
A Graphical Language for Real-Time Critical Robot Commands

Andreas Angerer, Remi Smirra, Alwin Hoffmann, Andreas Schierl, Michael Vistein and Wolfgang Reif

Abstract— Industrial robotics is characterized by sophisti-
cated mechanical components and highly-developed real-time
control algorithms. However, the efficient use of robotic systems
is very much limited by existing proprietary programming
methods. In the research project SoftRobot, a software architec-
ture was developed that enables the programming of complex
real-time critical robot tasks with an object-oriented general
purpose language. On top of this architecture, a graphical
language was developed to ease the specification of complex
robot commands, which can then be used as part of robot
application workflows. This paper gives an overview about
the design and implementation of this graphical language and
illustrates its usefulness with some examples.

I. INTRODUCTION

When programming robots to perform long-lasting and
complex tasks, the programmer usually wants to abstract
from the technical details of controlling the robot hardware,
e.g. hard real-time constraints, closed-loop controllers, or
controller parameters. The focus should rather lie on the
what aspect of the task [1]. In the research project SoftRobot,
an extensible software architecture [2] has been developed
to both facilitate the development of robotic applications
with the aforementioned level of abstraction, and at the
same time keep real-time constraints in mind. This multi-
layer architecture (cf. Fig. 1) allows to program industrial
robots using a standard, high-level programming language
(e.g. Java) and, at the same time, ensures that commands are
executed on the robot hardware with real-time guarantees.

The SoftRobot architecture provides application program-
mers with the Java-based Robotics API [3], an object-
oriented, extensible application programming interface for
robot applications. The Robotics API contains an open
domain model of (industrial) robotics describing the available
actuators and devices, as well as possible actions and tasks,
and also includes ways of maintaining a world model of the
relevant parts of the environment. The Robotics API allows
to specify actions to be executed by actuators (for example, a
linear movement by a robot), and to combine multiple actions
in different ways to create more complex commands. Every
such command is guaranteed to be executed with certain real-
time guarantees considering the timing of all actions and
their combination. As an example, consider the case of a
line welding application in the automotive industry: robots

The authors are with the Institute for Software and Systems Engineering,
University of Augsburg, D-86135 Augsburg, Germany. E-mail of corre-
sponding author: angerer@informatik.uni-augsburg.de

This work presents results of the research project SoftRobot which
is funded by the European Union and the Bavarian government within
the High-Tech-Offensive Bayern. The project is carried out together with
KUKA Labs GmbH and MRK-Systeme GmbH and is kindly supported by
VDI/VDE-IT GmbH.

Robot Control Core

Realtime Primitives Interface

Implementation

Application Application

Robotics API

Robot Hardware

Automated

transformation

into real-time

dataflow graphs

R
e

a
l-

T
im

e
 R

o
b

o
t

C
o

n
tr

o
l

A
p

p
li

ca
ti

o
n

 P
ro

g
ra

m
m

in
g

Fig. 1. Robot application are programmed against the Robotics API.
High-level commands specified using the Robotics API are automatically
transformed into dataflow graphs at runtime and executed with real-time
guarantees.

equipped with welding tools perform welding operations
following series of continuous, complex geometric shapes.
The workpieces in this case are (quite expensive) car bodies,
which requires sophisticated handling of process errors in
order to not damage the bodies. If an error occurs during
a welding operation, the welding tool has to be turned off
immediately (meaning with a maximum delay of at most
some milliseconds) and probably even needs to be moved
away quickly from the surface. Such operations have to be
executed with hard real-time guarantees, while application
developers still want to be able to specify them on a high
level of abstraction and in an application-specific way.

To meet those real-time requirements, the Robotics API
relies on the Robot Control Core (RCC) layer. At run-
time, Robotics API commands are transformed to a data-
flow language called Realtime Primitives Interface (RPI) [4]
which is implemented by the RCC. The dataflow language
consists of (robotics-specific) calculation blocks which are
referred to as (real-time) primitives and are connected by
data-flow links to form a graph, referred to as primitive
net. During execution of a primitive net, each primitive is
evaluated cyclically. The primitives have known worst-case
execution time and thus allow the execution of the task
in a deterministic manner. As the RCC is responsible for
real-time execution of primitive nets and for controlling the
robotic hardware, it must be running on a real-time operating
system. A reference implementation of an RPI-compatible
RCC [4] was developed using OROCOS [5] and Linux with
Xenomai real-time extensions.

Paper accepted for 3rd International Workshop on Domain-Specific Languages and models for ROBotic systems (DSLRob-12), November 2012, Tsukuba, Japan

Andreas
Schreibmaschinentext

Andreas
Schreibmaschinentext

Andreas
Schreibmaschinentext

Andreas
Schreibmaschinentext

Andreas
Schreibmaschinentext

Andreas
Schreibmaschinentext

Andreas
Schreibmaschinentext

Robotics API commands and their combination can be
specified using mechanisms of the object-oriented Java lan-
guage, such as instantiation of command objects and compo-
sition of commands by calling respective API methods. This
mechanism proved to be very flexible and able to express
a large variety of complex tasks that are common in the
industrial robotics domain. However, practical experience
has also shown that the definition of complex command
structures often results in long and confusing program code.
To overcome this, several approaches have been considered
and evaluated. Some efforts have been made to introduce a
simpler API while at the same time still providing enough
flexibility and extensibility. Another idea that was investi-
gated and constitutes the main contribution of this work is
the development of a graphical formalism for specifying such
command structures, as they seemed quite well suited for
being expressed graphically. The resulting graphical specifi-
cation tool proved to be a real step forward and enables much
quicker specification of Robotics API command structures.
Code generated from such a specification can be easily used
inside Robotics API programs. In this paper, we present the
design and implementation of this graphical language and
illustrate its usefulness with examples.

Before presenting the main contribution, the next section
will give an overview about existing work in the area of
graphical programming languages for robots. The following
Section III describes the characteristics of the Robotics API
and its command model. Sect. IV describes the design
principles of the proposed grapical language, whereas Sect. V
presents details of its realization. Sect. VI presents a practical
example of a robot task specified with the developed lan-
guage. Finally, Sect. VII gives a conclusion and an outlook.

II. RELATED WORK

Roboticists have developed various tools for graphical
specification of robot actions. Some frameworks relying
purely on dataflow-based specification of robot actions like
ControlShell or ORCCAD provide graphical editors for their
dataflow diagrams [6][7]. In [8], graphs of data processing
operators based on the Dual Dynamics architecture can be
specified graphically in order to synthesize robot controllers.

While the aforementioned approaches are roughly re-
lated to the RPI layer in the SoftRobot architecture, other
approaches operate on higher abstraction levels. Mission-
Lab supports graphically specifying configurations of inter-
related robot behaviors [9]. Manufacturers of industrial robot
systems like KUKA and ABB are also investigating the
possibilities of graphical languages for robotics and are
proposing approaches [10] [11].

Other frameworks used in the robotics research commu-
nity today also incorporate graphical tools. The Robotics
Developer Studio (RDS) from Microsoft includes the Visual
Programming Language (VPL) [12] that can orchestrate
services created with the RDS. The research robot NAO by
Aldebaran Robotics comes bundled with the development
tool Choreographe that also includes means for graphically
orchestrating robot behaviors [13]. State Machines are also

often used for implementing robot behavior. The ROS1

framework includes at least a visualization tool for State
Machines implemented using the tool SMACH2.

The Command model used in the RoboticsAPI was de-
signed to introduce a level of abstraction that is useful for
programming complex tasks of industrial robotic systems
(for details see [14]). At the same time, those Commands
are designed to be transformable to real-time primitives nets
that the Robot Control Core can execute, guaranteeing hard
timing constraints. These different kinds of constraints led
to some special characteristics of the designed Command
model that neither make it a data-flow language, nor directly
comparable to existing paradigms like Software Services
or Abstract State Machines. Thus, reusing parts of existing
graphical languages seemed to be infeasible. For this reason
we propose a new Domain Specific Language tailored to
the RoboticsAPI Command Model. The next sections will
describe the structure of the RoboticsAPI more in detail
and after that present the proposed graphical language for
specifying RoboticsAPI Commands.

III. STRUCTURE OF THE ROBOTICSAPI CORE

r

s t

TransactionCommand

RuntimeCommand

State

Command

WaitCommand

EventHandler

Action

EventEffect

Sensor

Actuator

provides

*

provides

*

influences

provides

*

consistsOf

*

attachedTo

*1

triggeredBy

1

provides
*

executes

1

executes

1

targets

1

Fig. 2. Class structure of the RoboticsAPI core

The RoboticsAPI is intended to serve as an extensible
object-oriented framework for creating robotic applications.
Due to its framework nature, its core parts define a general
class structure that may be extended for use with concrete
hardware and creating specific applications. In this section,
we give an overview of this core structure. Fig. 2 depicts the
most basic concepts and their relationships. In the following,
we will explain all parts step by step.

Hardware devices that can be controlled in any way are
modeled as Actuators (cf. Fig. 2, bottom left). An example of
a more specialized Actuator would be a robot arm. Actuators
have some properties (e.g. the number of joints) and can
be configured in certain ways (e.g. defining the maximum
allowed velocity of motions). Actuators in the RoboticsAPI

1http://www.ros.org
2http://www.ros.org/wiki/smach

in general do not contain code that implements the execution
of any kind of action (e.g. the interpolation of motions). They
can rather be seen as proxy objects representing devices in
the Robot Control Core (cf. Fig. 1).

Actions that Actuators should execute are modelled by the
class Action. An example would be a linear motion of a robot
arm in space. Like Actuators, Actions carry parameters (e.g.
the velocity of a linear motion). To let an Actuator execute an
Action, a RuntimeCommand has to be defined. It combines
exactly one Actuator with exactly one Action. Like all other
Commands, RuntimeCommands provide methods to actually
execute them. When one of those methods is called, the
specification of the Command is transformed into a primitive
net, which is then sent to the RCC and executed there in
a real-time environment. Details on this transformation and
execution process can be found in [15].

To create more complex task specifications (e.g. a robot
motion during which a tool action should be executed),
the other types of Commands can be used. A Transac-
tionCommand is a composition of other Commands. All
contained Commands (and their scheduling rules, see below)
are executed in the same real-time context. This means that,
upon execution, they are transformed into different parts
of the same primitive net and executed atomically by the
RCC. To define scheduling rules, EventHandlers can be used.
EventHandlers are attached to Commands and can influence
their execution by executing EventEffects. An example would
be stopping a Command when certain events occur. When
attaching an EventHandler to a TransactionCommand, it is
e.g. also possible to let the EventHandler start one of the
child Commands contained in the TransactionCommand.

EventHandlers can be triggered upon changes in the state
of the system. The concept State models a certain part of
this system state. A State can be active at any point in
time, or not active. An EventHandler can be triggered when
the activeness changes, i.e. when the State is becoming
active or inactive. States can be provided by Commands as
well as Actuators, Actions and Sensors. Commands provide
States expressing e.g. that the Command has been started
or stopped. Actuators provide mostly error States (e.g., a
robot’s drives are disabled), while Actions can provide States
like e.g. a Motion having been executed to a certain degree.
Sensors are providing data that is measured in some way.
Boolean-type sensors (like a digital field bus input measuring
a high or low value) provide a State that directly corresponds
to the measured value. For more complex sensor data, the
RoboticsAPI allows defining derived Sensors that process
this data in order to provide States (e.g. the condition that
’a laser scanner sees an object in a distance smaller than a
value X’ can be expressed as a State).

All the concepts presented above can be used to create
arbitrarily complex structures of Commands. Due to the
fact that each such structure is guaranteed to be executed
with hard real-time timing guarantees, a large variety of
applications can be realized. The RoboticsAPI was already
used to e.g. perform robot motions with collision detection,
for force-based part assembly with defined maximum force

// RoboticsRuntime is the Factory for Commands
RoboticsRuntime rt = RoboticsRegistry.getSingle(

"orocos", RoboticsRuntime.class);

// create motion RuntimeCommand for LWR
LWR lwr = RoboticsRegistry.getSingle("lwr", LWR.class);
PTP ptp = new PTP(

lwr.getHomePosition(), // start
new double[] {1.57, 0, 0, 1.57, 0, 0, 0} // goal
);

RuntimeCommand ptpCmd = rt.createRuntimeCommand(lwr, ptp);

// create command for setting field bus output
DigitalOutput o = RoboticsRegistry.getSingle(

"gripperClose", DigitalOutput.class);
SetDigitalValue close = new SetDigitalValue(true);
RuntimeCommand closeCmd = rt.createRuntimeCommand(o, set);

// combine both commands
TransactionCommand trans = rt.createTransactionCommand();
trans.addStartCommand(ptpCmd); // auto-start Command
trans.addCommand(closeCmd); // no auto-start

trans.addStateEnteredHandler(
ptp.getMotionTimePercent(30), // State
new CommandStarter(closeRt)); // EventEffect

// execute TransactionCommand
trans.execute();

Listing 1. Robotics API Command Example

or for cooperative transport of workpieces by multiple robot
arms, requiring tight synchronization of the arms.

To illustrate the composition of Robotics API commands,
Listing 1 gives a Java code example. Here, a robot is
instructed to execute a simple Point-To-Point (PTP) motion
in joint space, while at a certain progress of the motion, its
gripper is opened by setting a field bus output. This simple
example shows that the code required to define a hierarchy
of Commands and rules for scheduling their execution tends
to get long and complex. Worse than the pure code size is the
fact that it is hard to read the “big picture” (i.e. the resulting
Command) from this kind of definition, as the hierarchical
structure of Commands is hard to capture from this kind
of textual definition. As stated previously, different ways to
tackle this problem have been examined, with the approach
presented in this paper being one of them.

IV. DESIGN OF THE GRAPHICAL LANGUAGE

In this section, we present the design of the GSRAPID
language. GSRAPID stands for Graphical SoftRobot
RoboticsAPI Diagram and refers to the graphical models
that can be defined. In the following, all important concepts
of this language are explained.

A. Basic Operators

The graphical language designed to specify complex
RoboticsAPI Commands contains a set of basic graphical
operators. Those operators represent mainly the concepts
presented in the previous section. Furthermore, some opera-
tors allow to define relationships between other operators to
resemble relationships between Commands.

There are two ways of defining a relationship between
entities: nesting and connecting. If an object A (e.g. a State)

A nestable item like this can either represent any type of
Command, an Actuator, an Action, or a Sensor, depending
on the icon in the upper left corner. It supplys one compart-
ment for the inner nestable objects and one compartment
for inner States.
Regular State item, which belongs to a Command. The label
identifies the type of State.

LogicalState, which is composed of other States by ingoing
connections. The rectangular shape suggests the compos-
able character of this item, while the round corners identify
it as a State.

Represents an entry-point for a Diagram from where the
contained Commands can be started.

Connection between a State and a Command. The labels
express the event handler parametrization described in
section IV-D.

Connection either between a State and a LogicalState, or
between a starter and a Command. There is no labeling
needed, since the context of usage clearly defines its
function.

TABLE I
BASIC GRAPHICAL OPERATORS

is nested inside another object B (e.g. a Command), then
object A is graphically surrounded by object B. This rela-
tionship doesn’t always fully specify the interaction between
the nested objects and the surrounding ones, but defines
a cohesiveness that can carry semantics. The scheduling
of different Commands is achieved by connecting different
graphical objects which results in a graph, resembling a
complex RoboticsAPI Command.

The basic graphical operators are defined in Table I.
In addition to the pure graphical definition, each operator
may have a set of properties attached. The values of those
properties can be specified separately from the language
diagram in a dedicated property editor. By this separation
of graphical representation and property values, the visual
clarity of the language is preserved.

B. Diagrams and Commands

Graphical RoboticsAPI Commands are specified inside a
so called Diagram. A Diagram is considered the top-level of
a graphical Command specification. During code creation,
it is translated to a Robotics API TransactionCommand.
To make a diagram a valid Command specification, the
following rules need to be followed:

• At least one Command (cf. Fig. 3, item marked 1) has
to be present within the created Diagram.

• There has to be at least one entry-point for the command
(cf. Fig. 3, 2)

In order to start a command from one of the entry points,
so called ”StarterConnections” (cf. Fig. 3, 3) have to point to
the commands that shall be started first. Further Commands

can be added to Diagrams as needed. TransactionCom-
mands inside Diagrams are graphically modeled as special
nestable items. They can themselves contain nestable items,
in this case further Commands (TransactionCommands or
RuntimeCommands).

RuntimeCommands are also modeled as nestable items.
In contrast to TransactionCommands, they can only contain
exactly one Action and one Actuator as inner items. As
described in III, this specifies that the Action has to be
executed by the Actuator. An example is shown in Fig. 3. The
element labeled (1) is a RuntimeCommand with an Actuator
(4) and an Action (5) nested inside.

2

1

3

5

4

6

9

10

11

7

8

4

5

Fig. 3. A Diagram defined in the graphical language

C. Sensors and States

The prerequisite for defining execution-time scheduling
dependencies between RoboticsAPI Commands are States
(see Sec. III). As explained before, States can be provided
by Commands, Actuators, Actions or Sensors. To reflect this
in the graphical language, States can be nested inside the
graphical operators that resemble those concepts.

Sensors themselves can be embedded in a Diagram in two
ways: They can either be nested in an Actuator (cf. Fig. 3,
6), or, depending on the type of Sensor, be defined as a
toplevel sensor in the Diagram. As States can be defined
based on Sensor data (e.g. the State that a force sensor
measures a value greater than 5N), graphical State items
can be nested inside Sensor items (cf. Fig. 3, 7). States,
however, are not limited to Sensors and can also be added
to the graphical representations of Actions, Actuators and
Commands. Fig. 3 shows a CommandState (8) which belongs
to the RuntimeCommand and represents the state that this
command has been completed.

In addition to the regular States, LogicalStates have a
special graphical representation (cf. Fig. 3, 9). They are
States that are derived from one or more other State(s). This
deriviation is symbolized by the StateConnections in Fig.
3, 10. Like the other States, LogicalStates are connected to
the commands they shall have an effect on by EventEffect-
connections (cf. Fig. 3, 11).

D. Command scheduling

The event mechanism is the core concept for scheduling
Commands in the graphical language. An EventHandler can

be specified graphically by inserting an EventEffect con-
nection originating from a State and targeting a Command.
Further details concerning the scheduling are specified as
properties of this connection and visualized as labels of the
connection. These details include constraints specifying on
which kind of event to react (State (first) entered/State (first)
left) as well as the effect of the event. Possible effects are
e.g. starting, stopping and cancelling the targeted Command.

With this kept in mind, the schedule in Fig. 3 could
be expressed as: ”If the TorqueReachedSensor state has
appeared for the first time on the Actuator LbrLeft or the
RuntimeCommand ptpRT is in a completed state for the first
time, start the RuntimeCommand open”

V. REALIZATION

To enable users to create RoboticsAPI Commands with
GSRAPID, a graphical tool called GSRAPID IDE was cre-
ated. The Eclipse IDE was chosen as the basis for this tool
mainly for two reasons: On the one hand, there exists a
variety of stable Eclipse-based frameworks for creating cus-
tom (graphical) languages (cf. Sec. V-A). On the other hand,
there is ongoing work on an Eclipse plugin that supports
development of robot applications with the Robotics API.
This plugin (called the RoboticsAPI plugin) provides some
mechanisms that were useful for connecting the GSRAPID
IDE to the environment of a robotics application, like e.g.
the available robots in this application. We will not go into
details about the RoboticsAPI plugin in this paper, but rather
explain those mechanisms that were used in the realization
of the GSRAPID IDE.

The GSRAPID IDE basically consists of three important
components (cf. Fig. 4):

1) The Tools palette, from which basic GSRAPID oper-
ators are selected

2) A working Canvas, where GSRAPID Diagrams are
created

3) A Properties View, where specific attributes and pa-
rameters can be set for the currently selected graphical
entity.

The common working flow is dragging and dropping an
element from the Tools palette onto the Canvas (to the
right hierarchy level inside the Diagram) and then setting
its properties in the Properties View.

A. Technologies

A variety of technologies was used to develop the
GSRAPID IDE with all its components. At this point, we
briefly present the concepts behind those technologies before
their application in this context is described in the later
sections.

1) Eclipse Modeling Framework: The Eclipse Modeling
Framework (EMF) allows to generate a complete Eclipse
plugin based on abstract model definitions. The advantage of
using EMF for plugin development is, that a) a lot of code
required for managing model instances at program runtime
can be generated and b) the generated code is guaranteed
to work correctly, according to the model definitions. EMF

Fig. 4. Plugin user interface for creating commands in the graphical
language

also provides support for creating a properties view, which
is frequently used for defining GSRAPID Diagrams.

2) Graphical Modeling Framework: In order to create
a graphical modeling environment, though, EMF is not
sufficient. This is where the graphical modeling framework
(GMF) comes into place. It enhances the functionality of
EMF by using and adapting components of Eclipse’s graph-
ical editing framework (GEF). By defining three additional
models, i.e. the graphical model, the tooling model and the
mapping model, a stub for a completely functional graphical
modeling plugin can be generated.

3) Java Remote Method Invocation: The Java Remote
Method Invocation (RMI) enables the access to objects and
methods executed in a different process or even on a different
physical system. This mechanism is needed for some parts of
the communication to the RoboticsAPI plugin, as explained
later. By design of RMI, the calls to functions hosted in
a remote Java environment are almost identical to local
function calls, resulting in a high degree of transparency. The
only difference of remote calls is the necessity of additional
exception handling, related to the dynamics of distributed
environments [16]

4) Java AST/DOM: Java AST/DOM is one of Eclipse’s
most basic frameworks which is responsible for a lot of
functionalities in the IDE, e.g. refactoring. Each Java class
definition is represented in Eclipse as an Abstract Syntax
Tree (AST), which is similar to the Document Object Model
(DOM), and is continuously synchronized. This way, changes
to the code always have an abstract representation which e.g.
also makes code outlines available [17].

B. Data Model

For gathering all data required for a fully specified
GSRAPID diagram, some concepts were introduced in ad-
dition to the classes provided by the Robotics API. The
concepts of LogicalStates and the implicit Eventhandler
were already discussed in IV-C and IV-D. Additionally, a
completely new Parameter concept had to be introduced. It
reflects parameters of graphical entities in order to meet the
requirements for successful code generation.

This new Parameter object is needed for the correct
initialization of states, sensors and actions. They usually

depend on a set of input parameters, like e.g. start and goal
positions of a robot movement Action. These parameters are
specific to the respective Action and thus handled by the
Property View of the GSRAPID IDE in a generic way.

The values of those Parameters can be constant values
entered by the user3. In some cases though, it is desirable
to determine the parameter value dynamically by e.g. calling
a method. This is supported by the dynamic method search
capabilities of the GSRAPID IDE (cf. Sec. V-C). For all other
cases (where neither a constant value nor a simple method
call is sufficient), a parameter may be assigned a variable
name. The code generator then creates setter methods for all
those variables, which have to be called before the generated
Command is executable.

C. Dynamic Method Search

When specifying that a parameter of a GSRAPID operator
should be determined by a method call at runtime, the
object instances available at runtime have to be known, as
well as their methods. The RoboticsAPI plugin maintains a
special runtime context for each robotic application that is
created as project in an Eclipse-Workspace. In this runtime
context, an instance of the RoboticsAPI library is loaded
and configured according to special configuration files of the
respective Eclipse project. That means that in this context,
e.g. instances of all RoboticsAPI Devices are created and
can be accessed, as well as all class definitions inside the
Robotics API. By using the mechanisms of Java Reflection4,
this runtime context can be browsed and methods can be
searched that comply to certain requirements (e.g. returning
values of certain datatypes).

The GSRAPID IDE employs these mechanisms and uses
a heuristical approach to find methods that might be feasible
for determining values of GSRAPID operator Parameters at
runtime. The approach looks for appropriate methods in a
certain “context” of the current GSRAPID diagram, which
includes e.g. the Actuators and Sensors used, as well as the
set of methods available in the Command classes.

As the runtime context for Eclipse projects is hosted as
a separate operating system process by the RoboticsAPI
plugin, Java RMI is used for communicating with those
processes. Feasible methods are suggested to the user in a
dropdown list in the properties (cf. Fig. 5). The GSRAPID
IDE also supports recursive usage of this mechanism for
determining arguments of methods using the same dynamic
definition.

D. Code Generation

Once GSRAPID Diagrams have been graphically speci-
fied, they can be translated into Java code to be usable inside
a RoboticsAPI project. For this purpose, a code generator
can be triggered by the user. Its main task is to interpret
the graphical Command and the values of the respective
operator properties. The challenge here is to correctly process
every operator and all inter-operator dependencies (defined

3In case the parameters are primitive types like Integer, Boolean, etc.
4http://java.sun.com/developer/technicalArticles/ALT/Reflection/

Fig. 5. Setting the needed input parameters for an action

by nesting or operator connections). For this purpose, the
instance of the EMF model corresponding to a GSRAPID
Diagram is parsed and a Java Abstract Syntax Tree is
generated, according to an algorithm whose flow is roughly
depicted in Fig. 6.

Fig. 6. Workflow of the code generator

Each entity evaluated by the code generator is checked
for contained States, which are translated to Java code first.
Depending on the type of State, its parameters have to be
translated before translating the State itself. Additionally, for
TransactionCommands, inner Commands are handled before
the TransactionCommand itself.

The translation of LogicalStates is delayed until all other
States have been handled. This ensures that all “precon-
dition” States have already been translated and the result
can be used in the translation of LogicalStates. EventEffects
are translated after all (Logical)States habe been processed.
At this point during the process, every source and target
object for the EventEffect connection is guaranteed to be
initialized. The method stubs and member variable dec-
larations are taken care of whenever needed during code
generation. The result of the code generation is a Java class
with static setter methods for property variables and a static
method that instantiates the Command structure as defined

with GSRAPID. The implementation of this method checks
whether all generated setter methods have been called before,
otherwise an error is thrown.

VI. EXAMPLE

To demonstrate the usage and expressiveness of
GSRAPID, we present in this section an example Diagram
and the steps required to execute the code generated from
it. The task that should be realized can be described as fol-
lows: Two Lightweight Robots should carry some workpiece
cooperatively. During their motion, they pass a container,
in which they should drop the workpiece. This task clearly
contains some real-time aspects: The motion of both robots
must be synchronized in order to achieve a cooperative
transport. Furthermore, dropping the workpiece by opening
the grippers must be triggered at exactly the right time
during movement in order to not miss the container. Both
grippers have to be opened exactly at the same time as well,
otherwise the workpiece might be stuck too long in one of the
grippers and also miss the container. To further increase the
complexity, the case that the workpiece actually got stuck
during dropping should be handled. This can be done by
observing the downward force measured by the robot arms. If
the grippers have already been opened and still a significant
downward force is measured, the workpiece is assumed to
be stuck. In this case, movement of the robots should be
stopped immediately.

Fig. 7 shows a GSRAPID Diagram that realizes this task
by combining all necessary actions in one RoboticsAPI
Command. The TransactionCommand in the left part of the
Diagram (moveParallel) contains two RuntimeCommands,
each one controlling one of the robot arms (leftLWR and
rightLWR). Both RuntimeCommands let the robots execute
a linear motion (LIN). The parameters of these linear motions
are defined to be variables, which have to be set before the
code generated from the Diagram can be executed (cf. List-
ing 2). Assuming appropriate parameterization of those LIN
Actions, the parallel execution of the RuntimeCommands
will result in uniform motion of both robot arms.

The right part of the Diagram models two RuntimeCom-
mands inside a second TransactionCommand called open-
Grippers. Those RuntimeCommands execute SetDigitalValue
Actions for setting high values on specific field bus outputs.
These signals tell the robot grippers connected to those
field bus outputs to open. The parallel starting of both
RuntimeCommands ensures that the grippers are opened at
the same time. The openGrippers TransactionCommand is
started on the occurrence of a State that is supplied by the
LIN Action of one of the robots. This Action offers a method
motionAtPercent(p) that supplies a State indicating that the
motion has reached p percent of its execution time. When a
State entity is added to the GSRAPID Diagram and is placed
inside the LIN Action entity, the GSRAPID IDE offers this
method as one possibility for defining the State (cf. Fig. 5).

Handling the case of the workpiece getting stuck is par-
ticularly interesting: To detect that the workpiece is stuck,
the force sensors of both robot arms are observed. This is

modelled in the Diagram by adding Sensors to both leftLWR
and rightLWR. After that, the user has to choose which kind
of Sensor to use. The method getForceXSensor() of the robots’
class LWR is offered to the user as one option (cf. Fig. 5).
The same mechanism is used to determine appropriate States
(defined here by the Sensor’s method isGreater(f)) based on
the Sensors’ measurements. The States are then combined
with an OrState so that both measurements are considered.
Additionally, the CompletedState of the TransactionCom-
mand openGrippers is used so that the force measurement
is only considered after the grippers have been opened. All
States are finally combined by an AndState, which then
triggers an EventEffect that is stopping the moveParallel
TransactionCommand.

The code generated from this Diagram consist of about
150 lines. Due to its complexity (cf. Listing 1), writing this
code by hand is not an easy job. For other programmers that
want to re-use or adapt the code, understanding it is even
harder. On the other hand, the semantics of the Command
can in most cases be inferred at first glance when looking
at the GSRAPID Diagram. Listing 2 shows the usage of the
generated code in a robotics application. As the Diagram was
entitled “Example”, a Java class Example is generated. This
class contains static setter methods for all variables used in
the Diagram (in this case, the start and goal poses of the
LIN Actions) as well as a static method that instantiates the
Command as defined in the Diagram.

// Set parameters under-specified in the Diagram
Example.setLeftRobotStart(Frames.LeftRobotStart);
Example.setLeftRobotGoal(Frames.LeftRobotGoal);

Example.setRightRobotStart(Frames.RightRobotStart);
Example.setRightRobotGoal(Frames.RightRobotGoal);

// At this point Command instantiaton will succeed.
Command exampleCommand = Example.createCommand();

// Finally, Command can be executed.
exampleCommand.execute();

Listing 2. Using code generated from a GSRAPID Diagram

VII. CONCLUSION AND FUTURE WORK

The GSRAPID language and its IDE promises to be a very
useful tool for specifying complex robot commands with the
RoboticsAPI. First experiences showed that the process of
defining Commands is really accelerated and the resulting
diagrams are quickly understandable. However, we have to
investigate the applicability of GSRAPID to more complex
examples to find out how well the graphical specification
scales with the problem complexity.

The future plans with GSRAPID are twofold: On the one
hand, we want to further test GSRAPID with different kinds
of hardware and different kinds of tasks to further explore
its usefulness as well as potential for improvements. On the
other hand, some of the more special Robotics API concepts
have not yet been integrated in the GSRAPID language.
An example are so called WrappedActions that can be used
for nesting Actions to e.g. monitor safety constraints of
Action implementations. We want to extend GSRAPID in

Fig. 7. Example Diagram created with the GSRAPID IDE

this direction. These extensions will also be interesting to
find out the effort required for extending the language and
the respective EMF, GMF and GEF models. Until now, our
experience is that these technologies are powerful and well
designed, though their complexity requires some learning
time.

REFERENCES

[1] J. N. Pires, “New challenges for industrial robotic cell programming,”
Industrial Robot, vol. 36, no. 1, 2009.

[2] A. Hoffmann, A. Angerer, F. Ortmeier, M. Vistein, and W. Reif,
“Hiding real-time: A new approach for the software development of
industrial robots,” in Proc. 2009 IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS 2009), St. Louis, Missouri, USA. IEEE,
Oct. 2009, pp. 2108–2113.

[3] A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, and W. Reif, “The
Robotics API: An object-oriented framework for modeling industrial
robotics applications,” in Proc. 2010 IEEE/RSJ Intl. Conf. on Intelli-
gent Robots and Systems (IROS 2010), Taipeh, Taiwan. IEEE, Oct.
2010, pp. 4036–4041.

[4] M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and W. Reif,
“Interfacing industrial robots using realtime primitives,” in Proc. 2010
IEEE Intl. Conf. on Automation and Logistics (ICAL 2010), Hong
Kong, China. IEEE, Aug. 2010, pp. 468–473.

[5] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in Proc. 2001 IEEE Intl. Conf. on Robotics and Automation, Seoul,
Korea, May 2001, pp. 2523–2528.

[6] S. A. Schneider, V. W. Chen, G. Pardo-Castellote, and H. H. Wang,
“ControlShell: A software architecture for complex electromechanical
systems,” International Journal of Robotics Research, vol. 17, no. 4,
pp. 360–380, 1998.

[7] J.-J. Borrelly, E. Coste-Manière, B. Espiau, K. Kapellos, R. Pissard-
Gibollet, D. Simon, and N. Turro, “The ORCCAD architecture,” Intl.
J. of Robotics Research, vol. 17, no. 4, pp. 338–359, Apr. 1998.

[8] A. Bredenfeld and G. Indiveri, “Robot behavior engineering using
DD-Designer,” in Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on, vol. 1, 2001, pp. 205 – 210
vol.1.

[9] D. C. MacKenzie, R. Arkin, and J. M. Cameron, “Multiagent
mission specification and execution,” Autonomous Robots, vol. 4,
pp. 29–52, 1997, 10.1023/A:1008807102993. [Online]. Available:
http://dx.doi.org/10.1023/A:1008807102993

[10] R. Bischoff, A. Kazi, and M. Seyfarth, “The MORPHA style guide for
icon-based programming,” in Proc. 11th IEEE International Workshop
on Robot and Human Interactive Communication, 2002, pp. 482–487.

[11] H. Z. Jing Chen, Yongzhi Huang, “A picture or a thousand words? -
Graphic-based robot programming simplifies cell engineering,” Vector,
pp. 43–45, April 2009.

[12] S. Morgan, Programming Microsoft Robotics Studio, 1st ed. Microsoft
Press, March 2008, iSBN 978-0735624320.

[13] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, “Choreographe: a
graphical tool for humanoid robot programming,” in Proc. 18th IEEE
Intl. Symposium on Robot and Human Interactive Communication,
2009, pp. 46–51.

[14] A. Hoffmann, A. Angerer, A. Schierl, M. Vistein, and W. Reif,
“Towards object-oriented software development for industrial robots,”
in Proc. 7th Intl. Conf. on Informatics in Control, Automation and
Robotics (ICINCO 2010), Funchal, Madeira, Portugal, vol. 2. IN-
STICC Press, Jun. 2010, pp. 437–440.

[15] A. Schierl, A. Angerer, A. Hoffmann, M. Vistein, and W. Reif, “From
robot commands to real-time robot control - transforming high-level
robot commands into real-time dataflow graphs,” in Proc. 2012 Intl.
Conf. on Informatics in Control, Automation and Robotics, Rome,
Italy, 2012.

[16] P. Vignéras, “Transparency and asynchronous method invocation,” in
Proceedings of the 2005 Confederated international conference on On
the Move to Meaningful Internet Systems - Volume Part I, ser. OTM’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 750–762.

[17] T. Kuhn and O. Thomann, Abstract Syntax Tree, 2006 (accessed
august 2012). [Online]. Available: http://www.eclipse.org/articles/
article.php?file=Article-JavaCodeManipulation AST/index.html

http://dx.doi.org/10.1023/A:1008807102993
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html

	Introduction
	Related Work
	Structure of the RoboticsAPI core
	Design of the Graphical Language
	Basic Operators
	Diagrams and Commands
	Sensors and States
	Command scheduling

	Realization
	Technologies
	Eclipse Modeling Framework
	Graphical Modeling Framework
	Java Remote Method Invocation
	Java AST/DOM

	Data Model
	Dynamic Method Search
	Code Generation

	Example
	Conclusion and Future Work
	References

