
Journal of Software Engineering for Robotics 4(1), May 2013, 1-22
ISSN: 2035-3928

Robotics API: Object-Oriented Software
Development for Industrial Robots

Andreas ANGERER1,∗ Alwin HOFFMANN1 Andreas SCHIERL1 Michael VISTEIN1 Wolfgang REIF1

1 Institute for Software & Systems Engineering, Department of Computer Science, University of Augsburg, Augsburg 86159, Germany

Abstract—Industrial robots are flexible machines that can be equipped with various sensors and tools to perform complex tasks.
However, current robot programming languages are reaching their limits. They are not flexible and powerful enough to master the
challenges posed by the intended future application areas. In the research project SoftRobot, a consortium of science and industry
partners developed a software architecture that enables object-oriented software development for industrial robot systems using
general-purpose programming languages. The requirements of current and future applications of industrial robots have been analysed
and are reflected in the developed architecture. In this paper, an overview is given about this architecture as well as the goals that
guided its development. A special focus is put on the design of the object-oriented Robotics API, which serves as a framework
for developing complex robotic applications. It allows specifying real-time critical operations of robots and tools, including advanced
concepts like sensor-based motions and multi-robot synchronization. The power and usefulness of the architecture is illustrated by
several application examples. Its extensibility and reusability is evaluated and a comparison to other robotics frameworks is drawn.

Index Terms—Control Architectures and Programming, Cooperative Manipulators, Domain-specific architectures, Manipulation and
Compliant Assembly, Object-oriented programming .

1 INTRODUCTION

R OBOTS are in general highly flexible machines. Most
robotic devices, especially articulated arms used in in-

dustry today, have many degrees of freedom that allow them
to adapt to a large variety of tasks and environments. Recent
trends of integrating one or more robot arms and a mobile
robot platform, like the PR2 [1] or TUM-Rosie [2] systems,
increase the degree of freedom even further.

Exploiting the flexibility of robots to create systems that
help humans has been subject to research for over three
decades now. As of today, robots are still most frequently
used in high-volume manufacturing industry, in particular
the automotive industry. There, they perform repetitive and
often heavy work. Besides their reliability and performance,
the high quality delivered by robot manufacturing systems is

Regular paper – Manuscript received October 05, 2012; revised March 27,
2013.

• This work presents results of the research project SoftRobot which was
funded by the European Union and the Bavarian government within the
High-Tech-Offensive Bayern. The project was carried out together with
KUKA Laboratories GmbH and MRK-Systeme GmbH and was kindly
supported by VDI/VDE-IT GmbH.

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

one of their strong points. The spatial flexibility of robots
is an important prerequisite in this application domain, as
it enables robots to perform complex operations that would
not be possible with less flexible manufacturing systems.
However, the process flexibility, which means the adaptability
of a system to changing tasks, is secondary in this context.
In many cases the systems are installed and programmed with
high effort to perform a particular task for a very long time.

This second dimension of flexibility, the process flexibility,
can be considered the most important prerequisite for a broader
use of industrial robots in the future [3]. The potential for
many other applications, like small batch assembly or large-
scale construction, has been recognized (c.f. Hägele et al. [4])
and much effort has been spent to embrace the use of robots
in these fields. It can be stated that process flexibility of robot
systems is mostly a software issue, compared to the spatial
flexibility which can be seen predominantly as hardware issue.
This separation is – due to the mechatronics nature of robot
systems – not a sharp one. However, from the authors’ point
of view, the software design of robot control systems is the
key to substantially improve process flexibility of robots and
enable their use in many more areas.

Today, there is a variety of proprietary robot programming
languages developed by manufacturers of robot systems. They
have been developed some decades ago and have in general
not evolved much since then. Though they offer features

www.joser.org - c© 2013 by A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, W. Reif

2 Journal of Software Engineering for Robotics 4(1), May 2013

advantageous for industrial robot programming (e.g. hardware
abstraction, real-time execution), they often suffer from other
drawbacks. In the joint research project SoftRobot, the issue of
software maturity in industrial robot controllers was addressed
by the Institute for Software & Systems Engineering (ISSE)
of the University of Augsburg, KUKA Laboratories GmbH
(KUKA) and MRK-Systeme GmbH (MRK). The goal of the
SoftRobot project was to develop a software architecture that
enables software development for industrial robot systems with
modern general-purpose programming languages. It should
meet today’s functional requirements to robot programming
systems as well as identified requirements of future applica-
tions, while at the same time making the methods and tools of
modern software engineering available in the robotics domain.

In this article, we present the software architecture that has
been developed in the SoftRobot project, referred to as the
SoftRobot Architecture. A special focus is put on the design
of the object-oriented robot application framework called
Robotics API that is part of this architecture. Sect. 2 gives a
deeper insight into the current state of software development
in industrial robotics and its special challenges. Based on that,
the requirements and the resulting SoftRobot architecture are
presented in Sect. 3. In Sect. 4 the software design of the
Robotics API core is exposed in detail. Sect. 5 summarizes
experiences made during the development of applications with
the Robotics API and motivates the design of the Robotics
API Activity Layer, which is particularly geared towards
application developers. The structure of this layer is then
illustrated in Sect. 6. Sect. 7 evaluates the practical usefulness
as well as the extensibility, reusability and performance of the
approach and draws a comparison to other work. Finally, we
sum up our results and conclude the article in Sect. 8.

2 STATE OF THE ART IN INDUSTRIAL ROBOT
APPLICATION DEVELOPMENT

Industrial robots have been used in large-scale production
areas for decades already. Thus, most manufacturers of indus-
trial robot systems have a background in constructing robots
and robot controllers tailored to the needs of those domains.
Special programming languages and sophisticated tool chains
have been developed to support application development. At
some point in time, industrial robotics was even considered
a solved problem (see Hägele et al. [5]). However, this
situation is changing as robotics manufacturers are trying
to expand to new markets. There is a general trend driven
by industrial robot manufacturers as well as customers to
use robots not only in large-scale manufacturing systems,
but also for small batch sizes, as co-workers for humans
and even for services in everyday life. This poses challenges
to the existing hardware, but in particular to the existing
software ecosystems of industrial robots, which are not able
to sufficiently fulfil the changed requirements of those new
domains. The rest of this section gives an overview about

existing programming languages, tools and frameworks for
industrial robots. Research approaches are omitted here, but
are evaluated later in Sect. 7.4.

Industrial robot programming systems can be divided into
so-called online and offline programming approaches. Online
programming means creating robot programs with direct in-
volvement of the physical robot system. Special programming
languages and development tools exist for that purpose. Offline
programming, in contrast, is possible without access to the
robot and mostly involves CAD-based simulation environ-
ments. Both approaches and their relevance to this work are
examined in this section.

Online programming is inevitable for using today’s in-
dustrial robots, either for creating complete robot programs
directly, or for adapting programs created with offline pro-
gramming tools to environment details. For online program-
ming, proprietary languages, varying among manufacturers,
are predominantly employed. Examples are the KUKA Robot
Language, ABB’s robot programming language RAPID, or
KAREL developed by FANUC Robotics. These languages are
tailored to robot programming by using special commands for
robot motion or controlling robot tools. Most robot controllers
provide hand-held devices, often called teach pendants, for
manually controlling the robot and creating robot programs at
the same time.

KUKA’s KRL is examined further as an exemplary robot
language – many of its strengths and weaknesses can be
found in other proprietary robot languages as well. KRL is an
imperative language with a syntax similar to Basic/Pascal. It
features typical control flow statements (if, for, while) as well
as built-in commands for moving a robot arm and operating
robot tools. Compared to general-purpose languages, it is
limited in the following respects: 1) memory management,
as there is e.g. no support of explicit memory allocation and
memory manipulation, 2) parallelism, as KRL has no threading
model, but only special statements for executing e.g. tool
actions in parallel to robot motions and 3) comprehensive
applications in general, as KRL has e.g. no support for
file access and UI elements. KRL programs are executed
by an interpreter, which provides some special features. By
interpreting several statements in advance, motion planning
beyond the currently executed movement is possible. Based
on that, blending between successive motions is realized. The
interpreter is able to start execution of a program at an arbitrary
code line, execute programs step-wise (one step being either
a single code line or a single motion statement) and also
stopping and continuing program and motion execution at any
time. Even backward execution of programs is possible, which
is useful when fine-testing specific robot motions contained
in a larger program. Program execution is guaranteed to be
deterministic, i.e. a program that has been tested once is
guaranteed to be executed in exactly the same way in the
future.

Although KRL includes many features supporting basic

A. Angerer et al./ Robotics API: Object-Oriented Software Development for Industrial Robots 3

steps in the development and parametrization of robot ap-
plications, it increasingly suffers from other shortcomings.
Advanced motion control concepts required for future applica-
tions (cf. Hägele et al. [4]) like (hybrid) force/torque control
or sensor-guided and sensor-guarded motion in general are
not supported. Real-time cooperation among multiple robots
is supported, but complex to use in practical scenarios, as
it involves writing different programs for each robot and
synchronizing them appropriately. For complex applications,
the language lacks structuring mechanisms (e.g. object or
component orientation). At the same time, connectivity to
external systems is limited. The examples from Pires [6] and
Ge [7] illustrate the efforts necessary for connecting high-level
programs developed in common general-purpose languages to
robot controllers and their languages.

Offline programming systems are offered by most manufac-
turers of industrial robots (e.g. KUKA.WorkVisual, the ABB
RobotStudio or FANUC’s Roboguide). Third party providers
offer solutions that support robots from different manufac-
turers, e.g. RobotMotionCenter [8] by Blackbird Robotersys-
teme GmbH. Offline programming systems usually allow the
modelling of robot operations by specifying them in virtual
graphical environments, e.g. specifying motions by defining
them directly on the surface of a three dimensional represen-
tation of the workpiece. These tools usually generate code
for the robot programming language supported by the target
system. Thus, they suffer from the same limitation in function-
ality as the underlying languages. Additionally, in most cases
it is necessary to also use online programming for adapting
generated programs to the actual physical environment.

From our point of view, the industrial robotics domain
could profit from a software architecture that combines the
necessary real-time aspects with a high-level interface for
specifying robot programs. We propose to realize this in-
terface based on a state-of-the-art general-purpose language.
This promises various advantages: Modern general-purpose
languages incorporate many of the advances of the software
engineering domain from the past decade and thus provide
powerful language features. The fact that such languages are
supported by active communities implies that many tools and
libraries are available that the robotics domain could also profit
from. Additionally, there are many developers who already
know those languages, compared to today’s proprietary robot
languages that usually have to be learned first. Finally, those
languages themselves evolve driven by a strong community,
thus robot manufacturers could be relieved from the need to
extend and support their own language.

3 THE SOFTROBOT ARCHITECTURE

The overall goal in the development of the SoftRobot Ar-
chitecture was to enable the programming of industrial robot
systems with modern general-purpose languages. Additionally,
the architecture should not rely on real-time capabilities of

those languages for two reasons: 1) Developers should not
have to care about real-time guarantees in the programs they
create. 2) Languages with automatic (and therefore usually
non-deterministic) memory management should be usable
to relieve developers from manual memory management.
However, dealing with real-time aspects is inevitable in an
industrial robot control architecture, so an important research
issue was to create an abstraction for real-time tasks in the
SoftRobot Architecture. To find the right level for this abstrac-
tion, an analysis of a broad variety of typical industrial robot
applications (e.g. gluing, welding, palletizing) was performed.
As input, products of KUKA Robotics and MRK were used,
as well as some applications of their customers. The results
of the analysis showed that these applications embody only a
small set of real-time critical tasks and a limited number of
combinations of those tasks. For example, interpolation of a
robot movement clearly has to be considered real-time critical.
Executing a tool action during a robot motion (e.g. activating
a welding torch) is an example of a real-time critical combina-
tion of tasks. Besides that, typical robot applications contain
a workflow of different tasks that can itself be considered not
hard real-time critical. The specification and execution of this
workflow can thus be left to a standard programming language
without hard real-time support.

Some additional requirements also largely influenced the
resulting architecture. These requirements were again de-
termined in discussions with all project partners. In these
discussions, input from the companies’ practical experiences
and customer feedback as well as requirements identified
in literature were taken into account. The following five
requirements were identified to be of central importance to
the design of the SoftRobot architecture:

1) Support for sensor-guided and sensor-guarded oper-
ations. The trend towards tighter integration of sensors
into robot control, e.g. for force-controlled motion or
monitoring safety properties, should be embraced in the
architecture. The need for force-controlled operation in
future automation tasks has been particularly stressed
e.g. by Hägele et al. [5].

2) Support for multi-robot applications. Tight coopera-
tion and synchronisation of multiple robots should be
supported. KUKA shares the vision of more intensive
use of multi-robot systems in future applications, stated
e.g. by Hägele et al. [4]. Today’s many commercial robot
controllers support real-time robot cooperation (e.g. by
KUKA [9] and ABB [10]). However, most controllers
follow the paradigm ’one program per robot’ which
enforces writing multiple programs even in scenarios
where it is not adequate and adds unnecessary com-
plexity. The SoftRobot architecture should break this
paradigm and allow for natural integration of multi-robot
cooperation in any robotic application.

3) Extensibility and reusability. It should be possible to

4 Journal of Software Engineering for Robotics 4(1), May 2013

extend the architecture to integrate new devices (sensors,
robots, etc.), operations (new movements, control algo-
rithms, etc.) or even new programming languages/in-
terfaces. Extensibility has often been mentioned as an
important aspect of reusability, e.g. in the context of the
Player/Stage project by Vaughan [11] or the OROCOS
project by Bruyninckx [12]. A high degree of reusability
of generic concepts will decrease the effort required to
extend the architecture.

4) Different user groups. Different kinds of users should
be able to use or extend the architecture. For example,
customers using robots in their factories need simple,
quick programming interfaces, while system integrators
need access on a lower level to integrate robots into
complex multi-robot or multi-sensor systems. This re-
quirement was driven by KUKA as hardware vendor and
seller of robot systems and MRK as a system integrator.

5) Support concepts specific to industrial robotics. In-
dustrial robot controllers have developed some special
features that are also reflected at the programming
language level. One of the most important special con-
cepts is motion blending, which means the continuous
execution of successive motions stated in a robot pro-
gram. Other examples are single-step and backwards
execution of robot programs as well as direct selection
of motion records to be executed. The newly developed
architecture should also take such features into account
and should make them accessible to programmers in an
easy way. This requirement was heavily influenced by
the experiences of KUKA and its customers.

To achieve all the aforementioned goals, we developed a two-
tier software architecture (introduced by Hoffmann et al. [13]),
which is depicted in Fig. 1. Boxes inside the Robotics API
and RCC parts represent important concepts. Similar to UML,
simple lines indicate associations between concepts and lines
with filled arrow indicate generalizations. Dotted lines between
Robotics API and RCC concepts indicate that some concept
of the Robotics API is transformed to some other concept of
the RCC during runtime.

The architecture’s most important aspect is the separation
between the Robot Control Core tier and the Robotics API tier.
The Robot Control Core (RCC) is responsible for real-time
hardware control. It exhibits the Realtime Primitives Interface
(RPI), described in previous work by Vistein et al. [14],
that was designed to flexibly specify fine-grained real-time
critical commands. The Robotics API uses this interface for
tasks that need to be executed deterministically and with real-
time guarantees, like e.g. robot movements, and also provides
mechanisms for the real-time critical combination of those
tasks by employing the flexibility of RPI. All such tasks and
task combinations are sent to the RCC for execution. From
the perspective of a Robotics API application, this execution
is done atomically. The Robotics API is implemented in Java.

Robot Control Core
Device

Drivers

Calculation

Modules

Command Layer

Activity Layer

Actuator

R
o

b
o

t
ic

s
 A

P
I

e

.g
.

st
a

n
d

a
rd

 J
a

v
a

R
C

C

e
.g

.
C

+
+

Activity

PTP Robot

Action Command

Robot

Applications

Domain-Specific

Languages

Service-Oriented

Architectures

Actuator Interface Meta Data

Fig. 1. The SoftRobot architecture.

It is divided into two layers, called the Command Layer and
the Activity Layer. The following paragraphs take a closer look
at both tiers (as well as the layers of the Robotics API) and
their roles considering the goals stated above. The detailed
design of each Robotics API layer is presented in Sect. 4 and
Sect. 6.

3.1 Robot Control Core
The Robot Control Core accepts commands specified in the
RPI dataflow language, consisting of calculation modules with
defined input and output ports that may be interconnected
by typed dataflow links. Calculation modules may use device
drivers to send data to or read data from devices. Commands
are specified as graphs of interconnected calculation mod-
ules, thus they are also called RPI graphs. Such a graph
is executed cyclically at a high rate (typically 1kHz). This
execution is performed deterministically by a real-time runtime
environment. In each execution cycle, the RPI graph is fully
evaluated. This dataflow-based approach is used to implement
all functionality that is required by the higher levels. For
example, the interpolation of pre-planned robot actions (like
e.g. motions along defined cartesian paths), actions that are
partially or completely based on sensor measurements, and
reactive behaviour (e.g. stopping a motion at the occurrence
of a certain event) are all encoded as RPI dataflow graphs. In
this respect, the RCC does not offer a diverse set of different
operations, but exposes only its capability to interpret RPI
graphs (and quickly switch from one graph to the next, see
below). All high-level functionality that is explained in this
work is achieved by encoding it appropriately as an RPI
dataflow graph.

Within the SoftRobot project, a reference implementation
of a Robot Control Core was created based on the Orocos
framework [12]. We call this implementation SoftRobot RCC.
It makes use of some scheduling features of Orocos pro-
vided through TaskContexts as well as kinematic calculation
functions provided by the KDL. However, the concept of a

A. Angerer et al./ Robotics API: Object-Oriented Software Development for Industrial Robots 5

Robot Control Core is not in any way bound to Orocos, thus
other (hard real-time capable) frameworks or a pure C/C++
implementation may be used.

On the RCC level, sensors can be integrated into commands
in arbitrary ways, as their measurement data is usually acces-
sible via output ports of calculation modules. The real-time
execution of the dataflow graphs can also be the basis for
synchronisation of multiple devices. The RCC furthermore
supports adding new device drivers and calculation modules
(even at runtime). In sum, the Reqs. 1, 2 and 3 are considered
already at the lowest architectural level. It turned out that
supporting some of the special concepts of industrial robot
control (Req. 5) also requires support on the RCC level. Instan-
taneous switching between the executed dataflow graphs (see a
previous paper of Vistein et al. [15]) can be used to realize e.g.
motion blending. Sensor guided motions, in particular force-
based manipulation, also profit from this concept. The Soft-
Robot RCC was extended to support instantaneous command
switching. Regarding Req. 4, the RCC tier is targeted at device
manufacturers that need to develop and test new device drivers
and calculation modules for their hardware.

3.2 Robotics API Command Layer
The Robotics API Command Layer defines a model for
specifying operations that should be executed by devices, and
for defining combinations of such operations. The most basic
way of defining an operation is employing a Command that
tells an Actuator to execute a certain Action. Commands can
be composed to form more complex Command structures.
Composition is based on an event mechanism, with events
being provided by Actuators, Sensors and Actions, or Com-
mands themselves (due to their life-cycle, e.g. Command has
ended). This will be described in detail in Sect. 4. At this
point, it is important to note that the Robotics API relies
on the Robot Control Core for executing these operations
with real-time guarantees. The reference implementation of
the Robotics API includes a generic and extensible algorithm
for transforming high-level concepts (Actions, Actuators and
Commands, as well as all concepts regarding composition
of Commands) to the RPI language that is accepted by the
SoftRobot RCC. Details about this algorithm are out of the
scope of this work, but can be found in previous work of
Schierl et al. [16]. The concept of transforming complex
Robotics API Commands, which contain continuous as well as
discrete, event-based aspects, to an RPI dataflow graph is the
key to achieve the proposed abstraction for real-time matters
in the SoftRobot architecture. Besides specifying the structure
of single complex Commands, the Robotics API also supports
defining conditions at which it is possible to switch between
separate Robotics API Commands. Based on this, the Robot
Control Core performs instantaneous switching from a running
RPI dataflow graph to its successor.

The requirements stated above are also reflected in this
layer. Due to the Command composition mechanisms, various

flavours of sensor-based operations are possible (Req. 1). Sen-
sor guided motion is supported as well and is in general real-
ized by concrete Action implementations. Considering Req. 2,
the notion of multiple robots in one program is achieved
by employing natural principles of object orientation, i.e.
having multiple instances of the same class (e.g. Robot) and
having different (sub-)classes for different real-world concepts
(e.g. different Robot types). Coordination and synchronisation
of multiple robots is supported by Command composition.
By employing the Command switching mechanism described
above, motion blending can be realized. Single-step execution
of programs can be achieved using e.g. a debugger, as will
be detailed in the next section. In this way, the Command
Layer accounts for Req. 5. To support extensibility (Req. 3) the
Robotics API as a whole employs a plug-in structure to support
new types of Actions, Actuators and Sensors. The user groups
intended to work on this layer (Req. 4) are robot manufacturers
as well as system integrators. Robot manufacturers might
extend this layer by introducing new Actuators and Actions as
counterparts to extensions to the RCC. System integrators may
implement new Actions as well, or use the Command model
to implement complex operations as part of an application or
to provide them to end users in a specialized API.

3.3 Robotics API Activity Layer

The Activity Layer in the Robotics API extends the Command
Layer and provides an easy-to-use programming interface
to developers of robotics applications. While the Command
Layer is concerned about basic operations of devices (like a
robot executing a linear motion) and very generic combination
mechanisms, the Activity Layer adds concepts frequently used
in application development, taking into consideration some
robotics-specific requirements. On this level, Actuators offer
a set of ActuatorInterfaces, each providing specific Activities
that the Actuator may execute. For instance, robots offer a
LinInterface, providing Activities for different kinds of linear
motions (e.g. to absolute goals in space or to goals specified
relative to the current position). Activities are characterized
by a particularly designed asynchronous execution semantics,
which will be described in detail later. This semantics allows
for easily specifying continuous execution of real-time oper-
ations on a programming language level. In addition, there
exist some predefined ways of combining Activities (e.g. for
parallel or conditional execution). As all Activities and their
combinations are implemented on top of the Command Layer
mechanisms, the real-time properties are preserved.

Using the Activity Layer, defining sensor-based motion
guards is still possible (Req. 1). However, flexibility is limited
in some respect, in favor of a slimmer API. Different kinds of
sensor guided motions are supported and realized by special
Activity implementations. Furthermore, special implementa-
tions of ActuatorInterfaces and Activities provide support for
particular multi-robot operations like synchronized motions

6 Journal of Software Engineering for Robotics 4(1), May 2013

(Req. 2). Like Actuators and Actions, new ActuatorInterfaces
and Activities may be added using the Robotics API’s plug-
in mechanism to provide extensibility (Req. 3). Robot manu-
facturers or system integrators might do this to provide new
functionality to application developers (Req. 4). The Activity
Layer is particularly geared towards those developers and
provides them with an easy-to-use programming interface.

As mentioned above (Req. 5), developers of robotic ap-
plications are used to some unique features of robot pro-
gramming languages and their execution environments. The
Activity Layer therefore supports easy specification of contin-
uous motion instructions, which is described in more detail
later. Single-step execution of (motion) instructions can be
achieved by Java debugging. As to not confuse developers
by stepping through internal operations of the Robotics API,
the debugger can be configured appropriately. For example,
the debugger of the Eclipse IDE provides the concept of step
filters that control which methods or classes should not be
stepped into during debugging. We are already working on an
Eclipse Plugin that supports application development with the
Robotics API. This plugin can be easily extended to adequately
pre-configure the Eclipse debugger for robotic applications.
However, developers have to take care if their program uses
the ability of the Robotics API to execute Commands or
Activities asynchronously. This will decouple the Robotics
API program flow from the robot operations that have been
triggered. While the program flow may be paused by the
debugger, the robot operation that has been triggered before
will not, which developers have to be aware of.

Considering direct selection of motion records, we did
experiments with extending Eclipse with a special program
launcher. It uses Java Reflection to allow developers to select
only certain methods to be executed. While this is not as
convenient as e.g. KRLs ability to jump to single motion
statements, it can ease development and testing when the
program is adequately structured. Backwards execution of
robot programs is a feature that we did not tackle yet with
our approach. Modifying the Java Virtual Machine to allow
true backwards execution seems hard to realize. However, for
practical cases it might be helpful to extend at least some
Activities by a kind of ”‘undo”’ functionality that e.g. could
be used to drive backwards. Another possible approach is to
record motion interpolation and enable a reverse playback of
the interpolated values. These approaches would at least ease
the testing of series of subsequent motions. However, this
inability to completely match a domain specific language like
KRL has to be accepted as a limitation when using a general-
purpose language.

The past sections illustrated the separation between the
different tiers and layers in the SoftRobot architecture and
defined the responsibilities of each part. The following sections
will go into details about the design of the Robotics API tier
with its two layers.

r

TransactionCommand

RuntimeCommand

State

Command

WaitCommand

EventHandler

Action

EventEffect

Sensor

Actuator

provides

*

provides

*

influences

provides

*

consistsOf

*

attachedTo

*1

triggeredBy

1

provides
*

executes

1

executes

1

targets

1

Fig. 2. Structure of the Robotics API Core, including
Commands and their composition

4 DESIGN OF THE ROBOTICS API CORE

The following sections will present the software design of the
Robotics API core and the Command Layer in this core. The
decisions that led to its design will be illustrated. The design
of the Activity Layer is described separately in Sect. 6.

4.1 Actuators and Actions

Actuator (cf. Fig. 2, bottom left) can be considered one of
the most basic classes in the Robotics API. An Actuator is
some robotic device that is controllable by the application.
Examples are single robot joints, complete robot arms, mobile
platforms or just field bus outputs of some robot control
system. Actuators have some properties (e.g. the number of
joints of a robot) and can be configured in certain ways
(e.g. defining the maximum allowed velocity of motions).
Actuators in the Robotics API usually do not contain code
that implements the execution of any kind of operation (e.g.
for interpolating motions of a robot arm). They can rather be
seen as proxy objects representing devices controllable by the
Robot Control Core. Instances of Actuators should not store
any state of the physical device they represent. Instead, they
usually retrieve their data by directly communicating with the
RCC when necessary. This ensures that the data provided is
always up-to-date.

Control operations that Actuators should execute are mod-
elled by the class Action (cf. Fig. 2, bottom left). Examples
for concrete subclasses are LIN (linear motion of a robotic
device in Cartesian space), SetValue (setting a value for a field
bus output) or MoveTo (telling e.g. a robot base to move to
a certain goal). Actions carry parameters that specify their
execution more exactly (e.g. the velocity of a linear motion).
Like Actuators, Actions as well do not contain code specifying
how their execution is implemented exactly. Actions can rather
be seen as a kind of token, semantically identifying a certain

A. Angerer et al./ Robotics API: Object-Oriented Software Development for Industrial Robots 7

operation. Actions are not even bound to a specific Actuator:
An Action specifying a linear Cartesian movement may be
executed by a robot arm as well as a mobile platform, or
even by some Actuator that represents a mobile robot with
an arm (i.e. the combination of both). The different Actuators
might interpret the Action slightly different, but should obey
the general semantics, i.e. moving linearly.

The splitting of Actuator and Action means separating who
should do something and what should be done. This separation
of concerns is based on the following assumptions:

• Actions are atomic, real-time critical operations that have
to be executed by a Robot Control Core. Therefore,
Actions in the Robotics API can only describe what is to
be done, whereas the Robot Control Core decides how it
should be performed by implementing it.

• There is no defined, finite set of operations that a certain
Actuator can execute (e.g. a robot arm is able to perform
arbitrary application-specific operations). Thus, separat-
ing the definition of Actions from the definition of the
Actuator itself provides the possibility of defining and
using arbitrary Actions in a uniform way.

To actually let an Actuator execute an Action, a Command has
to be defined. The definition and composition of Commands
is explained in Sect. 4.3. As large parts of the composition
mechanism are based on the concepts of Sensors and States,
the next section will explain those first.

4.2 Sensors and States
Sensors (cf. Fig. 2, bottom right) play an important role in
many parts of the Robotics API. Sensors are in general sources
of data which is available in a Robotics API application as well
as in the Robot Control Core layer. This means that Sensors
are, like Actuators, proxy objects for data sources located in
the RCC layer. Examples are “typical” sensor devices, such as
laser rangefinders, light barriers, or field bus inputs. Sensors
can also represent data sources inside Actuators, e.g. sensors
measuring joint angles of a robot. A third type are derived
Sensors which deliver results of calculations on values of other
Sensors, e.g. a MultipliedDoubleSensor delivering the result of
the multiplication of two DoubleSensors.

Sensors may be used for certain Actions. For example,
an Action modelling a force-based robot motion might be
parametrized with a concrete Sensor delivering force mea-
surement values. A second very powerful use of Sensors is
related to the real-time event model of the Robotics API. The
basic concept of this model is the class State (cf. Fig. 2). A
State represents some condition that may be true or false at a
given point in time. If the condition is true, the State is active,
otherwise inactive. Sensors provide methods to select different
kinds of States. For instance, all DoubleSensors provide the
methods isGreater() and isLess() which return States
having the respective semantics. States can again be combined.
E.g., the method and(State) of class State returns a new

State that is active only if both of the former States are active
at the same point in time. Note that this definition of a State
differs from the role of states in the frequently used state
machine concept. In the Robotics API, a State captures a
certain interesting condition from an otherwise infinite state
space of a robotic system. The approach of defining States
only for those aspects of the system’s state that are relevant
to the task proved to fit the requirements of typical industrial
robotics applications well.

Like each Sensor, also every State can be employed in
real-time critical robot tasks. This means that every possible
definition of a State needs to have a semantically equivalent
implementation on the RCC layer. The next section explains
the interrelation between Actuators, Actions, Sensors and
States when defining real-time Commands.

4.3 Composing Real-Time Commands
The abstract class Command (cf. Fig. 2) is the central concept
modelling a real-time critical operation in the Robotics API.
It generalizes three kinds of operations:

• RuntimeCommand is the most basic kind of Command,
binding an Action to an Actuator. The semantics simply is
that the defined Actuator should execute the given Action.

• TransactionCommand is a composition of other Com-
mands according to rules specified by a set of pre-defined
mechanisms. All commands contained in a Transaction-
Command are executed in the same real-time context.

• WaitCommand models a real-time critical timer that waits
exactly for a given time.

To each Command, an arbitrary number of EventHandlers
can be attached. An EventHandler reacts to the change in
the activeness of a given State. It can be parametrized to
react to the event that the State is becoming either active or
inactive, and the reaction can be limited to the first occurrence
of such an event. The handling logic for each EventHandler
is specified by one of the following EventEffects:

• Start triggers execution of a Command.
• Stop forcefully aborts a Command.
• Cancel gracefully cancels a Command.
• Raise activates another State (to which further Event-

Handlers might be listening).
• External denotes an EventEffect that triggers some logic

outside of the respective Command, thus leaving the real-
time context. An example for an external EventEffect is
starting some non-real-time Robotics API thread.

The difference between Stop and Cancel needs some further
explanation. Stopping a Command instantaneously does not
give it time to clean up and can lead to unexpected con-
sequences. For example, stopping a robot motion instanta-
neously is physically impossible, as the robot always needs to
decelerate. Stopping Commands in general leaves Actuators
in an uncontrolled state, e.g., causes an emergency stop of
motor controllers of a robot arm. Thus, it should only be

8 Journal of Software Engineering for Robotics 4(1), May 2013

used in extreme cases. Instead, Cancel is preferred to give
the cancelled Command the opportunity to terminate in a
controlled way. For example, in case of a robot motion,
Cancel should brake the robot until halt, and then terminate
the command. When a TransactionCommand is cancelled, its
concrete definition decides how to handle the Cancel request
(e.g., forwarding it to all or only some of its inner Commands).
In contrast, stopping a TransactionCommand always stops all
inner Commands immediately.

Some additional rules constrain the use of certain Event-
Effects: Start may only be used to start another Command
inside the same TransactionCommand. So Start cannot be used
at all in RuntimeCommands. Stop and Cancel may target
the Command itself or one of the inner Commands of a
TransactionCommand. These rules are enforced at runtime.

Sensors have been identified as possible providers of States
in Sect. 4.2. However, States can also be provided by Actions,
Actuators and Commands. Action States describe e.g. certain
progress or error conditions of an action. Examples are States
telling that a certain via-point of a trajectory has been passed,
or that the Action has started or completed execution. Actuator
States include certain error states of the Actuator (e.g. that a
set-point commanded by the Action is invalid or that an emer-
gency stop has occurred), and a completion state (whenever
the Actuator has reached its latest set-point). Command States
cover the life-cycle of each Commands by e.g. indicating that
it has been started, stopped or cancelled.

Through the mechanisms presented above, the Robotics
API’s Command model allows the specification of arbitrarily
complex operations. However, those operations have to be
finite, i.e. can not contain loops. In particular, it is not allowed
to re-start Commands that have already been executed. Thus,
complex control flow involving looping has to be realized in
Robotics API applications, using (non-real-time) mechanisms
of the programming language. This decision led to less prob-
lems in the algorithm transforming Commands to RPI graphs.
Up to now, no practical limitations arose due to this. We
are, however, investigating means of relaxing or dropping this
restriction.

Fig. 3 shows an example Command that has been used
in the implementation of the Factory 2020 application (see
Sect. 7.1). The figure is simplified a bit to improve readabil-
ity. It shows the structure of a TransactionCommand named
screwing which implements the process of inserting and
tightening a screw with a Light Weight Robot arm with
attached screwdriver. This TransactionCommand consists of
three RuntimeCommands: insertScrew, maintainForce

and tightenScrew. insertScrew drives linearly towards
the screw hole until the robot’s force sensor detects that a force
threshold is exceeded (i.e., the hole was reached). In this case,
insertScrew is cancelled and the linear motion is stopped.
This sensor guarding is implemented by a combination of the
DoubleSensor measuring the absolute force the LWR arm de-
tects, an adequately defined SensorState and an EventHandler

screwing :
TransactionCommand

 : CommandCanceller

insertScrew :
RuntimeCommand

maintainForce :
RuntimeCommand

tightenScrew :
RuntimeCommand

 : LinearMotion

 : EventHandler

greater5N :
SensorState

forceSensor :
DoubleSensor

 : LWR

startAfter

 : cancels

 : describedBy

 : triggersEffect

 : providesForceSensor

startAfter

 : consistsOf

 : targets

 : consistsOf

 : autoStarts

 : consistsOf

 : triggeredBy

 : providesStates

Fig. 3. Object diagram of a Command that inserts and
tightens a screw.

triggering a CommandCanceller when this State is entered.
After the insertScrew RuntimeCommand has completed,
maintainForce and tightenScrew are started in parallel.
The implementation of the starting process is left out for
clarity and just indicated by the dotted arrows marked with
startAfter. It is realized by an EventHandler that reacts to
the CompletedState of the insertScrew command and trig-
gers a CommandStarter for the respective Command. Though
this example is only the last step in a series of operations
needed to insert screws in the Factory 2020 application, it
illustrates the flexibility of the Robotics API for defining real-
time critical operations.

4.4 Executing Real-Time Commands

As noted before, execution of Commands is required to be
performed with real-time guarantees. The SoftRobot archi-
tecture requires a Robot Control Core to take care of such
tasks (cf. Sect. 3). The Robotics API is designed to be
independent of a concrete RCC implementation. The concept
RoboticsRuntime in the Robotics API layer serves as an
adapter to the RCC which can accept Command structures
and transform them in such a way that the concrete RCC
implementation can execute them. Multiple implementations
of a RoboticsRuntime may be employed, serving as adapters
to different kinds of Robot Control Cores. The SoftRobot
architecture reference implementation employs a Robotics-
Runtime that transforms Robotics API Commands to real-
time dataflow graphs according to the Realtime Primitives
Interface specification (cf. Sect. 3). This article will not go
into details about this transformation process, but rather focus
on the semantics of Command execution from the view of
a Robotics API application. This semantics is required to be
satisfied by any RoboticsRuntime implementation.

A. Angerer et al./ Robotics API: Object-Oriented Software Development for Industrial Robots 9

+load(Command) : CommandHandle

RoboticsRuntime

+start()
+scheduleAfter(CommandHandle)
+cancel()
+abort()
+waitComplete()

CommandHandle

+start() : CommandHandle

Command

SoftRobotRuntime SoftRobotRCC

Actuator

«use»

loadsCommandsTo

controlledBy

1

*

-executedBy

1

1

0..1

Fig. 4. A RoboticsRuntime serves as an adapter for
executing Commands on a Robot Control Core

Fig. 4 depicts the classes that participate in Command
execution. The class RoboticsRuntime provides a method
load(Command). This method is responsible for performing
any step that is necessary to load a Command to a Robot Con-
trol Core. In case of the SoftRobot RCC, the corresponding
RoboticsRuntime implementation transforms the Command
into an RPI real-time primitive graph according to an algorithm
described by Schierl et al. [16]. After transformation, the
result is serialized and transmitted to the SoftRobot RCC
via a network connection. There, it is de-serialized and the
appropriate initialization of RPI modules is performed.

The load() method of the RoboticsRuntime returns a
CommandHandle that can be used to control execution on the
Robot Control Core via the following methods:

• start() begins execution of the Command associated
with the CommandHandle.

• scheduleAfter(CommandHandle) schedules the
Command for execution right after another Command
that is already running, identified by the respective
CommandHandle.

• cancel() sends a Cancel signal to the Command while
it is running.

• abort() terminates the Command instantaneously while
it is running.

• waitComplete() blocks the caller until the Command
has finished execution.

The method scheduleAfter(CommandHandle) was intro-
duced to realize an instantaneous transition between Com-
mands as described in [15]. The Robot Control Core has to
guarantee that this transition takes place in a defined, very
short time frame (e.g., without losing an execution cycle in
case of the SoftRobot RCC). Using this mechanism, continu-
ous execution of Commands is possible, which is useful e.g.
for blending motions or force based manipulation. Sect. 6
goes into details about how continuous Command execution
is employed by the Activity Layer. The difference between
cancel() and abort() is also worth noting. The semantics

of both methods is similar to that of the EventEffects Cancel
and Abort used inside composed Commands (see Sect. 4.3),
but applies to the Command as a whole.

From the view of a Robotics API application, Command
execution in general is an atomic process that can only be
influenced by cancelling or terminating the Command. This
means that all factors influencing its execution (e.g. stopping
when a certain contact force is exceeded, using sensor input for
visual servoing) must be known before a Command is started
and be integrated in its definition (cf. Fig. 3). This assumption
makes it possible to execute the Command completely in a
real-time context. There are some exceptions to this rule that
may be introduced mainly by concrete Action implementa-
tions. An example is the Action CartesianJogging, which is
intended to be used for manual control of robots on a velocity
level. This can be useful for e.g. teaching robot motions
using a joystick. CartesianJogging provides a communication
channel for setting the target velocity from a Robotics API
application during runtime of a Command employing this
Action. There are no guarantees about the time it takes to
transmit control values from the Robotics API application to
the running Command, so this channel cannot be used for real-
time critical data. However, for Actions like CartesianJogging,
this is acceptable. The Robotics API provides support for
defining such communication channels if needed.

5 FROM COMMANDS TO ACTIVITIES
The Robotics API’s Command model provides a very power-
ful, flexible basis for defining real-time critical robot opera-
tions. It was designed to support all requirements of today’s
industrial robotics applications as well as tight integration of
sensor based and multi-robot operations in future applications.
However, the generality of this model sometimes leads to
cumbersomeness when using it directly for the development
of robotic applications. In particular, applications created on
top of the Robotics API Command Layer looked compli-
cated compared to applications created with KUKA’s robot
language KRL. This observation is not too surprising, as
KRL is designed as a Domain Specific Language. It was
developed solely for the purpose of creating industrial robotics
applications, whereas the Robotics API wants to extend a
general-purpose language for supporting development of such
applications. In a sense, both architectures are approaching the
problem of finding an optimal industrial robot language from
opposing sides: KRL increasingly suffers from the narrowness
of its design, while being tailored to easy programming of
typical tasks of industrial robots. On the other side, the
Robotics API has its strong points in the flexibility and power
of a modern language, but lacks the minimalistic, domain-
centred style of KRL (or similar DSLs).

To overcome this problem in the Robotics API, several
possibilities were identified:

1) Revising the design of the Robotics API Command Layer.
In a re-design of the Command model, a stronger focus

10 Journal of Software Engineering for Robotics 4(1), May 2013

could be put on the interface to application developers,
reducing its complexity.

2) Introducing an application development layer on top
of the Command Layer. A separate layer on top of
the Robotics API Command layer could be designed
to introduce an interface more focused on the needs of
robotics application developers.

3) Creating a Domain Specific Language on top of the
Robotics API. There are several powerful tools and
frameworks for creating DSLs on top of modern pro-
gramming languages. Using those tools, developing a
DSL for industrial robotics should be possible with
moderate effort.

The first of those approaches has the advantage of staying
within one single layer in the Robotics API. No separate
layer on top of the Robotics API core would have to be
introduced, adding no additional complexity to the design.
However, the following considerations led to a decision against
this solution. The current design of the Robotics API core and
its Command Layer proved to be a stable and flexible platform
for specifying Commands that can be used as a description of
real-time critical operations to be executed by a Robot Control
Core. This in itself defines a clear scope of responsibility.
Following the principle of Separation of Concerns (attributed
to Dijkstra [17]), it seemed logical to choose one of the latter
solutions. Additionally, all stated requirements like multi-robot
coordination and sensor integration could be fulfilled by the
current Command Layer design. Changing this design accord-
ing to completely different requirements like a minimalistic
programming interface bears the danger of sacrificing some
of the other requirements.

This led to the decision to establish a separate interface,
being easy to use and particularly tailored to the needs of appli-
cation developers. The introduction of a DSL seemed like the
ultimate way of tailoring such an interface to the requirements.
However, one of the strong points of the Robotics API is the
Java ecosystem with its many libraries for different purposes.
This was identified to be useful also for the development
of robotics applications, e.g. for integrating computer vision
algorithms or developing intuitive human-robot interfaces. The
use of a DSL for developing robot applications would arise
the question of interoperability with Java.

To stay in the Java ecosystem, we decided to introduce a
separate Java-based layer on top of the Robotics API. This
layer should provide an abstraction of the Robotics API Com-
mand model that reflects the mechanisms useful for robotics
developers. In particular, features like motion blending should
be easily usable by providing appropriate API options. The
next section presents the design of the Activity Layer in
the Robotics API. The Command Layer is not coupled to
the Activity Layer, thus the Robotics API may still be used
without the Activity Layer extension. The Activity Layer can
be considered one of possibly several kinds of interfaces
offered in the future towards application developers.

6 MODELING OPERATIONS BY ACTIVITIES
The separation of Action and Actuator in the Robotics API
Command Layer is a very flexible mechanism (cf. 4.1), but
at the same time a source of complexity when implementing
robot operations. Instead of writing something like

robot.lin(goal);

for letting a robot execute a linear motion to a given goal,
developers have to write

robot.getRuntime().createRuntimeCommand(robot,
new Lin(start, goal)).execute();

using the Robotics API Command Layer. The additional
complexity is caused on the one hand by the need to create
a RuntimeCommand for defining Actuator and Action to
be executed. On the other hand, Actions often need many
parameters for fully specifying them. In this case, the Lin
Action requires a start point of the motion to be specified
in addition to its goal point. Intuitively, the current position
of the robot at the time the motion command is issued could
implicitly be taken as start position. This would enable a more
compact specification of the Lin Action like presented in the
first code snippet above. However, any RuntimeCommand can
be used arbitrarily inside larger TransactionCommands. When
a TransactionCommand is processed in the RoboticsRuntime,
the full specification of all Actions is already required. In the
Lin example, information about the start and goal position of a
motion is needed to calculate a correct trajectory, which is then
interpolated with real-time constraints by the Robot Control
Core. Determining the robot’s current position at the point in
time that the RuntimeCommand containing the Lin Action is
actually executed is in general not possible. It depends largely
on the Commands in the TransactionCommand that are to be
executed before the current RuntimeCommand, which might
also move the robot.

Another frequently used feature in industrial robot pro-
gramming is continuous execution of motions with blend-
ing between single motion instructions. In commercial robot
languages like KRL, this feature is enabled by just adding
a special keyword to the motion instruction that may be
blended over to a subsequent motion. The Robotics API
Command Layer supports motion blending between successive
Commands as well, backed by RPI’s instantaneous switching
mechanism (cf. Sect. 3.1 and [15]). However, specifying ap-
propriate Robotics API motion Commands that handle correct
blending in between them is quite complex. Thus, application
developers should not have to do that themselves.

A reduction of this kind of complexity on API level is
achieved by two different mechanisms. The first one is the
introduction of the concept Activity, which is presented in
Sect. 6.1. The second one involves creating Activities with
the help of ActuatorInterfaces, introduced in Sect. 6.3. By
combining these two concepts, the resulting Activity Layer
offers a special interface to developers, which is illustrated

A. Angerer et al./ Robotics API: Object-Oriented Software Development for Industrial Robots 11

with several examples. The Activity Layer also provides a set
of predefined mechanisms for composing Activities. Sect. 6.2
gives an overview of this.

6.1 Specification and Execution of Activities
An Activity is defined as a real-time critical operation, af-
fecting one or more Actuators, that supplies meta data about
the state of each Actuator during or after the execution of
the operation. The real-time critical execution logic of an
Activity is implemented by a Command. The execution of
Activities is controlled by an ActivityScheduler. This scheduler
is a singleton object, meaning that there exists exactly one
global instance of it in each Robotics API application.

Activities expose among others the public methods
execute() and beginExecute(). The former starts exe-
cution of the operation modelled by the Activity and blocks
the calling thread until execution fully completes. The latter
method also starts execution, but returns control to the calling
thread once the operation is actually started (i.e. the respective
Command has been started on the Robot Control Core). This
asynchronous execution gives the caller the possibility to start
execution of a second Activity shortly after an Activity has
been started.

The execution of each Activity is controlled internally
by the ActivityScheduler. Therefore, the implementations
of Activity#execute() and Activity#beginExecute()

submit the Activity for execution to the ActivityScheduler
by calling appropriate methods. The ActivityScheduler stores,
for each Actuator, the last Activity that has been started
and affected this Actuator. Thus, when a new Activity is to
be scheduled, the ActivityScheduler can supply all relevant
preceding Activities to the new Activity. Note that there might
be multiple (or no) preceding Activities, as multiple Actuators
affected by the new Activity might have executed different
Activities before. The new Activity can inspect the preceding
Activities and their meta-data and can extract information
needed for its own execution. For example, a motion Activity
a is interested in the Actuator’s state during the execution
of a preceding motion p. If p is already completed at the
time of a’s start, a might take the robot’s current position
as its starting point. The same applies if there is no Activity
preceding a (e.g. after program startup). If p is still running,
a might inspect meta data provided by p about the robot’s
motion (position, velocity, acceleration, ...) at some future
point in time where the motion executed by p should be
blended into the motion executed by a. If a can extract all
necessary information, it can signal the ActivityScheduler that
it is able to take over the running Activity p. In this case, the
ActivityScheduler will perform a scheduling of the Command
provided by a. To achieve that, it calls the Command’s method
scheduleAfter(CommandHandle) to let the RoboticsRun-
time perform instantaneous switching between the currently
running Command (provided by p, identified by its respective
CommandHandle) and the new Command (cf. Sect. 4.4).

In detail, the ActivityScheduler distinguishes three cases
when a new Activity a is to be scheduled:

1) If all Actuators affected by a did not execute any
Activity before, a is started.

2) Otherwise, if, for at least one Actuator affected by a,
another Activity p is already running and an Activity
s is already scheduled after p for the same Actua-
tor, scheduling of a is rejected. This implies that the
ActivityScheduler can only schedule one Activity at a
time.

3) Otherwise, the following steps are performed:
a) Determine the Activities P previously executed for

all Actuators affected by a. Thus, P contains at
most one Activity for each of these Actuators.

b) Wait until at most one Activity p of the Activities
P is still running.

c) Let a determine all Actuators Ψ that it is able to
take control of.

d) If Ψ is a superset of all Actuators controlled by p,
schedule a’s Command after p’s Command.

e) Otherwise, await end of execution of p’s Com-
mand, then start a’s Command.

The restriction to keep only one Activity running before
scheduling a new Activity (step 3b) had to be introduced due
to the fact that RPI currently only allows a Command to be
scheduled after exactly one predecessor. There is, however,
work in progress to release this restriction.

The sequence diagram in Fig. 5 illustrates the dynamics
of Activity execution and its interaction with the Command
Layer. The diagram shows the most basic flow when an
Activity a is started asynchronously by calling its method
beginExecute(). During scheduling, the ActivityScheduler
calls the Activity’s method prepare(), supplying the list of
Activities that were previously executed by Actuators affected
by a. Based on this data, a has to decide for which Actuators
it is able to take over control, and has to define an appropriate
Command c that implements a’s real-time behaviour. The
ActivityScheduler afterwards retrieves c and starts it. The
Command is then loaded in the appropriate RoboticsRuntime,
which in this case transforms the Command into an RPI
dataflow graph. This graph is then transmitted to the Robot
Control Core and real-time execution is started. Only then
the call to a’s method beginExecute() returns. Thus, it is
ensured that execution has definitely started at this time. When
applications call the method execute() of an Activity, the
workflow is basically the same. However, execute() calls
the Command’s waitComplete() method after scheduling.

Fig. 6 shows important timing aspects in the execution of an
Activity. The depicted Activity a is assumed to be modelled by
the RuntimeCommand insertScrew from the example shown
in Fig. 3. For clarity of presentation, a is assumed to have
three execution states (in reality, an Activity has more states):
New, Running and Completed. Starting from state New, when

12 Journal of Software Engineering for Robotics 4(1), May 2013

s : ActivityScheduler

h : CommandHandle

 : RoboticsRuntimeapp : RoboticsApp : RCCc : Commanda : Activity

getCommand()5:

start()7:

void16:

prepare(Activity[]=prevActivities)3:

createRPIGraph(command=c)9:

g : RPIGraph10:

startGraph(graph=g)11:

13:
h : CommandHandle14:

beginExecute()1:

success : boolean12:

load(command=c)8:

h : CommandHandle15:

schedule(Activity=a)2:

void17:

takeover:Actuator[]4:

c : Command6:

Fig. 5. Sequence diagram showing the asynchronous execution of an Activity.

a’s method beginExecute() is called, a enters state Running
as soon as its Command has entered its own Running state.
However, there are no hard guarantees about how long this
procedure will take, as the Java-based Activity scheduling
and Command loading mechanism is invoked (cf. Fig. 5).
This is tolerable, as starting Activities is in general not real-
time critical. In contrast, all interactions between different
parts of the insertScrew RuntimeCommand are executed with
real-time constraints. Note that during runtime, all parts of
each Command have been transferred to the RCC in form
of a RPI real-time dataflow graph, and that all interactions
take place inside this graph. In this respect, all parts of
Fig. 6 below a do not show interactions between the runtime
Robotics API objects themselves, but the interactions between
their counterparts in the dataflow graph. The borders of all
lifelines in the real-time part of the figure are marked with
small tick symbols. Each tick represents one execution cycle of
the RPI graph in the RCC (1ms in case of the SoftRobot RCC).
Messages that do not cross cycle borders can be considered
to have an effect immediately.

An important aspect is the handling of sensor guarding
inside this Command. Recall that insertScrew should be can-
celled once the LWR’s force sensor detects a force greater than
5N. It is guaranteed (by construction of the dataflow graph in
combination with the execution guarantees of the RCC) that
after the reading of a critical sensor value, the appropriate
reaction is determined within at most 2 cycles. This delay is
inevitable as stated by the sampling theorem (cf. Marks [18]).
The reaction in this case is triggering a CommandCanceller.

Due to reasons of computability1, the execution of Command-
Cancellers is always delayed by one execution cycle. Thus,
cancelling of insertScrew, which leads to the LinearMotion
action braking the robot as fast as possible, is triggered in
the next cycle after the CommandCanceller has actually been
started. In sum, it is guaranteed that the robot starts to brake
at most 3 cycles after a critical force occurred. This same
guarantee applies to all EventHandlers that can be defined as
part of Commands.

The presented diagram covers many details that relate to
the execution of Robotics API Commands. However, it is
presented in this place as it also illustrates the transition from
the soft real-time context of the Robotics API to the hard
real-time RCC context. Application developers cannot rely on
exact timing considering the start of an Activity. They can,
however, rely on the fact that once the Activity is running and
starts to control Actuators, it will be executed in exactly the
same manner every time, with hard real-time guarantees in the
range of milliseconds.

The particular contribution of the Activity Layer itself
that was presented in this section is the introduction of a
mechanism to plan execution across Activities. This is not
possible using the Command Layer only, as Commands neither
have knowledge about their predecessors nor about the state
of Actuators during Command execution. The combination
of Activity and ActivityScheduler addresses both points and
introduces a pure Java-based planning mechanism for multiple

1. It has to be ensured that RPI dataflow graphs do not contain dataflow
cycles that would have to be evaluated in the same execution cycle, which
would lead to infinite recursion

A. Angerer et al./ Robotics API: Object-Oriented Software Development for Industrial Robots 13

insert-

Screw

: Runtime-

Command

New

Cancelling

Terminated

Running

: Linear-

Motion
Running

Braking

Completed

New

forceSensor

: DoubleSensor
< 5N >= 5N

greater5N

: SensorState
not active

active

: EventHandler
Idle

Executing

: Command-

Canceller

Idle

Executing

a : Activity

New

Running

Completed

{2}

{?}{?}

{1}

started

start

start

cancel

valueChanged

cancel

active

execute

completed

completed

R
A

P
I

S
o

ft
R

o
b

o
t

R
C

C

Fig. 6. UML timing diagram of Activity execution. Irrele-
vant parts of execution have been omitted, indicated by di-
agonal line pairs on lifelines. Tick symbols indicate cyclic
execution of a lifeline. Important timing constraints are
annotated, where ’?’ indicates that no timing guarantees
can be given at all.

successive operations. For application developers, this results
in a very easy way of activating motion blending by just
executing Activities asynchronously. However, blending be-
tween subsequent motions is only one example of establishing
an Activity-specific execution semantics using asynchronous
execution. Other possible use cases include e.g. force-based
manipulation or in general Activities that employ different
kinds of control algorithms. In a scenario where Activities let
Actuators apply defined forces to the environment, subsequent
Activities may have to be aware of this situation and cope with
it to ensure stability of the system.

Note that developers have the choice to perform single-
step execution of Activities by using the synchronous method
execute() at any point in their programs. Also note that,
considering timing guarantees, this is only a best-effort ap-
proach. There is no guarantee that Activity scheduling will
be fast enough to schedule the respective Commands before a
preceding Command has reached a certain execution state. In
the case of motion blending, the implementations of motion
Activities then discard blending over the preceding Activity.
Instead, the preceding motion is executed to its natural end
and the following motion starts from there. With motion
blending being an optimization technique in robot programs,

this behaviour is acceptable if it happens only in few cases.
However, application developers as well as developers of new
kinds of Activities have to be aware of it.

6.2 Composing Activities
One of the strongest features of the Command Layer is the
possibility to compose Commands using a flexible event-
based mechanism and to execute such composed Commands
on the Robot Control Core with real-time guarantees. Im-
plementations of different Activities employ this mechanism
to provide more complex functionality out-of-the-box to pro-
grammers. For instance, implementations of Light Weight
Robot Actuators support performing a certain motion until a
contact force is measured and then switch to a mode where
the force is maintained. The respective ActuatorInterfaces
for Light Weight Robots in the Robotics API realize this
as a sequential composition of single Activities (motion and
maintaining force, where the first one is additionally sensor-
guarded). Furthermore, all implementations of motion Activi-
ties contain different execution paths to handle the cases that
a motion blends over a preceding motion or that the motion
is executed from its original start point. This is realized by
parallel composition of several Activities that are executed in
a mutually exclusive manner.

The Activity Layer also allows the composition of any
Activities to more complex Activity structures with a defined
execution semantics. In contrast to the Command composition
mechanism, the flexibility is reduced a bit. Instead, templates
for recurring composition patterns are provided. This again
is in many ways inspired by features provided by today’s
specialized robot programming languages. Other patterns were
identified during development of application prototypes in
the SoftRobot project. Currently the following composition
patterns of Activities are provided:

• Sequential composition. The specified Activities are exe-
cuted one after another (optionally with blending).

• Parallel composition. The specified Activities are started
at the same time and run in parallel.

• Conditional execution. Based on a given condition, either
one or another Activity is started.

• Composition of main task and subtasks. One or more
Activities are started at defined conditions during the
execution of a main Activity.

Sequential composition proved to be useful e.g. for robot
grippers that need a sequence of field bus outputs to be set in
order to control operation. Parallel composition was employed
for instance to realize synchronized motion of multiple robot
arms. Conditional execution is useful e.g. for deciding which
operation to execute next based on measurements of sensors.
By composing sub tasks with a main task, tool actions may
be executed at defined points of a robot motion.

Note that composing Activities creates new Activities,
which may again be composed to arbitrarily complex struc-
tures. Each type of composed Activity creates a Robotics API

14 Journal of Software Engineering for Robotics 4(1), May 2013

Command that combines all Commands created by the inner
Activities, plus appropriate EventHandlers so that the be-
haviour of the resulting Command complies to the semantics
of the composed Activity. When composing Activities, it is not
possible to create a loop by e.g. re-starting an Activity that has
already been executed. This limitation is caused by the design
of the Command model (cf. Sect. 4.3), which Activities use
to implement their functionality. However, the composition
mechanisms for Activities combine the meta-data of inner
Activities as well, such that scheduling of a composed Activity
can be performed appropriately. Thus, also infinite sequences
of complex Activities can be scheduled (on a best-effort basis,
as mentioned above) which will result in continuous operation
if feasible. For instance, blending across a (infinite) series
of motion Activities of multiple synchronized robot arms is
possible.

6.3 Binding Functionality to Actuators

For application developers, an important point is the cre-
ation of concrete Activities for a specific Actuator. In the
Robotics API Command Layer, Actuators and Actions are
not coupled at all. The reasons for this design are explained
in Sect. 4.1. This missing coupling was identified to be a
difficulty considering usability by developers. They cannot
identify on an API level which Actions are usable for which
Actuators. Even worse, the validity of an Action for use with a
certain Actuator can only be checked at runtime in a late phase
of Command processing and can thus lead to complicated
runtime exceptions that must be interpreted by developers.

To mitigate this issue, the concept ActuatorInterface was
introduced. ActuatorInterfaces combine a set of related func-
tionalities of Actuators and expose them to application devel-
opers. ActuatorInterface is intended to be subclassed to form
more concrete ActuatorInterfaces. For example, all Robots in
the Activity Layer provide amongst others a LinInterface and a
PtpInterface. The former provides methods to execute different
kinds of linear Cartesian motions (e.g. to absolute or relative
goals), the latter is similar but covers point-to-point motions in
joint space. By that mechanism, functionality is semantically
grouped. Additionally, developers can query Actuators directly
about the ActuatorInterfaces they support. Thus, they get direct
and clear feedback whether a given Actuator is able to perform
certain kinds of operations.

The best imaginable solution for realizing the ActuatorIn-
terface concept would be to provide developers with statically
typed extension of the respective Actuators. However, due
to the characteristics of Java (single inheritance, no mixin
mechanism, no extension methods like in C# etc.), exten-
sible functional composition could only be realized using
an aggregation mechanism. Thus the definition of the class
Actuator was revised such that it became an aggregation
of ActuatorInterfaces. This actually required a modification
on the Robotics API Core/Command Layer. However, as

the basic ActuatorInterface is very slim and generic, this
extension did not introduce further coupling, in particular not
to the Activity Layer itself. The Activity Layer instead relies
on the ActuatorInterface concept and uses it as a basis for
grouping Activities and relating them to Actuators. Concrete
ActuatorInterface implementations like the aforementioned
LinInterface and PtpInterface expose methods that create and
return Activity implementations.

In the following, we will demonstrate the usage of this
interface with concrete examples to illustrate the programming
interface to application developers. Executing a linear motion
with a robot requires the statement given in Listing 1. It
first selects the appropriate ActuatorInterface of the Actuator
robot, in this case the interface of type MotionInterface.
After that, the method lin(goal) of this interface is called. It
creates an Activity that performs a linear motion of the robot.
Finally, calling execute() begins execution of this motion
and blocks until its end.

robot.use(MotionInterface. c l a s s)
.lin(goal).execute();

Listing 1. Executing a linear motion, the Activity way

Although the syntax is not as compact as envisioned at the
beginning of Sect. 6, it has a straightforward structure. The
sacrifices considering compactness in turn enable extensibility,
as arbitrary new kinds of ActuatorInterfaces may be loaded and
used at runtime. Furthermore, asynchronous Activity execution
can be employed to take advantage of cross-Activity function-
ality like motion blending. This is illustrated by Listing 2.

1 MotionInterface motion =
robot.use(MotionInterface. c l a s s);

2 motion.lin(goal, new
BlendingCondition(0.7)).beginExecute();

3 motion.lin(goal2).execute();
4 motion.lin(goal3).execute();

Listing 2. Motion blending with Activities

As prerequisite for blending motions, the point at which
blending from one motion to another should be started has
to be specified. This has to be done by supplying a parameter
to the motion activity upon its construction (line 2, the value
0.7 indicates 70 percent of the motion’s total time). More-
over, blendable motions have to be executed asynchronously
(line 2). Motions executed synchronously will be executed
completely to their natural end (lines 3 and 4).

As scheduling of Activities is performed on a per-Actuator
basis, Activities affecting different Actuators can be executed
in parallel. Developers can take advantage of this, but also have
to be aware of this semantics to prevent unwanted effects. For
example, in Listing 3, the Activity closing the gripper attached
to the moving robot (line 3) will be executed in parallel to the
first motion (line 2). In particular, it will not be executed after
the first motion has ended or when it has reached 70 percent
of its execution progress - these dependencies will only be

A. Angerer et al./ Robotics API: Object-Oriented Software Development for Industrial Robots 15

respected by Activities affecting the same Actuator (line 4),
in this case the robot.

1 MotionInterface motion =
robot.use(MotionInterface. c l a s s);

2 motion.lin(goal, new
BlendingCondition(0.7)).beginExecute();

3 gripper.use(GrippingInterface. c l a s s)
.close().beginExecute();

4 motion.lin(goal2).execute();

Listing 3. Asynchronous parallel execution of Activities

7 EVALUATION

The SoftRobot architecture presented in the previous sections
provides robotic application developers with a convenient pro-
gramming interface for industrial robots in a modern general-
purpose language. A reference implementation in Java and
C# is available soon2. Developers can profit from different
state-of-the-art programming languages available on the JVM
and .NET platform (e.g. JRuby, Jython, Scala, Clojure), as
well as a bunch of IDEs, tools and libraries for all kinds
of purposes. Implementations of the JVM are available for
a large variety of operating systems (e.g. Linux, Windows,
QNX, VxWorks), thus ensuring portability of applications. The
main contributions of the SoftRobot architecture are a con-
venient object-oriented programming model and its integrated
abstraction for real-time critical operations that together meet
the requirements today’s and future industrial robot tasks.
This section will demonstrate the usefulness of the approach
by means of practical application examples, evaluate the
extensibility, reusability and performance of the architecture
and draw a comparison to other frameworks.

7.1 Application examples

In the SoftRobot project, various robotic applications have
been developed. The motivation was always twofold: On the
one hand, these applications served as test-beds for evaluating
the state of the SoftRobot software architecture. The goal was
finding out if the developed concepts are stable considering
requirements of various applications, if there are concepts
missing for realizing certain functionality and if the reference
implementation is stable and free of errors. On the other hand,
applications were chosen to illustrate the strong points of the
SoftRobot architecture and the Robotics API in particular.
Some applications could be developed very quickly compared
to similar solutions based on current robot controller architec-
tures, while others expose features that are barely realizable
using existing controllers. This section presents three different
application prototypes that have been developed in SoftRobot.

2. The reference implementation will soon be released and will be available
via http://robotics.isse.de

Fig. 7. Robot setup (left) and operator interface (right)

7.1.1 Tangible Teleoperation

The Tangible Teleoperation application (c.f. [19]) was de-
signed as a case study for multi-robot applications with the
Robotics API. At the same time, it should demonstrate the
possibilities of employing novel user interface paradigms. In
this context, a strong point of the SoftRobot architecture is
the interoperability between many modern programming lan-
guages. This is a clear advantage over today’s proprietary robot
programming languages, where the interaction with high-level
applications is often cumbersome. The Tangible Teleoperation
system (cf. Fig. 7) is based on a tangible user interface device,
called Microsoft PixelSense3 (formerly known as Microsoft
Surface). It is designed to tele-operate a two-arm robot system
in an intuitive way by employing tangible user interface
elements. Operators are able to manually control the robots
and perceive the state of the system during its interaction
with the environment, though they do not have eye contact
to the robots. For this purpose, various feedback is given by
the Tangible Teleoperation application: A video stream of a
camera mounted on one of the robots, a 3D model of the
current poses of the robot arms which is updated continuously,
and a visualization of the end-effector forces measured by the
KUKA Lightweight Robots.

Different operation modes are supported by the Tangible
Teleoperation application: The robot with the camera mounted
on it may be controlled directly and can be used to manipulate
the environment. For a better overview of the scene, a second
control mode, called observer mode, was introduced. Here
the robot with attached camera takes the role of a passive
observer, focusing the effector of a second robot arm. The
observer perspective can be adjusted by rotating the camera
robot around the observed scene and moving it closer to or
farther away from the point of interest. The second robot is
actually controlled by the human operator, while the observing
robot automatically follows every movement of this robot and
thus keeps the perspective centred on the second arm while it
manipulates the environment.

3. http://www.microsoft.com/en-us/pixelsense/default.aspx

16 Journal of Software Engineering for Robotics 4(1), May 2013

Fig. 8. Control panel of the Remote Manipulator Control

The application and UI logic was implemented using C# and
the Microsoft .NET framework. The multi-touch tangible user
interface was implemented based on the Microsoft Surface
SDK, while the Robotics API was employed for controlling
the robots. To integrate the Java-based Robotics API into a
.NET application, it was automatically converted to a .NET
library using the IKVM.NET compiler4. The Robotics API
robot implementations provide special ActuatorInterfaces for
manually moving the Actuators on a velocity level. Thus,
the effort required for controlling the robots from this high-
level application was minimal - it comes down to using just
another library from developers’ point of view. The complete
application was realized by a student in about two months of
work.

7.1.2 Remote Manipulator Control
The Remote Manipulator Control (RMC) system is a product
of MRK-Systeme GmbH. It features a industry-grade control
panel with a touch screen and two joysticks for tele-operating
KUKA robots (cf. Fig. 8). The system is employed by MRK’s
customers to perform material handling with robots in haz-
ardous environments. A computer system integrated into the
control panel provides a feature-rich user interface on the
touch screen. Users can move the connected robot manually
with the joysticks on the panel. Additionally, they can define
movement paths for the robot and let it move along those paths
automatically. The touch screen employs a 3D visualization of
the robot pose. For controlling robot movement, the standard
KUKA Robot Controller is employed.

In the SoftRobot project, the RMC system was chosen for
evaluating the migration of an existing commercial robot appli-
cation to the SoftRobot architecture. The system is particularly
interesting for such an evaluation, as during its development,
much effort has been put into the interface to the KUKA Robot
Control. MRK employs the technology KUKA RobotSensor-
Interface, which allows for cyclically sending goal positions
to the robot. The communication has to respect defined timing
delays of some milliseconds. To achieve a stable connection
with sufficient performance, MRK invested about two months
of work. Another two months were then spent for extending

4. http://www.ikvm.net/

the communication protocol to allow transferring series of
motion instructions to the robot controller. This was neces-
sary for the definition of complete movement paths in the
RMC application (MRK calls this feature ’Autodrive’). To
achieve this, user defined fields in the packages sent via the
RobotSensorInterface were used to encode different motion
instructions and their parameters. These user defined fields
were then evaluated by some program on the robot control,
which triggered other programs appropriately.

MRK performed a migration of the RMC system to the Soft-
Robot architecture in about two weeks of time. It turned out
that all functionality required by the application was already
provided by the Robotics API. The parts of the application
logic that triggered robot commands by connecting to the
Robot Control via RobotSensorInterface just had to be substi-
tuted by calling appropriate methods of the Robotics API. In
an evaluation following the migration, MRK emphasized the
reduction of complexity in the Remote Manipulator Control
application. Though a realistic assessment of the save in effort
when re-developing the application on top of the SoftRobot
architecture is hard to do, MRK estimates that the realization
of the Autodrive feature alone would only have been about
10% of the effort (two months, see above) that was originally
required. Furthermore, no loss in application performance
compared to the original system could be observed. Finally,
MRK identified some possible approaches to increase safety of
the application by employing e.g. sensor based motion guards,
using features of the Robotics API.

7.1.3 Factory 2020
To summarize the research results of the SoftRobot project, a
prototype of a robotic manufacturing application called Fac-
tory 2020 was developed. The application was designed along
the vision of a fully automated factory of the future, in which
different kinds of robots cooperate to perform complex tasks.
In the Factory 2020 demonstrator, two robot arms and a mobile
robot platform work together in part assembling. To achieve
that, force-based motion, real-time motion synchronization and
different coordination patterns are applied.

Fig. 9 gives an overview about the tasks performed in Fac-
tory 2020. Two different containers with parts to be assembled
are delivered by an autonomously navigating robot platform.
Before assembling, both containers have to be transported
onto the workbench. The robot arms are locating the exact
position of the containers on the platform by touching certain
prominent points. The position may vary due to inaccurate
navigation of the platform and some inaccuracy of the contain-
ers on the platform. The touching operation employs motions
guarded by force sensor measurements to make the robots
stop upon contact. After the locating process, both arms
grip the containers and cooperatively transport them onto the
workbench. These motions have to be real-time synchronized
to ensure proper transport without damaging the containers or
robots.

A. Angerer et al./ Robotics API: Object-Oriented Software Development for Industrial Robots 17

Fig. 9. In Factory 2020, an autonomous robot platform
delivers parts (top left), robot arms cooperate in transport-
ing (bottom) and assembling them (top right).

Once the containers have been placed on the table, each
robot arm picks a part from one of the containers. The parts are
then assembled. For this operation, the robots apply a defined
force on the parts to compensate slight variations in the fitting
between top and bottom part. Finally, both parts of the final
workpiece have to be bolted together. For this purpose, an
electrical screwdriver is attached to one of the robots as its
second tool. This robot first fetches a screw from a screw
magazine, then transports it to the workpiece, inserts it and
tightens the screw using the screwdriver. These operations are
also performed using force-based motions, which again allows
for compensating variations in part quality and the process
itself (e.g. slight deviations when gripping a workpiece part).
The final workpiece is then put back into one of the containers.
After all workpieces have been assembled, the containers are
put back onto the platform, which delivers the workpieces to
their destination.

The Factory 2020 application shows a number of strong
points of the SoftRobot architecture. First, the real-time
synchronization of both robot arms required for cooperative
transport is possible by 1) planning motion for both arms
exactly and deterministically the same way, using a common
center of motion, and 2) starting the planned motions at
exactly the same time. Both features are provided natively
by the SoftRobot architecture. A simple Actuator has been
introduced that aggregates two robot arms and provides an
ActuatorInterface for performing synchronized linear motions
with both arms. The implementation of the respective Activity
first determines appropriate motion center points for both

robot arms, then calculates separate linear motions for each
arm and finally combines those to one Activity using parallel
composition (see Sect. 6.2). This took only about 300 lines
of Java code and even enabled motion blending across several
two-arm motions by combining meta-data of the linear motion
Activities of the single arms.

Activity composition was also used to realize force-guarded
motions like e.g. for detecting the location of the workpiece
container or inserting screws into workpieces. For structuring
the complete automation system software, it was divided
into several components by means of the Java-based module
system OSGi [20]. This module structure eased deployment of
components to different physical systems (robot arms, mobile
base) and the coordination of those systems. For implementing
the behaviour of components which coordinate the interaction
with and among other components, state machines were em-
ployed. The standardized State Chart XML [21] format was
used to formally model those state machines. Based on the
Apache Commons SCXML implementation, a graphical editor
and a runtime environment for SCXML state machines was
created.

7.2 Complexity and practical reusability

Reusability was identified as one of the core requirements to
the complete SoftRobot architecture. In this context, integrat-
ing new devices and operations into the architecture should
be possible with small effort by reusing generic concepts of
the Robotics API or existing extensions. In particular, the
required extensions to the real-time Robot Control Core should
be kept small. It is inevitable to integrate a real-time capable
device driver in the RCC, as this layer has the responsibility
for communicating with the devices and controlling them.
However, the design of the Robotics API, the generic mapping
procedure to RPI and a hardware abstraction layer inside
the RCC reference implementation allow for integrating new
Actuators with minor effort.

To get a rough idea about the complexity of the architecture
and the size of reusable parts, Fig. 10 compares the Lines
Of Code (LOC, without comments) of the SoftRobot core
component and different extensions, including their “vertical”
distribution across the architectural layers. The figure shows
the following components along the horizontal axis:

• The bare SoftRobot core component, including the
Robotics API Core, the generic parts of the algorithm
for transforming those Core concepts to RPI-capable
runtimes, and the SoftRobot RCC including a real-time
capable RPI interpreter. This component does not even
contain support for any kind of robot.

• The Robotarm extension, introducing the definition of a
robot arm consisting of joints into the architecture.

• The LWR, Staubli TX90 and UR5 extensions, introducing
vertical support for three different kinds of robots, all
based on the Robotarm extension.

18 Journal of Software Engineering for Robotics 4(1), May 2013

RAPI Activity layer

RAPI Command layer

RPI transformation

SoftRobot RCC adapter

SoftRobot RCC

0

2.000

4.000

6.000

8.000

10.000

12.000

Fig. 10. Distribution of Lines Of Code in the SoftRobot
architecture reference implementation.

• The Robotbase extension, introducing the definition of a
mobile robot base into the architecture.

• The RMP50 extension, introducing support for the Seg-
way RMP50 device, based on the Robotbase extension.

The depth axis of the figure shows the following vertical layers
of the architecture:

• The Activity layer of the Robotics API,
• the Command layer of the Robotics API,
• the RPI transformation algorithm in the Robotics API,
• the adapter to the SoftRobot RCC in the Robotics API
• and the SoftRobot RCC itself.

When comparing the LOC (vertical axis) of the four Java-
based layers and the RCC layer, we find that the biggest
part of the generic core component of the architecture is
implemented inside the Robotics API. When introducing the
generic Robotarm extension, relatively little code was required
in the RCC layer. However, implementing RCC drivers for
concrete robots (LWR, Staubli, UR) takes some effort, which
can primarily be attributed to the complex low-level interface
offered by the robots themselves (e.g. FRI for the LWR
based on an UDP protocol, uniVAL for the Staubli based
on CANopen and Ethercat). The picture is similar for the
generic Robotbase extension and the concrete RMP50 exten-
sion component. However, the support of robot bases is rather
preliminary and we expect the numbers for the Command and
Activity layer to increase, while the RPI transformation should
be quite complete already.

A second result is that there is a considerable amount of
code required for the transformation of Robotics API concepts
to RPI. The largest part of this code is contained in the
SoftRobot Core package and is thus responsible for the generic

transformation of all parts of the Command model. This code
is reused by all extensions to the Robotics API that rely
on its Command model. However, the Robotarm extension
contains a considerable amount of RPI transformation code
as well. A more detailed investigation of this part of the
Robotarm extension showed that the largest part of this code
is responsible for implementing the transformation for motion
Actions. This also includes the path planning for different
kinds of motions (e.g., point-to-point motion, linear motion
and spline motion). This can be considered a weakness in the
current structure of the Robotarm extension: The path planning
code should be separated from the transformation rules that
map Actions to RPI dataflow graphs. We plan to improve this
in further versions, thus shifting a considerable amount of code
from the RPI transformation layer to the RAPI Command layer
part of the Robotarm extension.

However, the current realization of the Robotarm extension
does not cause problems with reusability when implementing
packages for concrete robots. The Staubli extension only
requires minimal Java code (ca. 100 lines) in the Robotics
API Command layer. This code defines the link/joint structure
of the Staubli TX90 robot and its default parameters (e.g.,
for velocities and accelerations). All other functionality is re-
used from the Robotarm extension. In particular, no lines of
code are required for RPI transformation and the adapter to
the RCC. Almost the same applies to the UR extension. Less
than 150 lines of code had to be added to support the robot’s
“Freedrive” mode, where it can be moved by hand. As this
mode is activatable by executing a special Activity, the UR
extension contributes a bit of code to the Activity layer. The
KUKA Lightweight Robot with its integrated torque sensors,
different joint controller modes and the possibility for force-
guarded and force-guided operations required additional code
on all Java layers (around 2000 LOC in total).

Though the LOC measure is not a precise way to measure
reusability, the clear results should indicate a high degree of
reusability of the generic part of the SoftRobot architecture.
In particular, the amount of code required for integrating
new types of robots is pleasingly low. Keep in mind that
each of the robots inherits all functionality for executing
different kinds of motions (including motion blending), real-
time critical synchronization with other devices and reacting
to sensor events. This also means that in all of the presented
examples5, one type of robot could have been replaced by
another type by literally just replacing the physical hardware.

7.3 Performance
A good performance in terms of scheduling new Activities
is important to achieve high cycle times in industrial robot
applications, in particular to ensure that motion blending
is executed as often as possible. The performance of the

5. Excluding the force-based manipulation operations in the Factory 2020
application, admittedly.

A. Angerer et al./ Robotics API: Object-Oriented Software Development for Industrial Robots 19

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19

Simple point to point motion

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19

Simple linear motion

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19

Two arm linear motion

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19

Sensor guarded ptp motion

Fig. 11. Time needed to start different types of Activities. Each type of Activity was executed multiple times in a loop
(horizontal axis), and the duration until it was started on the RCC was measured (vertical axis, in milliseconds).

SoftRobot reference implementation was examined using a
series of benchmarks with KUKA LWR arms:

• a simple point-to-point motion of a single arm to a pre-
defined goal in joint space;

• a simple linear motion of a single arm to a pre-defined
goal in Cartesian space;

• a sensor-guarded ptp motion of a single arm, which was
cancelled when the robot moved too close to a fixed
obstacle, causing the robot to brake immediately;

• a series of linear motions of two synchronized arms to
pre-defined Cartesian goals, using the two-arm Actuator
implementation of Factory 2020 (see Sect. 7.1.3).

All the above-mentioned Activities were executed several
times in a loop, and the time to start each motion Activity
was measured. The robot arm was moved back to its original
position at the end of each loop iteration in the first three tests,
which was excluded from the measurements. In the fourth
test, the series of motions ended at at the initial position, thus
repositioning was not necessary.

In the sensor-guarded point-to-point motion, the robot’s
encoders and the forward kinematics function were used to
measure the arm’s current Cartesian position. Based on this,
the distance between the robot’s flange and the known location
of the obstacle was calculated in real-time. Once this distance
became too small, the motion was cancelled. While this is
a rather artificial example, it can demonstrate the impact of
sensor guards on Activity loading performance.

All tests were executed on a fast desktop PC (Intel Core i5-
3470, 8GB RAM). This PC ran Ubuntu 12.04 with the Xeno-
mai real-time framework6 installed. The SoftRobot RCC was
hosted as a real-time process on this PC and communicated
with the robots via a dedicated network adapter. A Robotics
API benchmark application was executed on the same PC, but
with lower priority.

Fig. 11 shows the benchmark results. In all tests, the
performance increased significantly after the third to fifth
motion had been executed. The strong hypothesis is that this is
caused by the Just-In-Time (JIT) compiler in the Java Virtual

6. http://www.xenomai.org/

Machine. A short test without JIT compiler showed constant
timings on a high level and confirmed the hypothesis. This
behaviour also occurred consistently when a mixed series
of point-to-point and linear motions was executed and those
motions were parametrized with various goals.

Overall, basic motions take roughly 50–200 ms to be started.
Using sensor guards does not have a notable impact on perfor-
mance. This might change, however, when a large number of
sensor guards is used, or when sensor data requires complex
processing in order to evaluate the guarding condition. The
two arm Actuator implementation used to execute synchronous
linear motions takes roughly double the time to schedule a
motion compared to the single arm case. A detailed evaluation
indicated that only about 20–30 % of the scheduling time was
consumed by planning the operation (which equals motion
planning in the tests). The rest of the time was needed to
transform the Command to an RPI dataflow graph specifica-
tion, serialize this graph, transmit it to the RCC via a network
protocol and build the appropriate RPI graph instance on the
RCC. More in-depth analysis is necessary to optimize this
process.

The observed performance can be considered sufficient for
most practical cases. In all the tests, the time the robot actually
moved was at least double the scheduling time. However, when
the execution time of a robot operation gets small, e.g. in case
of small motions or motion blending in early motion phases,
the scheduling time may limit application performance. In
particular, the current implementation of the two arm Actuator
may be limiting performance in this respect. It can obviously
be optimized, as it currently plans and interpolates the same
motion for each robot arm separately. While this results in a
simple and small implementation on the Robotics API level,
it causes a performance overhead in all phases of scheduling
of the resulting motions.

7.4 Comparison to other approaches

The SoftRobot approach is geared towards a more efficient
software development for industrial robot systems. Large
emphasis was put on the goal to introduce a widely used

20 Journal of Software Engineering for Robotics 4(1), May 2013

standard programming language to industrial robot systems,
replacing proprietary, vendor-specific robot languages. This
was driven by the strong belief of all project partners that
programming robot applications is not fundamentally different
from programming other types of applications. This section
will evaluate our approach in comparison to existing robot
programming approaches from academia and industry.

7.4.1 Proprietary robot programming languages
For comparing the SoftRobot architecture and its program-
ming interface to proprietary robot languages, we take the
KUKA Robot Language (KRL) as an example7. When just
comparing the interface towards robot programmers, KRL has
the advantage of a more minimalistic, imperative programming
model. The Robotics API introduces a much more flexible, but
also more complicated object-oriented programming model.
However, when applications get more complex, developers
profit from a full-fledged modern programming language sup-
porting a large number of design patterns for structuring code.
There exist powerful IDEs as well as a large number of other
tools and libraries. In particular, tools for creating DSLs allow
for introducing new domain-specific programming interfaces
rapidly. As a proof of concept, and to evaluate backward
compatibility to existing robot programs, one of our students
created a KRL interpreter on top of the Robotics API in his
master thesis [22].

Considering functionality, the SoftRobot architecture pro-
vides native support for tight integration of sensor feedback
into robot operations. Furthermore, forming robots to teams
that collaborate in real-time is easily possible. KRL provides
support for connecting multiple robot controllers to achieve
real-time robot cooperation as well. This implies writing
one program for each robot and synchronizing with special
statements. We compared the effort required for realizing a
scenario similar to the cooperative container transport in the
Factory 2020 application (see Sect. 7.1.3). An experienced
KRL programmer invested more than 3 times the effort to let
two robots perform cooperative transport of a single workpiece
compared to an experienced Robotics API developer.

7.4.2 Existing object-oriented approached
There are several academic approaches providing robot-
specific libraries for general-purpose languages. Early exam-
ples are RCCL [23] in C and PasRo [24] in Pascal. With
the emergence of object-oriented languages, robot-specific
libraries for these languages have been implemented, too.
Examples are ZERO++ [25], MRROC++ [26]. RIPE [27], the
Robotic Platform [28] and SIMOO-RT [29]. These frame-
works employ object orientation for introducing hardware
abstraction. However, in general a low level of abstraction is
used so that developers need profound knowledge in robotics

7. Other vendor-specific languages may slightly differ, but the main evalu-
ation points should yield the same results.

and often in real-time programming. Using C or C++ may
result in a better runtime performance compared to Java,
which is executed on a virtual machine rather than directly
on the physical hardware. However, we are confident that the
workflow-related parts of robot applications are executed fast
enough also in Java, and our practical experiences confirm this.
(Real-)Time critical operations are delegated to the RCC, as
explained. This abstraction for real-time tasks is one important
paradigm of the SoftRobot architecture that cannot be found
in most other object-oriented robot programming frameworks.
One exception is the ORCCAD architecture introduced by
Borrelly et al. [30]. In fact, this project takes a similar approach
in that a real-time abstraction is provided for complex robot
tasks. However, the workflow parts of robotic applications
that are not real-time critical have to be implemented in a
proprietary language (MAESTRO) designed by the authors.
Using a standard language like in the SoftRobot approach has
many advantages for application development (see above) and,
in the case of a language with automatic memory management,
relieves developers from memory management issues they
have to care about in C/++.

7.4.3 Component-based approaches in robotics
For managing the complexity of modern autonomous robots
and large-scale distributed application scenarios, decomposi-
tion of systems into components, composability of subsystems
and distribution of components have been identified as core
requirements (stated e.g. by Hägele et al. [5] and addressed
e.g. by Nesnas et al. [31], Finkemeyer et al. [32] and in
particular most component-based systems like Player [33],
ROS [34] or ORCA [35]). This led to a trend for Component-
Based Software Engineering in the past years (cf. Brugali et
al.’s work [36], [37]). Many of the aforementioned compo-
nent frameworks do not particularly support hard real-time
execution of robot tasks, which makes it harder to achieve
the precision required in industrial applications. Implementing
the workflow of an application in a component-based system
usually requires multiple configuration and coordination com-
ponents (c.f. Prassler et al. [38]). Coordination components
are commonly implemented using state machine mechanisms
(e.g. rFSM [39] or ROS smach [40]). While this is certainly
well suited for a certain class of systems, we believe that
for implementing complex, partly real-time critical workflows
in industrial application scenarios, an object-oriented API
like provided in the SoftRobot approach is better suited. For
composing larger automation systems, we are however fol-
lowing the component-based approach as well. As previously
mentioned (Sect. 7.1.3), the Factory 2020 application is built of
OSGi components. In this case, using components to structure
the systems and realizing the workflow of complex process
steps (e.g. cooperative transport, workpiece assembling) based
on the Robotics API proved to be a good combination. We
are continuing research about the distribution of automation
processes to component architectures.

A. Angerer et al./ Robotics API: Object-Oriented Software Development for Industrial Robots 21

8 CONCLUSION

This article presented the SoftRobot architecture, a lay-
ered, vendor-independent software architecture for industrial
robotics application development. A special focus was put
on presenting the design of the object-oriented Robotics API,
which provides a powerful and flexible programming interface.
It is designed to realize complex robotic applications including
multi-robot cooperation and integration of sensors in guiding
and guarding robot operations. The particular contributions of
the SoftRobot approach are:

1) An abstraction for real-time critical robot operations,
which can be specified using dataflow graphs defined
in the RPI language.

2) An object-oriented framework, designed according to
the requirements of the industrial robotics domain, and
integrating a model for robot operations which employs
the aforementioned real-time abstraction.

We have evaluated the practical usefulness of the SoftRobot
approach by creating a reference implementation of a Robot
Control Core and the Robotics API, and using this implemen-
tation to realize complex applications. Some examples have
been presented in this work, including real-time synchronized,
blended motion of two robot arms. The overall performance
of the reference architecture can be considered adequate, but
leaves room for improvements.

An increasing number of undergraduate students are work-
ing with the reference implementation. We also started to
arrange hackathons, e.g. with the KUKA youBot. For this
purpose, we provide a youBot extension for the SoftRobot
architecture. The results of these hackathons as well as the
feedback from the students that attended them are very promis-
ing: The majority of participants were computer science stu-
dents that have little or no experience with any kind of robots.
Though, they managed to create complex tech-demos with
the youBots, e.g. writing user-defined words on a whiteboard
using a combination of robot arm and base movement.

An evaluation of the distribution of code throughout the
framework structure showed clear indication that the design
of the architecture supports extensibility and reusability. The
integration of new robotics devices as well as new functionality
for those devices (or already existing devices) requires minor
effort and can re-use many concepts that are already imple-
mented. We are working towards integrating a broader variety
of devices. Robot arms by different manufacturers (KUKA,
Staubli, Universal Robots) are supported already, which il-
lustrates the vendor-independent approach. Currently, mainly
serial robot structures have been considered. Integration of
parallel or hybrid structures (like in many humanoid robots)
will be considered in the future, which might raise the need for
other kinds of synchronization paradigms for Actuators in the
architecture. Furthermore, we will continue to investigate the
integration of this architecture with component-based systems
like OSGi to find the right level of use for each paradigm.

Finally, we are developing an ecosystem of tools around the
SoftRobot architecture to better support users, for instance to
allow teaching robot motions with the help of tablet devices.

ACKNOWLEDGMENTS

The authors would like to thank the project partners from
KUKA Laboratories GmbH and MRK-Systeme GmbH, Jun.-
Prof. Frank Ortmeier from Magdeburg University as well as
VDI/VDE-IT for their support and cooperation in setting up
and successfully conducting the SoftRobot project.

REFERENCES

[1] Willow Garage, Inc. PR2 - Overview. [Online]. Available: http:
//www.willowgarage.com/pages/pr2/overview 1

[2] Cotesys Central Robotics Laboratory II. TUM-Rosie. TU Munich.
[Online]. Available: http://ias.cs.tum.edu/robots/tum-rosie 1

[3] J. N. Pires, “Robotics for small and medium enterprises: Control and
programming challenges,” Industrial Robot, vol. 33, no. 6, 2006. 1

[4] M. Hägele, T. Skordas, S. Sagert, R. Bischoff, T. Brogårdh, and M. Dres-
selhaus, “Industrial robot automation,” European Robotics Network,
White Paper, Jul. 2005. 1, 2, 2

[5] M. Hägele, K. Nilsson, and J. N. Pires, “Industrial robotics,” in Springer
Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Berlin,
Heidelberg: Springer, 2008, ch. 42, pp. 963–986. 2, 1, 7.4.3

[6] J. N. Pires, G. Veiga, and R. Araújo, “Programming by demonstration
in the coworker scenario for SMEs,” Industrial Robot, vol. 36, no. 1,
pp. 73–83, 2009. 2

[7] J. G. Ge and X. G. Yin, “An object oriented robot programming
approach in robot served plastic injection molding application,” in
Robotic Welding, Intelligence & Automation, ser. Lect. Notes in Control
& Information Sciences, vol. 362. Springer, 2007, pp. 91–97. 2

[8] Blackbird Robotersysteme GmbH. Blackbird Robotersysteme GmbH.
[Online]. Available: http://www.blackbird-robotics.de 2

[9] Hub Technologies. KUKA Robotics. [Online]. Available: http://www.
kuka-robotics.com/germany/en/products/software/hub technologies 2

[10] C. Bredin, “ABB MultiMove functionality heralds a new era in robot
applications,” ABB Review, vol. 1, pp. 26–29, 2005. 2

[11] R. T. Vaughan and B. Gerkey, “Really reusable robot code and
the player/stage project,” in Software Engineering for Experimental
Robotics, ser. Springer Tracts in Adv. Robotics, D. Brugali, Ed.
Springer, April 2007, vol. 30. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-68951-5 1610.1007/978-3-540-68951-5 16 3

[12] H. Bruyninckx, “Open robot control software: the OROCOS project,” in
Proc. 2001 IEEE Intl. Conf. on Robotics and Automation, Seoul, Korea,
May 2001, pp. 2523–2528. 3, 3.1

[13] A. Hoffmann, A. Angerer, F. Ortmeier, M. Vistein, and W. Reif, “Hiding
real-time: A new approach for the software development of industrial
robots,” in Proc. 2009 IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, St. Louis, MO, USA, 2009. 3

[14] M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and W. Reif, “Interfac-
ing industrial robots using realtime primitives,” in Proc. 2010 IEEE Intl.
Conf. on Automation and Logistics (ICAL 2010), Hong Kong, China.
IEEE, Aug. 2010, pp. 468–473. 3

[15] ——, “Instantaneous switching between real-time commands for con-
tinuous execution of complex robotic tasks,” in Proc. 2012 Intl. Conf. on
Mechatronics and Automation, Chengdu, China, Aug. 2012, pp. 1329
–1334. 3.1, 4.4, 6

[16] A. Schierl, A. Angerer, A. Hoffmann, M. Vistein, and W. Reif, “From
robot commands to real-time robot control - transforming high-level
robot commands into real-time dataflow graphs,” in Proc. 2012 Intl.
Conf. on Informatics in Control, Automation and Robotics, Rome, Italy,
2012. 3.2, 4.4

[17] E. W. Dijkstra, “EWD 447: On the role of scientific thought,”
Selected Writings on Computing: A Personal Perspective, pp. 60–
66, 1982. [Online]. Available: http://www.cs.utexas.edu/users/EWD/
ewd04xx/EWD447.PDF 5

http://www.willowgarage.com/pages/pr2/overview
http://www.willowgarage.com/pages/pr2/overview
http://ias.cs.tum.edu/robots/tum-rosie
http://www.blackbird-robotics.de
http://www.kuka-robotics.com/germany/en/products/software/hub_technologies
http://www.kuka-robotics.com/germany/en/products/software/hub_technologies
http://dx.doi.org/10.1007/978-3-540-68951-5_16 10.1007/978-3-540-68951-5_16
http://dx.doi.org/10.1007/978-3-540-68951-5_16 10.1007/978-3-540-68951-5_16
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF

22 Journal of Software Engineering for Robotics 4(1), May 2013

[18] R. J. Marks II, Introduction to Shannon Sampling and Interpolation
Theory. Springer, 1991. 6.1

[19] A. Angerer, A. Bareth, A. Hoffmann, A. Schierl, M. Vistein, and
W. Reif, “Two-arm robot teleoperation using a multi-touch tangible
user interface,” in Proc. 2012 Intl. Conf. on Informatics in Control,
Automation and Robotics, Rome, Italy, 2012. 7.1.1

[20] OSGi Core Release 5, OSGi Alliance Spec., Mar. 2012. [Online].
Available: http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf 7.1.3

[21] State Chart XML (SCXML): State Machine Notation for Control
Abstraction, W3C Working Draft 6, Dec. 2012. [Online]. Available:
http://www.w3.org/TR/scxml/ 7.1.3

[22] H. Mühe, A. Angerer, A. Hoffmann, and W. Reif, “On reverse-
engineering the KUKA Robot Language,” Workshop on Domain-Specific
Languages and models for ROBotic systems, 2010 IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, Taipeh, Taiwan, 2010. 7.4.1

[23] V. Hayward and R. P. Paul, “Robot manipulator control under unix
RCCL: A robot control C library,” International Journal of Robotics
Research, vol. 5, no. 4, pp. 94–111, 1986. 7.4.2

[24] C. Blume and W. Jakob, Programming Languages for Industrial Robots.
Springer-Verlag, 1986. 7.4.2

[25] C. Pelich and F. M. Wahl, “ZERO++: An OOP environment for
multiprocessor robot control,” International Journal of Robotics and
Automation, vol. 12, no. 2, pp. 49–57, 1997. 7.4.2

[26] C. Zieliński, “Object-oriented robot programming,” Robotica, vol. 15,
no. 1, pp. 41–48, 1997. 7.4.2

[27] D. J. Miller and R. C. Lennox, “An object-oriented environment for
robot system architectures,” in Proc. 1990 IEEE Intl. Conf. on Robotics
and Automation, Cincinnati, Ohio, USA, May 1990, pp. 352–361. 7.4.2

[28] M. S. Loffler, V. Chitrakaran, and D. M. Dawson, “Design and imple-
mentation of the Robotic Platform,” Journal of Intelligent and Robotic
System, vol. 39, pp. 105–129, 2004. 7.4.2

[29] L. B. Becker and C. E. Pereira, “SIMOO-RT – An object oriented frame-
work for the development of real-time industrial automation systems,”
IEEE Trans. Robot. Autom., vol. 18, no. 4, pp. 421–430, Aug. 2002.
7.4.2

[30] J.-J. Borrelly, E. Coste-Manière, B. Espiau, K. Kapellos, R. Pissard-
Gibollet, D. Simon, and N. Turro, “The ORCCAD architecture,” Intl.
Journal of Robotics Research, vol. 17, no. 4, pp. 338–359, Apr. 1998.
7.4.2

[31] I. A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Estlin,
“CLARAty and challenges of developing interoperable robotic soft-
ware,” in Proc. 2003 IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, Las Vegas, USA, Oct. 2003, pp. 2428–2435. 7.4.3

[32] B. Finkemeyer, T. Kröger, D. Kubus, M. Olschewski, and F. M. Wahl,
“MiRPA: Middleware for robotic and process control applications,” in
Workshop on Measures and Procedures for the Evaluation of Robot
Architectures and Middleware. IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, San Diego, USA, Oct. 2007, pp. 76–90. 7.4.3

[33] T. Collett, B. MacDonald, and B. Gerkey, “Player 2.0: Toward a practical
robot programming framework,” in Proc. 2005 Australasian Conf. on
Robotics and Automation, Sydney, Australia, Dec. 2005. 7.4.3

[34] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009. 7.4.3

[35] A. Makarenko, A. Brooks, and T. Kaupp, “Orca: Components for
robotics,” in Workshop on Robotic Standardization. IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, Beijing, China, Oct. 2006. 7.4.3

[36] D. Brugali and P. Scandurra, “Component-based robotic engineering
(Part I),” IEEE Robotics & Automation Magazine, vol. 16, no. 4, pp.
84–96, Dec. 2009. 7.4.3

[37] D. Brugali and A. Shakhimardanov, “Component-based robotic engi-
neering (Part II),” IEEE Robotics & Automation Magazine, vol. 20, no. 1,
Mar. 2010. 7.4.3

[38] E. Prassler, H. Bruyninckx, K. Nilsson, and A. Shakhimardanov,
“The use of reuse for designing and manufacturing robots,” White
Paper, June 2009. [Online]. Available: http://www.robot-standards.eu/
Documents RoSta wiki/whitepaper reuse.pdf 7.4.3

[39] M. Klotzbucher and H. Bruyninckx, “Coordinating robotic tasks and
systems with rFSM statecharts,” J. Software Engineering for Robotics,
vol. 3, no 1, pp. 28–56, 2012. 7.4.3

[40] ROS SMACH. [Online]. Available: http://ros.org/wiki/smach 7.4.3

Andreas Angerer received his B. Sc. degree in
computer science from the University of Augs-
burg in 2007 and his M. Sc. degree in software
engineering from the University of Augsburg,
the TU München and the Ludwig-Maximilians-
Universität München in 2008. Currently, he is
a member of the Institute for Software & Sys-
tems Engineering (ISSE) at the University of
Augsburg. He was involved in several research
projects in robotics and has published about
15 refereed journal, conference and workshop

papers. His research interest covers software engineering for robotics, in
particular applying modern software engineering paradigms to robotics.

Alwin Hoffmann received his B. Sc. and M. Sc.
degrees in information management from the
TU München and the University of Augsburg, in
2005 and 2007, respectively, and his Diploma
in Computer Science from the University of
Augsburg, in 2008. Currently, he is a member
of the ISSE and leads the robotics research
group there. He has published about 20 refer-
eed scientific papers. His research interest cov-
ers robotics, software engineering, and service-
oriented architectures.

Andreas Schierl received his B. Sc. degree in
computer science from the University of Augs-
burg in 2007, and the M. Sc. degree in software
engineering from the University of Augsburg,
the TU München and the Ludwig-Maximilians-
Universität in 2009. Currently, he is a member of
the ISSE and has published about 15 refereed
journal and conference papers. His research
interest covers mobile robotics, software archi-
tectures and software engineering in robotics.

Michael Vistein received his B. Sc. degree in
computer science from the University of Augs-
burg in 2007 and his M. Sc. degree in software
engineering from the University of Augsburg,
the TU München and the Ludwig-Maximilians-
Universität München in 2008. Currently, he is a
member of the ISEE and has published about 15
refereed scientific papers. His research interest
covers software engineering for robotics, in par-
ticular real-time task execution for robots.

Wolfgang Reif is full professor for software en-
gineering at University of Augsburg where he
is also vice-president and director of the Insti-
tute for Software & Systems Engineering (ISSE).
He received his doctoral degree in computer
science from the University of Karlsruhe where
he worked mainly in safety, verification, and au-
tomatic theorem proving. He held a professor-
ship in software engineering at the University of
Ulm from 1995 to 2000. His current research
interests are software and systems engineering,

safety, reliability and security, organic computing, as well as software-
driven mechatronics & robotics. In these areas, he is involved in nu-
merous research projects both in fundamental as well as application-
oriented research. Wolfgang Reif is author of a large number of scientific
publications, referee for numerous national funding agencies in Europe
and the US, and is consultant to leading technology companies.

http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf
http://www.w3.org/TR/scxml/
http://www.robot-standards.eu/Documents_RoSta_wiki/whitepaper_reuse.pdf
http://www.robot-standards.eu/Documents_RoSta_wiki/whitepaper_reuse.pdf
http://ros.org/wiki/smach

	Introduction
	State of the Art in Industrial Robot Application Development
	The SoftRobot Architecture
	Robot Control Core
	Robotics API Command Layer
	Robotics API Activity Layer

	Design of the Robotics API Core
	Actuators and Actions
	Sensors and States
	Composing Real-Time Commands
	Executing Real-Time Commands

	From Commands to Activities
	Modeling Operations by Activities
	Specification and Execution of Activities
	Composing Activities
	Binding Functionality to Actuators

	Evaluation
	Application examples
	Tangible Teleoperation
	Remote Manipulator Control
	Factory 2020

	Complexity and practical reusability
	Performance
	Comparison to other approaches
	Proprietary robot programming languages
	Existing object-oriented approached
	Component-based approaches in robotics

	Conclusion
	References
	Biographies
	Andreas Angerer
	Alwin Hoffmann
	Andreas Schierl
	Michael Vistein
	Wolfgang Reif

