”) is modified within each iteration (”generation”) of the algo-
rithm. Every genetic algorithm consists of the following steps:

1. Create initial population: The initial population consists of randomly
created solutions, e.g., using a uniform distribution.

2. Fitness assignment: A scalar fitness value is assigned to every solution
of the population which is used to quantify the quality of a solution
compared to another one.

3. Selection: Solutions are sorted by descending fitness values. The best
ones according to fitness are kept while the remaining ones are dis-
carded and removed from the population.

4. Evaluate stop criterion: The algorithm terminates when the stop crite-
rion is fulfilled. This can either be the case after a predefined number
of solutions have been created or after reaching a specific number of
generations. Another possibility is to stop after a stagnation threshold
has been reached, e.g., when the best solution did not improve for a
certain amount of generations.

5. Perform variation: Mutation and crossover techniques are used in or-
der to create new solutions. For the former, one or more properties of
an existing solution are randomly modified in order to create a new
solution. For the latter, the properties of two or more solutions are
combined to create one or several new ones.

These steps only define the generic framework of Genetic Algorithms. The
discrete-event simulator presented in 4.4.1.1 is used to evaluate every cre-

4.4 Simulation & Optimization 101

ated solution and to provide the required metrics for fitness assignment.
Regarding further implementation details of the used genetic algorithm, the
reader is referred to the work of Schmidhuber et al. [SDM+14].

4.4.3.2 Optimization Parameters

In order to configure a specific optimization run, configuration parameters
have to be provided for each of the aforementioned steps. They are as fol-
lows:

• Per-Solution Simulation Time: This is the time span covered in the
simulation for each created solution during optimization.

• Configuration of the Fitness Function: Several timing and perfor-
mance metrics as introduced in 4.4.1.2 are aggregated together into
a scalar fitness value for each solution by using a modified euclidean
norm [KCS06, SDM+14]. For each incorporated metric, a weight fac-
tor as well as a lower and upper limit for normalization has to be pro-
vided.

• Population Size: This parameter defines the number of solutions cre-
ated in the initial population as well of the number of new solutions
which are created during each iteration of the algorithm.

• Selection Size: The selection size is the amount of best solutions (ac-
cording to fitness) which are taken over into the next iteration. Those
selected solutions are also used to create new solutions by means of
mutation and crossover.

• Stop Criterion: For the stop criterion, the minimum and maximum
number of solutions and/or generations are specified. Moreover, the
stagnation threshold is configured, i.e., the algorithm stops if the best
solution according to fitness did not improve over a given amount
of iterations. All these criteria are evaluated simultaneously, which
means that all minimum requirements (e.g. minimum number of
generations) and at least one maximum requirement (e.g. stagnation
threshold) have to be fulfilled to result in the optimization’s termina-
tion.

102 Approach

4.4.3.3 Design Modi�cations

Design modifications denote different categories of architecture changes
which are applied to an existing solution in order to create new alternative
solutions during variation. It is hereby possible to perform multiple design
modifications at once.

For certain categories, design constraints which restrict the respective de-
gree of freedom can be stated as well. If specified, such design constraints
will be fulfilled by every single solution produced during optimization. One
example for such constraints is the requirement to map certain tasks to dif-
ferent cores, e.g., due to safety requirements which demand spatial separa-
tion of the respective functionality.

Employed design modifications are:

• Process Mapping: Process mapping results in the re-mapping of tasks
or ISRs to the different cores.

• Task Splitting: Tasks are split into two or more smaller tasks which are
afterwards mapped to separate cores. The split tasks are triggered one
after another to maintain the original RE execution order.

• Data Mapping: Data Mapping allows the optimizer to change the
variable-to-memory mapping.

• Periodic Offset Assignment: This modification varies the offset of pe-
riodically activated tasks.

In the end, the crucial insight is if the optimization can – in regard to the
mentioned key figures – deliver distinctly better solutions and how much
additional effort (most notably time) is necessary. If the latter remains
within acceptable limits, the optimization results can give valuable feed-
back for the “Partitioning & Mapping” step in the form of, e.g., narrowing
down the “corridor” of expedient amounts of groups and their sizes or indi-
cating which groups are recommended to be assigned to one common core
from the very start (“pairing”). This feedback closes the development and
refinement cycle outlined in Subsection 4.1.2 and Figure 4.2.

5
Case Studies & Evaluation

This chapter illustrates the realization and application of the methodology
described in Chapter 4 on the basis of three case studies.

The first case study delineates the implementation of the analysis, vali-
dation and parallelization procedure as Eclipse-based tool referred to as
“AutoAnalyze” (Section 5.1). A first version was created in 2013 and is un-
dergoing continual development since then. It serves as proof of concept
that displays the feasibility of the approach by applying it on AUTOSAR
and illustrates how mastering the complexity can be effectively supported
via proper visualization and filtering techniques.

The second case study shows the applicability and practicability of the ap-
proach as well as the added value achieved with it by means of real-world
examples (Section 5.2).

The third case study presents an extended series of experiments using an
advanced version of the SERA algorithm and pursuing goals originating
directly from automotive companies (Section 5.3).

103

104 Case Studies & Evaluation

5.1 Realization

In order to efficiently demonstrate the feasibility of the ideas, the concept
and specific proceeding were realized as plug-in for Artop.

The implementation uses the “Model Analysis Framework” (MAF) cre-
ated by Christian Saad, which is based on the “Eclipse Modeling Frame-
work” and provides “a core framework [...] allowing the implementa-
tion of dynamic model analysis” [Saa09, Ecl09]. Its main application (and
this use case) is the execution of dataflow analyses as particularly de-
scribed in [SB13] and in a wider context in [Saa15]. The arising tool exe-
cutes data dependency analyses directly on AUTOSAR models, determines
possibly conflicting dependencies, visualizes its results as graph, provides
semi-automatic conflict resolution and writes back the modifications to the
model. To support the later parallelization of the system, the tool addition-
ally determines groups of Runnable Entities that seem suitable to run on a
common IEU (partitioning) and accordingly suggests a customizable map-
ping solution.

5.1.1 Bringing the Principles to Fruition

The tool’s basic goal is making the migration to multiple-IEU systems (or
their “from scratch creation”) in AUTOSAR manageable despite the immi-
nent complexity rise. Following the principles “incremental” and “bottom-
up”, it thus provides feedback to developers about the validity of their de-
sign by determining ambiguities as well as inconsistencies. Furthermore, it
assists in the subsequent process of preparing a model (and therefore the
system) for parallelization by offering concrete solutions.

The feedback involves hints on structural deficiencies (verification), the
number of potential conflicts and possible constraint modifications to vali-
date the model regarding its multiple-IEU suitability (data validation). On
the one hand, existing (unresolved) conflicts hint at the remaining amount
of validation effort when preparing a system for its migration to a multiple-
IEU platform. On the other hand, a huge number of required (or pre-
imposed) Execution Order Constraints indicates a rather low “degree of
freedom” when mapping the found groups as tasks to IEUs, because en-
forced successive execution hampers parallelism. Altogether it is possible
to make a rough estimate of the general capability to parallelize a specific
system.

5.1 Realization 105

5.1.2 Graphical Representation

These results are visualized using the “yFiles”23 graphic library and its lay-
out algorithms that are particularly suitable for huge graphs. Basically a
model is displayed as (hierarchically structured) groups, included nodes
as well as edges (dependencies) connecting them. The latter, i.e., data ac-
cesses or imposed constraints, are colored and counted according to their
type and can be shown or hidden in groups. Various filtering options allow
to quickly gain an overview and concentrate on vital parts even for models
that include hundreds of REs:

• Indicator filters for timing constraints: valid or invalid (conflicting)
ACs and EOCs

• Indicator filter for dependencies: valid or possibly conflicting (uncon-
strained) Sender/Receiver accesses, Client/Server dependencies, pa-
rameter accesses

• Indicator filter for structural problems: REs with either no or multiple
periods, unconnected ports

• Period filter: REs grouped according to specific periods

• Service filter: components explicitly marked with a service flag

• Component filter: hierarchical list of containers (components) and cor-
responding REs

Figure 5.1 shows the “Analysis Filter” tab of AutoAnalyze.

As a consequence, it is, e.g., possible to display certain REs according to
their triggering frequency, vicinity or their assignment to an encompass-
ing SW-C, which distinctly facilitates to gain an overview and purposefully
modify dense or widespread models. In addition, several model statistics,
sortable lists with found potential conflicts, solutions and affected elements
as well as logging information with selectable level of detail are available.

This visualization is used as basis for directly editing the model: Support for
conflict resolution is provided by offering suitable actions for each potential
conflict, e.g., by indicating that a constraint is missing and what type is ap-
plicable. Selected actions are immediately applied to the model (or cached
and applied altogether when saving the model). When an AC is imposed,
the tool automatically calculates an appropriate maximum data age for the

23cf. http://www.yworks.com/en/products_yfiles_about.html

http://www.yworks.com/en/products_yfiles_about.html

106 Case Studies & Evaluation

specific variable. Moreover, aggregated actions (multiple modification trig-
gered at once) enable the user to solve all conflicts of a certain type at once,
which comes in useful especially for huge models.

Figure 5.2 shows a screenshot of “AutoAnalyze” displaying a validated part
of the “Brake by Wire” example from the TIMMO project (cf. 4.3.1.1). The
visualization shows the REs as nodes and the dependencies between them
as colored edges:

• The big box shaded in gray depicts an SW-C containing several REs.
The tailored spots on the top border denote ports for accesses to/from
other SW-Cs.

• Green edges indicate unproblematic dependencies (due to according
EOCs and ACs).

• Blue edges represent correctly imposed EOCs.

• Purple boxes show (sufficiently specified) ACs each imposed on a cer-
tain variable access.

• The RE/node boxes contain the following information (top down): re-
currence, input VAs, output VAs, direct EOC successors and all EOC
successors.

In addition, the plug-in shows various kinds of metrics at the bottom, a bird
view on the model (bottom left) as well as applied filters or suggested parti-
tions on the right side. The according visualization offers a highly adaptable
view on the model, including – among other things – several node and line
layout algorithms, zooming and collapse/expand functions.

5.1.3 Search for Partition & Mapping Solution

The result is a validated model whose REs are ready for being distributed
to the available IEUs. Following the approach explained in Subsection 4.3.2,
the tool supports this by searching for rather “isolated” regions that have
only loose coupling with other parts of the system and are therefore promis-
ing candidates for being processed on the same IEU. They act as coarse-
grained initial partition assigning as many nodes as possible to groups,
which is important to support rummaging purposefully (and thus effi-
ciently) within the enormous search space.

This is accomplished by the SERA algorithm, which is inspired by MAF’s

5.1 Realization 107

“Single Entry, Single Exit” concept, whereas the basic idea originates from
[OO84, Tip95] as well as [JPP94] and its further development as “Token
Analysis” in [GRLB09].

Since found groups can overlap, being nested within each other and have
therefore different sizes, the tool offers the possibility to separately show a
partition with certain “granularity”. The grouping suggestions were ini-
tially stored directly in the AUTOSAR model as so-called “SpecialData-
Groups” within the “AdminData” section. Later, the tool was modified,
so that the determined groups could be exported as additional CSV file. In
both cases, the result serves as advantageous starting point for third-party
simulation and optimization software.

Figure 5.3 shows a visualization of the partitioning ’s result: After applying
a “Split, then analyze” strategy (aiming for temporally homogeneous node
sets) and running SERA with automated search settings (Adaptive Formula)
on three partial models, all 27 basically assignable REs could be allocated to
one of the colored groups.

In order to realize the mapping proceeding as described in Subsection 4.3.3,
specifying the according properties – i.e. the named allocation parame-
ters and target platform characteristics – was integrated in AutoAnalyze
which eventually creates a customized mapping. This mapping can be
again stored in the above mentioned CSV file so that it can easily be read and
further processed by third-party tools (cf. Sections 5.2 and 5.3). Figure 5.4
displays the properties of a customized mapping together with predicted
core utilization rates for a multiple-IEU target platform.

5.1.4 Conclusion

As field test, the tool was employed on many different models and turned
out to work properly even with highly complex ones like the “Continental
EMS” – a partial real-world EMS that consists of 552 REs and includes 45399
data dependencies.

Altogether, the tool appreciably facilitates the verification and data valida-
tion of AUTOSAR models as well as the search for an advantageous map-
ping of the processing tasks to the available IEUs. This is achieved through
supporting the stated goals via proper visualization, automatic processing
and editing actions supported by a graphical user interface. Therefore, its
purpose of serving as the methodology’s proof of concept is fulfilled.

108 Case Studies & Evaluation

Subsequently, there are several possibilities to make use of the results,
e.g., simulating the validated model and giving feedback on the partition-
ing/mapping suggestions or optimizing it according to the specific target
platform for a subsequent deployment.

5.1 Realization 109

Figure 5.1: Filtering features of “AutoAnalyze”

110 Case Studies & Evaluation

Figure
5.2:“A

utoA
nalyze”

visualizing
the

“Brake
by

W
ire”

exam
ple

5.1 Realization 111

Figure
5.3:“A

utoA
nalyze”

show
ing

a
suggested

partition
for

the
“A

M
A

LTH
EA

D
em

oC
ar”

112 Case Studies & Evaluation

Figure 5.4: “AutoAnalyze” showing a mapping solution for the
“AMALTHEA DemoCar” on a predefined target platform

5.2 Real World Examples 113

5.2 Real World Examples

In order to illustrate the practicability and benefit of the approach, it is ap-
plied to two real-life AUTOSAR models: the mid-sized sample “DemoCar”
originating from the “AMALTHEA Project” and a part of a huge real-world
Engine Management System from Continental (“Continental EMS”). The
former consists of one SW-C containing 43 REs with 3 different recurrences,
71 variables/signals and 59 VAs (dependencies). The latter comprises 178
SW-Cs including 552 REs with 20 different recurrences, 11460 variables/sig-
nals and 45399 VAs.

5.2.1 EMS Characteristics

Engine Management Systems do perfectly embody the complexity and dif-
ficulties when trying to parallelize embedded automotive software: Being
unique among already highly complex control applications, Engine Man-
agement Systems do largely lack big loops and data parallelism but stand
out due to their inhomogeneity, high coupling, complex dataflow, strict con-
sistency needs, continuously intense data exchange and their numerous REs
(often more than 600) [BKL16, Sie16, MFCM16, PKQ+14].

Consequently, Engine Management Systems are rather hard to parallelize
and therefore serve as ideal test object. In addition – and when neglecting
multimedia – “the engine systems domain is the first one in automotive re-
quiring an introduction of multi-core processors due to a lack of computing
power” [MFCM16].

5.2.2 Applied Metrics

The following key figures are selected to represent the solution’s quality:

• General validity: A solution is valid if the simulation proves that all
basic timing requirements of the tasks are fulfilled, i.e., all tasks are
fully processed before they are triggered again.

• Average latency: If compared to the best known other solution, the
maximum response time for a whole model (derived from the laten-
cies of its tasks) is a meaningful value revealing needlessly caused
overhead. In addition, it gives a hint on the model’s overall poten-

114 Case Studies & Evaluation

tial degree of parallelization.

• Communication overhead: As different cores execute tasks that de-
pend on each other, a certain rate of “cross-core communication” is
virtually always inevitable. Like the latency, this rate can be assessed
relative to other solutions through comparison.

• Average core load: This indicates how uniform the division of pro-
cessing work is (proper load balancing).

• Length of computing cycle: By comparing the time needed for one
computing cycle on a single-core system with its runtime within a spe-
cific multi-core setting, it is possible to make a general statement about
the potential performance gain which can then be used to run further
applications or to increase the workload for the now parallelized ap-
plication (according to “Gustafson’s Law” [Gus88]).

This measured data serves as basis of comparison for solutions calculated
by the succeeding optimization.

5.2.3 Analysis, Partitioning & Mapping

First, the data dependency analysis tool “AutoAnalyze” (cf. Section 5.1)
analyzes the structure, VAs and timing properties of the models. The subse-
quent partitioning step employs the “Split, then analyze” splitting strategy
and conducts a low-coupling search – SERA with increasing tolerance and
relevance partitioning weights – on partial models.

For the DemoCar, it is relatively easy to quickly find a near-to-optimal result
as it is structured in a straightforward way and does not include many data
dependencies (cf. Figure 5.3). The Continental EMS is significantly more
complex, thus only a combination of rising tolerance values and onward
coarsening allows to find reasonable partitions. The tool usually needs less
than a minute24 for the analysis and partitioning search when being run on
customary laptops or desktop computers.

Two partitions are created for both models: one with rather small (“fine-
grained”) RE sets and one with large (“coarse-grained”) ones. In order to en-
able a comparison to searching without a preceding data dependency anal-
ysis and partitioning/mapping, a simple partition is also included for both

24That applies, e.g., to a six-year-old “Dell Precision M6700 Mobile Workstation” laptop.

5.2 Real World Examples 115

models: It assigns all REs with uniform period to one task/group (simulat-
ing a situation where no further knowledge about a system is available).

The mapping is geared towards an embedded platform featuring three cores
(details below). The initial distribution follows a “bin packing” approach
that estimates the specific RE set’s core utilization and assigns it accordingly
as task on the least busy core aiming at a proper load balancing.

In addition, process requirements are created that define fundamental dead-
lines for each task considering their recurrence. That means that the in-
cluded REs’ uniform period determines the whole task’s maximum re-
sponse time. They are mandatory for the purpose of classifying later found
solutions into “valid” (viable) or “invalid” (unsuitable).

5.2.4 Scheduling & Simulation

The earlier mentioned TA Tool Suite is used to simulate and optimize the
models as it provides the required import functions for both AUTOSAR
system descriptions and task assignments provided via CSV files.

In order to achieve results that are as realistic as possible, the model of an
“Infineon AURIX TC27x”25 – a widely used microcontroller – is employed
as hardware platform. This microcontroller is “designed for ultimate relia-
bility in harsh automotive environments” [Inf15a]. It features three process-
ing cores that can be regarded as homogeneous [GLI15, Inf15b].

In TATS, a separate scheduler is assigned to each core. A selection of al-
gorithms is available for the scheduling of the tasks on one core. For this
case study, either “EDF” or “AUTOSAR” is chosen as strategy for all cores
within one test run. The last necessary adjustment is the mapping of sig-
nals/variables to the memory. The signals are initially assigned to the local
memory of the core reading them. If multiple cores are involved, the signals
are distributed equally across them.

Now, the simulation can be carried out. An execution of the system is sim-
ulated that lasts one second and delivers extensive feedback as well as the
selected key figures. The crucial information is whether the basic require-
ments are met, i.e., if the hardware is – considering the given tasks, map-
ping and schedule – capable of executing the software fast enough to keep
25The “AUtomotive Realtime Integrated NeXt Generation Architecture” is a microcon-

troller family for the automotive sector featuring three independent 32 bit “TriCore”
CPUs [Inf15a].

116 Case Studies & Evaluation

up with the recurring tasks.

5.2.5 Optimization

Based on this, the succeeding optimization is conducted to compare the ini-
tial partition/mapping with further possible solutions calculated by a Ge-
netic Algorithm employed in TATS. Appropriate basic settings were consci-
entiously selected for the optimization:

• Simulation time: 1000 milliseconds

• Optimization goals:

– maximum Normalized Response Time (mNRT)

– Inter-Core Communication (ICC) rate

• Exploration size:

– initial population size: 32

– variation count: 16

– selection count: 16

• Stop criteria:

– “stagnation for 5 iterations”

– similar ranges of “generations”

The most important setting is the granted “degree of freedom” when alter-
ing the initial solution. It is represented by selecting which modifications
are allowed during optimization. The following options offered by TATS
are used [Tim15]:

• “Runnable Sequencing” (RS) to “change the order of runnables inside
call sequences”

• “Process Allocation” (PA) to “change the scheduler where processes
are allocated to”

• “Task Splitting with Enforced Migration” (TS-EM) to “enforce migra-
tion of tasks to other schedulers/cores”

• “Task Splitting with Inter Process Activation” (TS-IPA) to “split tasks
into several subtasks”

5.2 Real World Examples 117

• “Automatic Task Parallelization” (ATP) to “partition tasks into several
subtasks which run in parallel on different cores”

• “Periodic Stimulus Offset Assignment” (PSOA) to “change the Offset
of Periodic Stimuli”

Among these, TS-EM and TS-IPA as well as TS-IPA and ATP are each con-
sidered mutually exclusive because they interfere with each other. With
respect to that and in order to cover a broad search span, different “strat-
egy sets” are applied to find preferably advantageous solutions. The steady
basic setting is to allow RS and PA as well as to choose maximum allowed
splitting/migrating values for either TS-EM or TS-IPA. The concrete sets
arising out of this are:

1. allow RS, PA, TS-EM and ATP with optimization goal mNRT

2. allow RS, PA, TS-EM and ATP with optimization goal ICC

3. allow RS, PA, TS-IPA and PSOA with optimization goal mNRT

4. allow RS, PA, TS-IPA and PSOA with optimization goal ICC

5.2.6 Results & Evaluation

The optimization of complex models like the Continental EMS can – due to
the vast search space – take up to a whole day even with low exploration
sizes and performed on a rather powerful laptop like the one employed: a
Dell M6700 with Intel Core i7-3729QM, 8 GB RAM, SSD hard drive and Win-
dows 10 64 Bit. The results include a variety of data and statistics. Among
these the focus lies on the ones representing the key figures described in
Subsection 4.4.2:

• The general validity is represented by entirely fulfilled “Process Re-
quirements” (deadlines).

• The average latency is expressed through the maximum Normalized
Response Time.

• The communication overhead is shown as Inter-Core Communication.

• The core load balance is indicated by the difference of the cores’ indi-
vidual “CPU Load (Utilization) average”.

The results of the test run series are shown in Figure 5.5 (“DemoCar”) and

118 Case Studies & Evaluation

Figure 5.6 (“Continental EMS”).

Figure 5.5: Test run results for the “AMALTHEA DemoCar”

The included tables show how different combinations of specific parti-
tions, mappings, scheduling algorithms for the simulation and optimization
strategies are used to search for advantageous solutions. The rows can be
interpreted as follows:

• Partitioning & Mapping:

– “Simple” indicates a grouping without further knowledge as
basis of comparison whereas “SERA X” denotes partitions and

5.2 Real World Examples 119

Figure 5.6: Test run results for the “Continental EMS”

mappings found by the approach including a number of “X”
tasks (RE sets).

– “On one core” acts as initial mapping for the “simple” partition-
ing whereas “distributed” follows the approach of low coupling
and load balancing.

• Scheduling & Simulation: “AUTOSAR” and “EDF” (cf. Subsec-
tion 3.3.2) are the employed scheduling algorithms and the ratio below
represents the validity of the initial solution.

• Optimization & Comparison: Here, the settings and strategies of the

120 Case Studies & Evaluation

specific optimization run are stated together with the rank of the ini-
tially calculated solution among the total number of determined valid
as well as all solutions.

The additional ICC optimization runs were only conducted if the initial
solution was not assessed as “predominantly invalid”, i.e., violating more
than 50 % of the deadlines. Thus, they were left out for both models when
the “simple” partitioning/mapping solution was evaluated. This also ap-
plies for the rank of the initial solution column “init rank” which is not
available if it cannot be compared to valid ones. Within the latter, a rank
is determined by TATS via comparing the solutions’ specific “fitness” – a
value reflecting the calculated goal achievement.

Regarding the “length of computing cycle” key figure from Subsection 5.2.2,
it can be stated that the Infineon AURIX TC27x is not able to run the EMS on
a single core without violating deadlines as the calculation of one comput-
ing cycle takes more time than available. By contrast, there is 66 % at free
disposal after the parallelization process which distributes the calculations
across three IEUs.

5.2.7 Conclusion

In order to sum up the outcome of the test runs, it can be stated that the
approach – especially its focal point described here – contributes to ...

• ... avoiding most adverse starting points where many basic deadlines
are violated. This is illustrated by comparing the simulation results
of “simple” partitions/mappings to those calculated by the approach
(“SERA X”).

• ... quickly finding promising starting points for optimization when
primarily aiming at low response times.

• ... quickly finding remarkably advantageous starting points for ICC-
optimized solutions, where the EDF-scheduled initial solutions are all
valid right from the start in this case study.

• ... generally challenge the existing software structure (such as the as-
signment of REs to SW-Cs) by analyzing, partitioning and mapping
directly on RE level and independent from their given assignment to
SW-Cs.

5.2 Real World Examples 121

The time saved by providing a viable initial solution comes even more into
effect when the exploration size is increased and optimization durations are
– as a consequence of exponential growth – multiplied, e.g., when several
days of optimization do not result in a – according to a certain goal – consid-
erably better solution than the initial one that was created within minutes.

In this case study, the specific settings were chosen in order to compare
preferably many and diverging partitioning/mapping solutions. Distinctly
bigger exploration sizes for the optimization are possible with a signifi-
cantly increased time exposure or by utilization of high performance com-
puting resources.

122 Case Studies & Evaluation

5.3 In-Depth Optimizations and Evaluation

To demonstrate the added value of the refined methods, a previous case
study (cf. [KSKB16]) is substantially expanded by applying the approach to
two complex Engine Management Systems and by showing in-depth arising
advantages compared to a parallelization process without preceding depen-
dency analysis and initial partition/mapping suggestions.

The following hypothesis is stated: An optimization algorithm will yield
significantly better results compared to a predefined initial solution in the
same given time if a preceding dependency analysis and the resulting initial
partitioning/mapping is used as a starting point.

For each of the two Engine Management Systems, the following experiment
was conducted:

1. Definition of a “reference solution” (i.e. reasonable initial solution) in
terms of partitioning, mapping and OS configuration.

2. Optimization I: Creating alternative solutions using “TA Optimizer”
(part of TATS) [Tim15].

3. Optimization II: Using “AutoAnalyze” to provide the starting point
for subsequently creating alternative solutions using “TA Optimizer”.

4. Comparing the relative improvements to the reference solution
yielded by Optimization I/II.

5.3.1 Setup

As mentioned before, the following two complex AUTOSAR models are
used:

The first one is a part of a huge real-world EMS from Continental (“Conti
EMS”), which consists of 178 SW-Cs including 552 REs with 20 different re-
currences, 11460 variables/signals and 45399 data dependencies (each aris-
ing from a write and according read access on a specific variable).

The second one is “a full blown [sic] performance model of a modern EMS”
(“Bosch EMS”) [HZKL16], which is publicly available as AMALTHEA
model for the “FMTV Verification Challenge” of the “WATERS” work-
shop [WAT16, Qui16]. It comprises 1250 REs with 11 different recurrences,
9983 variables/signals and 5195 data dependencies. It was converted to

5.3 In-Depth Optimizations and Evaluation 123

AUTOSAR for being able to apply to the working steps.

Hereinafter, all made configurations are described that are necessary for car-
rying out the experiment steps mentioned before.

5.3.1.1 Reference Solution

The adjustments below have been made to the Conti EMS and the Bosch
EMS models to create the aforementioned reference solutions:

• Conti EMS: Since the AUTOSAR description only contains the SW-Cs,
REs and variables, the following initial partitioning, mapping and
OS configuration were conducted. Moreover, the “Infineon AURIX
TC27x” [Inf15a] simulation model was used as hardware description.
The clock frequency of the three cores is set to 200 MHz.

– Partitioning: One task per recurrence has been created which ex-
ecutes all REs belonging to it.

– Mapping: The tasks have been mapped to the cores using a typi-
cal separation scheme for different recurrences.

– OS configuration: Each core is managed by one AUTOSAR
scheduler. Priorities have been assigned using the “rate mono-
tonic scheme” [LW82] (i.e. the shorter the recurrence, the higher
the priority) and each task was configured to be fully preemptive.

• Bosch EMS: The existing configuration is used as reference solution,
as the Bosch EMS system already contains the complete partitioning
and mapping information as well as the operating system configura-
tion. However, the clock frequency of all four cores was increased
from 200 MHz to 1 GHz to prevent scheduling errors as the analysis at
experiment setup had shown that the system is basically not schedu-
lable with 200 MHz.

5.3.1.2 Experiment Con�guration

This case study consists of twelve experiments in total. Their configura-
tions are itemized in Table 5.1. All experiments without an AutoAnalyze
configuration indicate that TA Optimizer has been solely used to create al-
ternative solutions. Some general configuration parameters for simulation
and optimization are equal for all experiments: The per-solution simulation

124 Case Studies & Evaluation

time is set to 5 seconds, the population size was set to create 32 solutions for
the initial population and 16 new solutions for each subsequent iteration.
The selection size was set to keep the 16 best solutions according to fitness
and discard the remaining ones. For the stop criterion, a fixed value of 256
alternative solutions is used.

Table 5.1: Lineup of the different experiments performed within the scope
of this case study

Experiment AUTOSAR Optimization AutoAnalyze Optimizer
Identifier Model Goal Config. Config.

Exp-1 Conti EMS Goal-1a - TAOPT-1
Exp-2 Conti EMS Goal-1b - TAOPT-1
Exp-3 Conti EMS Goal-1c - TAOPT-1
Exp-4 Conti EMS Goal-1a AA-1 TAOPT-2
Exp-5 Conti EMS Goal-1b AA-1 TAOPT-2
Exp-6 Conti EMS Goal-1c AA-1 TAOPT-2
Exp-7 Conti EMS Goal-1a AA-2 TAOPT-2
Exp-8 Conti EMS Goal-1b AA-2 TAOPT-2
Exp-9 Conti EMS Goal-1c AA-2 TAOPT-2
Exp-10 Bosch EMS Goal-2 - TAOPT-3
Exp-11 Bosch EMS Goal-2 AA-1 TAOPT-4
Exp-12 Bosch EMS Goal-2 AA-2 TAOPT-4

5.3.1.3 Optimization Goals

All of the four optimization goals are detailed in Table 5.2 and denote the
minimization of one single criterion or the simultaneous minimization of
multiple criteria, respectively. They are adopted from real-life projects as
well as industrial cooperations and are therefore considered to have high
practical relevance.

5.3.1.4 AutoAnalyze Con�guration

The two different AutoAnalyze configurations – as mentioned in Table 5.1
– are stated in the following.

5.3 In-Depth Optimizations and Evaluation 125

Table
5.2:Lineup

ofthe
differentoptim

ization
goals

stated
in

Table
5.1

O
ptim

ization
G

oal
M

etric
W

eight
Low

er
Lim

it
U

pper
Lim

it

G
oal-1a

IC
C

1
0

24.34
M

Bit/s
G

oal-1b
IC

C
1

0
24.34

M
Bit/s

M
axim

um
Load

D
istance

1
0

20
%

G
oal-1c

m
N

R
T

10
0

2
Buffer

Size
5

0
17.88

kB
M

axim
um

Load
D

istance
5

0
20

%
G

oal-2
EventC

hain
D

uration
(EffectC

hain1)
1

0
94.60

m
s

EventC
hain

D
uration

(EffectC
hain2)

1
0

601.3
m

s
EventC

hain
D

uration
(EffectC

hain3)
1

0
12.50

m
s

126 Case Studies & Evaluation

• AA-1:

– partitioning: rather small groups, relatively high search toler-
ances (20 for Bosch EMS, 30 for Conti EMS)

– mapping: bin packing, preferably equal distribution (totally
equal for Bosch EMS, roughly equal for Conti EMS)

• AA-2:

– partitioning: rather large groups, relatively high search toler-
ances (10/20 for Bosch EMS, 30 for Conti EMS)

– mapping: bin packing, preferably equal distribution (totally
equal for Bosch EMS, rather unbalanced for Conti EMS)

In order to effectively compare strongly differing solution granularities, di-
ametrically opposed RE set sizes were chosen. As a consequence, the max-
imum search tolerances for the Bosch EMS as well as the load balancing
quality of the Conti EMS were affected.

5.3.1.5 TA Optimizer Con�guration

There are four different TA Optimizer configurations used in this case study.
They are distinct from each other regarding the applied design modifica-
tions as introduced in 4.4.3.3.

• TAOPT-1: Process Mapping, Task Splitting and Periodic Offset
Assignment

• TAOPT-2: Process Mapping and Periodic Offset Assignment

• TAOPT-3: Process Mapping, Task Splitting, Periodic Offset
Assignment and Data Mapping

• TAOPT-4: Process Mapping, Periodic Offset Assignment and
Data Mapping

The selected combinations have proven to yield particularly advantageous
results and can be considered “best practices”.

Task Splitting is only used in the experiments where AutoAnalyze was not
employed to provide the partitioning for the initial solution. Further split-
ting the tasks of a fine-grained task set would lead to an unnecessary in-
crease of the already vast search space.

5.3 In-Depth Optimizations and Evaluation 127

5.3.2 Results

The results of the experiments described in the previous section are shown
in Table 5.3. For each experiment, the fitness of the reference solution, the
fitness of the best alternative solution and the relative fitness improvement
of the best alternative solution are compared. Moreover, the added value
(additional improvement by AutoAnalyze) is provided.

All experiments – with the exception of Exp-10 – yield a significant
(around 50 % or greater) improvement compared to the reference solution.
AutoAnalyze always resulted in an additional improvement compared to
the respective experiment where TA Optimizer was solely used to cre-
ate alternative solutions. The highest improvement by AutoAnalyze was
achieved with experiments Exp-11 and Exp-12.

5.3.3 Evaluation

As stated in Subsection 2.2.6, full-scale optimizations usually consist of sev-
eral ten thousand alternative solutions. However, the optimizations were
configured to produce only 256 solutions. This setting represents a typical
“potential exploration” in order to evaluate rather quickly to what extent
an initial solution can be improved. This is due to the fact that simula-
tions of complex systems like an EMS are quite costly in terms of runtime
– especially when detailed simulation models for the hardware are used.
Therefore, the goal is to save time and resources by first evaluating the im-
provement potential before starting a full-scale optimization.

Each experiment conducted in the case study took around 16 hours to com-
plete on a computer with a “Intel Core i7-2930K” processor (6 cores, up to 12
simultaneous threads) with a clock frequency of 3.2 GHz and 16 GB RAM.
The TA Optimizer was configured to use 5 out of the 6 cores to run up to
10 simulations in parallel. AutoAnalyze on the contrary only requires a few
seconds to provide an appropriate initial partitioning and mapping on such
a computer.

Since AutoAnalyze led to an additional improvement for every experiment,
the initially stated hypothesis is fulfilled. In case of the experiments with
the Bosch EMS system, the combination of AutoAnalyze and TA Optimizer
could improve the reference solution more than twice as much within the
same given time compared to the experiment where TA Optimizer was

128 Case Studies & Evaluation

solely used.

In addition, the following particular observations were made:

• Comparing the experiments 4–6 as well as 7–9 on the Conti EMS: The
biggest improvement could be achieved when ICC was exclusively
employed as optimization goal (“Goal-1a”). This did not come un-
expected as SERA deliberately focuses on low coupling and pooling,
respectively (cf. correlation with other optimization goals in Subsec-
tion 4.3.3). It is notable that the coarse-grained partition (“Exp-7”) led
to a distinctly better solution (higher fitness) than the fine-grained one
(“Exp-4”). This outcome can mainly be ascribed to the fact that the
design space is remarkably reduced if there are less software parts to
distribute.

• Referring to the same set of experiments, they yielded significantly
better results when aiming at the “Goal-1c” (double mNRT, Buffer Size
and Load Distance) than at “Goal-1b” (evenly ICC and Load Distance).
By all indications, SERA seems to be more effective for minimized ICC
and response times than for balancing loads.

• The experiment series 10–12 illustrates how the duration of event
chains, i.e., the time span from input to reaction, can be tremendously
shortened while causing only minimal overhead (additional waiting
times and synchronization effort).

• TATS delivered acceptable results despite rather adverse starting
points when no preceding analysis, partitioning and mapping was
conducted. Obviously, the GA was able compensate the missing
knowledge about the model and the enforced drawing on simple
heuristic approaches.

5.3 In-Depth Optimizations and Evaluation 129

Table
5.3:R

esults
ofthe

perform
ed

experim
ents

Experim
ent

Fitness
Fitness

Fitness
Im

provem
ent

A
dditionalIm

provem
ent

(reference)
(bestalternative)

(bestalternative)[%
]

by
A

utoA
nalyze

[%
]

Exp-1
0.04000

0.007394
81.51

-
Exp-2

1.719
0.08156

95.25
-

Exp-3
43.14

3.944
90.85

-
Exp-4

0.04000
0.007394

93.38
11.86

Exp-5
1.719

0.08156
97.67

2.410
Exp-6

43.14
3.944

97.96
7.100

Exp-7
0.04000

0.007394
99.18

17.66
Exp-8

1.719
0.08156

98.10
2.850

Exp-9
43.14

3.944
97.70

6.840
Exp-10

0.06928
0.05366

22.54
-

Exp-11
0.06928

0.03097
55.29

32.75
Exp-12

0.06928
0.03784

45.38
22.83

6
Conclusion

This chapter finalizes the thesis by outlining its contents, describing its
added value and delineating potential future development.

First, Section 6.1 gives a summary of the central aspects covered by the the-
sis. Subsequently, Section 6.2 determines to which extent the initially for-
mulated objectives (cf. Subsection 1.3) have been achieved. Afterwards,
Section 6.3 states vital factors and prevalent trends shaping the current de-
velopment and nearby future of the automotive domain. Finally, Section 6.4
makes concrete proposals to purposefully extend the work presented in this
thesis.

131

132 Conclusion

6.1 Summary

Due to the inevitable complexity associated with migrating single-EU
legacy ECU software for a proper execution to multiple-IEU platforms, in-
novative methods and approaches are urgently needed.

With the objective of enabling an efficient parallelization of AUTOSAR ap-
plication software on function level, a tool-assisted systematic approach and
methodology is introduced that supports software engineers when analyz-
ing, verifying, validating, partitioning and mapping AUTOSAR models.

This process narrows down the search space for the following working steps
scheduling, simulation and optimization which are carried out to determine
advantageous solutions in terms of low overall latency, minimal cross-core
communication rates as well as proper load balancing.

The approach is designed to detect and solve potential consistency conflicts
as well as structural model deficiencies right from the outset. Based on this,
the parallelization of AUTOSAR models is fundamentally facilitated by au-
tomatically providing both concrete partitions and mappings which even-
tually results in considerably reduced search effort.

In order to verify the benefit of the approach, it is implemented and em-
ployed in three case studies. The first of them demonstrates the technical
feasibility by transferring the methodology into a tool that effectively sup-
ports the parallelization via graphical visualization, provided editing fea-
tures and integrating partitioning and mapping approaches (cf. Section 5.1).
The second case study shows the practicability of the proceeding specified
by the methodology as well as the determined added value when being
employed on real-world examples (cf. Section 5.2). The third one involves
refined algorithms and industry-related optimization goals applied on two
complex Engine Management System models as extended series of experi-
ments yielding results with augmented expressiveness (cf. Section 5.3).

The case studies show that a preceding data dependency analysis combined
with a skillful partitioning and mapping (that builds on its outcome) is able
to significantly enhance the solution quality while reducing the required
time for finding it.

In conclusion, it can be stated that the automotive sector’s demands are
rapidly rising. Moreover, it is already evident that even many-core tech-
nology becomes progressively common, e.g., as seen in a growing number
of cores with distributed memories or heterogeneous connectivity [Mac15].

6.1 Summary 133

Therefore, the approach of this thesis serves as valuable starting point for
coping with the challenges that arise from this development.

134 Conclusion

6.2 Achievement of Objectives

The overarching goal of this thesis is to facilitate the deployment of a paral-
lelized real-time automotive applications by effectively supporting the mi-
gration of single-EU software to multiple-IEU platforms while preserving
its original behavior and ensuring correctness with respect to data consis-
tency.

From this goal, three challenges were derived which again led to three con-
crete objectives (cf. Section 1.3) whose achievement is discussed in the fol-
lowing three subsections. Three contributions are realized following the
created methodology and with the help of the tool (“AutoAnalyze”) instan-
tiating its defined proceeding.

6.2.1 Identi�cation of Vital Elements as Analysis Basis

The first objective – an analysis yielding all necessary structural and tim-
ing information – is achieved by the data dependency analysis conducted
on the most fine-grained level of detail relating to AUTOSAR system de-
scriptions. Hereby, all timing-relevant elements are detected, which enables
to determine dependencies as well as to eventually filter out potential data
consistency conflicts among them.

A prerequisite for finding data consistency threats is fulfilled by hinting at
structural problems in order to ensure the completeness and soundness of
the analyzed model. The succeeding data consistency analysis can then fol-
low the basic rule to find every not distinctly specified contingency which
could eventually lead to unintentional timing behavior. The obtained anal-
ysis results serve as basis for the visualization within AutoAnalyze and are
essential for further working steps.

6.2.2 Correctness and Data Consistency

The second objective – the verification and data validation – is achieved
by two actions within the methodology’s systematic proceeding: Firstly,
hinting at structural deficiencies ensures a sound working basis. Secondly,
multiple-IEU robustness is reached via incremental and/or pattern conflict
solving which gradually eliminates every potential threat to data consis-
tency. This process is carried out via the goal-oriented imposition and mod-

6.2 Achievement of Objectives 135

ification of timing constraints according to a clear rule set that is intended
to validate the parallel execution while preserving as much “freedom” as
possible concerning the subsequent partitioning and mapping. Again, this
working step is tool-supported, thus enabling automated conflict solving as
well as handling models of virtually any size and complexity.

6.2.3 Partitioning, Mapping and Granularity

The third objective was finding efficient solutions for the NP-hard parti-
tioning problem and an according advantageous mapping. The former is
achieved by providing a scalable and configurable approach for quickly
finding beneficial partitions including suitable (and flexible) granularities
of the contained parts. The latter is effectively enabled by the employed
mapping procedure that takes heed of the number of available IEUs as well
as the expected workloads when assigning the identified tasks to a target
platform in an expedient manner.

As system structures heavily vary according to a software’s specific purpose
(and the domain it is originating from), both steps are designed focusing on
adaptivity. There are, e.g., different splitting strategies that can be employed
according to a certain model type in order to support the subsequent parti-
tioning search.

In the end, the impending synchronization overhead caused by distributed
execution is minimized by an efficient proceeding that avoids expensive
“brute force methods” and can be adapted for application in different con-
texts (e.g. other models) with manageable effort.

136 Conclusion

6.3 Outlook

This section depicts clear directions of development within the class of em-
bedded automotive software that do already have a distinct effect on the
software engineering process and whose relevance is expected to intensify.
Thus, research work within this domain should be carried out with respect
to the following aspects.

6.3.1 Main Drivers

In [RN16], the authors name some “main drivers” that neither OEMs nor
suppliers can evade.

One of the most much-noticed is “Autonomous Driving”, which in-
volves developing new hardware and software topologies including fail-
operational systems, cross domain computing platforms as well as high-
performance micro-controllers [Ebe16, YPS13, RN16]. This is necessary to
provide a sound basis for, e.g., deep learning approaches that are gradually
superseding “traditional” camera vision because of their superiority con-
cerning detection rates [Lan16].

A correlating trend are so-called “Car-2-X” applications denoting the data
exchange between a vehicle and external systems like other cars, traffic
lights or cloud services. Here, typical use cases are software updates “over-
the-air” (like already performed by Tesla26) or increasing safety by warning
against traffic congestion or oncoming accident sites [Ebe16, Lan16].

These two general drivers induce the evolution of concrete technologies like
employing “Ethernet” as central bus (due to its high bandwidth and effi-
cient point-to-point communication) and developing flexible heterogeneous
architectures as well as processors with increased performance (“multi-
cores” and “many-cores”) [RN16, Deu16].

In a nutshell, it is legitimate to state that “future cars will be architected as
a coherent computer” [Lan16].

26cf. https://www.tesla.com/en_GB/support/software-updates?redirect=no

https://www.tesla.com/en_GB/support/software-updates?redirect=no

6.3 Outlook 137

6.3.2 Heterogeneous Architectures

In order to lay the foundations for features like “Autonomous Driving” or
“Car-2-X”, the need for more processing power has led to the solution of
utilizing multiple IEUs. As the “multi-core introduction is at the origin
of a big evolution of architectures” [MFCM16], advancements in hardware
topologies are in full swing too. More specifically, “the trend towards het-
erogeneous multi-core architectures is inexorable” [Cor13] because of the
different requirements that come along with the variety of running applica-
tions.

For example, it is sensible that highly safety-critical hard real-time applica-
tions are executed on a real-time IEU while soft real-time applications (e.g.
infotainment services) can be run on a faster IEU that does not ensure to cal-
culate the specific results within a fixed time span [RTS16]. Therefore, safe
(hard real-time) processing is distinctly separated from high-performance
processing [May16].

The whole concept behind this is also often referred to as “Asymmetric Mul-
tiprocessing” (AMP) in order to distinguish it from “Symmetric Multipro-
cessing” (SMP) where tasks or processes are assigned to identical multi-
purpose IEUs [RTS16].

6.3.3 Distributing and Merging Applications

In the course of using multiple IEUs, one central advantage is that several
IEUs of one ECU can now execute applications that were once distributed
over different single-EU ECUs (“integration”) as well as spreading the pro-
cessing of an application across several IEUs due to safety or parallelization
reasons (performance or migration) [YPS13].

The former “is becoming increasingly widespread in the automotive indus-
try” [MNBSL12] as there is a clear trend towards more centralized architec-
tures [Ebe16]. Consequently, the “old” paradigms (one function per ECU)
are forced to be jettisoned in favor of new design patterns [YPS13].

The latter is especially important with respect to variability and continuing
use of legacy software: In the automotive sector, the “global market with
regionally very heterogeneous requirements leads to variety of variants”
due to “country-specific rules on emissions, fuel consumption, admission
and safety requirements” [IAS15]. In addition, many OEMs offer strongly

138 Conclusion

customizable vehicles which further increases the number of variants.

Taking this situation into account requires that different variants of, e.g.,
powertrain applications can be properly executed on varying hardware
platforms. Therefore, both hardware (cf. preceding Subsection 6.3.2) and
software have to be flexible. In terms of software, this means that its proper
function is not bound to a specific hardware setup which is facilitated by
splitting it up in separately schedulable and executable tasks.

6.3.4 Model-Based Collaborative Development

One impact of the rising complexity and the increasing degree of intercon-
nection is that the OEMs and suppliers have to work together more closely
[Ebe16]. In complex systems, several partners contribute software parts in
different formats to one common application, so that it is essential to find
methods which enable an efficient collaborative development [MFCM16].

In order to master the complexity and to provide an abstracted view on
the specific hardware and software components (as well as their timing
behavior), model-based development approaches are on the advance (cf.
[GHKF11]) and are about to replace the “traditional vehicle development
process” [OLKY05].

According processes, e.g., like described in [SSH+16] and [MFCM16], are
advantageous regarding testing, evaluation and documentation, which can
result in a reduction of development effort [OLKY05]. Such a proceeding
is urgently needed when being confronted with significantly shorter soft-
ware development cycles as well as an increased need for associated V&V
activities [Gra17]. This is achieved by sticking to a common development
methodology and by using models to ensure correct timing and data con-
sistency as well as to obtain specific views on the system, e.g., a static archi-
tecture view or a dynamic dataflow view [MFCM16, Ebe16].

6.3.5 Adaptive AUTOSAR

Already in the year 2013, the authors of [AK13] stated that there is a need
for a “dynamic component model that extends an AUTOSAR based control
unit” enabling a (dynamic) plug-in mechanism for external applications and
therefore opening the market for third-party developers.

6.3 Outlook 139

As AUTOSAR is designed to particularly address real-time requirements
and safety criticality, its applicability for, e.g., an infotainment application
(no real-time, less safety, much computing power) is by implication limited
[RN16].

Facing virtually inevitable trends like autonomous driving, “vehicle-to-x”
(communication of the vehicle with its surroundings), “over-the-air” up-
dates, electrification, dynamic deployment (relocation of functionality) or
domain controllers, it becomes apparent that novel approaches are needed
to handle the associated tasks which are often computationally intensive
[OG18, Gra17].

As a consequence, the “AUTOSAR Adaptive Platform” was defined as
different software platform instance that complements the “Classic Plat-
form” [Für16]. Its goals are to support the flexible software develop-
ment for centralized target platforms and the establishment of a stan-
dardized middleware for the intra-vehicle communication that bridges the
gap between “deeply embedded” software and infotainment applications
[OG18]. Table 6.1 contrasts crucial properties of the two platforms based
on [Asm17, RN16, Für16, OG18, Gra17].

Table 6.1: Comparison of AUTOSAR’s two software platform instances
“Classic Platform” and “Adaptive Platform”

Classic Platform Adaptive Platform

Runnable-based (REs) thread-based

based on “OSEK” based on “POSIX”

applications use same (shared)
address space

each application has its own
(virtual) address space

code execution directly from ROM load application from persistent
memory into RAM

optimized for signal-based
communication, e.g., via CAN

service-oriented communication,
e.g., via “SOME/IP”

fixed (static) task configuration dynamic scheduling and run-time
configuration

“deeply embedded” software resource-intensive functionality

140 Conclusion

As described, the Adaptive Platform relies on POSIX27 as opposed to the
Classic Platform that is grounded on OSEK28 specifications. Besides using
service-oriented communication (SOME/IP29), the fundamental difference
of the Adaptive Platform is its dynamic character (scheduling and deploy-
ment) as well as the “interaction with non-AUTOSAR systems” [Für16].

The main advantages coming along with this approach are (according to
[Für16, RN16, OG18, Gra17]):

• Software development, e.g., for autonomous driving, is facilitated due
to support of POSIX and service-oriented communication.

• The flexibility is increased as non-automotive standards can be reused,
e.g., “libraries from the areas of high performance computing, embed-
ded vision and machine learning” [OG18].

• The principle of service-orientation supports chain modeling, ex-
changeability and hierarchy due to the self-contained nature of its
building blocks.

• As a consequence of employed external libraries and further decou-
pling software and hardware, application release cycles and included
V&V activities can be expedited.

In conclusion, Figure 6.1 illustrates the Adaptive Platform’s role as
AUTOSAR’s connector to infotainment systems in consideration of the three
vital aspects real-time, safety and computing power.

6.3.6 Dynamic Integration, Allocation and Scheduling

Dynamic integration concepts do certainly have great potential. As stated in
[OG18], enabling dynamic scheduling can result in a performance increase
for applications. However, predicting the according temporal behavior is
significantly harder than for static scheduling. Therefore, dynamic integra-
tion concepts are needed for handling the sequencing of program execution

27The “Portable Operating System Interface” is a “standardized programming interface
between the application and the operating system” [OG18].

28“Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug” is a stan-
dards body which passed a series of specifications “for an embedded operating system,
a communications stack, and a network management protocol for automotive embed-
ded systems” [AUT18a].

29The “Scalable service-Oriented MiddlewarE over IP” is a communication protocol that
connects AUTOSAR’s Classic with the Adaptive Platform [AUT18b].

6.3 Outlook 141

Figure 6.1: Categorization of AUTOSAR software platforms (from [RN16])

by specifying according data consistency and timing requirements [Deu16].
Here, the goal is to depict the “dynamic requirements for the integration of
the runnables into existing tasks” [MFCM16] in an unambiguous manner,
which inevitably results in a certain amount of overhead [SSH+16].

Furthermore, there are some additional programming requirements that
most legacy applications do not consider since the function design was
not adjusted to independence of core and memory distribution [MFCM16,
ZZZ+12]. As a consequence, the desired high degree of flexibility can
only be reached if the function development is geared to “original require-
ments” like protection and integration needs instead of specific implemen-
tation issues like specific buffering mechanisms [MFCM16]. The authors
of [SSH+16] point out that – if done properly – dynamic allocation will lead
to high efficiency and overcoming volatile execution times.

142 Conclusion

6.4 Future Work

Following the approach and applying it via tool support is an important
first step towards making the complexity of particularly huge models man-
ageable. However, sticking to some basic principles is not a panacea, as the
way of presenting data and offering editing functionality are just as impor-
tant as gathering it in the first place.

6.4.1 Extending Existing Functionality

Therefore, one crucial point is to offer efficient filtering techniques that en-
able software engineers to quickly find and concentrate on decisive spots of
the system design. This is what is pursued by implementing the filtering
options mentioned in Section 5.1.

This process is ongoing as it is intended to, e.g., include a coarse-grained
view that shows the SW-Cs, hides their respective REs and intra-SW-C com-
munication, re-assesses the dependencies between SW-Cs concerning po-
tential multiple-IEU conflicts and therefore offers similar analysis and edit-
ing functionality on a higher level of abstraction. In addition, this coarse-
grained view could be modified to separately analyze SW-Cs with differ-
ent purposes like “service”, “diagnostics” or “regular functions”, making it
possible to distinctly exclude certain “SW-C types” from the analysis.

Another important factor is whether the model editing (and conflict solv-
ing) process enables fast and easy modifications. Gained experiences show
that it is usually necessary to care about the vast majority of existing de-
pendencies in order to ensure multiple-IEU robustness. For huge models,
manually processing each single dependency is cumbersome or even not
feasible as a system can easily contain several tens of thousands of edges
(cf. Subsection 5.3.1). Hence, the possibility to apply multiple modifications
at once is significant.

This is implemented prototypically by providing options to solve potential
conflicts of the same kind all at once, e.g., multiple cases with missing ACs
when EOCs are not applicable. It is planned to extend this by making solu-
tion strategies configurable. This can be achieved by following user-defined
rule-sets that assign specific actions for different situations and certain RE

6.4 Future Work 143

sets or types, which could be realized with the help of, e.g., “Xtext”30.

Such a rule-set equals an assignment of a conflict type to a specific solu-
tion, optionally only valid for certain parts of the model. An example for
AUTOSAR is given in Table 6.2.

Table 6.2: Example rule-set for data validation in AUTOSAR

Conflict Solution Scope Priority

invalid EOC replace EOC by AC with global 9 (highest)
appropriate time value

missing EOC add missing EOC for global 8
involved REs

cyclic EOCs delete according to main local 7
flow direction (SW-C)

cyclic EOCs randomly delete one global 6

missing AC add missing AC with global 5
minimum time value

insufficient AC adjust time value global 4
(shorten or lengthen)

redundant EOCs ignore EOC “twins” local 3
(SW-C)

redundant EOCs randomly delete one global 2
EOC “twin”

redundant EOCs delete EOCs without any global 1 (lowest)
data access between the
according RE pair

In this context, it is important to take heed of the consequences of automated
conflict resolution as several changes at once can cause additional problems.
Therefore, according heuristics for multiple operations are indispensable.
For example, only applying non-intersecting modifications and re-running
the analysis before proceeding is recommended in order to make sure that
the number of conflicts is strictly monotonically decreasing.

30Xtext is “a framework for development of programming languages and domain specific
languages.”, cf. http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

144 Conclusion

6.4.2 Including Untapped Timing Constraints

There are still many open research questions that will be dealt with in the
near future. One of the most promising ones is the issue of deployed classi-
fication criteria. At the moment, two out of seven timing constraints defined
by AUTOSAR are used, namely Age Constraints and Execution Order Con-
straints. Therefore, five constraints could be additionally included to refine
the analysis, verification and data validation of models (cf. [AUT14d] as
well as examples in [Gli18]):

• “Event Triggering Constraint” (EvTrCs) are “used to specify the par-
ticular occurrences of a given timing description event”, e.g., for mon-
itoring jitter.

• “Offset Timing Constraints” (OTCs) are “used to specify an offset
between the occurrences of two timing description events”, e.g., for
restricting the time offset between the occurrence of specific timing
events.

• “Latency Timing Constraints” (LTCs) are “used to specify the amount
of time that elapses between the occurrence of any two timing descrip-
tion events”, e.g., for preventing data loss attributable to oversampling
and undersampling.

• “Synchronization Timing Constraints” (STCs) are “used to specify a
synchronization constraint among the occurrences of two or more tim-
ing description events”, e.g., for ensuring a consistent time base for the
interaction between executable units.

• “Execution Time Constraints” (ExTCs) are “used to specify minimum
and maximum execution time constraints of executable entities31”,
e.g., for limiting an executable unit’s run time budget.

The last three of them are particularly interesting:

Firstly, LTCs can ensure that certain data is actually read before written
again by determining a maximum delay between the triggering of two REs.
They can logically correlate with imposed ACs although their semantics dif-
fer. Here, LTCs address REs themselves whereas ACs refer to specific vari-
able accesses between them.

Secondly, STCs can enforce that, e.g., two REs are triggered and run “syn-
31“Executable Entity” is the generic AUTOSAR term that denotes atomic, schedulable units

like Runnable Entities.

6.4 Future Work 145

chronously with respect to a predefined tolerance” [AUT14d], which affects
both their assignment on specific IEUs (and maybe parallel execution) as
well as the creation of a valid schedule. And as opposed to LTCs, STCs
do not necessarily refer to “connected accesses” of REs (stimulus and re-
sponse). Besides, it has to be considered if and to what extent EOCs and
STCs act against each other in specific setups.

Thirdly, ExTCs set a lower and upper limit for the actual execution of an RE,
whereas the peak value for the maximum execution time should logically
be smaller than the RE’s recurrence (otherwise the ExTC would be unfulfil-
lable). Acting as supplementary timing information, ExTCs can contribute
to finding an optimal schedule. Figure 6.2 shows the WSS exemplarily val-
idated without EOCs but by means of imposing four ACs, five LTCs and
twelve STCs.

Figure 6.2: The WSS validated with ACs, STCs and LTCs

Assuming that all REs need 1 ms to be executed, one can determine fixed
timing values: The dark red LTCs enforce the target REs (“Speedometer Ac-
tor” and “ABS Controller”) to react within a certain amount of time. The

146 Conclusion

orange STCs imposed between the four instances of “Wheel Speed Sensor”
each demand that if one of them is triggered, the other three are also trig-
gered within 3 ms. For reasons of clarity, bidirectional orange arrows are
used to indicate that there are in fact two STCs between each of the six pairs
of sensor REs (one for each direction).

Concerning multiple-IEU robustness, including these three types of timing
constraints would certainly enable to prepare the model in a more accurate
and target-oriented way than up to now. Hence, their inclusion in the con-
cept as well as the implementation seems beneficial – especially for huge,
complex models. However, it will be required to think about problematic
interactions, advantageous combinations and proper criteria for suggesting
solutions by means of specific constraints.

6.4.3 Discussing New Constraints

It is an open question if existing constraints are sufficient or if something
important is missing with regard to being enable to ensure multiple-IEU ro-
bustness. One could argue that it is – attributable to the “multi-core era” –
reasonable to consider the introduction of constraints that explicitly express
potential parallelism, because the demands arising from the altered circum-
stances are not enough taken into account by available constraints as par-
allelism is not a distinct part of the intention behind the timing constructs
listed in Subsection 6.4.2 respectively [AUT14d]:

• EvTrCs are designed to specify occurrence patterns of timing events
but disregard on which IEU the triggering takes place.

• ExTCs aim at setting bounds to Executable Entities’ execution times
without taking heed of their possible assignment to different IEUs.

• EOCs are used to define sequences while neglecting timing aspects of
the Executable Entities they address. They indirectly indicate possible
parallelism when interpreting the REs addressed by them as prefer-
ably dedicated to the same IEU.

• ACs, OTCs and LTCs are applied to avoid violating boundary val-
ues for data ages or durations between timing description events. Al-
though coping with them is – under certain conditions – facilitated by
parallel execution, they do not have a direct correlation with paral-
lelism.

6.4 Future Work 147

• STCs can demand that several Executable Entities are triggered (vir-
tually) synchronous, but this condition is in general satisfiable by a
(fast enough) successive execution on a single EU too (an STC cannot
assume several IEUs).

Since these timing constraints do not explicitly address parallelism or
multiple-IEU platforms, it seems useful to reflect about possibilities to fill
this suspected gap. As constraints usually restrict certain conditions, one
could come up with the idea of enforcing parallelism by demanding that
a set of Executable Entities is distributed on different IEUs and triggered
simultaneously with a certain tolerance. However, this is hardly possible
because the number of available IEUs is often unknown and/or not fixed.
Thus, it stands to reason to rather give the opportunity of simultaneously
processing certain Executable Entities in addition.

One approach towards this would be creating a new type of EOC (a “soft-
ened” one), so that the corresponding Executable Entities are allowed to be
processed successively as well as in parallel with a certain triggering toler-
ance. As a result, the semantics would change from the specific preservation
of the producer-consumer schema (for “original” EOCs) to only excluding
an inverted execution order. For example, a softened EOC from “RE-A” to
“RE-B” would merely prevent “RE-B” to be triggered before “RE-A”, which
seems to be rather inconvenient without creating added value.

An apparently more expedient approach is represented by the combination
of STCs and LTCs enriched with parallel semantics, termed “Parallel EOC”
(PEOC). A PEOC consist of a source and a target set of Executable Enti-
ties. The source set comprises elements that can explicitly be triggered and
executed in parallel within a given tolerance (similar to an STC). The tar-
get set includes elements that are triggered before a defined maximum re-
action time has elapsed (like in an LTC) and after all source elements are
executed.

In order to illustrate the usage of this timing constraint, Figure 6.3 shows
the WSS validated with one PEOC that replaces twelve STCs and four
LTCs compared to Figure 6.2. The PEOC encapsulates the STCs’ and LTCs’
semantics, facilitates the comprehensibility and visualization (less timing
constraints, less edges), underlines potential parallelism (i.e. the possi-
ble distribution of source REs on different IEUs) and would simplify an
expanded analysis (cf. Section 5.1) compared with particularly analyzing
LTCs and STCs as well as separately integrating markers for “concurrent
successors”.

148 Conclusion

Figure 6.3: The WSS with an imposed “PEOC”

The latter are implicitly included by PEOCs and can be seen as counter-
part to the grouping suggestions determined in Subsection 4.3.2. There, the
tool searches for isolated regions that are suitable for being mapped as task
on a common IEU, whereas a PEOC’s source set contains elements that are
proper for being distributed. Though both are certainly helpful when trying
to overcome the repeatedly addressed tremendous solution space, there is
– however – much research work to do: The approaches need to be thor-
oughly evaluated and tested in order to elaborate a detailed concept and a
possible specification suggestion.

6.4.4 The Multi-Rate Problem

As already mentioned in Section 4.2, it is supposed that each Runnable En-
tity has only one fixed recurrence (triggering frequency) to be taken into
consideration. This assumption is made to basically enable the analysis and
validation of the models according to the approach (cf. Chapter 4).

However, this is not necessarily the case in every embedded real-time sys-
tem. This aspect is usually referred to as “Multi-Rate Problem” or “Differ-

6.4 Future Work 149

ent Activation Problem”. It is important to clearly distinguish the former
from the situation found in so-called “multi-rate networks”, where the re-
currences (sampling rates) of typical producer and consumer REs (e.g. sen-
sors and controllers) can differ to reduce the IEUs’ and network’s workload,
which can possibly lead to data loss or duplication due to over- and under-
sampling [Mah14, AUT14d].

In contrast to that, the above-mentioned Multi-Rate Problem indicates dif-
ferent recurrence values for one RE: Although each RE runs in only one
context, several activations of it by different “Triggering Events” (TEs) are
possible: The basic “Timing Event” “causes an RE to be periodically trig-
gered”, whereas further TEs “occur as a result of communication activity”,
e.g., a “Data Received Event” triggers an RE “to receive and process a sig-
nal received on a sender-receiver interface” [AUT14c]. If two TEs activate
an RE, then the analysis cannot be carried out like explained in Section 4.2,
because it is not able to deal with ambiguity. In addition to that, an RE
can even have two concrete diverging recurrences (Timing Events) due to
several specified variants.

The current solution for these cases (as implemented in AutoAnalyze) is
to hint at multi-rated REs and to consider the least respective recurrence
as standard while giving the engineer the opportunity to select a different
one. This proceeding is grounded on the assumption that REs occurring
with maximum frequency pose the most intricate case to process. However,
every single altered recurrence can have a considerable impact on the ana-
lyzed timing behavior as well as on the final parallelization result.

6.4.5 Logical Execution Time

Considering strong trends like dynamic integration (cf. Subsections 6.3.5
and 6.3.6) and raised effort to master rampant complexity (6.3.4 and 6.4.1),
it becomes clear that the predictability (determinism) of timing behavior is
becoming an increasingly crucial factor [Lal18, Mad18].

As the timing behavior mainly depends on the underlying communication
semantics (i.e. the rules of communicating data across functions [HDK+17]),
it is worth taking a closer look at the different ways to implement them. An
intuitive approach is that tasks directly access and modify the variables they
need without any restrictions.

These read and write accesses on global variables during the task’s execu-

150 Conclusion

tion is usually referred to as “explicit communication” [HDK+17]. In this
context, typical problems arise from corrupted data consistency, e.g., un-
clear data age, data races or missing data stability during computation (cf.
Subsection 1.1.4).

As opposed to this, the “implicit communication” approach – as employed
by AUTOSAR – aims for data consistency by sticking to a strict “read – ex-
ecute – write” paradigm, i.e., “the task always makes local copies of the
shared data it needs at the beginning of its execution, works on the local
copies and writes the data back at the end of its execution” [HDK+17]. This
proceeding requires local memory and guarantees coherency (processed
data has uniform age) as well as stability (input data is steady during com-
putation).

Facing the “design complexity” resulting from challenges like ensuring data
consistency, finding a proper scheduling and handling inter-core interfer-
ences, the goal to synchronize tasks across multiple IEUs stays highly de-
manding – especially as communication overhead and limited distribu-
tion remain serious obstacles for parallelism in real-time systems [Yip17,
Här17].

In order to cope with this, the concept of timed communication has become
increasingly important in recent years as it solves many of the mentioned
problems “by design” [Här17, Här16]. One specific solution is called “Log-
ical Execution Time” (LET), which – in a nutshell – solves “temporal non-
determinism by decoupling computation and communication” [HDK+17].
LET does work on local copies of variables (just like AUTOSAR’s implicit
communication paradigm), but its strategy is to read data at the start of a
task’s activation interval and to write it back at its end [Här16, HDK+17].
Thus, the respective time span is distinctly longer than the task’s “physical
execution time”. As a consequence, the defined release and terminate times
ensure that the process is executed within a fixed time window – no matter
which scheduling strategy is employed [vH18].

Therefore, the LET concept involves several advantageous aspects:

• Determinism: Due to precisely defined points of data exchange, LET
enables deterministic parallel execution and communication behavior
even with respect to dynamic re-allocation, resulting in a predictable
overall system behavior at design and implementation [Mad18,Lal18].

• V&V: The verification and validation process is simplified as en-
suring time and value determinism provides for data consistency

6.4 Future Work 151

(e.g. excluding race conditions) and knowing the duration of event
chains in advance allows achieving “correctness by construction”
[Lal18, Mad18, vH18]. In addition, the need for defining and taking
heed of task priorities is rendered redundant [Yip17].

• Platform Independence: The concept realization is not limited to a spe-
cific platform, but is universally applicable [Lal18].

• Maintenance and Development: As re-writing legacy code is not nec-
essary and its handling is facilitated, easy extensibility and refactoring
are supported [Lal18, vH18]. In practice, this means that, e.g., “there
is no need for complex synchronization mechanisms to handle race
conditions or priority inversions” [HDK+17].

On the other hand, there are also some challenges and drawbacks coming
along with LET:

• Increased Latencies: LET raises the communication delay and hence
results in prolonging the duration of event chains [HDK+17, Lal18,
Mad18]. However, there are approaches to mitigate this effect by “fill-
ing up the gaps” as well as “seamless LET frame design” [Mad18].

• Special Requirements: In order to fulfill the LET semantics, there a
a couple of additional requirements to be met when the mapping is
conducted and the schedule is generated. Furthermore, the necessary
parametrization of LET tasks cannot be done without in-depth knowl-
edge of the system [Lal18]. Aside from that, there is a need for a “LET
language” in order to properly describe integration needs [Mad18].

• Lacking Tool Support: There is a strong demand for tools that sup-
port the process of generating LET task parameters, creating expedi-
ent task-to-IEUs allocations (mapping) and help at scheduling table
and data buffers [Lal18].

In summary, it can be stated that the LET paradigm provides multiple ben-
efits in terms of multi-core software development and is considerably gain-
ing industrial interest [Yip17,Lal18]. Nevertheless, supporting the search for
loosely-coupled program parts – like addressed in this PhD thesis – remains
very important in order to distribute the calculation (on a fine-grained level)
without affecting functional behavior or causing overhead via cross-IEU de-
pendencies [Här16, Mad18, vH18].

7
Annex

153

Bibliography

[ABG+13] Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek,
and Indika Meedeniya. Software Architecture Optimization
Methods: A Systematic Literature Review. IEEE Transactions on
Software Engineering, 39(5):658–683, 2013.

[ABRW93] Neil C. Audsley, Alan Burns, MF Richardson, and Andy J
Wellings. Deadline Monotonic Scheduling – Theory and Application,
volume 1. Elsevier, 1993.

[ACU08] Cevdet Aykanat, B Barla Cambazoglu, and Bora Uçar. Multi-
Level Direct k-Way Hypergraph Partitioning with Multiple Con-
straints and Fixed Vertices. Journal of Parallel and Distributed Com-
puting, 68(5):609–625, 2008.

[AK13] Jakob Axelsson and Avenir Kobetski. On the Conceptual Design
of a Dynamic Component Model for Reconfigurable AUTOSAR
Systems. ACM SIGBED Review, 10(4):45–48, 2013.

[APP18] APP4MC Consortium. APP4MC Website. https:

//www.eclipse.org/app4mc/help/app4mc-0.8.1/index.html,
2018. (accessed on December 6th, 2018).

[ARA19a] ARAMiS II Research Project Consortium. E3.2 Design Space Ex-
ploration – Achievement (outcome document, version 3). Ger-
man Aerospace Center (DLR – project executing organisation).
2019, 2019.

[ARA19b] ARAMiS II Research Project Consortium. E3.3 Partitioning of
Software Components – Achievement (outcome document, ver-
sion 3). German Aerospace Center (DLR – project executing or-
ganisation). 2019, 2019.

[Arb11] Arbeitskreis Multicore. Relevanz eines Multicore-Ökosystems
für künftige Embedded Systems: Positionspapier zur Be-
deutung, Bestandsaufnahme und Potentialermittlung der
Multicore-Technologie für den Industrie- und Forschungsstan-
dort Deutschland. Arbeitskreis Multicore, 2011.

[Art12] Artop Group. AUTOSAR Tool Platform. https://www.artop.

org/, 2012. (accessed on July 20th, 2013).

155

https://www.eclipse.org/app4mc/help/app4mc-0.8.1/index.html
https://www.eclipse.org/app4mc/help/app4mc-0.8.1/index.html
https://www.artop.org/
https://www.artop.org/

156 Bibliography

[Asm17] Rinat Asmus. AUTOSAR Adaptive Platform and Classic Plat-
form Multi-Core Improvements. Embedded Multi-Core Confer-
ence. In EMCC 2017 Proceedings, 2017.

[Ass12] Association for Standardisation of Automation and Measur-
ing Systems (ASAM). ASAM MDX. https://wiki.asam.net/

display/STANDARDS/ASAM+MDX, 2012. (accessed on September
5th, 2016).

[AUT13] AUTOSAR. AUTOSAR Methodology, 2013.

[AUT14a] AUTOSAR. AUTOSAR Basic Information – Short Ver-
sion. http://www.autosar.org/fileadmin/files/basic_

information/AUTOSARBasicInformationShortVersion_EN.pdf,
2014. (accessed on October 28th, 2014).

[AUT14b] AUTOSAR. Glossary, 2014.

[AUT14c] AUTOSAR. Specification of RTE, 2014.

[AUT14d] AUTOSAR. Specification of Timing Extensions, 2014.

[AUT14e] AUTOSAR. Technical Overview. http://www.autosar.org/

about/technical-overview/, 2014. (accessed on August 25th,
2016).

[AUT18a] AUTOSAR. OSEK. https://www.vectorcast.com/osek, 2018.
(accessed on December 12th, 2018).

[AUT18b] AUTOSAR. SOME/IP Protocol Specification. https:

//www.autosar.org/fileadmin/user_upload/standards/

foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf, 2018.
(accessed on December 19th, 2018).

[BJ92] Thang Nguyen Bui and Curt Jones. Finding Good Approximate
Vertex and Edge Partitions is NP-hard. Information Processing
Letters, 42(3):153–159, 1992.

[BKL16] Bert Böddeker, Sebastian Kehr, and Dominik Langen. Meth-
ods for Migrating Automotive Control Applications to Multi-
core ECUs. Embedded Multi-Core Conference. In EMCC 2016
Proceedings, 2016.

[BLH+13] Hans Blom, Henrik Lönn, Frank Hagl, Yiannis Papadopou-
los, Mark-Oliver Reiser, Carl-Johan Sjöstedt, De-Jiu Chen, and
Ramin Tavakoli Kolagari. EAST-ADL – An Architecture Descrip-

https://wiki.asam.net/display/STANDARDS/ASAM+MDX
https://wiki.asam.net/display/STANDARDS/ASAM+MDX
http://www.autosar.org/fileadmin/files/basic_information/AUTOSARBasicInformationShortVersion_EN.pdf
http://www.autosar.org/fileadmin/files/basic_information/AUTOSARBasicInformationShortVersion_EN.pdf
http://www.autosar.org/about/technical-overview/
http://www.autosar.org/about/technical-overview/
https://www.vectorcast.com/osek
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf

Bibliography 157

tion Language for Automotive Software-Intensive Systems – White
Paper, Version 2.1.12, 2013. (accessed on December 19th, 2018).

[BMR04] Bernhard Bauer, Jörg P. Müller, and Stephan Roser. A Model-
driven Approach to Designing Cross-Enterprise Business Pro-
cesses. In OTM Confederated International Conferences" On the
Move to Meaningful Internet Systems", pages 544–555. Springer,
2004.

[BMS+16] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders,
and Christian Schulz. Recent Advances in Graph Partitioning.
In Algorithm Engineering, pages 117–158. Springer, 2016.

[BRM05] Bernhard Bauer, Stephan Roser, and Jörg P. Müller. Adaptive De-
sign of Cross-Organizational Business Processes Using a Model-
Driven Architecture. In Wirtschaftsinformatik 2005, pages 103–
121. Springer, 2005.

[BSER11] Michael Bohn, Jörn Schneider, Christian Eltges, and Robert
Rößger. Migration von AUTOSAR-basierten Echtzeitanwen-
dungen auf Multicore-Systeme. In Workshop: Entwicklung zu-
verlässiger Software-Systeme (Stuttgart, Germany), 2011.

[CCG+07] Philippe Cuenot, DeJiu Chen, Sebastien Gerard, Henrik
Lonn, Mark-Oliver Reiser, David Servat, Carl-Johan Sjostedt,
Ramin Tavakoli Kolagari, Martin Torngren, and Matthias We-
ber. Managing Complexity of Automotive Electronics using the
EAST-ADL. In Engineering Complex Computer Systems, 2007. 12th
IEEE International Conference on, pages 353–358. IEEE, 2007.

[CFJ+07] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn,
Yiannis Papadopoulos, Mark-Oliver Reiser, Anders Sandberg,
David Servat, Ramin Tavakoli Kolagari, Martin Törngren, et al.
The EAST-ADL Architecture Description Language for Auto-
motive Embedded Software. In Dagstuhl Workshop on Model-
Based Engineering of Embedded Real-Time Systems, pages 297–307.
Springer, 2007.

[CHS12] Constantin Christmann, Erik Hebisch, and Oliver Strauß. Vorge-
hensweise für die Multicore-Softwareentwicklung. Fraunhofer Ver-
lag, 2012.

[CJGJ96] Edward G Coffman Jr, Michael R Garey, and David S Johnson.
Approximation Algorithms for Bin Packing: a Survey. In Ap-

158 Bibliography

proximation Algorithms for NP-hard Problems, pages 46–93. PWS
Publishing Co., 1996.

[CKK+06] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Ra-
bani, and D Sivakumar. On the Hardness of Approximating
Multicut and Sparsest-Cut. Computational Complexity, 15(2):94–
114, 2006.

[Con16] Continental AG. New Engine Controls by Continen-
tal Integrates Energy-Flow Management. http://www.

continental-corporation.com/www/pressportal_com_en/

themes/press_releases/3_automotive_group/powertrain/

press_releases/pr_2012_04_26_energy_management_en.html,
2016. (accessed on August 28th, 2016).

[Cor13] Daniel Alexander Cordes. Automatic Parallelization for Embed-
ded Multi-Core Systems Using High Level Cost Models. PhD thesis,
Technische Universität Dortmund, 2013.

[Deb01] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary
Algorithms, volume 16. John Wiley & Sons, 2001.

[Deu15] Michael Deubzer. Multi-Core Software Architecture – Moving
Towards Software Engineering. Embedded Multi-Core Confer-
ence. In EMCC 2015 Proceedings, 2015.

[Deu16] Michael Deubzer. Transition Into a New Era of Automotive Soft-
ware Engineering. Embedded Multi-Core Conference. In EMCC
2016 Proceedings, 2016.

[DHM+10] Michael Deubzer, Martin Hobelsberger, Jürgen Mottok, Frank
Schiller, Reiner Dumke, Markus Siegle, Ulrich Margull, Michael
Niemetz, and Gerhard Wirrer. Modeling and Simulation of Em-
bedded Real-Time Multicore Systems. In Proceedings of the 3rd
Embedded Software Engineering Congress, pages 228–241, 2010.

[DK08] John DeNero and Dan Klein. The Complexity of Phrase Align-
ment Problems. In Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics on Human Language Tech-
nologies: Short Papers, pages 25–28. Association for Computa-
tional Linguistics, 2008.

[DLZV14] Philipp Diebold, Constanza Lampasona, Sergey Zverlov, and Se-
bastian Voss. Practitioners’ and Researchers’ Expectations on

http://www.continental-corporation.com/www/pressportal_com_en/themes/press_releases/3_automotive_group/powertrain/press_releases/pr_2012_04_26_energy_management_en.html
http://www.continental-corporation.com/www/pressportal_com_en/themes/press_releases/3_automotive_group/powertrain/press_releases/pr_2012_04_26_energy_management_en.html
http://www.continental-corporation.com/www/pressportal_com_en/themes/press_releases/3_automotive_group/powertrain/press_releases/pr_2012_04_26_energy_management_en.html
http://www.continental-corporation.com/www/pressportal_com_en/themes/press_releases/3_automotive_group/powertrain/press_releases/pr_2012_04_26_energy_management_en.html

Bibliography 159

Design Space Exploration for Multicore Systems in the Automo-
tive and Avionics Domains – A Survey. In Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering, page 1. ACM, 2014.

[Ebe16] Christos Ebert. Software Development in Collaboratively Engi-
neered Systems. Embedded Multi-Core Conference. In EMCC
2016 Proceedings, 2016.

[Ecl09] Eclipse Foundation. Eclipse Modeling Framework Project.
http://eclipse.org/modeling/emf/, 2009. (accessed on July
15th, 2013).

[Ecl16] Eclipse Automotive Industry Working Group. BTF Specification
V2.1.3. http://wiki.eclipse.org/Auto_IWG#Publications,
2016. (accessed on April 11th, 2016).

[Eiß12] Thomas Eißenlöffel. Embedded-Software entwickeln. dpunkt, 2012.

[EZV+17] Johannes Eder, Sergey Zverlov, Sebastian Voss, Maged Khalil,
and Alexandru Ipatiov. Bringing DSE to Life: Exploring
the Design Space of an Industrial Automotive Use Case. In
Model Driven Engineering Languages and Systems (MODELS), 2017
ACM/IEEE 20th International Conference on, pages 270–280. IEEE,
2017.

[Flä15] Torsten Flämig. Software Architecture Methods for Multicore –
Distributed Development and Validation of Architecture in Col-
laboratively Engineered Multicore Systems. Embedded Multi-
Core Conference. In EMCC 2015 Proceedings, 2015.

[Fuk18] Takeshi Fukuda. Multi-core Design with Powertrain/ADAS SW
and Future Challenges of Highly Self-Driven Vehicles. Embed-
ded Multi-Core Conference. In EMCC 2018 Proceedings, 2018.

[Für15] Simon Fürst. An OEM’s Point of View On Multi-Core. Embed-
ded Multi-Core Conference. In EMCC 2015 Proceedings, 2015.

[Für16] Simon Fürst. EUROFORUM Elektronik-Systeme im Au-
tomobil – AUTOSAR Adaptive Platform for Connected
and Autonomous Vehicles. http://www.euroforum.de/

veranstaltungen/elektronik-systeme-im-automobil, 2016.
(accessed on October 4th, 2017).

[GHKF11] Peter Gliwa, Jens Harnisch, Ursula Kelling, and Christoph Ficek.

http://eclipse.org/modeling/emf/
http://wiki.eclipse.org/Auto_IWG#Publications
http://www.euroforum.de/veranstaltungen/elektronik-systeme-im-automobil
http://www.euroforum.de/veranstaltungen/elektronik-systeme-im-automobil

160 Bibliography

From Single-Core to Multi-Core Platforms — Systematic Migra-
tion of Hard Real-Time Software in AUTOSAR. Embedded World,
28:979–992, 2011.

[GLI15] GLIWA embedded systems. An Introduction to Automotive
Multi-Core Embedded Software Timing. https://www.gliwa.

com/downloads/Multi-core%20Poster.pdf, 2015. (accessed on
November 13th, 2015).

[Gli18] Peter Gliwa. A Systematic Approach for Timing Requirements.
Embedded Multi-Core Conference. In EMCC 2018 Proceedings,
2018.

[GNN+06] Matthias Gehrke, Petra Nawratil, Oliver Niggemann, Wilhelm
Schäfer, and Martin Hirsch. Scenario-Based Verification of Au-
tomotive Software Systems. In MBEES Proceedings, pages 35–42,
2006.

[Gra15] Rudolf Grave. Software Integration Challenge Multi-Core – Ex-
perience from Real World Projects. Embedded Multi-Core Con-
ference. In EMCC 2015 Proceedings, 2015.

[Gra16] Rudolf Grave. AUTOSAR Multi-Core. Embedded Multi-Core
Conference. In EMCC 2016 Proceedings, 2016.

[Gra17] Rudolf Grave. Insights in an Automotive Central Computing
Cluster. Embedded Multi-Core Conference. In EMCC 2017 Pro-
ceedings, 2017.

[Gri04] Matthias Gries. Methods for Evaluating and Covering the De-
sign Space During Early Design Development. Integration, the
VLSI journal, 38(2):131–183, 2004.

[GRLB09] M. Götz, S. Roser, F. Lautenbacher, and B. Bauer. Token Analysis
of Graph-Oriented Process Models. In 13th Enterprise Distributed
Object Computing Conference (EDOC), pages 15–24, 2009.

[GS12] Urs Gleim and Tobias Schüle. Multicore-Software. dpunkt, 2012.

[Gus88] John L Gustafson. Reevaluating Amdahl’s Law. Communications
of the ACM, 31(5):532–533, 1988.

[Här16] Jochen Härdtlein. Distributing Automotive Real-time Systems.
Embedded Multi-Core Conference. In EMCC 2016 Proceedings,
2016.

https://www.gliwa.com/downloads/Multi-core%20Poster.pdf
https://www.gliwa.com/downloads/Multi-core%20Poster.pdf

Bibliography 161

[Här17] Jochen Härdtlein. SW Distribution Based on Context-Aware In-
teroperability. Embedded Multi-Core Conference. In EMCC 2017
Proceedings, 2017.

[HDK+17] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael
Pressler, Falk Wurst, and Dirk Ziegenbein. WATERS Industrial
Challenge 2017. https://waters2017.inria.fr/challenge/,
2017. (accessed on April 3rd, 2017).

[Hen98] Bruce Hendrickson. Graph Partitioning and Parallel Solvers:
Has the Emperor No Clothes? In International Symposium on
Solving Irregularly Structured Problems in Parallel, pages 218–225.
Springer, 1998.

[HKI15] Robert Höttger, Lukas Krawczyk, and Burkhard Igel. Model-
Based Automotive Partitioning and Mapping for Embedded
Multicore Systems. International Journal of Computer, Control,
Quantum and Information Engineering, 9(1):268–274, 2015.

[HL95] Bruce Hendrickson and Robert W Leland. A Multi-Level Algo-
rithm For Partitioning Graphs. SC, 95:28, 1995.

[Hob12] Martin Hobelsberger. Reusability Evaluation of Component-Based
Embedded Automotive Software Systems. PhD thesis, Otto-von-
Guericke-Universität Magdeburg, May 2012.

[HZKL16] Arne Hamann, Dirk Ziegenbein, Simon Kramer, and Martin
Lukasiewycz. FMTV 2016 Verification Challenge. Information
Processing Letters, 2016.

[IAS15] Gesellschaft für Informatik, Verband der Automobilindus-
trie, and Kompetenz-Cluster SafeTRANS. Automotive
Roadmap Embedded Systems. http://www.safetrans-de.org/
documents/Automotive_Roadmap_ES.pdf, 2015. (accessed on
July 20th, 2016).

[INC15] INCHRON GmbH. chronSIM. http://www.inchron.com/

tool-suite/chronsim.html, 2015. (accessed on November 11th,
2015).

[Inf15a] Infineon Technologies AG. 32-bit TriCoreTM Micro-
controller. http://www.infineon.com/cms/en/product/

microcontroller/32-bit-tricore-tm-microcontroller/

channel.html?channel=ff80808112ab681d0112ab6b64b50805,

https://waters2017.inria.fr/challenge/
http://www.safetrans-de.org/documents/Automotive_Roadmap_ES.pdf
http://www.safetrans-de.org/documents/Automotive_Roadmap_ES.pdf
http://www.inchron.com/tool-suite/chronsim.html
http://www.inchron.com/tool-suite/chronsim.html
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/channel.html?channel=ff80808112ab681d0112ab6b64b50805
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/channel.html?channel=ff80808112ab681d0112ab6b64b50805
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/channel.html?channel=ff80808112ab681d0112ab6b64b50805

162 Bibliography

2015. (accessed on November 16th, 2015).

[Inf15b] Infineon Technologies AG. AURIX TC27xT data sheet. http:

//www.infineon.com/cms/en/product/microcontroller/

32-bit-tricore-tm-microcontroller/aurix-tm-family/

aurix-tm-family-%E2%80%93-tc27xt/channel.html?channel=

db3a30433cfb5caa013d01df64d92edc, 2015. (accessed on
November 16th, 2015).

[JPP94] Richard Johnson, David Pearson, and Keshav Pingali. The
Program Structure Tree: Computing Control Regions in Linear
Time. In ACM SigPlan Notices, volume 29, pages 171–185. ACM,
1994.

[KBL17] Sebastian Kehr, Bert Bödekker, and Dominik Langen. Energy-
aware Parallelization of AUTOSAR Legacy Applications. Em-
bedded Multi-Core Conference. In EMCC 2017 Proceedings, 2017.

[KCS06] Abdullah Konak, David W Coit, and Alice E Smith. Multi-
Objective Optimization Using Genetic Algorithms: A Tutorial.
Reliability Engineering & System Safety, 91(9):992–1007, 2006.

[KHKM11] Jin Kim, Inwook Hwang, Yong-Hyuk Kim, and Byung-Ro
Moon. Genetic Approaches for Graph Partitioning: A Survey.
In Proceedings of the 13th annual conference on 13th Annual Genetic
and Evolutionary Computation, pages 473–480. ACM, 2011.

[KK15] Julian Kienberger and Stefan Kuntz. Systematic and Me-
thodical Data-Dependency Analysis for Multiple-IEU Platforms.
ARAMiS Final Report – Continental Automotive GmbH, pages 41–
77, 2015.

[KMKB14] Julian Kienberger, Pascal Minnerup, Stefan Kuntz, and Bern-
hard Bauer. Analysis and Validation of AUTOSAR Models. In
Proceedings of the 2nd International Conference on Model-Driven En-
gineering and Software Development (MODELSWARD), pages 274–
281. IEEE, 2014.

[KPQ+16] Sebastian Kehr, Miloš Panić, Eduardo Quiñones, Bert Böddeker,
Jorge Becerril Sandoval, Jaume Abella, Francisco Cazorla, and
Günter Schäfer. Supertask: Maximizing Runnable-Level Paral-
lelism in AUTOSAR Applications. In 2016 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 25–30. IEEE,
2016.

http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/aurix-tm-family-%E2%80%93-tc27xt/channel.html?channel=db3a30433cfb5caa013d01df64d92edc
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/aurix-tm-family-%E2%80%93-tc27xt/channel.html?channel=db3a30433cfb5caa013d01df64d92edc
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/aurix-tm-family-%E2%80%93-tc27xt/channel.html?channel=db3a30433cfb5caa013d01df64d92edc
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/aurix-tm-family-%E2%80%93-tc27xt/channel.html?channel=db3a30433cfb5caa013d01df64d92edc
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/aurix-tm-family-%E2%80%93-tc27xt/channel.html?channel=db3a30433cfb5caa013d01df64d92edc

Bibliography 163

[KQBS15] Sebastian Kehr, Eduardo Quiñones, Bert Böddeker, and Günter
Schäfer. Parallel Execution of AUTOSAR Legacy Applications
on Multicore ECUs with Timed Implicit Communication. In Pro-
ceedings of the 52nd Annual Design Automation Conference, page 42.
ACM, 2015.

[KSKB16] Julian Kienberger, Christian Saad, Stefan Kuntz, and Bernhard
Bauer. Efficient Parallelization of Complex Automotive Systems.
In Proceedings of the 7th International Workshop on Programming
Models and Applications for Multicores and Manycores (PMAM),
pages 40–49. ACM, 2016.

[KSS+17] Julian Kienberger, Stefan Schmidhuber, Christian Saad, Stefan
Kuntz, and Bernhard Bauer. Parallelizing Highly Complex En-
gine Management Systems. Concurrency and Computation: Prac-
tice and Experience – Special Issue, 29(15), 2017.

[Kun17] Stefan Kuntz. System Architecture – The importance of hard-
ware models in developing applications for MSoCs. Embedded
Multi-Core Conference. In EMCC 2017 Proceedings, 2017.

[KWF15] Lukas Krawczyk, Carsten Wolff, and Daniel Fruhner. Au-
tomated Distribution of Software to Multi-core Hardware in
Model Based Embedded Systems Development. In Giedre Dreg-
vaite and Robertas" Damasevicius, editors, Information and Soft-
ware Technologies, pages 320–329. Springer International Publish-
ing, 2015.

[Lal18] Erjola Lalo. Challenges of Migration Automotive Event-
Triggered Systems to LET paradigm. Embedded Multi-Core
Conference. In EMCC 2018 Proceedings, 2018.

[Lan16] Jochen Langenwalter. Self-Driving Car Supercomputer. Embed-
ded Multi-Core Conference. In EMCC 2016 Proceedings, 2016.

[LL04] Deming Liu and Yann-Hang Lee. Pfair Scheduling Of Periodic
Tasks With Allocation Constraints On Multiple Processors. In
Parallel and Distributed Processing Symposium, 2004. Proceedings.
18th International, page 119. IEEE, 2004.

[LLP+09] Rongshen Long, Hong Li, Wei Peng, Yi Zhang, and Minde Zhao.
An Approach to Optimize Intra-ECU Communication Based on
Mapping of AUTOSAR Runnable Entities. In Embedded Software
and Systems, 2009. ICESS’09. International Conference on, pages

164 Bibliography

138–143. IEEE, 2009.

[LW82] Joseph Y-T Leung and Jennifer Whitehead. On the Complexity
of Fixed-Priority Scheduling of Periodic, Real-Time Tasks. Per-
formance Evaluation, 2(4):237–250, 1982.

[Mac15] Harald Mackamul. AMALTHEA – An Open Source Develop-
ment Platform for Embedded Multi- and Many-Core Systems.
Embedded Multi-Core Conference. In EMCC 2015 Proceedings,
2015.

[Mad15] Ralph Mader. Timing and Design Tool Support in Continental
Powertrain Multi-Core Platform. Embedded Multi-Core Confer-
ence. In EMCC 2015 Proceedings, 2015.

[Mad18] Ralph Mader. Logical Execution Time Implementation in Classic
AUTOSAR. Embedded Multi-Core Conference. In EMCC 2018
Proceedings, 2018.

[MAE13a] MAENAD Consortium. EAST-ADL Introduction – EAST-
ADL Overview. http://www.maenad.eu/public_pw/

conceptpresentations/1_Overview_EAST-ADL_Introduction_

2012.pdf, 2013. (accessed on September 25th, 2013).

[MAE13b] MAENAD Consortium. EAST-ADL Introduction – Rela-
tion to AUTOSAR. http://www.maenad.eu/public_pw/

conceptpresentations/2_RelationToAUTOSAR_EAST-ADL_

Introduction_2012.pdf, 2013. (accessed on September 23th,
2013).

[Mah14] Magdi S Mahmoud. Control and Estimation Methods over Commu-
nication Networks. Springer, 2014.

[May16] Albrecht Mayer. From Safe Driving to Safer Autonomous Driv-
ing. Embedded Multi-Core Conference. In EMCC 2016 Proceed-
ings, 2016.

[McD07] Ryan McDonald. A Study of Global Inference Algorithms in
Multi-Document Summarization. In European Conference on In-
formation Retrieval, pages 557–564. Springer, 2007.

[Mel15] Alessandra Melani. Global Scheduling in Multiprocessor Real-
Time Systems. http://retis.sssup.it/~giorgio/slides/

cbsd/mc3-global-2p.pdf, 2015. (accessed on July 20th, 2013).

http://www.maenad.eu/public_pw/conceptpresentations/1_Overview_EAST-ADL_Introduction_2012.pdf
http://www.maenad.eu/public_pw/conceptpresentations/1_Overview_EAST-ADL_Introduction_2012.pdf
http://www.maenad.eu/public_pw/conceptpresentations/1_Overview_EAST-ADL_Introduction_2012.pdf
http://www.maenad.eu/public_pw/conceptpresentations/2_RelationToAUTOSAR_EAST-ADL_Introduction_2012.pdf
http://www.maenad.eu/public_pw/conceptpresentations/2_RelationToAUTOSAR_EAST-ADL_Introduction_2012.pdf
http://www.maenad.eu/public_pw/conceptpresentations/2_RelationToAUTOSAR_EAST-ADL_Introduction_2012.pdf
http://retis.sssup.it/~giorgio/slides/cbsd/mc3-global-2p.pdf
http://retis.sssup.it/~giorgio/slides/cbsd/mc3-global-2p.pdf

Bibliography 165

[MFCM16] Lothar Michel, Torsten Flämig, Denis Claraz, and Ralph Mader.
Shared SW Development in Multi-Core Automotive Context. In
8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), 2016.

[MNBSL12] Aurélien Monot, Nicolas Navet, Bernard Bavoux, and
Françoise Simonot-Lion. Multisource Software on Multicore
Automotive ECUs — Combining Runnable Sequencing with
Task Scheduling. IEEE Transactions on Industrial Electronics,
59(10):3934–3942, 2012.

[Moy13] Bryon Moyer. Real World Multicore Embedded Systems. Newnes,
2013.

[MPS07] Burkhard Monien, Robert Preis, and Stefan Schamberger. Ap-
proximation Algorithms for Multilevel Graph Partitioning. In
Teofilo F Gonzalez, editor, Handbook of Approximation Algorithms
and Metaheuristics, chapter 60. Emerald Group Publishing Lim-
ited, 2007.

[NBN09] Farhang Nemati, Moris Behnam, and Thomas Nolte. Efficiently
Migrating Real-Time Systems to Multi-Cores. In 2009 IEEE Con-
ference on Emerging Technologies & Factory Automation, pages 1–8.
IEEE, 2009.

[Neu16] Moritz Neukirchner. Efficient Communication and Synchroniza-
tion in Multi-Core Systems. Embedded Multi-Core Conference.
In EMCC 2016 Proceedings, 2016.

[NNB10] Farhang Nemati, Thomas Nolte, and Moris Behnam. Blocking-
Aware Partitioning for Multiprocessors. Digitala Vetenskapliga
Arkivet, 2010.

[OG18] Maximilian Odendahl and Sebastian Gerstl. Soft-
waredesign für die AUTOSAR Adaptive Platform.
https://www.embedded-software-engineering.de/

softwaredesign-fuer-die-autosar-adaptive-platform-a-688631/,
2018. (accessed on 28th June, 2018).

[OLKY05] Won Hyun Oh, Jung Hee Lee, Hyoung Geun Kwon, and Hy-
oung Jin Yoon. Model-Based Development of Automotive Em-
bedded Systems: a Case of Continuously Variable Transmission
(CVT). In 11th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’05), pages 201–

https://www.embedded-software-engineering.de/softwaredesign-fuer-die-autosar-adaptive-platform-a-688631/
https://www.embedded-software-engineering.de/softwaredesign-fuer-die-autosar-adaptive-platform-a-688631/

166 Bibliography

204. IEEE, 2005.

[OO84] Karl J Ottenstein and Linda M Ottenstein. The Program Depen-
dence Graph in a Software Development Environment. In ACM
Sigplan Notices, volume 19, pages 177–184, 1984.

[Pat10] David Patterson. The Trouble with Multi-core. Spectrum, IEEE,
47(7):28–32, 2010.

[PD13] Frank Padberg and Oliver Denninger. Multicore-Softwarefehler
im Visier: Automatische Fehlererkennung in Entwürfen paral-
leler Programme. OBJEKTspektrum, 20(1):72–76, 2013.

[PH15] Uwe Pohlmann and Marcus Hüwe. Model-Driven Allocation
Engineering. In 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 374–384. IEEE, 2015.

[PKQ+14] Miloš Panić, Sebastian Kehr, Eduardo Quiñones, Bert Böddeker,
Jaume Abella, and Francisco Cazorla. RunPar: an Allocation Al-
gorithm for Automotive Applications Exploiting Runnable Par-
allelism in Multicores. In Proceedings of the 2014 International
Conference on Hardware/Software Codesign and System Synthesis,
page 29. ACM, 2014.

[QCLT11] T. N. Qureshi, D.-J. Chen, H. Lönn, and M. Törngren. From
EAST-ADL to AUTOSAR Software Architecture: A Mapping
Scheme. In Software Architecture, volume 6903, pages 328–335.
Springer, 2011.

[Qui16] Sophie Quinton. WATERS Community Forum. http://ecrts.

eit.uni-kl.de/forum/viewtopic.php?f=27&p=69#p79, 2016.
(accessed on March 23rd, 2016).

[Rad17] Franz-Josef Radermacher. Automotive Megatrends – Just a
Hype? Embedded Multi-Core Conference. In EMCC 2017 Pro-
ceedings, 2017.

[RBM06] Stephan Roser, Bernhard Bauer, and Jörg P. Müller. Model-
and Architecture-Driven Development in the Context of Cross-
Enterprise Business Process Engineering. In Services Computing,
2006. SCC’06. IEEE International Conference on, pages 119–126.
IEEE, 2006.

[RN16] Stefan Rathgeber and Michael Niklas. AUTOSAR meets new
Use Cases – The AUTOSAR Adaptive Platform. Embedded

http://ecrts.eit.uni-kl.de/forum/viewtopic.php?f=27&p=69#p79
http://ecrts.eit.uni-kl.de/forum/viewtopic.php?f=27&p=69#p79

Bibliography 167

Multi-Core Conference. In EMCC 2016 Proceedings, 2016.

[RTS16] Hans-Leo Ross, Frank Tränkle, and Stefan Schwarzkopf. Safety
Concept of Road Vehicles with System Controllers. Embedded
Multi-Core Conference. In EMCC 2016 Proceedings, 2016.

[Saa09] Christian Saad. Model Analysis Framework. http:

//www.informatik.uni-augsburg.de/en/chairs/swt/ds/

projects/mde/maf/, 2009. (accessed on July 20th, 2013).

[Saa15] Christian Saad. Data-flow based Model Analysis: Approach, Imple-
mentation and Applications. PhD thesis, Universität Augsburg,
June 2015.

[Sar87] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Ex-
ecution on Multiprocessors. PhD thesis, Stanford University, April
1987.

[SB13] Christian Saad and Bernhard Bauer. Data-Flow Based Model
Analysis and Its Applications. In Model-Driven Engineering Lan-
guages and Systems, pages 707–723. Springer, 2013.

[SBR10] Jörn Schneider, Michael Bohn, and Robert Rößger. Migration
of Automotive Real-Time Software to Multicore Systems: First
Steps Towards an Automated Solution. In 22nd EUROMICRO
Conference on Real-Time Systems, 2010.

[Sch15a] Benjamin Schatz. Challenge Multi-Core TCU: An Applied Ex-
ample of Multi-Core Migration. Embedded Multi-Core Confer-
ence. In EMCC 2015 Proceedings, 2015.

[Sch15b] Rolf Michael Schneider. The ARAMiS Automotive LSSI Demon-
strators and the Lessons Learned. Embedded Multi-Core Con-
ference. In EMCC 2015 Proceedings, 2015.

[Sch18] Christopher Schwager. Central Vehicle Computer: Achieving
Freedom From Interference by Temporal Software Separation.
Embedded Multi-Core Conference. In EMCC 2018 Proceedings,
2018.

[SDM+14] S. Schmidhuber, M. Deubzer, R. Mader, M. Niemetz, and J. Mot-
tok. Towards the Derivation of Guidelines for the Deployment of
Real-Time Tasks on a Multicore Processor. In Model-Based Safety
and Assessment, pages 152–165. Springer, 2014.

http://www.informatik.uni-augsburg.de/en/chairs/swt/ds/projects/mde/maf/
http://www.informatik.uni-augsburg.de/en/chairs/swt/ds/projects/mde/maf/
http://www.informatik.uni-augsburg.de/en/chairs/swt/ds/projects/mde/maf/

168 Bibliography

[Sei09] Michael Seibt. Architekturmodellierung mit EAST-ADL2 und
AUTOSAR. Hanser Automotive Spezial, 9:38–41, 2009.

[Sie16] Rudolf Sieber. Applying AUTOSAR in a Powertrain Dynamic
Architecture Using Multicore ECUs – Seamless Dynamic Be-
havior for Inhomogeneous Applications. Embedded Multi-Core
Conference. In EMCC 2016 Proceedings, 2016.

[Sin11] Purnendu Sinha. Architectural Design and Reliability Analy-
sis of a Fail-Operational Brake-by-Wire System from ISO 26262
Perspectives. Reliability Engineering & System Safety, 96(10):1349–
1359, 2011.

[SKK00] Kirk Schloegel, George Karypis, and Vipin Kumar. Graph Par-
titioning for High-Performance Scientific Simulations. Army High
Performance Computing Research Center, 2000.

[SKS10] Kathrin Danielle Scheidenmann, Michael Knapp, and Claus
Stellwag. Load Balancing in AUTOSAR-Multicore-Systemen.
WEKA Fachmedien GmbH, 2010.

[SMD+10] Angela C Sodan, Jacob Machina, Arash Deshmeh, Kevin Mac-
naughton, and Bryan Esbaugh. Parallelism Via Multithreaded
and Multicore CPUs. Computer, 43(3):24–32, 2010.

[SS13] Peter Sanders and Christian Schulz. Think Locally, Act Globally:
Highly Balanced Graph Partitioning. In Proceedings of the 12th
International Symposium on Experimental Algorithms (SEA’13), vol-
ume 7933 of LNCS, pages 164–175. Springer, 2013.

[SS15] Peter Sanders and Christian Schulz. KaHIP v1.00 — Karlsruhe
High Quality Partitioning User Guide. http://algo2.iti.kit.
edu/schulz/software_releases/kahipv1.00.pdf, 2015. (ac-
cessed on July 20th, 2016).

[SSH+16] Andreas Sailer, Stefan Schmidhuber, Maximilian Hempe,
Michael Deubzer, and Jürgen Mottok. Distributed Multi-Core
Development in the Automotive Domain – A Practical Compar-
ison of ASAM MDX vs. AUTOSAR vs. AMALTHEA. In ARCS
2016; 29th International Conference on Architecture of Computing
Systems; Proceedings of, pages 1–8. VDE, 2016.

[SSRB12] John A Stankovic, Marco Spuri, Krithi Ramamritham, and Gior-
gio C Buttazzo. Deadline Scheduling for Real-Time Systems: EDF

http://algo2.iti.kit.edu/schulz/software_releases/kahipv1.00.pdf
http://algo2.iti.kit.edu/schulz/software_releases/kahipv1.00.pdf

Bibliography 169

and Related Algorithms, volume 460. Springer Science & Business
Media, 2012.

[Ste16] Bärbel Steininger. Migration to Multi-Core Technology for Inno-
vative Powertrain Solutions. Embedded Multi-Core Conference.
In EMCC 2016 Proceedings, 2016.

[Sut05] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn To-
ward Concurrency in Software. Dr. Dobb’s Journal, 30(3):202–210,
2005.

[SVZ15] Bernhard Schätz, Sebastian Voss, and Sergey Zverlov. Automat-
ing Design-Space Exploration: Optimal Deployment of Auto-
motive SW-Components in an ISO26262 Context. In Proceedings
of the 52nd Annual Design Automation Conference, page 99. ACM,
2015.

[SWL+09] Chihhsiong Shih, Chien-Ting Wu, Cheng-Yao Lin, Pao-Ann Hsi-
ung, Nien-Lin Hsueh, Chih-Hung Chang, Chorng-Shiuh Koong,
and W.C. Chu. A Model-Driven Multicore Software Develop-
ment Environment for Embedded System. In Computer Software
and Applications Conference, 2009. COMPSAC ’09. 33rd Annual
IEEE International, volume 2, pages 261–268, 2009.

[Sym15] Symtavision GmbH. SymTA/S and TraceAnalyzer. https:

//www.symtavision.com/products/symtas-traceanalyzer/,
2015. (accessed on November 11th, 2015).

[SZ10] Jörg Schäuffele and Thomas Zurawka. Automotive Software En-
gineering. Springer DE, 2010.

[The15] The AMALTHEA4public Consortium. Deliverable: D3.1 – Anal-
ysis of State of the Art V&V Techniques, 2015.

[The16] The AMALTHEA4public Consortium. Deliverable: D2.2 – Con-
cept for Partitioning, Mapping, and Tracing for Multi- and
Many-core Systems, 2016.

[TIM09] TIMMO Project. TIMMO Website. https://itea3.org/

project/timmo.html, 2009. (accessed on March 7th, 2017).

[TIM10] TIMMO-2-USE. Timing Model – TOols, algorithms, lan-
guages, methodology, USE cases. https://itea3.org/project/
timmo-2-use.html, 2010. (accessed on November 16th, 2015).

https://www.symtavision.com/products/symtas-traceanalyzer/
https://www.symtavision.com/products/symtas-traceanalyzer/
https://itea3.org/project/timmo.html
https://itea3.org/project/timmo.html
https://itea3.org/project/timmo-2-use.html
https://itea3.org/project/timmo-2-use.html

170 Bibliography

[Tim15] Timing-Architects Embedded Systems GmbH. Timing Ar-
chitects Tool Suite. http://www.timing-architects.com/

ta-tool-suite/simulator/, 2015. (accessed on November 11th,
2015).

[Tip95] Frank Tip. A Survey of Program Slicing Techniques. Journal of
Programming Languages, 3(3):121–189, 1995.

[vH18] Hermann von Hasseln. Migration of Legacy Software to Multi-
core: LET as Enabler. Embedded Multi-Core Conference. In
EMCC 2018 Proceedings, 2018.

[WAT16] WATERS – 7th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems.
FMTV Verification Challenge. https://waters2016.inria.fr/

challenge/, 2016. (accessed on March 23rd, 2016).

[WGG10] Klaus Wehrle, Mesut Günes, and James Gross. Modeling and Tools
for Network Simulation. Springer Science & Business Media, 2010.

[Wir11] Loring Wirbel. Embedded Multicore Goes Mainstream.
http://www.designnews.com/author.asp?section_id=1386&

doc_id=231676, 2011. (accessed on July 15th, 2013).

[WMM+13] Ernest Wozniak, Asma Mehiaoui, Chokri Mraidha, Sara Tucci-
Piergiovanni, and Sébastien Gerard. An Optimization Approach
for the Synthesis of AUTOSAR Architectures. In 2013 IEEE 18th
Conference on Emerging Technologies & Factory Automation (ETFA),
pages 1–10. IEEE, 2013.

[Yip17] Eugene Yip. Pulling the Trigger – Practical Considerations When
Applying the Time-Triggered Approach to Embedded Multi-
Core Systems. Embedded Multi-Core Conference. In EMCC
2017 Proceedings, 2017.

[YPS13] J Youn, I Park, and M Sunwoo. Heuristic Resource Allocation
and Scheduling Method for Distributed Automotive Control
Systems. International Journal of Automotive Technology, 14(4):611–
624, 2013.

[ZG11] Ming Zhang and Zonghua Gu. Optimization Issues in Map-
ping AUTOSAR Components to Distributed Multithreaded Im-
plementations. In 2011 22nd IEEE International Symposium on
Rapid System Prototyping, pages 23–29. IEEE, 2011.

http://www.timing-architects.com/ta-tool-suite/simulator/
http://www.timing-architects.com/ta-tool-suite/simulator/
https://waters2016.inria.fr/challenge/
https://waters2016.inria.fr/challenge/
http://www.designnews.com/author.asp?section_id=1386&doc_id=231676
http://www.designnews.com/author.asp?section_id=1386&doc_id=231676

Bibliography 171

[ZZZ+12] Qi Zhu, Haibo Zeng, Wei Zheng, Marco DI Natale, and Al-
berto Sangiovanni-Vincentelli. Optimization of Task Allocation
and Priority Assignment in Hard Real-Time Distributed Sys-
tems. ACM Transactions on Embedded Computing Systems (TECS),
11(4):85, 2012.

Listings

173

List of Figures

1.1 Basic structure of the “Wheel Speed System” example 13
1.2 Overview of the approach and objectives 20

2.1 The layered architecture of AUTOSAR (from [AUT14e]) 28
2.2 Abstraction levels of EAST-ADL (from [BLH+13]) 32
2.3 Possible conflicting scenario for a multiple-IEU system 35
2.4 The Wheel Speed System with AUTOSAR semantics 37
2.5 Continental’s “EMS2” as clustered graph (from [Hob12]) . . . 42

3.1 Overview of the HTG parallelization approach (from [Cor13]) 52

4.1 The WSS from SW-C perspective (without IRVs) 58
4.2 Overview of the migration process 59
4.3 The validated Wheel Speed System 76
4.4 The simplified WSS for calculating possible sequences 79
4.5 Model properties used for the automated partitioning search . 88
4.6 The REs of the WSS distributed into two tasks 91

5.1 Filtering features of “AutoAnalyze” 109
5.2 “AutoAnalyze” visualizing the “Brake by Wire” example . . . 110
5.3 “AutoAnalyze” showing a suggested partition for the

“AMALTHEA DemoCar” . 111
5.4 “AutoAnalyze” showing a mapping solution for the

“AMALTHEA DemoCar” on a predefined target platform . . 112
5.5 Test run results for the “AMALTHEA DemoCar” 118
5.6 Test run results for the “Continental EMS” 119

6.1 Categorization of AUTOSAR software platforms (from [RN16])141
6.2 The WSS validated with ACs, STCs and LTCs 145
6.3 The WSS with an imposed “PEOC” 148

175

List of Tables

3.1 Overview and comparison of comprehensive parallelization
approaches . 54

4.1 Lineup of required information for the specific working steps 61

5.1 Lineup of the different experiments performed within the
scope of this case study . 124

5.2 Lineup of the different optimization goals stated in Table 5.1 . 125
5.3 Results of the performed experiments 129

6.1 Comparison of AUTOSAR’s two software platform instances
“Classic Platform” and “Adaptive Platform” 139

6.2 Example rule-set for data validation in AUTOSAR 143

177

Glossary

ABS Anti-lock Braking System. 5, 12, 36, 71, 75, 79, 90

AC Age Constraint. 71, 73–75, 82–84, 95, 105, 106, 142–146, 175

AND Average Node Degree. 81, 86, 87

Artop AUTOSAR Tool Platform. 33, 59, 60, 104

ASL Allocation Specification Language. 46

ASW Application Software. 27, 30, 36

ATP Automatic Task Parallelization. 117

AUTOSAR AUTomotive Open System ARchitecture. iii–vi, 10, 15, 16, 26–
33, 36–38, 45, 47, 49, 55, 58, 60–63, 66, 69–71, 82, 83, 94–97, 99, 103, 104,
107, 113, 115, 119, 122–124, 132, 134, 138–141, 143, 144, 150, 175, 177

BD Backward Dependency. 72–74

BSW Basic Software. 27, 30, 36

CLD Cross-Linking Degree. 81, 86, 88, 89

CP Critical Path. 49, 50, 54, 93

EAST-ADL Electronic Architecture and Software Tools – Architecture De-
scription Language. 31, 32, 175

ECU Electronic Control Unit. iii, v, 2–6, 10, 11, 26–29, 36, 40, 41, 45–47,
56–60, 69, 70, 72, 73, 95, 132, 137

EDF Earliest Deadline First. 49, 54, 96, 115, 119, 120

EMS Engine Management System. 3, 6, 8–11, 40, 41, 51, 63, 87–89, 107, 113,
114, 117–120, 122–124, 126–128, 132, 175

EOC Execution Order Constraint. 69, 71, 73–75, 79, 82–84, 89, 90, 95, 104–
106, 142–147

ESS Earliest Start Scheduling. 49, 54

EU Execution Unit. 33, 34, 38, 51, 62, 68, 132, 134, 137, 147

179

180 Glossary

EvTrC Event Triggering Constraint. 144, 146

ExTC Execution Time Constraint. 144–146

FD Forward Dependency. 72, 74

GA Genetic Algorithm. 45, 47, 48, 54, 100, 116, 128

HLCM High-Level Cost Model. 48, 54

HTG Hierarchical Task Graph. 48, 52, 175

ICC Inter-Core Communication. 8, 93, 98, 116, 117, 120, 125, 128

IEU Independent Execution Unit. iii–vi, 3–8, 10, 12, 14–17, 19, 27, 29, 31,
33–36, 38, 39, 41, 46, 47, 50, 51, 55–58, 62, 65, 73–75, 77–82, 90–97, 104,
106, 107, 120, 132, 134, 135, 137, 142, 145–151, 175

ILP Integer Linear Programming. 45, 46, 48, 50, 54

IRV Inter-Runnable Variable. 58, 70, 175

ISR Interrupt Service Routine. 98, 102

KaHIP Karlsruhe High Quality Partitioning. 44

LET Logical Execution Time. 30, 51, 54, 94, 150, 151

LTC Latency Timing Constraint. 144–147, 175

MAF Model Analysis Framework. 104, 106

MILP Mixed Integer Linear Programming. 45, 48

MLP Multi-Level Partitioning. 40, 41, 44, 54, 64, 84

mNRT maximum Normalized Response Time. 98, 116, 117, 125, 128

OCL Object Constraint Language. 45

OEM Original Equipment Manufacturer. 26, 136–138

OS operating system. 27, 28, 30, 61, 64, 66, 122, 123

OTC Offset Timing Constraint. 144, 146

Glossary 181

PA Process Allocation. 116, 117

PCP Priority Ceiling Protocol. 30

PEOC Parallel EOC. 147, 148, 175

PSOA Periodic Stimulus Offset Assignment. 117

RE Runnable Entity. 10, 27–29, 31, 36, 37, 41, 42, 45–47, 49–51, 54, 58, 61–64,
69–75, 77–86, 91, 93–96, 99, 102, 104–107, 113–115, 119, 120, 122, 123,
126, 139, 142–149, 175

REI Runnable Entity Instance. 58, 69, 70, 72, 74, 75, 83, 86, 87

RS Runnable Sequencing. 116, 117

RTE Runtime Environment. 27

SER Single-Entry Region. 86

SERA Single-Entry Region Analysis. 81, 84, 86, 88, 89, 103, 106, 107, 114,
128

SMDS Software Methodologies for Distributed Systems. ix, 21

STC Synchronization Timing Constraint. 144–147, 175

SW-C Software Component. 27–31, 36, 37, 45, 47, 58, 61, 62, 69, 70, 73, 90,
94, 95, 105, 106, 113, 120, 122, 123, 142, 143, 175

TATS TA Tool Suite. 60, 95, 115, 116, 120, 122, 128

TE Triggering Event. 149

TIC Timed Implicit Communication. 51, 54

TS-EM Task Splitting with Enforced Migration. 116, 117

TS-IPA Task Splitting with Inter Process Activation. 116, 117

V&V Verification and Validation. 5, 68, 138, 140, 150

VA variable access. 33, 35, 62, 64, 70, 72, 82, 83, 95, 106, 113, 114

VFB Virtual Functional Bus. 27

WCET Worst Case Execution Time. 5, 51

182 Glossary

WSS Wheel Speed System. 12, 13, 36, 37, 58, 75, 76, 78, 79, 90, 91, 145, 147,
148, 175

	Introduction
	Motivation and Context
	Complexity Rise
	The Beginning Multi-Core Era
	Multi-Core Potential and Use Cases
	Migration Issues
	Conditions in the Automotive Sector
	Arising Needs and Consequences
	Running Example

	Problems and Challenges
	Identification of Vital Elements as Analysis Basis
	Correctness and Data Consistency
	Partitioning, Mapping and Granularity

	Objectives
	Publications

	Basics
	Concepts and Techniques
	AUTOSAR
	Artop
	Data Dependency Analysis on Models
	Conflicts and Backward Dependencies
	Handling Upcoming Multiplicities
	Starting Conditions
	Refined Example

	Aggravating Factors
	From Single Chains to Multiple Paths
	Preservation of Freedom
	Complexity Rise Aspects
	Optimal Partitions and Strategies
	Adjusted Partitioning
	Numerousness of Possible Distributions
	Task Embedding and Scheduling

	Related Work
	Partitioning Frameworks
	Limited Approaches
	Optimization of AUTOSAR Synthesis Process
	Allocation with OCL
	Mapping Rule Set
	Mapping Optimization Issues
	Partition and Sequencing Heuristics

	Comprehensive Approaches
	Hierarchical Task Graphs and Cost Models
	AMALTHEA and Critical Path
	RunPar and Timed Implicit Communication

	Overview and Comparison

	Approach
	Principles & General Approach
	Principles
	Overview

	Data Dependency Analysis, Verification & Data Validation
	General Approach
	Principles & Steps
	Data Dependency Analysis
	Timing Constraints
	Verification & Data Validation

	Partitioning & Mapping
	Conditions & Approach
	Partitioning
	Mapping

	Simulation & Optimization
	Prerequisites & Preparations
	Simulation
	Optimization

	Case Studies & Evaluation
	Realization
	Bringing the Principles to Fruition
	Graphical Representation
	Search for Partition & Mapping Solution
	Conclusion

	Real World Examples
	EMS Characteristics
	Applied Metrics
	Analysis, Partitioning & Mapping
	Scheduling & Simulation
	Optimization
	Results & Evaluation
	Conclusion

	In-Depth Optimizations and Evaluation
	Setup
	Results
	Evaluation

	Conclusion
	Summary
	Achievement of Objectives
	Identification of Vital Elements as Analysis Basis
	Correctness and Data Consistency
	Partitioning, Mapping and Granularity

	Outlook
	Main Drivers
	Heterogeneous Architectures
	Distributing and Merging Applications
	Model-Based Collaborative Development
	Adaptive AUTOSAR
	Dynamic Integration, Allocation and Scheduling

	Future Work
	Extending Existing Functionality
	Including Untapped Timing Constraints
	Discussing New Constraints
	The Multi-Rate Problem
	Logical Execution Time

	Annex
	Bibliography
	List of Listings
	List of Figures
	List of Tables
	Glossary

