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for the current-voltage behavior
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The current-voltage and the conductance-voltage characteristics are analyzed for a particular type of
molecular wire embedded between two electrodes. The wire is characterized by internal molecular
units where the lowest occupied molecular orbital�LUMO� levels are positioned much above the
Fermi energy of the electrodes, as well as above the LUMO levels of the terminal wire units. The
latter act as speciÞc intermediate donor and acceptor sites which in turn control the current
formation via the superexchange and sequential electron transfer mechanisms. According to the
chosen wire structure, intramolecular multiphonon processes may block the superexchange
component of the interelectrode current, resulting in anegative differential resistanceof the
molecular wire. A pronounced currentrecti�cation appears if� i� the superexchange component
dominates the electron transfer between the terminal sites and if� ii � the multiphonon suppression of
distant superexchange charge hopping events between those sites is nonsymmetric. ©2007
American Institute of Physics. �DOI: 10.1063/1.2768521�

I. INTRODUCTION

The progress achieved during the past decades in apply-
ing scanning probe techniques, as well as the break junction
methods, facilitated current measurements through single
molecules. They could be demonstrated to operate as mo-
lecular switches,1,2 diodes,3Ð5,7 transistors,6Ð9 sensors,10

memory storage devices,11,12 etc. The current through a
single molecule is controlled by a whole set of different fac-
tors: the electronic structure of the molecule, the type of
molecule-electrode coupling, and the position of the lowest
unoccupied/highest occupied molecular orbitals�LUMO/
HOMOs� with respect to the Fermi levels of each electrode,
to name a few.13Ð15 Electronic structure calculations shed
valuable light on the electronic spectrum, the charge distri-
bution, and the density of states of the molecule-electrodes
system.16Ð23

An important theoretical tool for computing the current
through a single molecule is given by the Landauer theory,
originally developed in mesoscopic physics.24,25 Its applica-
bility to the description of charge transmission through a
single molecule embedded in between two electrodes, how-
ever, is rather restricted, even though some recent modiÞca-
tions also account for molecular vibrational degrees of
freedom.26Ð35 The restricted practicability is caused by the
fact that the Landauer theory only describes the direct�tun-
nel� route of interelectrode charge transfer.

Meanwhile, the so-called sequential route has been also
considered, accounting for relaxation processes in the course
of charge transmission through the molecule or the molecular

wire.36Ð41 A comprehensive description of charge transmis-
sion becomes possible either in the framework of the non-
equilibrium GreenÕs function�NGF� technique or by use of a
corresponding density matrix theory. Using the Þrst tech-
nique, particular self-energy expressions may be introduced
to account for the different types of vibrational coupling to
the charge transmission process through the
molecule.8,27,35,42Ð45 Charge transmission including multiples
of vibrational quanta�multiphonon processes�, however, can
advantageously be considered when using the density matrix
method. Such an approach has been already utilized by the
authors before to achieve a uniÞed description of bridge-
mediated donor-acceptor electron transfer46Ð49 �ET� as well
as electron transmission through single molecules and mo-
lecular wires.41,50Ð54

The NGF method combined with density functional
theory offers a atomic structure based approach for comput-
ing the conductance of single molecules and molecular
wires. So far, however, there remain numerous effects which
can only be accounted for in the framework of a semiphe-
nomenological description, for example, the coupling of mo-
lecular degrees of freedom to a dissipative environment. In
this spirit, the present work utilizes the density matrix
method to elucidate how terminal groups of a molecular wire
may dominate its current-voltage� I-V� characteristics. To-
wards this goal, we will consider a model of a molecular
wire which consists of a terminal donor and acceptor group
as well as of an internal molecular bridge. Such a system has
been already investigated earlier in Refs.36, 55, and56 how-
ever, exclusively concentrating on the superexchange elec-
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tron pathway between the terminal groups�cf. Ref. 36�. It
was possible to explain the relation between the differential
resistance and the superexchange donor-acceptor transfer
rate.55 The inßuence of the donor-acceptor superexchange
interaction on theI-V characteristics has been studied in Ref.
56.

In contrast to these studies we will investigate the nona-
diabatic ET regime. It will be demonstrated that the current
formation strongly depends on the relation between thecon-
tact transfer rates�electron hopping between the electrodes
and the adjacent terminal sites of the wire� and the overall
transfer rate characterizing the distant single step ET be-
tween the terminal sites. The overall transfer rate includes
superexchange as well as sequential contributions. We will
analyze in detail the transmission regimes characterized by
large and small contact transfer rates�weak and strong cou-
pling cases, respectively�. Here, it has been found that for a
weak coupling�when the limiting step of transmission is
caused by the contact transfer rates�, a rectiÞcation effect is
not signiÞcant even at the resonant regime of transmission.
At a strong coupling to the electrodes, however, the molecu-
lar wire may act as a rectiÞer. This is due to the fact that the
limiting step of ET, now, is determined by the distant hop-
ping between the terminal sites. If the distant hopping is
mainly determined by the superexchange coupling between
the terminal sites, then the rectiÞcation strongly depends on
the relation between the voltage switches at resonant trans-
mission and the voltages at which the overall transfer rates
achieve their maximum.

II. MODEL AND BASIC EXPRESSION
FOR THE CURRENT

ET through a molecular wire, cf. Fig.1�a�, is of the
nonadiabatic type if the characteristic time� hop of electron
jumps between different sites of electron localization is much
larger than the intrasite vibrational relaxation time� rel, i.e.,

� hop � � rel. �1�

In such a case, the ET proceeds against the background of
fast relaxation processes, and it is thus most appropriate to
describe ET in the Òleft electrode-molecular wire-right elec-
trodeÓ�L-MW-R� system in using the basis of localized mo-
lecular electron-vibrational states. This tight-binding-type
description of the molecular wire should at least comprise a
single electronic level and a single active vibrational coordi-
nate per site.

A. Hamiltonian of the L-MW-R system

Denoting the vibrational levels of thenth site by� n and
introducing the notation�n� n� as the respective electron-
vibrational state, the wire Hamiltonian takes the following
form:

HW = �
n=0

N+1

��� n

� n� n
�n� n�	 n� n�

+ �
� n,� n+1

�
� n

�0� ,� n+1
�0�

�� 1 • � n,N+1�V� n� n+1
�0� ,� n

�0� � n+1

� �n� n��n + 1� n+1
�0� �	 n� n

�0��	n + 1� n+1� + H.c.�
. �2�

The expression contains the transfer couplingV� n�
n+1
�0� ,�

n
�0� � n+1

,
which is responsible for electron transitions between the
electron-vibrational states of the neighboring sitesn+1 and
n. Moreover, the�n� n

�0�� are the electron-vibrational states of
site n at the absence of the transferred electron�empty site�.
Note here the use of the superscript 0 to indicate the states
related to the empty sites. The energy of then� n-th electron-
vibrational state�at the presence of the transferred electron�
reads

� n� n
= � n + � � n�1/2 +� n� . �3�

The energy� n is deÞned by the minimum of the respective
potential energy surface, and� n is the corresponding vibra-
tional frequency. The electron-vibrational energies of siten
at the absence of the transferred electron are denoted as

� n� n
�0�

�0� = � n
�0� + � � n�1/2 +� n

�0�� . �4�

Consequently, the difference

En = � n • � n
�0� �5�

gives the electron afÞnity of siten �note our use of the Hol-
steinÕs model57 where the vibrational frequencies� n are in-
dependent on the charging of the site�.

The electronic states which belong to the conduction
band of the electrodes=L,R are denoted as�sk	 � with the
electronic quasi-wave-vectork and the spin quantum number
	 . Since we focus on transitions between nonmagnetic elec-
trodes at the absence of a magnetic Þeld, the single-electron
energyEsk becomes independent on	 . Therefore, the elec-
tronic Hamiltonian of thesth electrode reads

FIG. 1. Left electrode-molecular wire-right electrode system�panel a� and
the related energy level scheme�panel b�. The electron afÞnities
E1,E2, . . . ,EN, Eq. �5�, of the internal wire units are smaller than the afÞni-
ties E0 and EN+1 related to the terminal units. Therefore, the latter can be
considered as the donor and the acceptor site, respectively, connected by the
bridge of internal wire units.

084709-2 Petrov et al. J. Chem. Phys. 127, 084709 �2007�
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Hs = �
k	

Esk�sk	 �	 sk	 � �s= L,R� , �6�

and the coupling of thesth electrode with the molecular wire
can be written as

VsW= �
nk	

�
� n� n

�0�

�Vsk� n
�0� ,n� n

� � s,L� n,0 + � s,R� n,N+1��sk	 �

� �n� n
�0��	 n� n� + H.c.� . �7�

Transitions from the state�n� n� to a band state�sk� of thesth
electrode and the� n

�0�-th vibrational state of the empty siten
are characterized by the transfer matrix elementVsk�

n
�0� ,n� n

. In
what follows, we apply the Condon approximation to obtain

V� n� n+1
�0� ,� n

�0� � n+1
� Vn	 � n+1

�0� �� n+1�	 � n�� n
�0�� ,

�8�
Vsk� n

�0�n� n
� Vsk	 � n

�0��� n� .

Here,Vn is the electronic transfer coupling between the mo-
lecular orbitals�MOs� of the internal wire siten and n+1,
while Vsk describes the coupling between thekth conduction
band state of electrodes and the MO of the opposite terminal
wire site�cf. Fig. 1�b��. 	 � n

�0� � � n� denotes the overlap integral
between the vibrational wave functions of the empty and the
singly charged state of siten. The expressions�2�, �6�, and
�7�, determine the desirable electron-vibrational Hamiltonian
of the L-MW-R system,

H = �
s=L,R

�Hs + HsW� + HW. �9�

B. Hopping current at negligible bridge population

In order to derive an analytic expression for the current
through a molecular wire, we start out from the general cur-
rent formula,

I� t� = • e�
	

N� L	 � t� , �10�

where e
 0 denotes the absolute value of electron charge,
andN� L	 � t� =� kP� Lk	 � t� is the time derivative of the total num-
ber of electrons in the left electrode with spin	 . The quan-
tity � 	 N� L	 � t� =• � 	 N� R	 � t� is associated with a net interelec-
trode charge ßow. The latter appears as a kinetic process in
the L-MW-R system and includes long-range tunnel and
short-range sequential charge hoppings. There exists a uni-
Þed description of such complicated kinetic processes.41,52,53

The considerations following hereafter are based on this
method. In using the Hamiltonian, Eq.�9�, we are able to
derive nonlinear kinetic equations for the electrode conduc-
tion band populationsPLk	 � t� and thus for the charge ßow
� 	 N� L	 � t� . In what follows, the conductive band is considered
in the so-called wideband limit. This simpliÞcation allows
one to reduce the emerging nonlinear equations for the
PLk	 � t� to linear ones�for more details we refer the readers
to Ref. 50�. Note, however, that the precise form of these
equations depends on the strength of Coulomb interaction
within the L-MW-R system. Here, we restrict ourself to the
case of a strong Coulomb interaction between the transferred

electrons occupying the wire in the course of transmission.
In our context this means that in a given voltage region only
a single extra electron can be captured by the wire. For such
a single-electron transfer the following normalization condi-
tion has to be satisÞed for the wire state populations:

Pempty� t� + �
n=0

N+1

�
	

Pn	 � t� = 1. �11�

The populationPempty� t� matches the probability to Þnd the
wire without an extra�transferred� electron. In contrast, the
populationPn	 � t� gives the probability that the wire unitn
contains a single extra electron�with spin projection	 �
whereas other wire units are free from extra electrons. With
the introduction of the wire populations we may derive

N� L	 � t� = • � LPempty� t� + � • LP1	 � t� . �12�

The contact transfer rates� L and � • L characterize the elec-
tron hopping between the terminal unit 0 and the adjacent
electrodeL, cf. Fig. 2�a�. Analogously, one introduces the
contact transfer rates� R and � • R characterizing an electron
hopping between the terminal unitN+1 and the adjacent
electrodeR. Based on the uniÞed description of ET processes
we can also derive the kinetic equations for the wire popu-
lationsPn	 � t� , �n=0,1, . . . ,N+1� , and, additionally, all char-
acteristic hopping rates indicated in the scheme of Fig.2�a�.
The rate constantsk1

�sup� � k0N+1 and k2
�sup� � kN+10 character-

ize the distant electron hopping between the terminal units 0
and N+1, while the rate constants� 0� k01, � � knn+1, � N
� kNN+1, 
 0� k10, 
 � kNN+1, and 
 N� kN+1N describe hop-
ping transitions between neighboring units.

We next concentrate on such a transfer regime at which
the population of any internal wire unit remains negligibly
small during the charge transmission. Consequently, this
bridge-assisted transmission regime is met if

FIG. 2. Kinetic schemes of electron transmission through a molecular wire.
If the population of the internal wire sites1,2, . . . ,N is small a complete
hopping process in theL-MW-R system�panel a� can be reduced to a much
more simple hopping process with the participation of the terminal sites 0
and N+1 only. In the reduced scheme�panel b�, the hopping transition
between terminal sites is characterized by the overall transfer ratesK1 and
K2, including sequential and superexchange contributions.

084709-3 Charge transmission through a molecular wire J. Chem. Phys. 127, 084709 �2007�
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Pn	 � t� � 1 �n = 1,2, . . . ,N� . �13�

The necessary and sufÞcient conditions to reach such a re-
gime has been formulated in prior work�see Ref.47�. In the
present notation, these conditions imply the inequalities


 0 � �N/2� � 0, � N � �N/2� 
 N. �14�

If these inequalities, as well as the inequality�13�, are ful-
Þlled, the kinetics of nonadiabatic charge transfer within the
L-MW-R system�cf. Fig. 2�a�� is reduced to a more simple
transfer process depicted in Fig.2�b�. In this regime, the set
of N+3 kinetic equations for all wire populations is reduced
to the set of equations for only three populations, reading

P� empty� t� = • 2 � � L + � R�Pempty� t� + �
	

� • LP0	 � t�

+ �
	

� • RPN+1	 � t� ,

P� 0	 � t� = • � � • L + K1�P0	 � t� + � LPempty� t� + K2PN+1	 � t� ,

�15�

P� N+1	 � t� = • � � • R + K2�PN+1	 � t�

+ � RPempty� t� + K1P0	 � t� .

In line with Eqs.�11� and �13� these equations are coupled
by a simple normalization condition,

Pempty� t� + �
	

�P0	 � t� + PN+1	 � t�� 
 1. �16�

Note the appearance of the overall transfer ratesK1 andK2,
which, in fact, include the superexchange and the sequential
contributions,58

K1�2� = k1�2�
�sup� + k1�2�

�seq� . �17�

Here, the superexchange rate constantsk1
�sup� and k2

�sup� de-
scribe single step electron jumps between the terminal wire
units. They decrease exponentially with increasing wire
length, see below. The sequential rate constantsk1

�seq� and
k2

�seq� include the electron jumps between the neighboring
wire units. For a wire with a regular spatial arrangement of
its internal units, one Þnds

k1
�seq� = � 0�

N•1 � N/S, k2
�seq� = 
 0


N•1 
 N/S, �18�

where

S= � N� N•1 + 

 N•1 + � N
 0� �N • 2 � , �19�

and

� �M� � � �
 �M/2sinh� � �M + 1��

sinh�
�e� = � � /
 � . �20�

Since we are exclusively interested in a description of the
stationary transmission regime, the set of kinetic equations
�Eq. �15�� is solved for P� empty� t� =0 and P� 0	 � t� =P� N+1	 � t�
=0. With the use of the normalization condition�16�, we
obtain

Pempty= � � L� R + � • LK1 + � • RK2� /D,

P0 � P0� = P0� = � � L� • R + � � L + � R�K2� /D, �21�

PN+1 � PN+1� = PN+1� = � � L� • L + � � L + � R�K1� /D,

where

D = � L� R + � • L�2� R + K2� + � • R�2� L + K1�

+ 2� � L + � R�� K1 + K2� . �22�

Now, based on Eqs.�10� and�12�, one can derive an analytic
expression for the stationary current,

I = I02� � � � LPempty• � • LP0� , �23�

or in an equivalent form,

I = • I02� � � � RPempty• � • RPN+1� . �24�

Note here the introduction of the quantityI0� � e/ � � �
� 1 eV� 77.5 � A. The form of the current expression given
in Eq. �23� is more suitable to describe the current formation
at V� 0. Likewise, the preferable form is Eq.�24� if one
analyzes theI-V characteristics atV� 0.

C. Transfer rates and rate constants

1. Transfer rates

In the case of the tight-binding model where the
L-MW-R Hamiltonian is speciÞed by Eq.�9�, we Þnd the
following expression for a contact electrode-wire transfer
rate:

� s =
1

�
�

• �

+�

dE� s�E� fs�E • � s�� FC�s� n�E� . �25�

Note that n=0 if s=L, and n=N+1 if s=R. In Eq. �25�,
� s�E� =2� � k�Vsk�2� �E• Esk� deÞnes the width parameter that
determines the broadening� � s/2� of the level belonging to
the terminal site adjacent to thesth electrode, andfs�E• � s�
denotes the Fermi distribution for the corresponding elec-
trode with � s being the chemical potential.�FC�s� n�E�
=� � n,�

n
�0�	 � n� � n

�0��2W�� n
�0�� � �E• En• � � n� � n• � n

�0��� is the
Franck-Condon factor associated with electron transition
from the s electrode to the respective terminal site. It con-
tains an equilibrium distribution function with respect to the
electron-vibrational states of the uncharged siten, W�� n

�0��
=exp�• � � n� n

�0� /kBT� / � �
n
�0� exp�• � � n� n

�0� /kBT�. The expres-
sion for the contact wire-electrode transfer rate� • s follows
from Eq. �25�. Here, one only has to replacefs�E• � s� by
1• fs�E• � s� and the Franck-Condon factor�FC�s� n�E� by
�FC�n� s�E� , related to an electron transition from then-th
terminal site to the adjacent electrodes. The difference be-
tween the �FC�s� n�E� and �FC�n� s�E� is caused by the
electron-vibrational distribution function. The�FC�n� s�E�
are deÞned by theW�� n� .

An analytic calculation of the contact transfer rates� s
and � • s is rather complicated, but can be performed for a
concrete model of a thermal bath. One expression suitable
for further analysis can be taken from Ref.53. The corre-
sponding derivation is based on the wideband approxima-
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tion, at which the width parameter� s displays a negligible
dependence on the transmission energyE. Using this same
approximation, one Þnds

� • s = e� Es/kBT� s, � s =
1

�
� sFs, �26�

where we have introduced the vibrational factor

Fs = 2� �
� n,� n

�0�

	 � n�� n
�0��2W�� n

�0��nF� � Es + � � n� � n • � n
�0��� ,

�27�

with

nF� � Es + � � n� � n • � n
�0���

=
1

exp� � Es + � � n� � � n • � n
�0��� /kBT� + 1

�28�

being the particular distribution function. In Eqs.�26� and
�28�, the energy gaps between the terminal site levels and the
respective Fermi levels of the electrodes are deÞned as

� EL = E0 • � L = � EL�0� • eV� L,
�29�

� ER = EN+1 • � R = � ER�0� + eV� R.

For the sake of deÞniteness, we suppose that the left elec-
trode is grounded in such a manner that� L=EF and � R
=EF• eV. In Eq. �29�, � EL�0� =E0�0� • EF and � ER�0�
=EN+1�0� • EF are the respective unbiased gaps�for identical
terminal units we haveEN+1�0� =E0�0� and thus � ER�0�
=� EL�0�� . At a small rearrangement of the nuclear equilib-
rium conÞgurations upon a recharging of the terminal
groups, one may set	 � n� � n

�0�� � � � n,�
n
�0�. This approximation

reduces the vibration factor, Eq.�27�, to the simple form
Fs� 2� nF� � Es� and, therefore,

� L�R� =
1

�
� L�R�nF� � EL�R�� ,

�30�

� • L�• R� =
1

�
� L�R��1 • nF� � EL�R��� .

These simpliÞed forms of the contact transfer rates, Eq.�30�,
contain distribution functions with the electronic gaps�Eq.
�29��. The latter are depicted with Fig.3.

2. Site-to-site rate constants

Apart from site-to-electrode electronic gaps�Eq. �29��
there exist site-to-site electronic energy gaps�cf. Eq. �29��.
They are deÞned by the relations, cf. also Fig.3,

� E1 = E1 • E0 = � E1�0� • eV� M ,

� EM = En • En+1 = eV� M �n = 1, . . . ,N� , �31�

� EN = EN • EN+1 = � EN�0� + eV� M .

These gaps refer to the levels belonging the neighboring wire
sites. Here, � E1�0� � E1�0� • E0�0� and � EN�0� � EN�0�
• EN+1�0� denote the unbiased intersite gaps�notably, for a
regular wire and identical terminal units, we haveE1�0�
=EN�0� and thus� EN�0� =� E1�0�� . In Eqs.�29� and�31�, the
parameters� L � � L / � , � R� � R/ � , and� M � � M / � deÞne the
voltage induced shift of each level. These parameters are
determined by the quantities� � � L+�N+1� � M +� R with � L
� lL / � L, � M � l / � M, � R� lR/ � R, which, in turn, depend on the
electrode-terminal site distanceslL and lR as well as on the
intersite distancesl �� L�R� and� M are the permittivities of the
medium surrounding the electrodes and the molecular wire,
respectively,59,60 cf. also Fig. 1�a��. The energy gaps, Eq.
�31�, determine the following relation between the site-to-
site hopping rate constants:

� 0 = 
 0 exp�• � E1/kBT� ,


 N = � N exp�• � EN/kBT� , �32�


 = � exp�• � EM/kBT� .

According to the chosen Condon approximation, each site-
to-site rate takes the formkmn=�2� / � ��Vmn�2�FC�mn, where
Vmn is the electronic transfer matrix element that couples the
sites m and n while �FC�mn is the nuclear Franck-Condon
factor for them� n electronic transition.61,62 We next sup-
pose that for each electronic transitionm� n, only a single
vibrational coordinate with frequency� �mn� is involved.
Thus, one can employ the expression due to Jortner for the
Franck-Condon factor,63 i.e.,

�FC�mn=
1

� � �mn� � mn,

�33�

� mn= exp�• Smn coth
� � �mn�

kBT

�1 + n� � �mn��

n� � �mn��
�� mn/2

� I �� mn�
�2Smn�n� � �mn��� 1 + n� � �mn���� 1/2� .

Here, I � �z� denotes the modiÞed Bessel function,n� � �
=�exp� � � /kBT� •1 � •1 is the Bose distribution function,
and we introducedSmn� � mn/ � � �mn�, with � mn being the
reorganization energy of them� n transition and � mn
� � Em• En� / � � �mn�.

We now present an analytic expression for the forward
rates. Note also that the backward rates are connected with
the forward rates by the relations�32�. The forward site-to-
site rate constants read

FIG. 3. Energy gaps according to Eqs.�29�Ð�37� for a regular molecular
wire with two terminal andN internal units�� L=EF and� R=EF• eV�.
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� r =
2�
� � r

�Vr�
2� � r

� r = 0,N� , �34�

� =
2�
� � B

�VB�2� � B
. �35�

For the regular molecular wire under consideration, we
have employed the following abbreviations:� �nn+1� � � B,
� nn+1� � B, Vnn+1� VB, � nn+1� � � B

, � B=�En• En+1� / � � B,
�n=1,2, . . .N•1 � , � �01� � � 0, � 01� � 0, V01� V0, � 01� � � 0

,
� 0=�E0• E1� / � � 0, � �NN+1� � � N+1, � NN+1� � N+1, VNN+1
� VN+1, � NN+1� � � N

, � N=�EN• EN+1� / � � N, and� �0N+1� � �̃ ,

� 0N+1� �̃ , � 0N+1� �̃ � +
, � N+10� �̃ � •

, � +=� E/ � �̃ , and
� • =• � E/ � �̃ . Electronic couplings between the neighboring
sites are shown in Fig.1�b�. The superexchange rate con-
stants are deÞned by the expressions

k1�2�
�sup� =

2�

� �̃
�V0N+1�V��2�̃ � +�• �

, �36�

where �̃ � +
� � 0N+1, �̃ � •

� � N+10, �̃ � � �0N+1�, �̃ � � 0N+1, � +

=� E/ � �̃ , � • =• � E/ � �̃ , and

� E = E0 • EN+1 = � E�0� + eV�1 • � L • � R� � 37�

is the driving force of the ET between the terminal sites.
� E�0� � E0�0� • EN+1�0� is the unbiased driving force. The
meaning of the energy gap� E, as well as the gaps intro-
duced so far, follows from the scheme of Fig.3. The square
of the transition matrix element between the spatially sepa-
rated terminal sites reads

�V0N+1�V��2 =
�V0VB

N•1 VN+1�
2

� m=1
N � Em0� EmN+1

. �38�

This matrix element depends on the voltage biasV via the
energy gaps

� Em0 = Em • E0 = � E1�0� • eV� Mm,
�39�

� EmN+1 = Em • EN+1 = � EN�0� + eV� M�N • m+ 1� .

In order to derive a more compact expression, we use the
scheme in Ref.64 to obtain

�V0N+1�V��2 = �V0N+1�0��2e� �V� , �40�

where

� �V� = �eV� M/2��� 1/� E1�0�� • �1/� EN�0��� N�N + 1� .

�41�

The quantity

�V0N+1�0��2 �
�V0VN+1�

2

� E1�0� � EN�0�
e• � �N•1 �

�42�
� � = 2 ln� � � E1�0� � EN�0� /�VB���

denotes the square of the superexchange matrix element at
the absence of an applied voltage.

III. RESULTS AND DISCUSSION

In order to analyze theI-V characteristics let us Þrst note
that at room temperature�kBT� 0.025 eV� the Fermi distri-
bution function �Eq. �28�� can be replaced by a unit-step
function. Therefore, in the voltage regionV
 0, one obtains
� R
 0. Analogously, one can set� L 
 0 if V� 0. Bearing in
mind these valid approximations and using the relations be-
tween the rate constants, Eq.�32�, after introducing the wire
populations, Eq.�21�, in the expressions�23� and �24�, we
arrive at the following expression for the stationary current:

I = I02� � �1 • e• e�V�/kBT�

� �� LK1� • R

D+
� �V� •

� RK2� • L

D•
�1 • � �V�� 
. �43�

Here,� �V� is the unit-step function and

D+ = � • L� � • R + K2� + 2� L� � • R + K1 + K2� + � • RK2,
�44�

D• = � • R� � • L + K1� + 2� R� � • L + K1 + K2� + � • LK2.

These analytic expressions allow us to analyze different re-
gimes of charge transmission through the wire, including the
sequential and the superexchange pathways.

In what follows, we concentrate on the emergence of
interesting rectiÞcation effects. In the case under consider-
ation, a molecular wire�composed by a linear arrangement
of N+2 sites includingN internal identical sites, Fig.1�a��
transmits the electrons in such a manner that its terminal
units may be considered as donor and acceptor transmitters,
whereas its internal sites act as a regular bridging structure.
The internal sites generate a superexchange coupling be-
tween the terminal sites, but these sites are also responsible
for the sequential�hopping� transfer through the wire. Before
presenting a detailed analysis of the results, let us point out
that the function�28� exhibits a sudden rise at the resonant
voltagesV=VL

�res� andV=• VR
�res�, where

VL
�res� = � EL�0� /e� L, �45�

and

VR
�res� = � ER�0� /e� R. �46�

The expressions forVL
�res� and VR

�res� follow from the condi-
tions � EL=0 and� ER=0 at V
 0 and V� 0, respectively.
Because in the regions 0� V� VL

�res� and 0
 V� • VR
�res� the

current through the molecule stays at a rather small value, we
concentrate on the mechanisms of current formation in the
regionsV� VL

�res� andV� • VR
�res�. To this end, let us note that

at strong differences between the overall hopping ratesK1,
K2, and the contact transfer rates� s, � • s charge transmission
in the L-MW-R system is limited by the slowest hopping
process. We now analyze two distinct possible limiting situ-
ations.

A. Weak coupling to the electrodes: Small rectiÞcation
limit

Let the coupling of the terminal sites to the respective
electrodes be weak, so that the overall transfer rates strongly
exceed the contact transfer rates. Note that the maximal val-
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ues of the contact rates� L�R� and � • L�• R� coincide with
� L�R� / � . This would be the case for a small nuclear rear-
rangement upon recharging. Thus, to understand the physics
of current formation at weak electrode-wire coupling, it suf-
Þces to consider the electron transmission with contact trans-
fer rates deÞned by Eq.�30�. Besides, one has to suppose the
validity of the inequality

K1,K2 � � � L/� � ,� � R/� � . �47�

As a rule, the unbiased gaps� EL�0� and � ER�0� strongly
exceed the thermal energykBT. Therefore, independent on
the precise form of the contact rates, one can set� • L � 0 and
� R� 0 if V� VL

�res�, and� • R� 0 and� L � 0 if V� • VR
�res�. Not-

ing this circumstance and using the inequalities�47� one re-
duces the general expression for the current, Eq.�43�, to the
following simple form�a case of identical terminal sites is
considered, i.e.,� E�0� =0, Eq.�37��:

I 
 � �V • VL
�res�� I+

�plat� + � � • V • VR
�res�� I •

�plat� . �48�

The two nonzero�plateau� currents read

I+
�plat� = I02�

� L� R

2� L + � R
�49�

and

I •
�plat� = • I02�

� L� R

� L + 2� R
. �50�

Hereafter, we replace the factor�1•exp�• e�V�/kBT�� by 1. It
follows from the fact that, in the given voltage regions, the
pronounced inequality exp�• e�V�/kBT� � 1 is fulÞlled. The
factor only differs from 1 at small voltages, i.e., less than
0.1 V. The rectiÞcation ratio for the plateau currents,
RR�plat� =�I+

�plat� / I •
�plat��, thus reads

RR�plat� =
� L + 2� R

2� L + � R
. �51�

The maximal rectiÞcation is achieved at a large difference
between the corresponding width parameters. The effect is
not signiÞcant, however. For instance, if� R� � L then
RR�plat� =2. Note also the different population of the molecu-
lar wire by the transferred electrons at� R� � L. It follows
from Eq. �21� that in this casePempty� 1, P0� 1, andPN+1

� 1 if V� VL
�res�, whereas Pempty� 1, P0� � 1 /2�� K2/

�K1+K2�� , and PN+1� � 1 /2�� K1/ �K1+K2�� , if V� • VR
�res�.

Thus, at a given relation between the contact transfer rates,
the wire remains empty�at V
 0� or captures a single extra
electron with probability� 	 �P0	 +PN+1	 � =2�P0+PN+1� � 1
�at V� 0�. The expressions�49� and �50� are written for a
simple form of contact transfer rates, Eq.�30�. In a more
general case, one has to utilize the expression deÞned in Eq.
�26�. The resulting form of the positive current follows from
Eq. �49� if one replaces � L by � LFL and � R by
� RFR exp� � ER/kBT�. If V� 0, one has to replace the� R and
� L in Eq. �50� by � RFR and � LFL exp� � EL /kBT�, respec-
tively. Such a substitution only leads to a more smooth tran-
sition to the plateau current, both Þxed atV� VL

�res� and
V� • VR

�res�. It does not signiÞcantly change, however, the
rectiÞcation ratio for the plateau currents.

B. Strong coupling to the electrodes: Differential
negative resistance and pronounced rectiÞcation

Let us next consider the transmission regime at a strong
coupling of the terminal sites to respective electrodes. In
contrast to the inequalities, Eq.�47�, we now suppose that

K1,K2 � � � L + � • L� ,� � R + � • R� . �52�

The general current expressions, Eqs.�23� and�24�, assume
the form

I = Isup�V� + Iseq�V� , �53�

where the superexchange current component reads

Isup�V� 
 I02� � �� �V�
� Lk1

�sup�

� • L + 2� L
• � � • V�

� Rk2
�sup�

� • R + 2� R

.

�54�

It describes a single step distant jumps between the terminal
wire units. The sequential component of the total current
takes a completely different form, namely,

Iseq�V� 
 I02� � �� �V�
� L

� • L + 2� L

� 0� N


 0 + � N

� �1 +  +
1 • ! +

N•1

1 • ! +

•1

• � � • V�
� R

� • R + 2� R


 0
 N


 0 + � N

� �1 +  •
1 • ! •

N•1

1 • ! •

•1
. �55�

The parameters

 + =
1 • � � /� N�� 1 • ! +�

� � /
 0� + � � /� N�
,  • =

1 • � 
 /
 0�� 1 • ! • �

� 
 /� N� + � 
 /
 0�
�56�

specify the dependence of the sequential current component
on the wire length. Different dependencies of the superex-
change and sequential current components on the wire length
allow one to specify the type of charge transmission through
a concrete molecular wire. Note also that a deÞnite discrimi-
nation of the current components only becomes possible if
the inequalities�14� and �52� are fulÞlled in the course of
charge transmission. They characterize such a type of trans-
mission where the hopping processes between a terminal
wire unit and the opposite electrode are much faster than the
escape of an electron from the same terminal unit to other
wire units �see the scheme in Fig.2�a��.

1. Symmetric case

The contribution related to the sequential and the super-
exchange pathway strongly depends on the relation between
the parameters deÞning all hopping rates. Figure4 depicts
the respective current versus the length of the wire. The cho-
sen transmission regime corresponds to the symmetric case
where � L=� R, � EL�0� =� ER�0� , � E1�0� =� EN�0� , and
� E�0� =0 �cf. Eqs.�29�Ð�37��. It can be deduced from Fig.4
that at a given set of parameters, the superexchange pathway
dominates the current formation for short molecular wires.
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