Conference ISR ROBOTIK 2014

Service-oriented Robotics Manufacturing
by reasoning about the Scene Graph of a Robotics Cell

Alwin Hoffmann, Andreas Angerer, Andreas Schierl, Michael Vistein, Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, Germany

Abstract

This paper presents a novel service-oriented approach to robotics manufacturing. The idea is that the automation software
is composed of a hierarchy of services. In order to decide how to execute manufacturing tasks, the scene graph of a
robotics cell (i.e. the physical objects, devices and spatial relations) is inspected to retrieve the current situational context
of a manufacturing application. Based on that context, the best suitable strategy to accomplish a task is chosen. Hence,
this context-aware service-oriented approach facilitates flexible robotics manufacturing.

1 Introduction

In robotics automation, flexible and adaptive manufactur-
ing is getting more and more important. According to
Pires [1], it can be considered as the most important re-
quirement for increased use of industrial robot in the fu-
ture. As product life-times and volumes are getting less
predictable, the fast “adaption to new batches, product
variants or new products” [2] is more and more impor-
tant. As a consequence, the way of structuring programs
for industrial robot has to change. At the moment, they
usually consist of sequences of different motions between
pre-defined positions. From our point of view, more in-
formation belongs to and should be attached to the objects
that are manipulated [3]. Based on this information, the
robot program has to decide how to process the object in
order to accomplish its task.

To facilitate this novel paradigm of programming, we
present an approach which smoothly integrates robot con-
trol (i.e. motion execution) and task description based
on the objects to manipulate. This approach builds on
an object-oriented framework for programming industrial
robots with an application programming interface: the
Robotics API [4]. Object-orientation allows for modeling
the devices and physical objects that exist in a robotics cell
as software objects and, thus, creating a scene graph of this
cell. When executing operations on devices of the cell with
hard real-time guarantees on the underlying Robot Con-
trol Core [5], the scene graph gets automatically updated.
On top of this object-oriented framework, we present a
service-oriented approach for reasoning about the robotics
scene graph in order to decide how to manipulate a given
object. The used of service-oriented paradigms can facil-
itate the flexibility and adaptability to changes that is re-
quired in manufacturing [6].

This paper gives an overview of the proposed approach
by describing the robotics scene graph and by introducing

the idea of context-aware service-oriented manufacturing.
Section 2 gives an overview of the software architecture
used for service-oriented manufacturing. In Section 3, we
describe how the scene graph of a robotics cell is mod-
eled and explain which information can be retrieved from
this scene graph. Section 4 describes the idea of using the
scene graph for service-oriented manufacturing in detail.
Examples are given in Section 5 and related work in Sec-
tion 6. Finally, Section 7 concludes the paper and gives an
outlook.

2 Architecture

The presented framework is based on the software ar-
chitecture (cf. Figure 1) developed in the joint research
project SoftRobot. The framework is geared towards re-
alizing complex, sensor-guided manipulation tasks of sin-
gle robots or small teams of robots. The main idea [7]
is that robotics software is developed against an ap-
plication programming interface (API) — the Java-based
Robotics API [4, 8] — and robot operations are executed
with hard real-time guarantees on the underlying Robot
Control Core (RCC). Thus, the RCC is responsible for con-
trolling hardware devices and must be implemented on a
real-time operating system. This separation is possible,
because industrial robotics applications do not inherently
have real-time requirements for the application logic, but
only for parts of the program like motions or tools actions.
Hence, the RCC takes care of all real-time critical parts
of the robotics systems and provides a flexible, generic in-
terface: the Realtime Primtives Interface (RPI) which is
described in detail by Vistein et al. [9]. RPI is a dataflow
based language, consisting of basic calculation modules,
which can be combined to form complex commands. Be-
sides these basic calculation modules, there are also device
modules for sending data to or retrieving data from sen-
sors and actuators. Those drivers also need to be imple-

mented in C++ for real-time requirements. The Robotics
API automatically combines these calculation and device
modules to create real-time commands [10] and submits
them to the RCC for execution. Once the RCC has fully
received such a command, it deterministically executes all
contained modules, hence guaranteeing real-time charac-
teristics.

Robot Service-Oriented
Applications Manufacturing

Domain-Specific
Languages

Activity Layer

Meta Data Activity Actuator Interface

Action Command Actuator

Robotics API
e.g. plain Java

Command Layer

«real-timen
Calculation
Modules

«real-time»

Robot Control Core Device
Modules

C
e.g. C++

Figure 1: The software architecture for industrial robotics
developed in the research project SoftRobot.

During execution, sensor drivers provide (raw or pro-
cessed) sensor data at a high frequency. Calculation mod-
ules can further process such sensor data, calculate set-
points for trajectories, or trigger tool actions. Finally, actu-
ator drivers expect to receive set-points (e.g. position, ve-
locity, acceleration) at a high frequency (usually 1 kHz)
from a running command. The reference implementation —
the SoftRobot RCC — is implemented in C++ and is target-
ing Linux Xenomai for robot control as well as Windows
for testing and simulation purposes.

The Robotics API consists of two layers: the Command
Layer, which directly communicates with the Robot Con-
trol Core, and an additional Activity Layer which provides
more convenient access to the most common functions of
the Robotics API. The Command Layer has a very abstract
model of robotic tasks, which consists of actions which
can be performed by actuators. Assigning an action to
an actuator yields a command, which can be executed us-
ing a Robot Control Core. Actions can be for example a
Point-to-Point (PTP) motion, and an actuator can be a spe-
cific type of robot arm. Actuators need a corresponding
driver and primitives in the Robot Control Core, whereas
actions usually map to a set of calculation modules which
together form the requested action [11]. Using an event
mechanism, multiple commands can be combined e.g. to
perform tool operations based on sensor data. Further-
more, the Command Layer gives a transparent access to
real-time data (e.g. joint positions, sensor data) which is
obtained from the RCC. It provides a very generic, flexi-
ble and extensible interface for writing arbitrarily complex
applications. Hence, it is mainly designed to integrate new
devices, motion types etc. into the system. In contrast, the
Activity Layer provides an intuitive execution model for

commands. It wraps commonly used functions into Java
methods and is therefore targeted at robot-application de-
velopers. More details about these layers can be found at
Angerer et al. [4].

3 Robotics Scene Graph

Robotic applications always need to describe some part of
the physical world or environment the robot is situated in.
In standard robot programming languages (e.g. the KUKA
Robot Language, Staubli’s VAL), one has to define at least
points in space that are necessary for the specification of
robot motions. Depending on the concrete application,
more information about the environment is desired. For
example, in assembly applications, the notion of work-
pieces that have to be assembled can be helpful. However,
such complex models are predominantly supported by of-
fline programming tools, whereas standard robot controls
usually only support the definition of points. The scope
of the Robotics API comprises both use cases, because it
supports the definition and execution of (real-time) robot
commands, as described previously, and the complex mod-
eling of robotics cells. Therefore, the definition of spatial
points, geometric relations and physical objects is possible
as shown in Figure 2. The figure shows a (simplified) ex-
cerpt from the Robotics API object-oriented programming
model using an UML class diagram. The left part of the
diagram which contains frames and relations is described
in Section 3.1, whereas the right part — i.e. the modeling of
physical objects and devices — is explained in Section 3.2.

3.1 Frame & Relations

The scene graph of the Robotics API is based on a graph
of inter-connected frames. Frames are (named) positions
in space which can optionally belong to (the software rep-
resentation of) a device or in general a physical object.
They are interconnected by relations which have a defined
semantics. As shown in Figure 2, a Relation connects a
pair of Frames, specifies the kind of connection between
those two frames, and defines the geometric transformation
between them. The Transformation is mathematically ex-
pressed by a homogeneous transformation matrix. Instead
of having a parent-child-relationship between frames, a
graph is formed where frames are vertices and relations
are edges. Hence, each frame can have an arbitrary num-
ber of relations directing to or originating from it. A frame
graph is called connected if and only if there is at least one
path between any two frames of the graph. In a connected
frame graph the transformation between any two frames
can be determined. However, it is possible to have multiple
independent frame graphs at a time. During the execution
of an application, frame graphs can be joined or separated
by adding or removing relations.

The Relation class itself is abstract, but there are several
subtypes with different semantics describing the kind of

~q defines

Figure 2: UML class diagram showing important parts of Robotics API class hierarchy for modeling the scene graph of

a robotic cell

relation between two frames. For expressing the impor-
tance and permanence of a relation, there is a distinction
between a temporary relation, a placement and a connec-
tion. A TemporaryRelation is a transient relation which is
only used to create auxiliary frames for motions or calcu-
lations. It is designed in such a way that it is automatically
removed when it is no longer used in an application. A
Placement indicates that - at least at the moment — two
frames are connected. Similar to a temporary relation, this
is also only a snapshot and the placement can be changed
or removed during the execution of the application. How-
ever, it is a persistent relation (i.e. the relation must be re-
moved on purpose) and, as its name implies, is used e.g.
to indicate that some object is currently placed on a table.
In contrast, Connections are long-lasting relations between
frames. For example, a link defines a (mechanical) connec-
tion between two joints which usually will not be removed.
Furthermore, there is a distinction between static and dy-
namic connections. While a static relation defines a fixed
transformation (e.g. a given displacement between two ob-
jects), the transformation of a dynamic relation can change
over time as it is usually defined by an actuator. For ex-
ample, a revolute joint consists of two frames which are
rotated against each other according to the joint’s current
position. The transformation of dynamic relations is auto-
matically provided by the framework. For this purpose, the
dynamic connection internally uses sensors provided by
the Robotics API which communicate transparently with
the RCC (c.f [4, 10]). Developers can create own subtypes
of Relation to express a application-specific connection be-
tween two frames (e.g. a grasping placement).

3.2 Physical Objects & Devices

Physical objects are software objects that have a counter-
part in the real cell. They can be either passive objects such
as work pieces or active objects i.e. actuators such as robot
arms or tools. Moreover, physical objects can consist of
multiple parts. Figure 2 shows, for example, a robot arm
which consists of links and joints. However, their spatial

relations are defined through frames that belong to these
physical objects. Joints define a dynamic connection be-
tween their two frames. By convention, this dynamic con-
nections rotates the joint’s moving frame around the z-axis
of the joint’s base frame according to the current joint po-
sition. This value is transparently retrieved from the RCC
and updates the transformation. Links define a static con-
nection from their base frames to their linked frames ac-
cording to their dimensions. Moreover, different physical
objects can be arranged using static connections to build
up a robotics cell.

Figure 3 illustrates parts of an exemplary robotics cell us-
ing an UML object diagram. It shows a robot arm with
its last two links and the joint between those links. The
depicted joint shares its frame with the two links. These
frames are associated with static and dynamic connections
in alternating order. Hence, this definition of links and
joints forms the robot’s shape. Furthermore, the figure
shows that the robot arm is mounted on a workbench using
a static connection between the base frame of the work-
bench and its own base frame. The static connection be-
tween the robot’s flange and the gripper’s base frame im-
plies that the gripper is mounted on the robot’s flange.

Because frames and relations can belong to physical ob-
jects, the frame graph can be inspected to draw conclusions
about the robotics scene. For example, it is possible to cal-
culate a path of frames and relations between physical ob-
jects. By having semantically enriched relations between
frames, it is possible to determine the kind of relation be-
tween physical objects. Based on a path of frames and
relations between physical objects, it is possible to retrieve
the relevant actuators connecting these objects. In order
to ensure a consistent scene graph, relations must be ma-
nipulated with care. For example, after grasping an object
that is placed on a table, the placement must be removed
and a new relation to the gripper must be established. By
doing so, the framework will automatically update the ob-
ject’s position with respect to the table when the gripper is
moved.

'workbench : Workbench

!

Robot arm is
mounted onto
workbench

joint[5] : Joint

joints

Gripper is
mounted to
robot arm

Figure 3: Excerpt from an UML object diagram showing
a robot arm mounted on a workbench. A parallel gripper
is mounted at the flange of the robot.

4 Services for Robotics Tasks

This section describes the approach of using context-aware
services for robotics manufacturing. The (situational) con-
text is based on the input parameters of the service (i.e.
actuators and physical objects) and retrieved using the cur-
rent scene graph. The main idea of this approach is de-
scribed in Section 4.1. Details about the realisation are
given in Section 4.2.

4.1 Approach

The idea of service-oriented manufacturing is to compose
the automation software of a hierarchy of services on dif-
ferent levels of abstraction. Each service has its responsi-
bility in the automation system, but can assign (sub)tasks
to other services which are usually on a lower abstraction
level. The parameters for automation services are the phys-
ical objects that are processed or manipulated by the au-
tomation system. In order to execute robot or tool opera-
tions, we introduce task-level services. Such a service de-
scribes a particular task using appropriate parameters (e.g.
grasping an object with a gripper, assembling two objects,
or placing an object into another object). For the execu-
tion of a task, the service inspects the current scene graph
and retrieves the situational context of tasks. Based on
this context, an appropriate strategy for this task is chosen,
parametrized and executed.

Situational Context

connected to

‘ «actuator»

: ParallelGripper + -0

] «actuator»
|] : RobotArm
| . . 1 Service inspects scene graph \ , J
| GraspingService] for the task’s situational context i
|]
} } connected to |
,,,,,,,,,,,,,,,,,,,, \
\ |
Input E - - -
«physical object» placed on «physical object
: WorkPiece : Workbench

Figure 4: A grasping service retrieves the situational con-
text using its input parameters (i.e. the gripper and the work
piece) and searching the current scene graph.

Our approach is shown in Figure 4 using a GraspingSer-
vice as example. The input parameters of the service are
the work piece to grasp and the parallel gripper. The struc-
ture is similar to the example in Figure 3, i.e. the gripper is
mounted on a robot arm which is mounted on a workbench.
The work piece is simply placed on the table. The situa-
tional context can be retrieved completely from the scene
graph as described in Section 3. This is important because
some actuators, in particular robot arms, are not part of the
task description. However, they support the task by mov-
ing tools and objects. This approach covers many scenar-
ios such as an externally mounted tool, two objects both
carried by different robot arms or one object cooperatively
carried by multiple robot arms. As shown in the example,
the scene graph is also used to retrieve more information
about the objects to manipulate, e.g. whether the object is
placed on a table, in a box, or in a fixture. Hence, the scene
graph enables the service to retrieve the task’s situational
context.

Being able to retrieve the context, the task-level service
can select a strategy to execute the operations for success-
fully accomplishing the task. In accordance to the Strategy
pattern introduced by Gamma et al. [12], a task strategy
is a solution for a characteristic problem. For each fam-
ily of problems (e.g. grasping), several solutions — i.e. the
strategies — can be applied that only share a common in-
terface and, thus, are interchangeable to a certain extend.
The main feature of this approach is that the best suitable
strategy is chosen based on the situational context retrieved
from the robotics scene graph.

For accomplishing a task, there are different possible
strategies. For grasping a workpiece, a simple strategy is
to approach from a given direction to a given (taught) po-
sition and close the gripper. However, there are also more
advanced solutions using a compliant robot arm. In both
cases, the strategy must be parametrized in order to work
properly. These strategy parameters (e.g. tolerances, de-
sired forces) can be easily attached to the software rep-
resentation of physical objects and will be selected based
on the situational context from the task-level service. It is
also possible to have specialized strategies which are only
suitable for one particular situation (described by the situ-
ational context).

GraspingServicelmpl
GraspingService GraspingStrategyProvider
P o #oollectGraspingProperties(item : PhysicalObject wse DA O
+grasp(item : PhysicalObject, gripper: Gripper) = = — — — — — sitery o~ = = = = = =
#sort()
/ \ #findProvider() T
/ \ |
wse / \ wse lwser ~ | creates
/ \ | inspects R |
/ \ v ~ |
/ \ GraspingProperty ~ v
2 \ GraspingStra
Gripper PhysicalObject 0) pingstrategy ()
provides Tescrter: Grassimapeermtor” & 1 +grasp()
vgotBase(): Frame - — - — — lescriptor : GraspingDescriptor +eave(
getProperties() : Property 0.7] |

Figure 5: UML class diagram showing the structure of a GraspingService.

4.2 Realization

The context-aware task-level services are implemented in
Java using the Robotics API and OSGi. The OSGi frame-
work is a dynamic module system and service platform for
Java. Since 1999, its specification [13] has been devel-
oped by the members of the OSGi Alliance (e.g. IBM, Or-
acle, Samsung, Siemens). An application based on OSGi is
composed of many different (reusable) components called
bundles. As in plain Java, bundles are packaged and de-
ployed as JAR files. OSGi implements a service model and
introduces a service registry. Using this registry, bundles
can register or retrieve services, and they can listen for ser-
vices to appear or disappear. Similar to bundles, services
are also dynamic, i.e. a bundle can decide to withdraw its
services from the registry.

The implementation of task-level services is explained by
taking the example of a GraspingService (cf. Figure 5).
The service is described using an interface which decou-
ples the use of the service from different possible imple-
mentations. As mentioned above, the input parameters for
grasping are a gripper and the item to grasp. The item is
a physical objects which may provide GraspingProperties.
Such a property consists of a precondition and a strategy
descriptor. The descriptor corresponds to a specific strat-
egy and contains the relevant parameters to instantiate the
strategy. The precondition is application-specific and eval-
uates to true if and only if the corresponding strategy can
be executed in the current situational context. For this pur-
pose, the precondition can inspect the current scene graph
starting from gripper or the item.

To instantiate task strategies, the implementation of the
GraspingService uses strategy providers. These providers
are registered at the service implementation and can then
be used. When the grasp operation is invoked at the ser-
vice, the implementation starts by collecting all grasp-
ing properties from the given item. By evaluating the
application-specific precondition, the grasping properties
are filtered to obtain only suitable strategy descriptors.
The set of suitable strategy descriptors is sorted using a
application-specific priority. For the best strategy descrip-
tor, the service retrieves the appropriate strategy provider.
If no provider is found, the service continues with next
strategy descriptor. Before instantiating the strategy, the

provider inspects the current scene graph and evaluates if
the situational context is suitable to its strategy. Hence, the
provider is able to ensure that all requirements are meet to
successfully execute the strategy. If the provider’s precon-
dition evaluates to false, the service continues with next
strategy descriptor. Then, the provider instantiates a new
strategy using the parameters from the given descriptor. Fi-
nally, the service implementation starts to execute the strat-
egy and monitors its execution.

S Case Study: Factory 2020

To illustrate service-oriented manufacturing, a robotic as-
sembly application called Factory 2020 was developed.
The application was designed along the vision of a fully
automated factory of the future, in which different kinds
of robots cooperate to perform complex tasks. In the
demonstrator, two robot arms and a mobile robot plat-
form work together in part assembling. To achieve that,
service-oriented manufacturing uses force-based motions,
real-time motion synchronization and different coordina-
tion patterns.

Figure 6: In Factory 2020, an autonomous robot platform
delivers parts (top left), robot arms cooperate in transport-
ing (bottom) and assembling them (top right).

Figure 6 gives an overview about the tasks performed.
Two different containers with parts to be assembled are
delivered by an autonomously navigating robot platform.
Before assembling, both containers have to be transported
onto the workbench. The robot arms locate the exact posi-
tion of the containers by touching certain prominent points.
This is required because the position may vary due to inac-
curate navigation of the platform and some inaccuracy of
the containers on the platform. After locating, both arms
grip the containers and cooperatively transport them onto
the workbench. These motions have to be real-time syn-
chronized to ensure proper transport without damaging the
containers or robots.

Once the containers have been placed on the table, each
robot arm picks a part from one of the containers. To as-
semble the parts, the robots apply a defined force on the
parts to compensate slight variations in the fitting between
top and bottom part. Finally, both parts of the final work-
piece have to be bolted together. For this purpose, an elec-
trical screwdriver is attached to one of the robots as its sec-
ond tool. This robot first fetches a screw from a screw
magazine, then transports it to the workpiece, inserts it and
tightens the screw using the screwdriver. These operations
are also performed using force-based motions, which again
allows for compensating variations in part quality and the
process itself (e.g. slight deviations when gripping a work-
piece part). The final workpiece is then put back into one
of the containers. After all workpieces have been assem-
bled, the containers are put back onto the platform, which
delivers the workpieces to their destination.

For structuring the complete automation system software,
it was divided into several services and components.
Service-orientation eased deployment of components to
different physical systems (robot arms, mobile base) and
the coordination of those systems. For implementing the
components which coordinate the interaction with and
among other components, state machines were employed.
The standardized State Chart XML [14] format was used to
formally model those state machines. Based on the Com-
mons SCXML [15] implementation, a graphical editor and
a runtime environment for SCXML state machines was
created.

On the lowest service layer, different task-level services
were employed to control the robots and the tools. They
were successfully used for tasks such as grasping or plac-
ing workpieces, for assembly, and to fasten the workpieces.
For the first iteration of the software, for every task a
unique strategy was implemented, tested and used. In later
iterations, these strategies have been generalized and can
be used in different situation with different parameters.
These parameters have been attached to the work pieces
as described in the previous section. It is possible to de-
velop such strategies independently from the concrete ap-
plication. Only the parameters have to be figured out in the
context of the application. Reusing strategies eases on the
one hand the development of similar applications and, on
the other hand makes applications more robust.

6 Related Work

In [16], Smits makes a proposal for a Robotics Scene
Graph Standard to have a standardized representation of
robot systems. His proposal “covers the kinematic chain
aspects of robot platforms, including the location of sen-
sors, motors and tools on the chain, as well as the loca-
tion of objects in the scene that are relevant to the robot’s
task” [16]. He proposes an XML syntax based on COL-
LADA [17]. In contrast to our approach, he suggests to
used a tree structure instead of a graph for frames. Fur-
thermore, there are no semantics relations between frames.
However, his standardization proposal could be realized
with our approach. De Laet et al. [18, 19] present a set
of concrete suggestions for standardizing terminology and
notation which should allow “programmers to write fully
unambiguous software interfaces” [18] with “semantic cor-
rectness of all geometric operations on rigid-body coordi-
nate representations” [18]. ROS uses the Unified Robot
Description Format [20] which assumes that a robot con-
sists of rigid bodys connected by joints. However, it does
not allow to specify relations from the robot to other phys-
ical objects of the environment. Blumenthal et al. [21] also
present a scene graph based world model. Howwever, their
focus lies on maintaining a shared world model for sepa-
rate software components.

Veiga et al. [22, 23] use service-oriented platforms for in-
dustrial robotics. Their focus is on using service-oriented
architectures — in particular UPnP — as a communication
platform. In [24], a similar approach was presented by the
authors of this paper for manufacturing carbon-fiber rein-
forced plastics. Naumann et al. present in [25] a control
architecture for robot cells. Instead of directly program-
ming devices, an interconnector provides a set of process
commands. Considering to level of abstraction, process
commands can be compared to task-level services. How-
ever, they do not incorporate the current state of the robot
cell and attach manufacturing knowledge into the objects
to manipulate. Schéfer and Lopez [26] propose to incor-
porate more knowledge about the manufacturing resources
into the manufacturing control. From their point of view,
this increases flexibility and manufacturing is more adap-
tive to changes. However, they do not explain how to ex-
ploit this knowledge to achieve this flexibility. Bjorkelund
et al. [27] use a knowledge base using the Resource De-
scription Framework [28] to improve skilled robot mo-
tions. Huckaby, Vassos and Christensen [29] developed
a taxonomic framework for task modeling in manufactur-
ing robotics. Based on this framework, a planner can cal-
culate a sequence of skill to accomplish a more complex
assembly task. However, execution still relies on some
assumption, e.g. there are hardware-specific implementa-
tions for the lowest level of skills. Nonetheless, the ap-
proach could be an interesting complement to the our ap-
proach presented in this paper. Further approaches have
been e.g. proposed by Kim et al. [30] and Simmons [31].

7 Conclusion

In this paper, we presented a novel service-oriented ap-
proach to robotics automation. By reasoning about the
scene graph of a robotics cell, the best suitable strategy to
accomplish a task is selected and executed. Using the Java-
based OSGi framework and its service-oriented paradigm,
the ideas presented here have been successfully imple-
mented in a sophisticated manufacturing example: the Fac-
tory 2020 includes e.g. force-based assembly and cooper-
ative transport with real-time motion synchronization. As
the set of strategies is not fixed at run-time, the service-
oriented automation software can even evolve over time,
i.e. be adapted to new work-pieces, or be improved for
existing ones. To prove the flexibility of service-oriented
robotics manufacturing will be one of the next research
topics (e.g. using planers). Furthermore, more research
must be done on sensor-based relations that incorporate
uncertainty. This leads to the questions of how to model
this uncertainty in the scene graph and, of course, how to
deal with it.

Acknowledgements

This work partly presents results of the research project
SoftRobot which was funded by the European Union
and the Bavarian government. The project was car-
ried out together with KUKA Laboratories GmbH and
MRK-Systeme GmbH and was kindly supported by
VDI/VDE-IT GmbH.

References

[1] J.N. Pires, “New challenges for industrial robotic cell
programming,” Industrial Robot, vol. 36, no. 1, 2009.

[2] M. Hégele, T. Skordas, S. Sagert, R. Bischoff,
T. Brogardh, and M. Dresselhaus, “Industrial robot
automation,” European Robotics Network, White Pa-
per, Jul. 2005.

[3] A. Angerer, A. Hoffmann, F. Ortmeier, M. Vis-
tein, and W. Reif, “Object-centric programming: A
new modeling paradigm for robotic applications,” in
Proc. 2009 IEEE Intl. Conf. on Autom. and Logistics,
Shenyang, China, Aug. 2009.

[4] A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, and
W. Reif, “Robotics API: Object-oriented software de-
velopment for industrial robots,” J. of Software Engi-
neering for Robotics, vol. 4, no. 1, pp. 1-22, 2013.

[5] M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and
W. Reif, “Flexible and continuous execution of real-
time critical robotic tasks,” International Journal of
Mechatronics and Automation, vol. 4, no. 1, 2014.

[6] F. Jammes and H. Smit, “Service-oriented para-
digms in industrial automation,” IEEE Trans. Ind.
Inf., vol. 1, no. 1, pp. 62-70, 2005.

[7]1 A. Hoffmann, A. Angerer, F. Ortmeier, M. Vistein,
and W. Reif, “Hiding real-time: A new approach
for the software development of industrial robots,” in
Proc. 2009 IEEE/RSJ Intl. Conf. on Intell. Robots and
Systems, St. Louis, Missouri, USA. 1EEE, Oct. 2009,
pp. 2108-2113.

[8] A. Angerer, A. Hoffmann, A. Schierl, M. Vistein,
and W. Reif, “The Robotics API: An object-oriented
framework for modeling industrial robotics applica-
tions,” in Proc. 2010 IEEE/RSJ Intl. Conf. on Intell.
Robots and Systems, Taipeh, Taiwan. 1EEE, Oct.
2010, pp. 4036-4041.

[9] M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and
W. Reif, “Interfacing industrial robots using realtime
primitives,” in Proc. 2010 IEEE Intl. Conf. on Autom.
and Logistics, Hong Kong, China. 1EEE, Aug. 2010,
pp. 468-473.

[10] A. Schierl, A. Angerer, A. Hoffmann, M. Vistein, and
W. Reif, “From robot commands to real-time robot
control - transforming high-level robot commands
into real-time dataflow graphs,” in Proc. 2012 Intl.
Conf. on Inform. in Control, Autom. & Robot., Rome,
Italy, 2012.

[11] A. Hoffmann, A. Angerer, A. Schierl, M. Vistein,
and W. Reif, “Managing extensibility and maintain-
ability of industrial robotics software,” in Proc. 16th
Intl. Conf. on Adv. Robotics, Montevideo, Uruguay.
IEEE, Nov. 2013.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides, Design patterns: Elements of reusable object-
oriented software. Addison Wesley, 1994.

[13] OSGi Core Release 5, OSGi Alliance
Spec., Mar. 2012. [Online]. Available:
http://www.osgi.org/download/rS/osgi.core-5.0.0.pdf

[14] State Chart XML (SCXML): State Machine No-
tation for Control Abstraction, W3C Work-
ing Draft 6, Dec. 2012. [Online]. Available:
http://www.w3.org/TR/scxml/

[15] Commons SCXML. The Apache Soft-
ware Foundation. [Online]. Available:
http://commons.apache.org/proper/commons-scxml/

[16] R. Smits, “Robot skills: Design of a constraint-based
methodology and software support,” Ph.D. disserta-
tion, KU Leuven, May 2010.

[17] M. Barnes and E. L. Finch. (2008) COL-
LADA - Digital Asset Schema Release
1.5.0. The Khronos Group. [Online]. Available:
https://www.khronos.org/files/collada_spec_1_5.pdf

[18]

[19]

[20]

[21]

[24]

[25]

T. D. Laet, S. Bellens, R. Smits, E. Aertbelien,
H. Bruyninckx, and J. D. Schutter, “Geometric re-
lations between rigid bodies (Part 1) — Semantics for
standardization,” IEEE Robot. & Autom. Mag., pp.
84-93, Jun 2013.

T. D. Laet, S. Bellens, H. Bruyninckx, and J. D.
Schutter, “Geometric relations between rigid bodies
(Part 2) — From semantics to software,” IEEE Robot.
& Autom. Mag., pp. 91-102, Jun 2013.

Unified Robot Description Format. Robot Operating
System. [Online]. Available: http://wiki.ros.org/urdf

S. Blumenthal, H. Bruyninckx, W. Nowak, and
E. Prassler, “A scene graph based shared 3D world
model for robotic applications,” in Proc. 2013 IEEE
Intl. Conf. on Robot. & Autom., Karlsruhe, Germany,
2013, pp. 453-460.

G. Veiga, J. Norberto, and K. Nilsson, “On the use
of service oriented software platforms for industrial
robotic cells,” in Proc. IFAC International Workshop
Intelligent Manufacturing Systems, Alicante, Spain,
May 2007.

G. Veiga, J. N. Pires, and K. Nilsson, “Exper-
iments with service-oriented architectures for in-
dustrial robotic cells programming,” Robotics and
Computer-Integrated Manufacturing, vol. 25, no. 4-
S, pp. 746-755, 2009.

A. Angerer, C. Ehinger, A. Hoffmann, W. Reif,
G. Reinhart, and G. Strasser, “Automated cutting and
handling of carbon fiber fabrics in aerospace indus-
tries,” in Proc. 6th IEEE Conf. on Autom. Science and
Engineering (CASE 2010), Toronto, Canada. 1EEE,
Aug. 2010, pp. 861-866.

M. Naumann, K. Wegener, and R. D. Schraft,
“Control architecture for robot cells to enable

[26]

[27]

(28]

[29]

(30]

(31]

plug’n’produce,” in Proc. 2007 IEEE Intl. Conf. on
Robot. & Autom., Rome, Italy, Apr. 2007, pp. 287—
292.

C. Schifer and O. Lopez, “An object-oriented robot
model and its integration into flexible manufacturing
systems,” in Multiple Approaches to Intelligent Sys-
tems, ser. LNCS. Springer, 1999, vol. 1611, pp.
820-829.

A. Bjorkelund, L. Edstrom, M. Haage, J. Malec,
K. Nilsson, P. Nugues, S. Gestegard Robertz,
D. Storkle, A. Blomdell, R. Johansson, M. Linderoth,
A. Nilsson, A. Robertsson, A. Stolt, and H. Bruyn-
inckx, “On the integration of skilled robot motions
for productivity in manufacturing,” in Proc. 2011
IEEE/CIRP Intl. Symp. on Assembly and Manufac-
turing, Tampere, Finland, 2011.

RDF Schema, W3C Std., Rev. 1.1, Feb. 2014. [On-
line]. Available: http://www.w3.org/TR/rdf-schema/

J. Huckaby, S. Vassos, and H. Christensen, “Plan-
ning with a task modeling framework in manufactur-
ing robotics,” in Proc. 2013 IEEE/RSJ Intl. Conf. on
Intell. Robots and Systems, Tokyo, Japan, Nov 2013,
pp. 5787-5794.

G.-T. Kim, S. D. Cha, and D.-H. Bae, “Task.o ob-
ject modeling approach for robot workcell program-
ming,” in Proc. 21st Annual Intl. Computer Soft-
ware and Applications Conference (COMPSAC '97),
1997, pp. 109-114.

R. Simmons and D. Apfelbaum, “A task description
language for robot control,” in Proc. 1998 IEEE/RSJ
Intl. Conf. on Intell. Robots and Systems, Victoria,
Canada, Oct. 1998.

