
A Formal Optimization Model for 5G Mobile
Network Slice Resource Allocation

Andrea Fendt1, Christian Mannweiler2, Lars Christoph Schmelz2, Bernhard Bauer1
1 University of Augsburg, Department of Computer Science, Augsburg, Germany
2 Nokia Bell Labs, Network Management and Automation, Munich, Germany

andrea.fendt@informatik.uni-augsburg.de, bernhard.bauer@informatik.uni-augsburg.de,
christian.mannweiler@nokia.com, christoph.schmelz@nokia.com

Abstract—Network slicing is one of the key features of 5G
mobile networks to cope with the diverging network requirements
introduced by new use cases, like the IoT, autonomous driving
and the Industry of the Future. Network slices are isolated,
virtualized, end-to-end networks optimized for specific use cases.
But still they share a common physical network infrastructure.
Due to the dynamic life cycle of network slices there is a strong
demand on efficient algorithms for mobile end-to-end network
slice embedding. In this paper, a mathematical model for solving
the offline Network Slice Embedding Problem formalized as
a standardized Mixed Integer Linear Program is presented.
A latency sensitive objective function guarantees the optimal
network utilization as well as minimum latency in the network
slice communication.

Index Terms—5G, network slice, end-to-end mobile networks,
virtual network embedding, latency, linear programming

I. INTRODUCTION

With the fifth generation of mobile networks (5G) new use
cases, like the Industry 4.0, autonomous driving and massive
IoT are associated. However, these new applications as well as
the traditional mobile broadband and voice use cases raise very
diverse requirements on the mobile networks of the future.
End-to-end mobile network slicing, i.e., using virtualized
isolated subnetworks sharing the same infrastructure is seen
as one of the key features to meet this challenge [1] [2].
Network Slices (NSLs) are use case specific and the provided
network resources as well as the network performance will
be bound by Service Level Agreements (SLAs) between a
network infrastructure provider or a mobile service provider
and a NSL customer or tenant [2]. For each NSL the actual
required amount of network resources must be reserved in
order to avoid penalties that might apply for SLA violations.
However, radio frequencies and the associated resources, like
bandwidth, are very scarce. An overprovisioning of these
resources would be inefficient and non-beneficial for most
applications. Therefore, a sophisticated resource allocation and
optimization mechanism is strongly needed to avoid SLA
violations while still using the Radio Access Network (RAN)
resources efficiently and beneficially on behalf of the network
infrastructure and service providers as well as the end-users.
NSLs might be subject to ongoing change, set up, termination
and modification [2]. Therefore, network management and
planning need to be able to flexibly configure and modify

NSLs as well as allocate required resources for the demanded
network functions and services. As already explained in [3],
this necessitates a high degree of automation of NSL prepa-
ration and deployment, as well as fast and efficient decision
making on whether or not a Network Slice Embedding (NSE)
is feasible. NSLs are intended to provide services to mobile
and immobile end users. Such a service can be a standard
telecommunication service, like a voice call, or a mobile
broadband application, like video streaming or virtual reality
as well as a highly safety critical data exchange service, i.e.,
for autonomous driving or remote surgery. Providing such a
service usually involves the connection of several network
functions. This is called application or network function chain-
ing [2]. Fig. 1 shows a simplified version of a NSL architecture

Fig. 1. Network Slice with Application Chain

with a network function chain, consisting of three applications.
Two groups of User Equipments (UEs) are connected to this
service. Each UE group is a group of mobile users that can use
the same connections, i.e., is situated in the same cell of the
physical network. The second Fig. 2 depicts a model of the
physical network the NSLs are embedded in. It is assumed
that each network function can run on any cloud server, if
itself and its communication links fulfill the specifications and
if there are enough available resources. Nevertheless, further
constraints could be easily added to the model presented in this
paper. Throughout this paper, the physical network as well
as NSL resources and quality parameters are evaluated in a
static context. For example, the variations in signal quality
of a mobile network, caused by, e.g., weather and foliage as
well as fluctuating resource demands of the NSLs, e.g., during
the day, are not considered in this paper. However, solving
the dynamic NSE is subject to ongoing research. This paper
enhances the NSL resource allocation and optimization model
and algorithm for end-to-end mobile networks proposed in
[4]. The following research questions will be answered in this
paper:978-1-5386-7266-2/18/$31.00 c©2018 IEEE. Personal use of this material

is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Fig. 2. Simplified End-to-End Physical Network Architecture

1) Can all NSLs be embedded into the physical network
regarding their specifications and resource as well as
application chaining constraints?

2) Which NSLs shall be embedded if there is a lack of
resources?

3) What is the optimal embedding of the NSLs considering
communication latency?

Application function chaining is introduced into the Integer
Linear Program (ILP) proposed in [4]. In addition to that,
path splitting is added to the model, i.e., the possibility to use
several paths in the physical network to serve a single virtual
link. This requires major changes in the graph, mapping and
latency constraints. Furthermore, a new objective function for
finding an optimal embedding of the NSLs is evaluated. The
new objective function does not only maximize the sum of
the embedded NSL weights, but also takes the weighted sum
of the communication latencies into account. Also, node and
link availability as well as reliability are added to the model
as further network quality parameters. Due to path splitting,
the NSL resource embedding model is now formalized as a
Mixed Integer Linear Program (MILP). Solving this Program
means trying the find a nearly optimal embedding respecting
the qualitative as well as quantitative NSL requirements.

II. RELATED WORK

Network slicing and its challenges are intensively discussed
topics at the moment. For instance, Zhang et al. [5] present an
approach for runtime optimization of throughput resources for
NSLs. Wang et al. [6] are aiming at resource price balancing,
considering dynamic offer and demand of NSL resources and
Jiang et al. [7] use UE admission control to avoid network
overloading at runtime. However, the mobile end-to-end NSE
problem with fixed SLAs in the NSL preparation phase is, to
the best of the author’s knowledge, not covered in literature
yet. This approach focuses on analyzing the provided and
required network resources and network quality parameters in
advance of the NSL deployment and on finding an optimal
subset of NSLs to be embedded. The algorithm presented
in this paper also provides a latency optimal mapping of
the network applications on the server infrastructure and an
embedding of the virtual communication links.
Virtual Network Embedding (VNE) is a well researched and

understood mathematical problem. Although it is NP-hard [8]
there is a large number of heuristics for various use cases.
Also optimal solutions using ILP do exist. In the field of
communication technologies, VNE is currently mainly used in
fixed networks, but it is also evaluated for wireless networks,
see for example [9] and [10]. Fischer et al. [11] present a
survey on VNE for wired communication networks. A survey
on recent related work in mobile NSE can be found in [12].
A lot of publications focus on runtime issues of NSE, like
NSL isolation, resource partitioning and Physical Resource
Block (PRB) assignment. NSL deployment and resource man-
agement at runtime are not covered by this paper. This work
focuses on finding a (nearly) optimal utilization of the NSL
resources in a mixed wired and wireless end-to-end network
during the NSL preparation phase. Despotovic et al. [13]
propose a scalable algorithm for solving the VNE problem
optimally and efficiently. The presented approach allows to
solve large problem instances with thousands of elements
within only a few seconds. Unfortunately, the model has its
limits. It doesn’t apply for end-to-end mobile NSLs, since it
doesn’t consider network quality parameters, like link latency,
availability and reliability. Beyond that, the VNetMapper,
proposed in [13] is only capable of a one-to-one mapping
of virtual to physical nodes and links. That means it is not
possible to map several virtual nodes or links on one physical
node or link. This is not a feasible constraint for the NSE,
since the network infrastructure, e.g., antennas, base stations
and transport links, must be shared among NSLs. The model
proposed in this paper takes latency, availability and reliability
constraints into account and optimizes the latency of the
embedded NSLs. Furthermore, it is capable of many-to-one
mappings and the embedding of network functions chains.

III. NETWORK SLICE EMBEDDING MODEL

In this section a formal mathematical model for solving the
NSE efficiently as an MILP is given. The model follows the
design guidelines for efficient and scalable modeling of VNE
problems, as proposed by of Despotovic et al. [13]. It is based
on the ILP presented in [4], but is enhanced by a new latency
sensitive objective function, as well as support for application
chaining and path splitting and node as well as link availability
and reliability restrictions.

A. Definitions

The following graph theoretical definitions (see [14] and
[4]) are used to describe the graph structures of the physical
and virtual networks:
An undirected Graph G is an ordered pair G = (V, E)
consisting of a set of n ∈ N vertices V = {v1, v2, . . . , vn}
and a set of m ∈ N edges. An edge can have two adjacent
vertices eij := {vi, vj} for i, j = 1, . . . , n, often abbreviated
by eij := vivj . vi is called the start node and vj is called
the end node. Both are also referred to as the ends of eij . In
undirected graphs eij = eji applies.
An undirected graph P = (V, E) comprising of a set of
pairwise different vertices V = {v1, v2, . . . , vn} and a set of

successive edges E = {v1v2, v2v3, . . . vn−1vn} is called a path
of length n ∈ N. v1 is referred to as the start-vertex of P and
vn is called the end-vertex of P . P can also be abbreviated
as P = v1v2v3 . . . vn. Pij is defined as the set of all paths in
an undirected Graph G = (V, E) with start-vertex vi ∈ V and
end-vertex vj ∈ V with i, j = 1, . . . , n, n ∈ N and i 6= j.
A network graph N = (U , C, E) is defined as an undirected
Graph G = (V, E) with V := U ∪ C. N consists of a set
of UEs U := {u1, . . . , un} with n ∈ N, a set of cloud
nodes C := {c1, . . . , cm} with m ∈ N and a set of edges
E ⊆ {uicj , ckcl} for all i = 1, . . . , n as well as for all
j, k, l = 1, . . . ,m with k 6= l.

B. Parameters of the Model

The parameters of this enhanced NSE model are based on
the parameters used in the preceding model presented in [4].
The physical network is defined as a network graph N =
(U , C, E) with uv ∈ U , the UEs, cw ∈ C, the cloud nodes,
and ej ∈ E , the communication links (edges) between the
cloud nodes connecting the applications deployed on them.
The physical network is also referred to as the substrate in
the following. Adjacent edges can be combined to a path
Pr ∈ Pvw starting in an UE or cloud node dv ∈ U ∪ C and
ending in a cloud node cw ∈ C.
In this physical network n ∈ N NSLs, or virtual networks shall
be embedded. Each of those n NSLs is represented as an undi-
rected graph Nk = (Uk,Ak,Lk) for k = 1, .., n with Uk ⊆ U
a subset of all UEs in the substrate network, i.e., the UEs of
the virtual networks are already embedded in the substrate by
definition. akm ∈ Ak describes the m-th application node of the
NSL Nk. NSLs are isolated from each other. Therefore, they
do not share application node instance. Although several NSLs
might share the same application types, distinct instances of
those applications have to be defined for each NSL. Ultimately,
the i-th virtual communication link of the k-th NSL is defined
as lki ∈ Lk.
Finding a NSE means to determine a mapping of the applica-
tion nodes akm on the cloud nodes cw and the corresponding
virtual links lki on suitable paths of edges ej in the physi-
cal network. This mapping must respect NSL resource and
property requirements. In this work, three types of resources
and three network quality parameters are considered. However,
this can easily be extended to further resources and parameters
of interest. For the communication links the throughput T is
the most important resources. In addition to that, the network
quality parameters latency L, availability A and reliability R
are considered. For the cloud servers and application nodes
the most important resources are the computational power
P , the memory M provided by the server, or required by
the application. In addition to that, the quality parameters
availability A and reliability R are also considered for the
nodes. To be able to model a NSE, the available and requested
resources as well as the provided and required network quality
have to be defined as distinct model parameters. For the
physical network the throughput T s

j is defined as the maximum
throughput that can be transmitted on a mobile or fixed

network communication link ej ∈ E . In this paper uplink and
downlink are not distinguished. For communication via the
RAN the available throughput is not only dependent on the
bandwidth but also on the actual signal quality experienced
by the users. For this approach an expected Channel Quality
Index (CQI) has to be specified in advance. For each cloud
node cw ∈ C of the substrate the computational power P s

w

as well as the memory storage capacity Ms
w is specified. The

resource requirements of the k-th NSL Nk are denoted as
T k
i for the required throughput on the i-th communication

link lki ∈ Lk, P k
m for the required computational power

of an application node akm ∈ Ak and Mk
m for its required

memory storage capacity. Furthermore, the requirements of
the NSL elements have to be fulfilled by the physical network
elements they are mapped on. For instance, a physical link
in the substrate network used by a virtual link of a NSL
must not exceed a predefined latency and has to fulfill certain
availability and reliability requirements. On the one hand Ls

j

specifies the latency for a physical communication link ej ∈ E .
Although in practice the latency is dependent on the actual
throughput, it can be assumed that the latency remains constant
if a certain throughput is not exceeded. The latency values
used in this model can be seen as an upper estimation for the
communication latency on a link which is under full load, but
not overloaded. On the other hand Lk

i defines the maximum
allowed latency for a virtual link lki ∈ Lk. Similarly, the
availability As

w and reliability Rs
w of a substrate node cw and

the availability As
j and reliability Rs

j of the substrate edges ej
are defined. The availability and reliability requirements of the
NSLs are stated as Ak

m and Rk
m for the required availability

the m-th application node and Ak
i and Rk

i for the required
availability and reliability of the virtual link lki .

C. Variables of the Model

The following variables provide a formal description of the
NSE for the MILP used to solve the optimization problem:

yk :=

{
1 if Nk is embedded into Ns

0 otherwise

a2ckmw :=

{
1 if akm is mapped on cw
0 otherwise

l2pkir ∈ (0, 1) percentage of data transfer of lki
mapped on Pr ∈ Pvw

Most of the variables are binary. This tremendously increases
runtime efficiency of the embedding algorithm. However, to
allow path splitting one continuous variable-type l2pkir is
required. For convenience, it is defined:

p2erj :=

{
1 if ej is used in Pr

0 otherwise

l2ekij :=
∑
r

(l2pkir · p2erj)

l2ekij combines the variables l2pir, mapping virtual links to
paths, with the set of parameters p2erj , mapping paths to
edges, to receive a virtual link to physical edge mapping l2ekij .
Note that p2erj are no additional variables, but only model
parameters since the paths are fixed for a certain substrate
network. In addition to that, the l2ekij is not a new type of
variables, but only another notation for the link mappings.

D. Mixed Integer Linear Program Formulation

The MILP formulation of the NSE is specified as follows:
maximize

ρ

∑
k

(ωk · yk)∑
k

ωk
+ (−1)(1− ρ)

∑
k,i,j

Ls
j · l2ekij∑

j,Pr∈P
Ls
j · p2erj · q

subject to
Map-once constraints:∑

w

a2ckmw = yk, ∀k,m (1)

Graph constraints:∑
Pr∈Pvw

l2pkir = yk, ∀k, i with lki = {uv, akm} (2)

∑
Pr∈Pvw

l2pkir = a2ckbv , ∀k, i with lki = {akb , akm} (3)∑
Pr∈Pvw

l2pkir = a2ckmw, ∀k, i with lki = {fkv , akm}

and fkv ∈ Uk ∪ Ak

(4)

Resource constraints:∑
k

∑
i

l2ekij · T
k

i ≤ T
s

j , ∀j (5)

∑
k

∑
m

a2ckmw · P k
m ≤ P s

w, ∀w (6)

∑
k

∑
m

a2ckmw ·Mk
m ≤Ms

w, ∀w (7)

Network quality constraints:∑
j

l2ekij · Ls
j ≤ Lk

i · l2p
k
ir, ∀k, i, Pr ∈ P (8)

a2ckmw ·Ak
m ≤ As

w, ∀k,m,w (9)

a2ckmw ·Rk
m ≤ Rs

w, ∀k,m,w (10)

l2ekij ·Ak
i ≤ l2e

k
ij ·As

j , ∀k, i, j (11)

l2ekij ·Rk
i ≤ l2e

k
ij ·Rs

j , ∀k, i, j (12)

The objective function of maximizing the sum of embedded
NSL weights, as proposed in [13] and [4], is augmented
by a latency component. The NSL weights ωk represent the
relative utility of the NSLs, e.g., the revenue of the slice for
the infrastructure provider. The weight ρ ∈ (0, 1) should be
chosen very high, for instance ρ = 0.99, to make sure the

objective of embedding as many NSLs as possible as well as
selecting the most beneficial ones is always the first priority.
The second priority is to provide a mapping which minimizes
the latency of the used communication links. The latency
component of the objective function is multiplied with −1
since the weighted latencies are positive and their sum shall
be minimized. The two components of the objective function
are normalized before weighting them against each other. For
the latency component this means to sum up the edge latencies
for all paths and edges multiplied with the number of links q
in the denominator. In the numerator all latencies of the edges
in the physical network are weighted with the percentage of
usage of this edge by all links in all NSLs. This is a simple
means of achieving that the optimization algorithm minimizes
the mapping on links with high latency. Also, other objectives,
like reducing energy consumption by being able to share cloud
node servers among several application and shut down unused
servers or reducing cost by choosing cheaper communication
links and cloud servers, are imaginable and could be taken into
account by the objective function as well. However, this has to
be considered carefully since the complexity of the objective
functions has a high impact on the runtime efficiency of the
overall NSE algorithm [13].
When optimizing the above objective function, twelve dif-
ferent constraint types apply. The first eq. 1 states that each
application node must be mapped on exactly on cloud server
node [13] [4], if the k-the NSL has been embedded into the
substrate. In this case, a2ckmw sums up to 1 over all cloud
sever nodes and yk = 1. Otherwise, yk will be 0, therefore
a2ckmw must be 0 for all cloud server nodes. There is one
map-once constraint for each combination of k and m, i.e., for
each application node in every NSL. Eq. 2 defines the graph
constraints for the virtual link to physical path mapping, for
those virtual links starting in an UE node. If the k-th NSL
is embedded into the substrate network the sum of all link to
path mappings for the virtual links starting in an UE node has
to be equal to 1. Note that the l2pkir variables can take values
from the interval (0, 1), i.e., the link mapping can be split on
several paths. The same goes for eq. 3 and 4. However, eq. 3
states that if an application node akb ∈ Ak has been mapped
on a cloud node cw also the adjacent links of akb need to be
mapped one or split among several paths that start in cw. Eq.
4 requires the same for the end nodes of the virtual links.
The three graph constraint types are defined for all virtual
links. Compared to the graph constraints used in [4], in this
model it is now allowed to share the same cloud node among
chained applications. This is achieved by allowing paths to
start in an arbitrary cloud server node (not only in an UE
node) and by adding paths that only consist of a so called free-
self link, which leads from a cloud node to itself with zero
latency, infinite throughput resources and a 100% availability
and reliability. The resource constraints in ineq. 5 specify that
the throughput for each edge ej of the substrate must not be
exceeded by the sum of throughputs used by the virtual links
mapped to it. For link splitting the respective proportion of
throughput resources is taken. Ineq. 6 and 7 define similar

restrictions for the computational power and the memory
storage of the cloud server nodes in the substrate network.
These resources must not be exceeded by the application
nodes mapped to them. The resource constraints are based
on the capacity constraints as proposed in [13] and [4]. The
most complex constraints are the latency constraints, see ineq.
8. A simple version of the latency constraints description
not allowing path splitting can be found in [4]. The latency
constraints state that no virtual link can be mapped on a path
in the substrate network which has an overall latency that is
higher than the allowed latency of the virtual link. Ineq. 8
defines one constraint for each virtual link and physical path
combination. Two cases need to be considered when evaluating
ineq. 8. In the first case, it is assumed that a certain lki is
mapped on a path Pr with a proportion of α ∈]0, 1). The
latency Lj of this edge will be multiplied by α and added to
the sum. However, not the sum of latencies weighted by the
proportion of link usage shall be considered, but rather the
sum of latencies of the used edges shall be compared with the
allowed latency for this link. All weights used in the sum of
one latency constraint are equal to α, since the whole path
is used with the same proportion l2pkir = α. Therefore, we
also scale the right-hand side of the ineq. by l2pkir = α.
Also note that for the edges Pr is not mapped on, the left
side of ineq. 8, is multiplied by l2ekij = 0. In the second
case, when lki is not mapped on the considered path Pr, the
proportion α = l2pkir will be zero, therefore the left-hand
side of the ineq. 8 is zero, which is always smaller or equal
to the right-hand side of the ineq., since it cannot become
negative. Finally, the remaining network quality constraints
refer to the availability as well as reliability of the links and
nodes in the virtual and physical networks. Ineq. 9 specifies
the requirement that applications can only be mapped on could
servers which comply to their minimum availability. There is
one constraint per application to cloud node mapping. The
same goes for ineq. 10, referring to the application’s reliability.
For the required availability and reliability of the virtual links,
the actual availability and reliability of all physical links ej
used in a path mapped to a virtual link lki must be good
enough to fulfill the link’s requirements. As already seen for
the latency constraints, the scaling introduced by path splitting
on the left-hand side of the ineq. must be neutralized by
applying the same factor to the right-hand side of the ineq..
The availability and reliability restrictions for link mappings
do only consider the availability/reliability of the edges on the
path, but not of the cloud server nodes visited on that path.

IV. EXAMPLE, IMPLEMENTATION AND EVALUATION

In this section a simple example for an efficient NSE is
presented. In addition to that, the algorithm and its implemen-
tation will be evaluated.
Fig. 3 shows the physical network with two UEs and three
cloud server nodes connected by six edges. The first of two
NSLs N0 = (U0,A0,L0) to be embedded into the above
described substrate network is shown in Fig. 4. It consists
of one group of UEs connect to two application chains that

u0

u1

c2

c1

c0

e0

e1

e2

e3

e4

e5

Fig. 3. Simple Example: Substrate Network

share the second and last element of the application chain a02.
The other NSL N1 = (U1,A1,L1), shown in Fig. 5, only
has one application chain but two user groups connected to it.
The slice weights ω0 = ω1 = 0.5 are equal. The tables Tab.
I and II show the characteristics and available resource of the
physical network as well as the resource and network quality
requirements of the NSLs.

u0

a00

a01

a02

l00

l01

l02

l03

Fig. 4. Simple Example: Network Slice 0

u0

u1

a10 a11

l10

l11
l12

Fig. 5. Simple Example: Network Slice 1

u0

u1

c2

c1

c0

e0

e1

e2

e3

e4

e5

a00

a01

a02

a10 a11

Fig. 6. Simple Example: Network Slice Embedding

In Fig. 6 an optimal embedding of the applications is shown.
It is possible to embed both NSLs. The best cloud node to
embed a02 would be c2, because it can be linked with the lowest
latency. However, the availability and reliability requirements
of a02 exclude c2 as a candidate. a02 is mapped on c1. c0 would
also have been feasible, but c1 can be connected to u0 with
a lower latency. Due to their high CPU and memory capacity
requirements the application nodes a10 and a11 can only be
deployed on the main cloud c0. Consequently l12 has to be
mapped on the path P8, consisting of the free-self link of
c0. For the link l10 path splitting is required between the path
P3 = e0e3 and the path P5 = e1e5, since neither of the links
e0 or e1 would have enough throughput resources.
The evaluation of medium sized problem instances without
path splitting and latency optimization in [4] shows that this

TABLE I
NETWORK LINK PARAMETERS

Link T L A R

e0 30 1 0.8 0.9
e1 20 2 0.8 0.9
e2 10 5 0.8 0.9
e3 90 2 0.99 0.99
e4 50 2 0.8 0.9
e5 80 1 0.99 0.99

l00 4 10 0.8 0.9
l01 3 12 0.8 0.9
l02 6 4 0.99 0.99
l03 5 3 0.8 0.9

l10 40 3 0.8 0.9
l11 10 6 0.8 0.9
l12 50 1 0.8 0.9

TABLE II
NETWORK NODE PARAMETERS

Node P M A R

c0 200 200 0.99 0.99
c1 40 40 0.99 0.99
c2 50 50 0.8 0.9

a00 30 30 0.8 0.9
a01 20 20 0.8 0.9
a02 10 10 0.99 0.99

a10 60 60 0.8 0.9
a11 60 60 0.8 0.9

kind of problem can be solved pretty fast. The runtime for a
representative instance with 371 nodes and 559 in the substrate
as well as 5 NSLs with 6 nodes and 18 links is only 43 sec.
on a standard MacBook Pro 2015. However, evaluation with
a dedicated simulator, written in Java programming language,
shows that the standard MILP provided by the GNU Linear
Programming Kit (GLPK) library of the GNU Project [15] is
not capable of solving the NSE with path splitting, i.e., when
using this specific combination of very restrictive constraints
combined with using binary and continuous variables. Small
problem instances, like the above example, can be solved
optimally with the Solving Constraint Integer Programs (SCIP)
Optimization Suite [16] within only approximately 0.1 sec..
The SCIP uses the branch-cut-and-price method to solve the
MILP optimally, instead of the standard LP relaxation and
cutting planes used by Linear Programming. The time needed
for solving the NSE problem with and without path splitting
for medium sized, randomly generated problem instances, with
61 nodes and 60 links in the substrate and 30 NSLs with 14 to
18 nodes and 9 to 14 links per NSL, highly varies depending
on the specific network topology and the resource constraints.
For some instances, solving the NSE optimally takes less than
one minute, for others it takes nearly one hour to find a close
to optimal solution. However, 88% of the tested instances are
solved in less than 7 minutes, with allowing as well as without
allowing path splitting. Path splitting does often decrease
solving times significantly, but also cases where it significantly
increases the runtime of the solver can be observed. For
processing very large problem instances with thousands of
nodes and links more efficiently, scalable VNE heuristics
have to be evaluated. However, these implementations can’t
guarantee optimal or very close to optimal solutions, like the
MILP approach proposed in this paper.

V. CONCLUSION AND FUTURE WORK

In this paper the NSE with network function chaining and
path splitting has been formalized in a standardized, simple
and easy to process MILP. It shows that a representation of
the NSE for end-to-end mixed (mobile and core) NSLs as an

MILP is feasible and beneficial. In addition, a latency sensitive
objective function has been presented optimizing the overall
utility of embedded NSLs as the first priority, but also propos-
ing an embedding with minimum latency for the virtual links
of the end-to-end NSLs. Although path splitting makes the
problem pretty complex, out-of-the-box MILP solvers can find
good, that means close to optimal, solutions within reasonable
time. In future work other heuristics and algorithms for making
the NSE scalable for very large problem instances and solving
smaller ones even more efficiently will be evaluated.
Beyond that, network slices as well as their underlying sub-
strate networks are subject to persistent change. In this paper
resource demand and supply are assumed to be constant
over time. Future work will include considering known and
seasonal changes in resource availability and network quality
parameters of the physical network and changes in the NSL re-
quirements. Furthermore, uncertainties in these parameter need
to be considered, when deploying several NSLs with fixed
SLAs on a common end-to-end mobile network infrastructure.

REFERENCES

[1] Nokia, ”Dynamic end-to-end network slicing for 5G”, Espoo, Finland,
2016.

[2] 3GPP, ”Study on management and orchestration of network slicing for
next generation network”, TR 28.801 V15.0.0T, 2017.

[3] A. Fendt et al, ”A Network Slice Resource Allocation Process in 5G
Mobile Networks”, in Proceedings of the 12th International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS-2018), Matsue, 2018, pp. 695-704.

[4] A. Fendt et al., ”A Network Slice Resource Allocation and Optimization
Model for End-to-End Mobile Networks”, in IEEE 1st 5G World Forum
(5GWF18) Conference Proceedings, Santa Clara, 2018.

[5] H. Zhang et al., ”Network Slicing Based 5G and Future Mobile Networks:
Mobility, Resource Management, and Challenges” in IEEE Communica-
tions Magazine, 2017.

[6] G. Wang et al., ”Resource Allocation for Network Slices in 5G with
Network Resource Pricing” in IEEE Global Communications Conference,
2017.

[7] M. Jiang, M. Condoluci and T. Mahmoodi, ”Network slicing management
& prioritization in 5G mobile systems” in European Wireless 2016, Oulu,
2016, pp. 1-6.

[8] D. Andersen, ”Theoretical approaches to node assignment”, Computer
Science Department, 2002, Unpublished Manuscript.

[9] R. Riggio et al., ”Scheduling Wireless Virtual Networks Functions” in
IEEE Transactions on network and service management, Vol. 13, No. 2,
2016.

[10] I. Tsompanidis, A. Zahran and C. Sreenan, ”A Utility-based Resource
and Network Assignment Framework for Heterogeneous Mobile Net-
works” in 2015 IEEE Global Communications Conference, San Diego,
2015.

[11] A. Fischer et al., ”Virtual Network Embedding: A Survey” in IEEE
Communication Surveys & Tutorials”, Vol. 15, No. 4, 2013.

[12] M. Richart et al., ”Resource Slicing in Virtual Wireless Networks: A
Survey” in IEEE Transactions on Network and Service Management,
VOL. 13, NO. 3, 2016.

[13] Zoran Despotovic et al., ”VNetMapper: A Fast and Scalable Approach
to Virtual Networks Embedding”, 2014 23rd International Conference on
Computer Communication and Networks (ICCCN), Shanghai, 2014, pp.
1-6.

[14] Reinhard Diestel: ”Graphentheorie”, 3rd edition, Springer, Heidelberg,
2006.

[15] Free Software Foundation, ”GLPK (GNU Linear Programming Kit)”,
https://www.gnu.org/software/glpk/, accessed Feb. 21th, 2018.

[16] A. Gleixner et al., ”The SCIP Optimization Suite 6.0”, Optimization
Online, 2018.

