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Abstract—As neither the set of robotics devices nor the opera-
tions they can execute is fixed, a software framework for robotics
should be extensible. Moreover, as the environment the robots
work in changes, the application controlling them must be easily
adaptable to changing requirements. When this can be achieved
at run-time, it leads to a continuous evolution of robotics software.
This paper presents an object-oriented software framework, the
Java-based Robotics API, that facilitates extensibility with code
reuse. By integrating the framework into the dynamic module
system OSGi, it is possible to continuously evolve a robotics
application (including its real-time capable parts).

I. INTRODUCTION

Robots in industrial automation systems are usually tightly
integrated in a production environment where they collaborate
with other robots and all kinds of machinery. In some areas,
e.g. the automotive industry, production systems are set up at
most once in every generation of products and then perform
the same task thousands of times. While this may (yet) be
acceptable in domains like the automotive industry with large
batch size production, in many other areas industrial systems
are required that can be re-used for different tasks and prod-
ucts. This re-use poses challenges to the robotics hardware (e.g.
additional sensors, flexible grippers) as well as to the software
(e.g. new robot task or motions) operating them. Hence,
the software should be adaptable to changing requirements,
modified system components and new hardware platforms.
Over time, it must evolve together with the automation system
it controls (cf. Koziolek et al. [1]).

In this work, we focus on investigating how an industrial-
strength robotics framework must be designed to be easily
extensible and moreover to be maintainable – both in a static
way (at compile time) and dynamically during run-time. Such
a framework can be used to develop evolving automation
software by taking advantage of the provided static and dy-
namic flexibility. The main contributions are to show (1) how
extensibility with high code re-use can be achieved across
different architectural layers (i.e. the high-level programming
interface, the real-time motion control and the low-level device
control), (2) how the dependencies between these different
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Figure 1. The multi-layered software architecture for industrial robotics
developed in the joint research project SoftRobot.

layers can be maintained, and (3) how robotic software can be
updated or extended during run-time on each of these layers.

The presented framework is based on the software archi-
tecture (cf. Fig. 1) developed in the joint research project
SoftRobot with KUKA Laboratories. The framework is geared
towards realizing complex, sensor-guided manipulation tasks
of single robots or small teams of robots. The main idea [2] is
that robotics software is developed against an application pro-
gramming interface (API) – the Java-based Robotics API [3] –
and robot operations are executed with hard real-time guaran-
tees on the underlying Robot Control Core (RCC). Thus, the
RCC is responsible for controlling hardware devices and must
be implemented on a real-time operating system. The reference
implementation – the SoftRobot RCC – is implemented in
C++ (using libraries from Orocos [4]) and is targeting Linux
Xenomai for robot control as well as Windows for testing and
simulation purposes.

The Robotics API consists of a core that defines a basic
model of controllable devices and combinable operations that
these devices can execute. The actual execution is performed
on the RCC using real-time capable calculation and device
modules. To describe such combinable operations, the RCC
is interfaced through a flexible data-flow language [5] by
the Robotics API that describes which calculation and device
modules must be used and how they must be combined. Such
a combination of these real-time capable modules is executed
by the RCC with hard real-time guarantees. This integration
of flexible high-level application programming and real-time
motion execution makes the framework particularly suitable
for industrial robotics and distinguishes it from wide-spread
component systems such as ROS [6] which have a different
(non real-time) focus.978-1-4799-2722-7/13/$31.00 c© 2013 IEEE
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The core of the Robotics API provides a plug-in mech-
anism for adding new kinds of devices and operations by
appropriate extensions (e.g. for robot arms). By integrating
the framework into the dynamic Java-based module system
OSGi [7], a fine-grained management of extensions and their
dependencies is possible. From our point of view, this is very
important for the managed evolution of automation software,
because it allows for a controlled integration of new system
components and functions to meet changing requirements
throughout the life-cycle of the system. Furthermore, such a
module system can support dynamic adaptation of the module
composition forming the automation software. For example,
unloading modules in case of maintenance of hardware com-
ponents, replacing modules in favor of new, function-enriched
versions or adding completely new modules at run-time for
scaling up the automation system is possible.

The first part of this paper – Sect. II – presents the
principles that were applied to achieve maximum flexibility
and extensibility while still maintaining real-time capability.
The second part – Sects. III and IV – presents the standardized
module system OSGi and our approach to use it for creating
maintainable software for automation systems. Subsequently,
Sect. V explains how this can lead towards a continuous
evolution of robotics software. In Sect. VI, the presented
approach is compared to related work. Sect. VII concludes
the paper and gives an outlook.

II. DESIGN FOR EXTENSION: REUSE & FLEXIBILITY

The Robotics API is an object-oriented framework for
robot programming. An important aspect of object-oriented
design is to model software objects that correspond to real-
world objects and concepts [8]. The concrete approach of
decomposing domain concepts to software objects depends
on many factors (e.g. granularity, flexibility, reusability). We
found that devices (e.g. robots or sensors) as well as activities
(e.g. motions) are well suited to be modeled as software objects
in robotics [3]. Separating those two concepts can increase
reusability, as neither the set of devices nor the capabilities
they can have is fixed.

According to Gamma et al. [9], there are two common
techniques in object-oriented systems for reusing functionality.
Using class inheritance, the implementation of one class can
be derived from another (super) class and can be extended
on demand (also known as subclassing). This is referred to
as white-box reuse and is defined statically at compile-time.
Object composition is a technique where single objects are
combined to obtain a new (and more complex) object. This
object relies on the functionality of its inner objects and
delegates operations to them. This is referred to as black-box
reuse and can be defined and changed at run-time.

Fig. 2 shows an excerpt from the Robotics API’s class
hierarchy1. It shows the implementation of a KUKA Light-
Weight Robot (LWR) based on a generic robot arm. In the
following sections, we will investigate the different parts and
explain which principles have been applied to achieve both
reusability and flexibility.

1For purposes of clarity, the distinction between Java interfaces and their
(abstract) implementation – a principle of reusable object-oriented software
which exists e.g. for actuators and robot arms – was omitted.

A. New devices by inheritance

New robotics devices can be added by subclassing an
appropriate abstract super implementation. In Fig. 2, the most
general robotics device is an Actuator which can be sub-
classed. Among other attributes and operations, it defines e.g.
an abstract method for retrieving the actuator’s operation state.
Located in another package, the (abstract) class RobotArm
defines an interface for generic articulated arms and provides
an abstract implementation. For instance, it defines that an arm
has a base and a flange frame and consists of joints and links.
For implementing a concrete robot arm such as the LWR in the
example, the RobotArm class must be extended and abstract
methods have to be implemented (e.g. for creating the specific
joints and links). The Lwr class is such an specialized robot
arm defining additional attributes and methods only common
to this type of robot (e.g. a force-torque sensor).

In this case, inheritance facilitates code reuse: the super
class already defines the skeleton – i.e. the attributes and
methods common to this device type. By using the Template
Method Pattern [9], every concrete device is able to (re)define
specific implementation details. Apart from the LWR, various
other robot types (e.g. KUKA youBot, Universal Robot UR5,
Staubli TX90) have been implemented with significant code
reuse. For example, the Staubli TX90 robot arm implementa-
tion consists of only a few methods defining its links, joints and
machine parameters. Apart from robot arms, various device
types such as mobile platforms, I/Os, or grippers have been
implemented using the same technique. As the device hierar-
chy is static and can be defined at compile-time, inheritance
is – with respect to flexibility and code reuse – an appropriate
technique here.

B. Adding & exposing new robot capabilities

While the structure of robotic devices is fixed, their ca-
pabilities, e.g. the actions or motions they can execute, are
not. Thus, actuator implementations in the Robotics API, like
RobotArm, do not provide a set of methods for executing
certain actions. Instead, an Actuator is modeled as a compo-
sition of ActuatorInterfaces which define semantically re-
lated operations (e.g. motions). Concrete implementations are
provided at run-time by suitable actuators (e.g. a RobotArms
provides an implementation of MotionInterface). Here,
composition was chosen over inheritance to be flexible but also
to enable re-use by sharing implementations among similar
actuators (e.g. among standard six-axis robot arms of different
manufacturers).

To combine robot activities and to monitor their execution
progress, methods of ActuatorInterfaces do not directly
execute operations, but return objects of type Activity [3].
This class resembles a command object as suggested by the
Command Pattern [9]. As our approach is using a standard Java
VM, an Activity is transformed into a data-flow description
of calculation and device modules (cf. Fig. 1) that can be
executed by the RCC with real-time timing guarantees. On
the Java side, the Activity is only a proxy monitoring the
execution progress (cf. [3]). New activities can be developed
by subclassing the Activity class or an appropriate subclass
(e.g. MotionActivity). Moreover, activities can be com-
posed [9] using typical combinations such as sequential or par-
allel execution. Thus existing activities can be re-used as part
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Figure 2. UML class diagram with an excerpt from the Robotics API’s object class hierarchy focusing on the modeling and implementation of robot arms.

of more complex operations. The composition mechanisms are
designed such that they preserve real-time guarantees for the
execution of composed activities.

C. Delegating device control & communication

Actuators and their subclasses (e.g. the RobotArm) de-
fine the interfaces and the structure of different device types
and concrete devices. Any operation involving communica-
tion to the device hardware (e.g. for retrieving current joint
values or for executing motions) is delegated to a so called
ActuatorDriver (cf. Fig. 2) which are responsible for the
communication with the real device. As such, their type is
specific to the device type (e.g. the RobotArmDriver) and
their implementation is specific to the way of communication
with the device hardware. Thus, by applying the principle of
delegation, loose coupling between the application program-
ming and low-level device communication is achieved.

In the Robotics API, the implementation of drivers is
specific to the underlying RCC which is represented by a
particular implementation of the class RoboticsRuntime.
For instance, the SoftRobot RCC reference implementation
(cf. Sect. I) is represented by the SoftRobotRuntime class.
Consequently, there are driver implementations specifically for
this runtime (e.g. the SoftRobotLwrDriver for controlling
LWRs via the SoftRobot RCC). It is the responsibility of those
concrete ActuatorDrivers to map operations modeled by
Activities to corresponding real-time capable calculation
and device modules of the underlying RCC (cf. [10]).

By separating activities from actuator definitions as ex-
plained in the previous section, the mapping from high-level
definition of operations to their real-time capable equivalents
in the RCC is for the most part independent of concrete
actuators. For example, the combination of real-time RCC
modules to use for interpolating a linear motion can be
done for many types of robot arms in a generic way. The
SoftRobotRobotArmDriver serves as a generic driver which
can be used to execute basic motions. Implementing support
for a concrete robot becomes very simple. For the aforemen-
tioned Staubli TX90 robot, the only new functionality that

had to be implemented was a real-time capable RCC module
for connecting to the robot using Staubli’s uniVAL interface.
Already existing functionality, in particular the implementation
of different motion types, was reused from the robot arm driver.

Apart from using drivers, an actuator’s behavior can be im-
plemented using other (driver-based) actuators. When applying
composition, the composed actuator must derive its internal
state completely from its inner objects and its behavior must be
completely mapped onto a composition of their behavior (e.g.
by a composition of activities). Typical usages for composed
actuators are robot tools which are interfaced by digital and
analog I/Os (e.g. parallel grippers from Schunk’s MEG series).
However, composition can be also used to combine single
actuators to a more complex actuator (e.g. combining a robot
arm and a mobile platform) or to implement derived sensors
(e.g. combining two laser range sensors).

III. OSGI AT A GLANCE

The OSGi framework is a dynamic module system and
service platform for Java. Since 1999, its specification [7]
has been developed by the members of the OSGi Alliance
(e.g. IBM, Oracle, Samsung, Siemens) in an open process
and is publicly available. The OSGi framework is used e.g.
in application servers, automotive systems or the Eclipse IDE.

An application based on OSGi is composed of many dif-
ferent (reusable) components called bundles. As in plain Java,
bundles are packaged and deployed as JAR files. However,
bundles are self-describing by using a manifest file to declare
their public API (i.e. exported packages) and thus to hide
internal implementation. In addition, the manifest defines run-
time dependencies on other packages or bundles (of a specific
version). OSGi applications are dynamic in the sense that
the set of bundles can change at run-time. Bundles have a
life-cycle and can be installed, updated, or even uninstalled
at any time. Hence, there is no main program: bundles are
activated by the framework and, for example, may start threads
or collaborate with other bundles.

For collaboration among bundles, OSGi implements a
service model and introduces a service registry. Using this
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exemplary packages from Fig. 2.

registry, a bundle can register or retrieve a service, and it
can listen for services to appear or disappear. Hence, different
bundles can register the same type of service, and different
bundles can use the same service. Similar to bundles, services
are also dynamic, i.e. a bundle can decide to withdraw its
services from the registry. Other bundles using a withdrawn
service are informed about this and must then ensure that
they drop any references to the service object. To facilitate
this, OSGi offers techniques such as Declarative Services [11].
Based on the service model, OSGi additionally provides an
universal event mechanism that allows to publish and consume
events by giving a topic

IV. MAINTAINABILITY AT RUN-TIME

Sommerville [12] defines maintainability as the ability of
a software system to economically cope with new emerging
requirements. ISO 9126 [13] describes maintainability as the
ability of the software to be modified with relatively little
effort. Such a modification can be the correction of bugs,
an improvement, or the adaptation to a changed environment.
Due to its explicit definition of public API and its dynamic
module system, OSGi is well suited to create maintainable
software [14]. Sect. IV-A shows how these abilities can be
exploited for robotics. In Sect. IV-B, additional challenges for
maintainable software in robotics (i.e. real-time device control)
are described and solutions are sketched.

A. Deployment: Packaging as bundles and using services

Each package from Fig. 2 is deployed into a separate
bundle describing its public API and its run-time dependencies
to other packages/bundles. The diagram in Fig. 3 show this
for two exemplary packages. On the left hand side, the
robot.lwr bundle is shown. It is an API bundle which exports
the corresponding package and, thus, realizes its interfaces
and classes. In order to do this, it relies on two imported
packages: core and robot with regard to a specific version.
This bundle does not export every implemented class but rather
provides these implementations by using services as explained
later. On the right hand side of Fig. 3, the runtime-specific
bundle runtime.softrobot.robot.lwr is shown. It real-
izes a runtime-specific driver for the KUKA LWR and defines
required real-time (calculation) modules (e.g. for compliant
motions). While it does not export any public API, it imports

other packages such as robot.lwr which was exported by
the previously described bundle.

As mentioned before in Sect. III, services should be used
for the collaboration among bundles, i.e. services should
be shared and not concrete implementations. For exam-
ple, the runtime.softrobot.robot.lwr bundle offers a
RoboticsBuilder service to create instances of the internal
SoftRobotLwrDriver implementation (cf. the Builder Pat-
tern [9]). This approach ensures that application programmers
neither create instances of nor program against internal im-
plementation classes. As builders are registered as services,
infrastructure components can retrieve them using the OSGi
service registry and use them to instantiate the required ac-
tuators and drivers. The process of creating, configuring and
publishing actuators and drivers is application-specific. For
example, the set of required actuators and drivers can be
defined in a configuration file, and actuators can be either
published as services or stored in a registry.

Before publishing an actuator, it is important to inform
all listeners implementing the RoboticsListener interface. Both
bundles from Fig. 3 implement this interface and offer it
as a service using the Whiteboard Pattern [15]. By do-
ing so, bundles are informed by the infrastructure compo-
nent whenever a new (properly configured) actuator, runtime,
and driver is added or removed. Moreover, new listeners
are informed about existing actuators, runtimes, and drivers.
Hence, listeners can be used to add and remove actua-
tor interface implementations to suitable actuators (e.g. the
CompliantMotionInterfaceImpl is added to every built
Lwr to provide the CompliantMotionInterface). Runtime-
specific bundles can use this interface to register transfor-
mation rules for drivers that define which real-time modules
are expected inside the RCC and how high-level operations
(i.e. Activities) are mapped to these real-time modules
(cf. Sect. II-C).

B. Dependencies: Java bundles and real-time modules

Deploying an OSGi-based application means to deploy
a set of bundles that constitute this application. In the case
of a Robotics API application, API bundles, runtime-specific
bundles as well as application-specific bundles need to be
deployed. Fig. 4 shows the dependencies between these kinds
of bundles at run-time. The dependencies between packages
(cf. Fig. 3) are resolved and mapped to dependencies between
bundles. As version ranges can be specified for dependencies,
OSGi takes care on resolving this adequately and allows
multiple versions of the same class definition inside a single
Java VM. If a bundle’s dependencies are resolved, it is installed
and its services are registered.

The API bundles have dependencies on each other ac-
cording to the class hierarchy from Fig. 2, e.g. the robot
bundle depends on the core bundle and imports interfaces
and classes from there. The application (represented by a
single application bundle) only depends on API bundles,
i.e. only interfaces and classes of API bundles are used.
This is enforced as runtime-specific bundles should not export
any implementation classes. By doing so, the application is
completely independent from the used runtime and RCC.
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Runtime-specific bundles have dependencies on API bun-
dles as they are using classes and interfaces from there (e.g.
the RobotArmDriver interface). Moreover, they also have
dependencies on each other according to the object class
hierarchy. The OSGi framework is able to resolve these
dependencies automatically. However, every runtime-specific
bundle has additional dependencies (in the form of usages)
to the RCC and to modules inside the RCC as shown in
Fig. 4. For example, the SoftRobotRuntime class (located
in the runtime.softrobot bundle) implements the net-
work communication to the RCC reference implementation
and, thus, relies on a certain communication protocol. Other
runtime-specific bundles rely on a set of certain real-time
calculation modules present at the RCC. For instance, the
runtime.softrobot.robot bundle assumes that a specific
set of real-time RCC modules is available for interpolating
a linear motion (cf. Sect. II-C). This dependency cannot be
handled automatically as the real-time modules (C++) are part
of the RCC and, thus, located outside the Java-based OSGi
framework (cf. Fig. 4).

In order to develop maintainable robotics software, a
matching between bundles (Java) and real-time modules (C++)
has to be performed at run-time. To achieve this, every runtime
implementation (e.g. the SoftRobotRuntime) can validate
whether its version matches the RCC while connecting. More-
over, it has to provide means to validate whether runtime-
specific bundles match to installed real-time modules on the
RCC which is feasible because there is a one-to-one relation-
ship between those bundles and modules (cf. Fig. 4). For this
validation, we employ fragments, a special form of OSGi bun-
dles, which are always attached to another bundle, the fragment
host. A fragment is treated as part of the host bundle and
its contents are made available to this bundle. Fragments are
normally used to extend bundles with resources or platform-
specific libraries. Hence, for each supported RCC operating
system (e.g. Linux Xenomai, Windows) a shared library (C++)
containing the required real-time modules is packaged inside
a dedicated fragment and can be deployed from the OSGi
framework (Java) to the RCC (C++). For example, there are
different fragments for the runtime.softrobot.robot bun-
dle. Each fragment contains the lib_robotarm shared library
for a particular operating systems (e.g. lib_robotarm.so
for Linux Xenomai, see Fig. 4). This deployment mechanism
allows both for validating a particular shared library (using

check sums) and for remotely installing the shared library and
the contained real-time modules onto the RCC at run-time.

V. TOWARDS CONTINUOUS EVOLUTION

Because OSGi manages all dependencies between bundles,
bundles and, thus, actuators or drivers can be updated during
run-time. To update a bundle, it first has to be uninstalled.
Hence, its services are unregistered, which is recognized by
an infrastructure component. The infrastructure component
will then invalidate and remove all actuators and drivers
provided by the uninstalled bundle. Accordingly, it removes
every ActuatorInterface implementation provided by the
bundle. This can lead to a degraded mode where the application
is not able to work properly, because e.g. a required robot
(object) is not present anymore. However, the application must
support this evolution process properly and the point in time
when the system is updated should be chosen wisely in order
to be able to resume working afterward.

To replace the bundle, a new version must be installed and
started. In doing so, it registers its services again. Bundles,
that have dependencies to this replaced bundle or to packages
exported by it, have to be refreshed. By refreshing dependent
bundles, these bundles are getting stopped and started again.
If a dependent bundle is not compatible with the new bundle
version, it will not be started by the framework. Hence, OSGi
takes care of restoring a consistent composition of bundles.
As new services are getting registered, the infrastructure com-
ponent will try to restore the previously removed actuators
and drivers, however using the newly installed bundle. If this
can be accomplished successfully, the application can resume
working properly.

As real-time modules for the RCC are also packaged in
runtime-specific bundles (respectively in attached fragments)
and provided by OSGi services, this process can be used to
install new or update existing real-time modules (by trans-
ferring a new shared library to the RCC). This counts for
calculation modules, which may be required for the execution
of new Activities, as well as for device modules, which
are responsible for establishing the low-level communication
with hardware devices (cf. Fig. 1). In order to install a real-
time module, the target platform (e.g. the operating system) of
the RCC is determined and the appropriate fragment, which



includes information about the target platform, is resolved.
Subsequently, the shared library is transferred from the frag-
ment to the RCC and the contained real-time modules are
installed there. When replacing a runtime-specific bundle (and
its fragments) the provided real-time modules are uninstalled
from the RCC and replaced by new modules provided by the
updated bundles (and its fragments respectively).

Robotics software development can take advantage of the
mechanisms a dynamic module system such as OSGi provides.
To a certain extent, it allows for a continuous evolution of
the system (including the real-time control of devices) at run-
time. Moreover, the dynamic nature of OSGi can be used to
develop highly flexible and sustainable automation systems. To
achieve this, automation systems must be modeled using the
service-oriented paradigm, i.e. every automation component
is modeled as a service and, as such, is exchangeable. This
allows for updating or replacing parts of the automation system
at run-time. If the process- or workpiece-specific parts are
also modeled as services, the automation system is to certain
extent adaptable to changing requirements. First results are
very promising.

VI. RELATED WORK

For managing the complexity of large-scale application
scenarios, Hägele et al. [16] identified the decomposition of
systems into components and the composability of subsystems
as core requirements. It is addressed by most component-based
systems like Player [17], ROS [6], YARP [18] or ORCA [19].
Because in such systems the application is completely com-
posed of loosely coupled components, they are extensible by
design. However, many of the available component frameworks
do not particularly support hard real-time execution of robot
tasks, which makes it harder to achieve the precision required
in industrial applications. The Orocos [4] framework, which
is used for our RCC reference implementation, supports real-
time execution and is extensible with reusable components.
However, we added an extensible and easy-to-use API layer
above real-time robot control which makes in necessary to
achieve reusability and to maintain dependencies over multiple
architectural layers.

According to Brugali et al. [20], reusability in component-
based software engineering is achieved by separating the com-
ponent specification (i.e. its provided and required interfaces)
and its implementations which may vary in functional or non-
functional characteristics. As components are used as black
boxes, they can be reused in various applications. To facilitate
black box reusability, Brugali et al. [21] propose a reuse-
oriented development process. Mallet et al. [22] make sug-
gestions on how to design robot components. The techniques
proposed by Brugali et al. [20] for reducing the implementation
effort for a component specification are the same object-
oriented paradigms which have been successfully applied in
our approach (e.g. inheritance, delegation). The component-
based CLARAty framework [23] e.g. also uses class inher-
itance to achieve extensibility and code reusability. Other
approaches that use object-oriented concepts for reusability
are MARS [24] and RIPE [25]. Similar to CLARAty, they
neither regard maintainability of robotics software nor allow
for evolving the system during run-time. Due to its automatic
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Figure 5. Lines of code distribution across the artifacts shown in Fig. 4.

management of dependencies, white box reusability is sup-
ported very well by OSGi which is exploited in our framework.

Robot frameworks often act as a middleware by orga-
nizing the communication between components. For exam-
ple, ROS uses service calls and message-passing (topic-based
publish/subscribe) for communication between different pro-
cesses which are called nodes. By only exchanging messages,
components are loosely coupled and only rely on a common
specification of message types. Thus, it is possible to stop a
running node and replace it with an updated version. However,
other nodes can hardly recognize that the node is absent for
some time. By replacing a node, the application-specific device
interface and the low-level communication with the device
can also be updated. As frameworks like ROS usually do
not support real-time communication, the application-specific
device interface cannot rely on real-time guarantees (e.g. it
must use velocity control instead of cyclic position control)
and the evolution of any required real-time code must be done
manually while deploying or starting the new node.

Georgas and Taylor [26] have examined different architec-
tural styles found in robotics and have elaborated if and how
they support run-time evolution. They come to the conclusion
that “a lack of explicit architectural layering and clearly
encapsulated behaviours” [26] are the most important short-
comings that prevent evolving robotics systems at run-time.
However, both shortcomings are addressed in the approach
presented in this paper which leads to the desired software
evolution at run-time. Luo et al. [27] also present an OSGi-
based approach for software evolution. They are using behavior
networks [28] where each available behavior is represented as
a bundle. New behavioral bundles and new behavior networks
can be deployed at run-time using the dynamic character of
OSGi. However, they do not address reusability and real-time
execution of robot operations.

VII. CONCLUSION

This paper shows that an easily extensible robotics frame-
work can be developed that (1) supports robot programming in-
cluding the real-time execution of robot operations and (2) fa-
cilitates the reusability of source code. To illustrate reusability,
Fig. 5 shows the lines of code of API bundles, runtime-specific
bundles and real-time modules that are necessary to support
KUKA’s LWR, Staubli’s TX90 and Universal Robot’s UR5.
It shows that most of the code was implemented for basic



Robotics API concepts (e.g. Actuators and Activities)
as well as the runtime-specific mapping of these concepts
to real-time modules and the communication to the RCC.
The generic Robot Arm extension includes the path planning
for different motions and contains a considerable amount
of transformation rules to map these motions to real-time
modules. The Staubli extension as well as the UR5 extension
only requires minimal Java code to e.g. define the link/joint
structure and default parameters, while other functionality is
re-used from the generic Robot Arm extension. The LWR
requires some additional Java code which is specific for its
torque sensors, controller modes and force-guarded motions.
In the SoftRobot RCC, the most part of code is required for the
core components, as well as for implementing the low-level
communication with concrete robot arms, while the generic
Robot Arm extension is relatively slim.

However, the right deployment plays a significant role for
the maintainability of (robotics) software. OSGi allows for
explicitly defining a bundle’s public API and its dependencies
to other packages and bundles of a specific version. Special
attention should be paid to not publishing particular imple-
mentations, but using services. The dynamic service model
not only allows to add new devices, driver implementations
and robot capabilities, but also to update existing devices and
driver implementations as well as real-time modules. Hence,
it enables and facilitates not only the continuous evolution
of robot-based automation systems but also of service robots
which is getting more and more important in the future [29].

As applications only have dependencies to API bundles,
they are completely independent from the underlying RCC.
Hence, runtime-specific bundles do not need to be bound at
compile time. Instead, it is possible to provision these bundles
for the first time when the application is started. Experiments
using an OSGi-based marketplace showed that it is possible to
download and install these bundles at run-time. Because OSGi
offers mechanisms for network communication with other
systems, it can be considered as a service-oriented middleware
for Java. Remote Services [11] allow for adapting the service
model and event mechanism to distributed OSGi systems, web
services, and for communication with other processes. This can
be used to adapt the Robotics API and its abilities for evolving
at run-time to other (robotics) middlewares. While support for
the Device Profile for Web Services [30] has already been
implemented, further adaptations are future work.
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