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A FLOER HOMOLOGY FOR EXACT CONTACT EMBEDDINGS
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In this paper we construct the Floer homology for an action functional
which was introduced by Rabinowitz and prove a vanishing theorem. As
an application, we show that there are no displaceable exact contact embed-
dings of the unit cotangent bundle of a sphere of dimension greater than
three into a convex exact symplectic manifold with vanishing first Chern
class. This generalizes Gromov’s result that there are no exact Lagrangian
embeddings of a sphere into Cn.

1. Introduction

Exact convex symplectic manifolds and hypersurfaces. An exact convex symplec-
tic manifold .V; �/ is a connected manifold V of dimension 2n without boundary
with a 1-form � such that the following conditions are satisfied.

(i) The 2-form ! D d� is symplectic.

(ii) The symplectic manifold .V; !/ is convex at infinity, that is, there exists an ex-
haustion V D

S
k Vk of V by compact sets Vk �VkC1 with smooth boundary

such that �j@Vk
is a contact form.

(See [Eliashberg and Gromov 1991].) Define a vector field Y� on V by iY�! D �.
Then the last condition is equivalent to saying that Y� points out of Vk along @Vk .

We say that an exact convex symplectic manifold .V; �/ is complete if the vector
field Y� is complete. We say that .V; �/ has bounded topology if Y� ¤ 0 outside a
compact set. Note that .V; �/ is complete and of bounded topology if and only if
there exists an embedding � WM �RC! V such that ���D er˛M with contact
form ˛M D �

��jM�f0g, and such that V n �.M �RC/ is compact. (To see this,
simply apply the flow of Y� to M WD @Vk for large k).

We say that a subset A� V is displaceable if it can be displaced from itself via
a Hamiltonian isotopy, that is,there exists a smooth time-dependent Hamiltonian
H 2 C1.Œ0; 1� � V / with compact support such that the time one flow �H of
the time-dependent Hamiltonian vector field XHt

defined by dHt D ��XHt
! for

Ht DH.t; � / 2 C1.V / and t 2 Œ0; 1� satisfies �H .A/\AD∅.

MSC2000: 53D10, 53D40.
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The main examples of exact convex symplectic manifolds we have in mind are
Stein manifolds. We briefly recall the definition. A Stein manifold is a triple
.V;J; f / where V is a connected manifold, J is an integrable complex structure
on V and f 2 C1.V / is an exhausting plurisubharmonic function, that is, f is
proper and bounded from below, and the exact 2-form ! D�ddcf is symplectic.
Here the 1-form � D �dcf is defined by the condition dcf .�/ D df .J �/ for
every vector field �. We refer to [Eliashberg 1990] for basic notions on Stein
manifolds and Eliashberg’s topological characterization of them. It is well known
(loc. cit.) that if the plurisubharmonic function f is Morse, then all critical points
of f have Morse index less than or equal than half the dimension of V . The Stein
manifold .V;J; f / is called subcritical if this inequality is strict. In a subcritical
Stein manifold, every compact subset A is displaceable [Biran and Cieliebak 2002,
Lemma 3.2].

Remark. Examples of exact convex symplectic manifolds which are not Stein can
be obtained using the following construction. Let M be a .2n�1/-dimensional
closed manifold, n� 2, which admits a pair of contact forms .˛0; ˛1/ satisfying

˛1 ^ .d˛1/
n�1
D�˛0 ^ .d˛0/

n�1 > 0;

˛i ^ .d˛i/
k
^ .d j̨ /

n�k�1
D 0; 0� k � n� 2

where .i; j / is a permutation of .0; 1/. Then a suitable interpolation of ˛0 and
˛1 endows the manifold V D M � Œ0; 1� with the structure of an exact convex
symplectic manifold, where the restriction of the 1-form to M �f0g is given by ˛0

and the restriction to M�f1g is given by ˛1. Since H2n�1.V /DZ, the manifold V

does not admit a Stein structure. Moreover, what makes these examples particu-
larly interesting is the fact that they have two boundary components, whereas the
boundary of a connected Stein manifold is always connected. The first construction
in dimension four of an exact convex symplectic manifold of the type above was
carried out by D. McDuff [1991]. H. Geiges generalized her method [1994], where
he also obtained higher dimensional examples.

If .V; �/ is an exact convex symplectic manifold then so is its stabilization .V �
C; �˚�C/ for the 1-form �CD

1
2
.x dy�y dx/ on C. Moreover, in .V �C; �˚�C/

every compact subset A is displaceable. It is shown in [Cieliebak 2002b] that each
subcritical Stein manifold is Stein deformation equivalent to a split Stein manifold,
that is, a Stein manifold of the form .V �C;J � i; f C jzj2/ for a Stein manifold
.V;J; f /.

Remark. If .V; �/ is an exact convex symplectic manifold, then so is .V; �Cdh/

for any smooth function h W V ! R with compact support. We call the 1-forms �
and �C dh equivalent. For all our considerations only the equivalence class of �
will be relevant.
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An exact convex hypersurface in an exact convex symplectic manifold .V; �/ is
a compact connected hypersurface (without boundary) †� V such that:

(i) There exists a contact 1-form ˛ on † such that ˛��j† is exact.

(ii) † is bounding, that is, V n † consists of two connected components, one
relatively compact and the other one not.

Remarks. (1) It follows that the volume form ˛^.d˛/n�1 defines the orientation
of † as boundary of the bounded component of V n†.

(2) If † is an exact convex hypersurface in .V; �/ with contact form ˛, then there
exists an equivalent 1-form �D �Cdh on V such that ˛D�j†. To see this,
extend ˛ to a 1-form ˇ on V . As .ˇ��/j† is exact, there exists a function h

on a neighbourhood U of † such that ˇ��D dh on U . Now simply extend
h to a function with compact support on V and set � WD �C dh.

(3) If H 1.†IR/D 0 condition (i) is equivalent to d˛ D !j†.

(4) Condition (ii) is automatically satisfied if H2n�1.V IZ/D 0, for example if V

is a stabilization or a Stein manifold of dimension > 2. Indeed, V n† has at
most two connected components since V is connected. If V n† is connected
pick a small embedded arc in V intersecting† once transversally and connect
its endpoints in V n†; the resulting loop has homological intersection number
˙1 with †, which implies 0¤ Œ†� 2H2n�1.V IZ/.

Rabinowitz Floer homology. In the following we assume that .V; �/ is a complete
exact convex symplectic manifold of bounded topology, and † � V is an exact
convex hypersurface with contact form ˛. We will define an invariant RFH.†;V /
as the Floer homology of an action functional which was studied previously by
Rabinowitz [1978].

A defining Hamiltonian for † is a function H 2 C1.V / which is constant
outside of a compact set of V , whose zero level set H�1.0/ equals †, and whose
Hamiltonian vector field XH defined by dH D��XH

! agrees with the Reeb vector
field R of ˛ on†. Defining Hamiltonians exist since† is bounding, and they form
a convex space.

Fix a defining Hamiltonian H and denote by L D C1.R=Z;V / the free loop
space of V . The Rabinowitz action functional

AH
WL�R! R

is defined as

(1) AH .v; �/ WD

Z 1

0

v��� �

Z 1

0

H.v.t// dt; .v; �/ 2 L�R:
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One may think of AH as the Lagrange multiplier functional of the unperturbed
action functional of classical mechanics also studied in Floer theory to a mean
value constraint of the loop. The critical points of AH satisfy

(2)
�

@tv.t/D �XH .v.t//; t 2 R=Z;

H.v.t//D 0:

Here we used the fact that H is invariant under its Hamiltonian flow. Since the
restriction of the Hamiltonian vector field XH to † is the Reeb vector field, the
equations (2) are equivalent to

(3)

(
@tv.t/D �R.v.t//; t 2 R=Z;

v.t/ 2†; t 2 R=Z;

that is, v is a periodic orbit of the Reeb vector field on † with period �.1

Theorem 1.1. Under the above hypotheses, the Floer homology HF.AH / is well-
defined. Moreover, if Hs for 0 � s � 1 is a smooth family of defining functions
for exact convex hypersurfaces †s , then HF.AH0/ and HF.AH1/ are canonically
isomorphic.

Hence the Floer homology HF.AH / is independent of the choice of the defining
Hamiltonian H for an exact convex hypersurface †, and the resulting Rabinowitz
Floer homology

RFH.†;V / WD HF.AH /

does not change under homotopies of exact convex hypersurfaces.
The next result is a vanishing theorem for the Rabinowitz Floer homology

RFH.†;V /.

Theorem 1.2. If † is displaceable, then RFH.†;V /D 0.

Remark. The action functional AH is also defined if H�1.0/ is not exact con-
vex. However, in this case the Rabinowitz Floer homology RFH.AH / cannot in
general be defined because the moduli spaces of flow lines will in general not be
compact up to breaking anymore. The problem is that the Lagrange multiplier �
may go to infinity. This phenomenon actually does happen as the counterexamples
to the Hamiltonian Seifert conjecture show; see [Ginzburg and Gürel 2003] and
the literature cited therein.

Denote by c1 the first Chern class of the tangent bundle of V (with respect to an
!-compatible almost complex structure and independent of this choice; see [Mc-
Duff and Salamon 1998, Theorem 2.69]). Evaluation of c1 on spheres gives rise to a

1The period � may be negative or zero. We refer in this paper to Reeb orbits moved backwards
as Reeb orbits with negative period and to constant orbits as Reeb orbits of period zero.
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homomorphism Ic1
W�2.V /!Z. If Ic1

vanishes then the Rabinowitz Floer homol-
ogy RFH�.†;V / can be Z-graded with half integer degrees, that is, � 2 1=2CZ.

The third result is a computation of Rabinowitz Floer homology (with Z2-
coefficients) for the unit cotangent bundle of a sphere.

Theorem 1.3. Let .V; �/ be a complete exact convex symplectic manifold of bound-
ed topology satisfying Ic1

D0. Suppose that†�V is an exact convex hypersurface
with contact form ˛ such that .†; ker˛/ is contactomorphic to the unit cotangent
bundle S�Sn of the sphere of dimension n� 4 with its standard contact structure.
Then

RFHk.†;V /D

�
Z2; k 2 f�nC 1

2
;�1

2
; 1

2
; n� 1

2
gCZ � .2n� 2/;

0; else:

Applications and discussion. The following well-known technical lemma will al-
low us to remove completeness and bounded topology from the hypotheses of our
corollaries.

Lemma 1.4. Assume that † is an exact convex hypersurface in the exact convex
symplectic manifold .V; �/. Then V can be modified outside of † to an exact
convex symplectic manifold . yV ; O�/ which is complete and of bounded topology. If
Ic1
D 0 for V the same holds for yV . If† is displaceable in V , then we can arrange

that it is displaceable in yV as well.

Proof. Let V1 � V2 : : : be the compact exhaustion in the definition of an exact
convex symplectic manifold. Since † is compact, it is contained in Vk for some k.
The flow of Y� for times r 2 .�1; 0� defines an embedding � W @Vk � .�1; 0�! Vk

such that ���D er�0, where �0 D �j@Vk
. Now define

. yV ; O�/ WD .Vk ; �/[�
�
@Vk � .�1;1/; er�0

�
:

This is clearly complete and of bounded topology. The statement about Ic1
is

obvious. If † is displaceable by a Hamiltonian isotopy generated by a compactly
supported Hamiltonian H W Œ0; 1� � V ! R we choose k so large that suppH �

Œ0; 1��Vk and apply the same construction. �
As a first consequence of Theorem 1.2, we recover some known cases of the

Weinstein conjecture; see [Viterbo 1999] and [Frauenfelder et al. 2005].

Corollary 1.5. Every displaceable exact convex hypersurface † in an exact con-
vex symplectic manifold .V; �/ carries a closed characteristic. In particular, this
applies to all exact convex hypersurfaces in a subcritical Stein manifold, or more
generally in a stabilization V �C.

Proof. In view of Lemma 1.4, we may assume without loss of generality that .V; �/
is complete and of bounded topology. Then by Theorem 1.2 the Floer homology



256 KAI CIELIEBAK AND URS ADRIAN FRAUENFELDER

HF.AH / vanishes, where H is a defining function for†. On the other hand, in the
absence of closed characteristics the constant loops in † give rise to HF.AH /Š

H.†/¤ 0, contradicting the vanishing of HF.AH /. �
For further applications, the following notation will be convenient. An exact

contact embedding of a closed contact manifold .†; �/2 into an exact convex sym-
plectic manifold .V; �/ is an embedding �W†! V such that:

(i) There exists a 1-form ˛ on † such that ker˛ D � and ˛� ��� is exact.

(ii) The image �.†/� V is bounding.

In other words, �.†/ � V is an exact convex hypersurface with contact form ��˛

which is contactomorphic (via ��1) to .†; �/.
Now Theorems 1.2 and 1.3 together with Lemma 1.4 immediately imply:

Corollary 1.6. Assume that n� 4 and there exists an exact contact embedding � of
S�Sn into an exact convex symplectic manifold satisfying Ic1

D 0. Then �.S�Sn/

is not displaceable.

Since in a stabilization V �C all compact subsets are displaceable, we obtain
in particular:

Corollary 1.7. For n� 4 there does not exist an exact contact embedding of S�Sn

into a subcritical Stein manifold, or more generally, into the stabilization .V �
C; �˚�C/ of an exact convex symplectic manifold .V; �/ satisfying Ic1

D 0.

Remark. If n is even then there are no smooth embeddings of S�Sn into a sub-
critical Stein manifold for topological reasons; see Appendix D. However, at least
for nD 3 and nD 7 there are no topological obstructions; see the discussion below.

If .V;J; f / is a Stein manifold with f a Morse function, P. Biran [2006] defines
the critical coskeleton as the union of the unstable manifolds (with respect to rf )
of the critical points of index dim V =2. It is proved in [Biran 2006, Lemma 2.4.A]
that every compact subset A � V which does not intersect the critical coskeleton
is displaceable. For example, in a cotangent bundle the critical coskeleton (after a
small perturbation) is one given fibre. Thus Corollary 1.6 implies:

Corollary 1.8. Assume that n� 4 and there exists an exact contact embedding � of
S�Sn into a Stein manifold .V;J; f / satisfying Ic1

D 0. Then �.†/ must intersect
the critical coskeleton. In particular, the image of an exact contact embedding of
S�Sn into a cotangent bundle T �Q must intersect every fibre.

Remark. Let �WL! V be an exact Lagrangian embedding of L into V , that is,
such that ��� is exact. Since by Weinstein’s Lagrangian neighbourhood theorem
[McDuff and Salamon 1998, Theorem 3.33] a tubular neighbourhood of �.L/ can

2All contact structures are assumed to be cooriented
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be symplectically identified with a tubular neighbourhood of the zero section in the
cotangent bundle of L, we obtain an exact contact embedding of S�L into V . Thus
the last three corollaries generalize corresponding results about exact Lagrangian
embeddings. For example, Corollary 1.7 generalizes (for spheres) the well-known
result [Gromov 1985; Audin et al. 1994; Viterbo 1999; Biran and Cieliebak 2002]
that there exist no exact Lagrangian embeddings into subcritical Stein manifolds.
Corollary 1.8 implies (see [Biran 2006]) that an embedded Lagrangian sphere of
dimension � 4 in a cotangent bundle T �Q must intersect every fibre.

Remark. Let us discuss Corollary 1.7 in the cases n � 3 that are not accessible
by our method of proof. We always equip Cn with the canonical 1-form � D
1
2

Pn
iD1.xidyi �yidxi/.

nD 1: Any embedding of two disjoint circles into C is an exact contact embed-
ding of S�S1, so Corollary 1.7 fails in this case.

n D 2: In this case Corollary 1.7 is true for purely topological reasons; we
present various proofs in Appendix D.

nD 3: In this case Corollary 1.7 is true for subcritical Stein manifolds and can
be proved using symplectic homology; see the last remark in this section.

Example. In this example we illustrate that the preceding results about exact con-
tact embeddings are sensitive to the contact structure. Let n D 3 or n D 7. Then
S�SnŠSn�Sn�1 embeds into RnC1�Sn�1. On the other hand RnC1�Sn�1 is
diffeomorphic to the subcritical Stein manifold T �Sn�1�C, and identifying S�Sn

with a level set in T �Sn�1�C defines a contact structure �subcrit on S�Sn . Thus
.S�Sn; �subcrit/ has an exact contact embedding into a subcritical Stein manifold
(in fact into Cn) for n D 3; 7, whereas .S�S7; �st/ admits no such embedding by
Corollary 1.7. In particular, we conclude:

Corollary 1.9. The two contact structures �subcrit and �st on S�S7 Š S7 � S6

described above are not diffeomorphic.

Remarks. (1) The contact structures �subcrit and �st on S�S7 Š S7 � S6 are
also distinguished by their cylindrical contact homology. This follows from
a result by M.-L. Yau [2004] for �subcrit and a direct computation for �st; see
Appendix E.

(2) Corollary 1.9 also holds in the case n D 3, although our method does not
apply there. This follows, for example, from the main result in [Cieliebak
et al. 2008]. As pointed out by O. van Koert, the contact structures �subcrit

and �st on S�S3 Š S3�S2 are not distinguished by their cylindrical contact
homology; see Appendix E.

(3) The contact structures � and �st on S3 �S2 are homotopic as almost contact
structures, that is, as symplectic hyperplane distributions. This follows simply
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from the fact (see for example [Geiges 2008, Proposition 9.1.1]) that on closed
oriented 5-manifolds almost contact structures are classified up to homotopy
by their first Chern classes and c1.�/ D c1.�st/ D 0. It would be interesting
to know whether � and �st on S7 �S6 are also homotopic as almost contact
structures. Here the first obstruction to such a homotopy vanishes because
c3.�/D c3.�st/D 0, but there are further obstructions in dimensions 7 and 13

which remain to be analysed along the lines of [Morita 1975].

Remark (Obstructions from symplectic field theory). Symplectic field theory (see
[Eliashberg et al. 2000]) also yields obstructions to exact contact embeddings. For
example, by neck stretching along the image of an exact contact embedding, the
following result can be deduced using the techniques in [Cieliebak and Mohnke
2004]:

Let .†2n�1; �/ be a closed contact manifold with H1.†IZ/ D 0 which admits
an exact contact embedding into Cn. Then for every nondegenerate contact form
defining � there exist closed Reeb orbits of Conley–Zehnder indices nC1C2k for
all integers k � 0.

Here Conley–Zehnder indices are defined with respect to trivializations extend-
ing over spanning surfaces. This result applies in particular to the unit cotangent
bundle † D S�Q of a closed Riemannian manifold Q with H1.QIZ/ D 0. For
example, if Q carries a metric of nonpositive curvature then all indices are � n�1

and hence S�Q admits no exact contact embedding into Cn. On the other hand,
any nondegenerate metric on the sphere Sn has closed geodesics of all indices
n C 1 C 2k, k � 0, so this result does not exclude exact contact embeddings
S�Sn ,! Cn.

Remark (Obstructions from symplectic homology). Corollary 1.7 for subcritical
Stein manifolds can be proved for all n� 3 by combining the following five results
on symplectic homology. See [Cieliebak and Oancea 2008] for details.

(1) The symplectic homology SH.V / of a subcritical Stein manifold V van-
ishes [Cieliebak 2002a].

(2) If † � V is an exact convex hypersurface in an exact convex symplectic
manifold bounding the compact domain W � V , then SH.V / D 0 implies
SH.W / D 0. This follows from an argument by M. McLean [2007], based
on Viterbo’s transfer map [Viterbo 1999] and the ring structure on symplectic
homology.

(3) If SH.W /D0, then the positive action part SHC.W / of symplectic homology
is only nonzero in finitely many degrees. This follows from the long exact
sequence induced by the action filtration.
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(4) SHC.W / equals the nonequivariant linearized contact homology NCH.W /.
This is implicit in [Bourgeois and Oancea 2007]; see also [Cieliebak and
Oancea 2008].

(5) If @W D S�Sn and n� 3, then NCH.W / is independent of the exact filling
W and equals the homology of the free loop space of Sn (modulo the constant
loops), which is nonzero in infinitely many degrees.

2. Exact contact embeddings

Let † be a connected closed .2n�1/-dimensional manifold. A contact structure �
is a field of hyperplanes � � T† such that there exists a 1-form ˛ satisfying

� D ker˛; ˛^ d˛n�1 > 0:

The 1-form ˛ is called a contact form. It is determined by � up to multiplication
with a function f > 0. Given a contact form ˛ the Reeb vector field R on † is
defined by the conditions

�Rd˛ D 0; ˛.R/D 1:

Unit cotangent bundles have a natural contact structure as the following example
shows.

Example. For a manifold N we denote by S�N the oriented projectivization of
its cotangent bundle T �N , that is, elements of S�N are equivalence classes Œv��
of cotangent vectors v� 2 T �N under the equivalence relation v� Š w� if there
exists r >0 such that v�D rw�. Denote by � WS�N !N the canonical projection.
A contact structure � on S�N is given by

�Œv�� D ker.v� ı d�/:

If g is a Riemannian metric on N then S�N can be identified with the space
of tangent vectors of N of length one and the restriction of the Liouville 1-form
defines a contact form. Observe that the Reeb vector field generates the geodesic
flow on N .

Consider an exact contact embedding �W .†; �/ ! .V; �/ such that ˛ D ���

defines a contact form �. One might ask which contact forms ˛ can arise in this
way. The following proposition shows that if one contact form defining the contact
structure � arises from an exact contact embedding, then every other contact form
defining � arises as well.

Proposition 2.1. Assume that � W .†; �/! .V; �/ is an exact contact embedding
with � D ker ���. Then for every contact form ˛ defining the contact structure � on
† there exists a constant c > 0 and a bounding embedding �˛W†! V such that
��˛�D c˛.
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Proof of Proposition 2.1. The proof uses the fact that if there exists an exact contact
embedding of a contact manifold into an exact convex symplectic manifold .V; �/
then the negative symplectization can be embedded. To see that we need two facts.
Recall that the vector field Y� is defined by the condition �D �Y�d�.

Fact 1. The flow �t
�

of Y� exists for all negative times t .

Indeed, let x 2 V . Then x 2 Vk for some k. As Y� points out of Vk along @Vk ,
�t
�
.x/ 2 Vk for all t � 0 and compactness of Vk yields completeness for t � 0.

Fact 2. The vector field Y� satisfies

(4) �Y��D 0; LY��D �;

where LY� is the Lie derivative along the vector field Y�. In particular, the flow
�r
�

of Y� satisfies .�r
�
/��D er�.

Indeed, the first equation in (4) follows directly from the definition of Y�. To
prove the second one we compute using Cartan’s formula

LY��D d �Y��C �Y�d�D �:

Now set ˛0D �
�� and consider the symplectic manifold

�
†�R�; d.e

r˛0/
�

where
r denotes the coordinate on the R-factor. By Fact 1, the flow �r

�
exists for all r � 0.

By Fact 2, the embedding

O�W†�R�! V; .x; r/ 7! �r
�.�.x//

satisfies

.O�/��D er˛0:

If ˛ is another contact form on † which defines the contact structure � then there
exists a smooth function �˛ 2 C1.†/ such that

˛ D e�˛˛0:

Set m WDmax† �˛ and c WD e�m. Then

�˛W†! V; x 7! O�.x; �˛.x/�m/

gives the required contact embedding for ˛. �

Remark. If the vector field Y� is complete, then the preceding proof yields a
symplectic embedding of the whole symplectization

�
†�R; d.er˛0/

�
into .V; !/.
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3. Rabinowitz Floer homology

In this section we construct the Floer homology for the Rabinowitz action func-
tional defined in the introduction and prove Theorem 1.1 and Theorem 1.2. We
assume that the reader is familiar with the constructions in Floer theory which can
be found in Floer’s original papers [1988a; 1988b; 1988c; 1989b; 1989a] or in
Salamon’s lectures [1999]. The finite dimensional case of Morse theory is treated
in [Schwarz 1993].

Throughout this section we maintain the following setup:

� .V; �/ is a complete exact convex symplectic manifold of bounded topology.

� † � V is an exact convex hypersurface with contact form ˛ and defining
Hamiltonian H such that ˛ D �j† and XH DR along †.

Our sign conventions for Floer homology are as follows:

� The Hamiltonian vector field XH is defined by dH D�iXH
!, where !Dd�.

� An almost complex structure J on V is !-compatible if !. � ;J � / defines a
Riemannian metric. Thus the gradient with respect to this metric is related to
the symplectic vector field by XH D JrH .

� Floer homology is defined using the positive gradient flow of the action func-
tional AH .

3.1. Compactness. In this subsection we prove that the moduli space of gradient
flow lines of the Rabinowitz action functional of uniformly bounded energy is
compact up to breaking of gradient flow lines. There are three difficulties one has
to solve.

� An L1-bound on the loop v 2 L.

� An L1-bound on the Lagrange multiplier � 2 R.

� An L1-bound on the derivatives of the loop v.

Although the first and the third point are nontrivial they are standard problems in
Floer theory one knows how to deal with. The L1-bound for the loop follows
from the convexity assumption on V and the derivatives can be controlled since
our symplectic manifold is exact and hence there is no bubbling of holomorphic
spheres. The new feature is the bound on the Lagrange multiplier �. We will
explain in detail how this can be achieved. It will be essential that our hypersurface
is convex.

We first derive the gradient flow equation for the Rabinowitz action functional.
To compute the gradient we have to explain the metric on the space L�R. The
metric we choose on L�R is the product metric of the standard metric on R and a
metric on L coming from a family of !-compatible almost complex structures Jt
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on V . In order to deal with the L1-bound for the loop we have to choose the almost
complex structures compatible with the convex structure. As we remarked in the
introduction, completeness implies that there exists a contact manifold .M; ˛M /3

such that a neighbourhood of infinity of the symplectic manifold .V; !/ can be
symplectically identified with .M �RC; d.e

r˛M //, where r refers to the coordi-
nate on RC D fr 2 R W r � 0g. Since H is constant outside of a compact set, we
can further choose M �RC in such a way that XH vanishes on it. We require that
Jt for every t 2 Œ0; 1� is cylindrical on M �RC in the following sense:.

� For each x 2M we have Jt .x/
@
@r
DRM , where RM is the Reeb vector field

on .M; ˛M /.

� Jt leaves the kernel of ˛M invariant for every x 2M .

� Jt is invariant under the local half flow .x; 0/ 7! .x; r/ for .x; r/ 2M �RC.

For such a family of !-compatible almost complex structures Jt we define the
metric gJ on L�R for .v; �/ 2 L�R and . Ov1; O�1/; . Ov2; O�2/ 2 T.v;�/.L�R/ by

gJ

�
. Ov1; O�1/; . Ov2; O�2/

�
D

Z 1

0

!. Ov1;Jt .v/ Ov2/ dt C O�1 � O�2:

The gradient of AH with respect to this metric is given by

rAH
DrJ AH

D

�
�Jt .v/

�
@tv� �XH .v/

�
�
R 1

0 H.v/ dt

�
:

Thus gradient flow lines ofrAH are solutions .v; �/2C1.R�S1;V /�C1.R;R/

of the following problem

(5)

(
@svCJt .v/.@tv� �XH .v//D 0

@s�C
R 1

0 H.v/ dt D 0:

It is useful to also consider time-dependent Hamiltonians of the form

H�.t;x/D �.t/H .x/

for a defining Hamiltonian H and a function � 2 C1.S1;R/ which satisfies

(6)
Z 1

0

�.t/ dt D 1:

We define the Rabinowitz action functional AH�

as above with H replaced by
H�. As the Hamiltonian vector field of H� is given by XH� D �XH , critical

3Be careful! Do not confuse the contact manifolds .M; ˛M / and .†; ˛/.
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points of AH�

satisfy the equations(
@tv D ��.t/XH .v/R 1

0 �.t/H
�
v.t/

�
dt D 0:

The first equation shows that v is a reparametrized periodic orbit of XH . In par-
ticular, H is constant along v and the second equation yields H.v.t// � 0, so
v correspond is a reparametrized Reeb orbit on †. Thus critical points of AH�

correspond to solutions of the problem

(7)
�
@tv.t/D ��.t/R.v.t//; t 2 R=Z;

v.t/ 2†; t 2 R=Z:

In particular, there is a natural one-to-one correspondence between critical points
of the Rabinowitz action functionals AH�

for fixed different choices of �.
The gradient flow equation for AH�

becomes

(8)

(
@svCJt .v/.@tv���XH .v//D 0

@s�C
R 1

0 �H.v/ dt D 0:

We will show that Floer Rabinowitz homology is also independent of the func-
tion �. The reason to introduce it will become clear in the proof of vanishing
result Theorem 1.2.

We can now formulate the compactness result for gradient flow lines.

Theorem 3.1. Let H be a defining Hamiltonian and � a function satisfying (6) as
above. Assume that w� D .v� ; ��/ 2 C1.R�S1;V /�C1.R;R/ for � 2 N is a
sequence of flow lines of rAH�

for which there exists a< b such that

(9) a�AH�

.w�.s//� b; � 2 N; s 2 R:

Then there exists a subsequence �j of � and a flow line w of rAH�

such that w�j
converges in the C1loc .R�S1;V /�C1loc .R;R/-topology to w.

We note that since the action is increasing along gradient flow lines it follows that
if the sequence of gradient flow lines w� in Theorem 3.1 has fixed asymptotics
lims!˙1w�.s/ D w˙ 2 crit.AH�

/, then assertion (9) automatically holds for
aDAH�

.w�/ and b DAH�

.wC/.
The following proposition is our main tool to bound the Lagrange multiplier �.

Proposition 3.2. Let H�.t;x/ D �.t/H.x/ where � satisfies (6) and XH D R

along † D H�1.0/ (but H need not have compact support). Then there exist
constants � > 0 and c <1 such that the following implication holds:

krAH�

.v; �/k � � H) j�j � c
�
jAH�

.v; �/jC 1
�
:
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We first prove a lemma which says that the action value of a critical point of
AH�

, that is, a reparametrized Reeb orbit, is given by the period.

Lemma 3.3. For H� as in Proposition 3.2 and .v; �/ 2 crit.AH�

/ we have

AH�

.v; �/D �:

Proof. Inserting (7) into AH�

and using ˛ D �j† we compute

AH�

.v; �/D �

Z 1

0

��.v/R.v/ dt D �

Z 1

0

˛.v/R.v/� dt D �

Z 1

0

� dt D �: �

Proof of Proposition 3.2. We prove the proposition in three steps. The first step is
an elaboration of the observation in Lemma 3.3.

Step 1. There exists ı > 0 and a constant cı <1 with the following property. For
every .v; �/ 2 L�R such that v.t/ 2 Uı D H�1

�
.�ı; ı/

�
for every t 2 R=Z, the

following estimate holds:

j�j � 2jAH�

.v; �/jC cıkrAH�

.v; �/k:

Choose ı > 0 so small such that

�.x/XH .x/�
1
2
C ı; x 2 Uı;

and set
cı D 2k�jUık1:

We estimate

jAH�

.v; �/j D

ˇ̌̌̌ Z 1

0

�.v/@tv� �

Z 1

0

�H.v.t// dt

ˇ̌̌̌
D

ˇ̌̌̌
�

Z 1

0

��.v/XH .v/C

Z 1

0

�.v/
�
@tv� ��XH .v/

�
� �

Z 1

0

�H.v.t// dt

ˇ̌̌̌
�

ˇ̌̌̌
�

Z 1

0

��.v/XH .v/

ˇ̌̌̌
�

ˇ̌̌̌ Z 1

0

�.v/
�
@tv���XH .v/

�ˇ̌̌̌
�

ˇ̌̌̌
�

Z 1

0

�H.v.t// dt

ˇ̌̌̌
� j�j

�
1

2
C ı

�
�

cı
2
k@tv���XH .v/k1� j�jı

�
j�j

2
�

cı
2
k@tv���XH .v/k2

�
j�j

2
�

cı
2
krAH�

.v; �/k:
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Step 2. For each ı > 0 there exists � D �.ı/ > 0 such that if krAH�

.v; �/k � �,
then v.t/ 2 Uı for every t 2 Œ0; 1�.

First assume that v 2 L has the property that there exist t0; t1 2 R=Z such that
jH.v.t0//j � ı and jH.v.t1//j � ı=2. We claim that

(10) krAH�

.v; �/k �
ı

2�

for every � 2 R, where

� WD max
x2U ı;t2S1

krtH.x/kt :

To see this, assume without loss of generality that t0 < t1 and ı=2� jH.v.t//j � ı
for all t 2 Œt0; t1�. Then we estimate

krAH�

.v; �/k �

sZ 1

0

k@tv���XH .v/k2 dt

�

Z 1

0

k@tv���XH .v/k dt

�

Z t1

t0

k@tv���XH .v/k dt

�
1

�

Z t1

t0

krH.v/k � k@tv���XH .v/k dt

�
1

�

Z t1

t0

ˇ̌
hrH.v/; @tv���XH .v/i

ˇ̌
dt

D
1

�

Z t1

t0

ˇ̌
hrH.v/; @tvi

ˇ̌
dt

D
1

�

Z t1

t0

ˇ̌
dH.v/@tv

ˇ̌
dt

D
1

�

Z t1

t0

ˇ̌
@tH.v/

ˇ̌
dt

�
1

�

ˇ̌̌̌ Z t1

t0

@tH.v/ dt

ˇ̌̌̌
D

1

�

ˇ̌
H.v.t1//�H.v.t0//

ˇ̌
�

1

�

�ˇ̌
H.v.t0//

ˇ̌
�
ˇ̌
H.v.t1//

ˇ̌�
�

ı

2�
:

This proves (10).
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Now assume that v 2L has the property that v.t/2 V nUı=2 for every t 2 Œ0; 1�.
In this case we estimate

(11) krAH�

.v; �/k �

ˇ̌̌̌ Z 1

0

�H.v.t// dt

ˇ̌̌̌
�
ı

2

for every � 2 R. From (10) and (11), Step 2 follows with

� D
ı

2 maxf1; �g
:

Step 3. We prove the proposition.

Choose ı as in Step 1, � D �.ı/ as in Step 2 and

c Dmaxf2; cı�g:

Assume that krAH�

.v; �/k � �. Step 1 and Step 2 imply that

j�j � 2jAH�

.v; �/jC cıkrAH�

.v; �/k � c
�
jAH�

.v; �/jC 1
�
:

This proves Proposition 3.2. �

A careful inspection of the proof of Proposition 3.2 shows that all the constants
depend continuously on the defining Hamiltonian H . In particular, Proposition 3.2
can be strengthened to families.

Proposition 3.4. Assume that H� for 0 � � � 1 is a smooth family of defining
Hamiltonians for exact convex hypersurfaces †� and �� is a smooth family of
functions satisfying (6). Then for H

�
� .t;x/ WD �� .t/H� .x/ there exist constants

� > 0 and c <1 such that for every 0� � � 1 the following implication holds:

krAH
�
� .v; �/k � � H) j�j � c

�
jAH

�
� .v; �/jC 1

�
:

Proposition 3.2 allows us to control the size of the Lagrange multiplier �. Our first
corollary considers the case of gradient flow lines.

Corollary 3.5. Assume thatwD .v; �/2C1.R�S1;V /�C1.R;R/ is a gradient
flow line of AH�

which satisfies

a�AH�

.w.s//� b; s 2 R

for a; b 2 R. Then the L1-norm of � is bounded uniformly in terms of a constant
c <1 which only depends on a and b.

Proof. Let � be as in Proposition 3.2. For � 2 R let �.�/� 0 be defined by

�.�/ WD inf
˚
� � 0 W krAH��

.v; �/.� C �.�//
�
k< �

	
:
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We abbreviate the energy of the flow line .v; �/ by

E WD

Z 1
�1

krAH�

.v; �/k2 ds

D lim
s!1

AH�

.w.s//� lim
s!�1

AH�

.w.s//

� b� a:

We claim that

(12) �.�/�
b� a

�2
:

To see this we estimate

b� a�

Z �C�.�/

�

krAH�

.v; �/k2 ds � �.�/�2:

This implies (12).
We set

M WDmaxfjaj; jbjg:

We deduce from Proposition 3.2 and the definition of �.�/ that there exists a con-
stant cM depending on M but not on the flow line such that

(13)
ˇ̌
�
�
� C �.�/

�ˇ̌
� cM :

Set

(14) kHk1 Dmax
x2V
jH.x/j:

We estimate using (12), (13), and (14):

j�.�/j �
ˇ̌
�
�
� C �.�/

�ˇ̌
C

Z �C�.�/

�

j@s�.s/j ds

D
ˇ̌
�
�
� C �.�/

�ˇ̌
C

Z �C�.�/

�

ˇ̌̌̌ Z 1

0

�H.v.s; t/ dt

ˇ̌̌̌
ds

� cM CkHk1�.�/

� cM C
kHk1.b� a/

�2
:

The right hand side is independent of � and hence we get

(15) k�k1 � cM C
kHk1.b� a/

�2
:

This proves Corollary 3.5. �
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Proof of Theorem 3.1. As we mentioned at the beginning of this subsection we
establish compactness by proving the following uniform bounds:

� An L1-bound on the loop v 2 L.

� An L1-bound on the Lagrange multiplier � 2 R.

� An L1-bound on the derivatives of the loop v.

Since the support of XH lies outside of M �RC, the first component v of a gra-
dient flow line .v; �/ which enters M � RC will satisfy the holomorphic curve
equation by (8). By our choice of the family of almost complex structures the
convexity condition guarantees that v cannot touch any level set M � frg from
inside (see [McDuff 1991, Lemma 2.4]), and since its asymptotics lie outside of
M � RC it has to remain in the compact set V n .M � RC/ all the time. This
gives us a uniform L1-bound on v. Corollary 3.5 implies that � remains bounded,
too. Since the symplectic form ! is exact there are no nonconstant J -holomorphic
spheres. This excludes bubbling and hence the derivatives of v can be controlled;
see [McDuff and Salamon 2004]. �

To prove invariance of Rabinowitz Floer homology under homotopies we also
have to consider the case of s-dependent action functionals. Assume that H� for
0� � � 1 is a smooth family of defining Hamiltonians for exact convex hypersur-
faces†� and �� is a smooth family of functions satisfying (6). To such a homotopy
we associate the following two nonnegative quantities

kHk1 D max
x2V;
�2Œ0;1�

jH� .x/j; k PHk1 D max
x2V;
�2Œ0;1�

j PH� .x/j

where the dot refers to the derivative with respect to the homotopy parameter � .
We further fix a smooth monotone cutoff function ˇ 2 C1.R; Œ0; 1�/ satisfying
ˇ.s/ D 1 for s � 1 and ˇ.s/ D 0 for s � 0. Using the cutoff function ˇ we also
consider the R-parametrized family of defining Hamiltonians

Hs DHˇ.s/; s 2 R

which is constant for s � 0 and s � 1. We set

H� DHs; s � 0; HC DHs; s � 1:

Accordingly we set

�s D �ˇ.s/; s 2 R; �� D �s; s � 0; �C D �s; s � 1;

k P�k1 D max
t2S1

�2Œ0;1�

j P�� .t/j:
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We abbreviate
H�

s DH�s
s ; H

�
˙
DH

�˙
˙
:

The s-dependent generalization of Theorem 3.1 is the following.

Theorem 3.6. Suppose that H� for 0 � � � 1 is a smooth family of defining
functions for exact convex hypersurfaces†� and �� is a smooth family of functions
satisfying (6). Let � > 0 and c <1 be constants as in Proposition 3.4. Suppose
that the following inequality holds

(16)
�
cC
kHk1

�2

�
�

�
k PHk1Ck P�k1 � kHk1

�
�

1

8
:

Assume that w� D .v� ; ��/ 2C1.R�S1;V /�C1.R;R/ for � 2N is a sequence
of flow lines of the s-dependent gradient rAH

�
s for which there exists a; b 2 R

such that

lim
s!�1

AH
�
s .w�.s//� a; lim

s!1
AH

�
s .w�.s//� b; � 2 N; s 2 R:

Then there exists a subsequence �j of � and a flow line w of rAH
�
s such that w�j

converges in the C1loc .R�S1;V /�C1loc .R;R/-topology to w.

Proof. The proof follows the same scheme as the proof of Theorem 3.1 as soon
as the uniform bound on the Lagrange multiplier is established in the s-dependent
case. This is done in Corollary 3.7 below. �
Corollary 3.7. Under the assumptions of Theorem 3.6 assume that wD .v; �/ is a
flow line of rAH

�
s such that for a; b 2 R

lim
s!�1

AH
�
s .w.s//� a; lim

s!1
AH

�
s .w.s//� b:

Then the Lagrange multiplier � is uniformly bounded in terms of a constant which
only depends on a and b.

Proof of Corollary 3.7. In the s-dependent case the action along a gradient flow
line .v; �/.s/ is not necessarily increasing any more. Instead the following formula
holds:

d

ds
AH

�
s .v; �/.s/D krAH

�
s .v; �/.s/k2C .@sAH

�
s /.v; �/.s/

D krAH
�
s .v; �/.s/k2

� �.s/

Z 1

0

�
�s
@Hs

@s
.v/C

@�s

@s
Hs.v/

�
dt

D krAH
�
s .v; �/.s/k2

� �.s/ P̌.s/

Z 1

0

�
�ˇ.s/ PHˇ.s/.v/C P�ˇ.s/Hˇ.s/.v/

�
dt:

(17)
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As in the s-independent case we abbreviate

M WDmaxfjaj; jbjg:

Using (17) we estimate the action of the gradient flow line .v; �/ for each s 2R by

(18) jAH
�
s .v; �/.s/j �M Ck�k1

�
k PHk1Ck P�k1 � kHk1

�
:

In the s-dependent case the energy is not given any more just by the action differ-
ence. If we define the energy E as before we obtain

E WD

Z 1
�1

krAH
�
s .v; �/k2 ds

� b� a�

Z 1
�1

�
@sAH

�
s
�
.v; �/ ds:

Using (17) we obtain the estimate

(19) E � b� aCk�k1
�
k PHk1Ck P�k1 � kHk1

�
:

For � >0 as in Proposition 3.4 we define �.�/ for � 2R as in the proof of Corollary
3.5. Then the estimate (12) continues to hold. Using Proposition 3.4 as well as the
estimates (12),(18), and (19) we get for any � 2 R

j�.�/j � j�.� C �.�//jC

Z �C�.�/

�

j@s�.s/j ds

� c
�ˇ̌

AH
�

�C�.�/.v; �/
ˇ̌
C 1

�
C �.�/kHk1

� c.M C 1/C c
�
k PHk1Ck P�k1 � kHk1

�
k�k1C

kHk1E

�2

� c.M C 1/C
kHk1.b� a/

�2

C

�
cC
kHk1

�2

�
�
�
k PHk1Ck P�k1 � kHk1

�
� k�k1:

Since � 2 R was arbitrary we obtain

k�k1 � c.M C 1/C
kHk1.b� a/

�2

C

�
cC
kHk1

�2

�
�
�
k PHk1Ck P�k1 � kHk1

�
� k�k1:

Using the assumption (16) of the corollary we conclude that

(20) k�k1 � 2c.M C 1/C
2kHk1.b� a/

�2
:
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(Here a constant 1=2 instead of 1=8 in (16) would suffice; the smaller constant 1=8

will be needed for Corollary 3.8 below). This finishes the proof of Corollary 3.7
and hence of Theorem 3.6. �

We can further deduce from Corollary 3.7 the following corollary which is not
needed for the proof of Theorem 3.6, but which we will need later in the invariance
proof for Floer Rabinowitz homology.

Corollary 3.8. Under the assumptions of Corollary 3.7, let .v˙; �˙/ be critical
points of the Rabinowitz action functionals AH

�

˙ and suppose that there exists a
gradient flow line .v; �/.s/ of the s-dependent Rabinowitz action functional AH

�
s

between .v�; ��/ and .vC; �C/.

(a) If the action at the negative asymptotic satisfies

(21) AH�
� .v�; ��/� 1;

then the action at the positive asymptotic satisfies

AH
�
C.vC; �C/�

1

2
AH�
� .v�; ��/:

(b) If the action at the positive asymptotic satisfies

(22) AH
�
C.vC; �C/� �1;

then the action at the negative asymptotic satisfies

AH�
� .v�; ��/�

1

2
AH

�
C.vC; �C/:

Proof. We only prove cases (a) and (b) being completely analogous. We first
assume that the absolute value of the action at the positive asymptotic satisfies the
inequality

(23) jAH
�
C.vC; �C/j �AH�

� .v�; ��/:

Using the notation from the proof of Corollary 3.7 we deduce from (23) that

M DAH�
� .v�; ��/; b� a� 0:

Hence we get from (20) and (21) the inequalities

k�k1 � 2c
�
AH�
� .v�; ��/C 1

�
� 4cAH�

� .v�; ��/:
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This implies together with (16) and (19)

AH
�
C.vC; �C/�AH�

� .v�; ��/�k�k1
�
k PHk1Ck P�k1 � kHk1

�
�

�
1� 4c

�
k PHk1Ck P�k1 � kHk1

��
AH�
� .v�; ��/

�
1

2
AH�
� .v�; ��/:

This implies the corollary under the additional assumption (23).
Now assume that (23) does not hold. To prove the corollary it suffices to exclude

the case

(24) AH
�
C.vC; �C/ < �AH�

� .v�; ��/:

We assume by contradiction (24). We then obtain

M D�AH
�
C.vC; �C/; b� a� 0:

In particular, from (20) and (21) we get

k�k1 � �4cAH
�
C.vC; �C/:

Hence

AH�
� .v�; ��/�AH

�
C.vC; �C/Ck�k1

�
k PHk1Ck P�k1 � kHk1

�
�

�
1� 4c

�
k PHk1Ck P�k1 � kHk1

��
AH

�
C.vC; �C/

�
1

2
AH

�
C.vC; �C/

< �
1

2
AH�
� .v�; ��/:

But this implies that
AH�
� .v�; ��/ < 0

which contradicts assumption (21). Hence (24) has to be wrong and Corollary 3.8
follows. �

3.2. Proof of Theorem 1.1.

Definition of Rabinowitz Floer homology. The Rabinowitz action functional AH

is invariant under the S1-action on L�R given by t�.v. � /; �/ 7! .v.t C � /; �/. In
particular, the action functional AH is never Morse. Similar things happen for the
perturbed version AH�

since AH�

is still invariant under a reparametrized action
of the circle on L�R. However, generically AH�

is Morse–Bott, simultaneously
for all perturbations �. We define Rabinowitz Floer homology in this subsection
under the Morse–Bott assumption and then use invariance established in the next
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subsection which allows us to perturb the hypersurface to make the Rabinowitz
action functional Morse–Bott.

More precisely, we make the following nondegeneracy assumption on the Reeb
flow �t of the contact form ˛ on †.

(A) The closed Reeb orbits of .†; ˛/ are of Morse–Bott type, that is, for each
T 2 R the set NT � † formed by the T -periodic Reeb orbits is a closed
submanifold, the rank of d˛jNT

is locally constant, and TpNT D ker.Tp�T �

id/ for all p 2 NT .

Assumption (A) is satisfied for generic hypersurfaces. (This result is of course
well known, but since we did not find a proof in the literature we include one in
Appendix B). Note that the contact condition is an open condition and assumption
(A) is generically satisfied. Since we prove that our homology is invariant under
homotopies we can assume without loss of generality that (A) holds. If (A) is
satisfied, then the action functional AH�

is Morse–Bott.

Remark. In fact, we prove in Appendix B that on generic hypersurfaces all T -
periodic Reeb orbits 
 with T ¤ 0 are nondegenerate, that is, the linearization
Tp�T W �p ! �p at p D 
 .0/ does not have 1 in its spectrum. In this case the
critical manifold of AH�

consists of a union of circles (corresponding to k-fold
covers for 0 ¤ k 2 Z) for each simple nonconstant Reeb orbit and a copy of the
hypersurface † for the constant solutions, that is, critical points with �D 0.

There are several ways to deal with Morse–Bott situations in Floer homology.
One possibility is to choose an additional small perturbation to get a Morse sit-
uation. This was carried out by Pozniak [1999], where it was also shown that
the local Floer homology near each critical manifold coincides with the Morse
homology of the critical manifold. (In fact, the construction in [Poźniak 1999] is
for Lagrangian intersections; see [Biran et al. 2003] for the transfer to the periodic
orbit case). Another possibility is to choose an additional Morse function on the
critical manifold. The chain complex is then generated by the critical points of this
Morse function while the boundary operator is defined by counting flow lines with
cascades. This approach was carried out by the second named author in [2004]
and we recall it in Appendix A. And though it is formulated in finite dimensions,
it directly carries over to the case of Floer homology; see also [Bourgeois 2003]
and [Bourgeois and Oancea 2007] for discussions of Morse–Bott homology in
infinite dimensional situations.

Following the second approach we choose an additional Morse function h on
crit.AH�

/. The Floer chain group CF.AH�

; h/ is defined as the Z2-vector space
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consisting of formal sums of critical points of h

x D
X

c2crit.h/

xcc

where the coefficients xc 2 Z2 satisfy the finiteness condition

(25) # fc 2 crit.h/ W xc ¤ 0; AH�

.c/� �g<1

for every � 2 R. To define the boundary operator, we choose an additional Rie-
mannian metric g on the critical manifold crit.AH�

/. For two critical points
c�; cC 2 crit.h/ we consider the moduli space of gradient flow lines with cascades
Mc�;cC.A

H�

; h;J;g/; see Appendix A. For a generic choice of J and g this
moduli space of is a smooth manifold. It follows from the Compactness Theorem
3.1 that its zero dimensional component M0

c�;cC
.AH�

; h;J;g/ is actually compact
and hence a finite set.

We now set

n.c�; cC/D # M0
c�;cC

.AH�

; h;J;g/ mod 2 2 Z2

and define the Floer boundary operator

@WCF.AH�

; h/! CF.AH�

; h/

as the linear extension of

@c WD
X

c02crit.h/

n.c0; c/c0

for c 2 crit.h/. Note the reversed order of the arguments in n.c0; c/, which reflects
the fact that we define homology rather than cohomology.

For this definition to make sense, we need to verify that the sum in the definition
of @c satisfies the finiteness condition (25) for every c. Since n.c0; c/¤ 0 implies
AH�

.c0/�AH�

.c/, it suffices to show

(26) # fc 2 crit.h/W a�AH�

.c/� bg<1

for all a < b. Since by Lemma 3.3 the action AH�

at a critical point is given by
the period, this finiteness statement follows from the Arzela–Ascoli theorem.

Again using the Compactness Theorem 3.1 the standard argument in Floer the-
ory shows that

@2
D 0:

We define the Floer homology as usual by

HF.AH�

; h;J;g/D
ker@
im@

:
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Standard arguments show that HF.AH�

; h;J;g/ is independent up to canoni-
cal isomorphism of the choices of h, J and g, so we will denote it simply by
HF.AH�

/.

Invariance. It remains to prove invariance of HF.AH�

/ under homotopies of the
Hamiltonians H�. So consider a smooth family of defining Hamiltonians H� for
exact convex hypersurfaces†� and a smooth family of functions �� satisfying (6).
Let � > 0 and c <1 be the constants for the homotopy H� in Proposition 3.4. Fix
N 2 N and define for 0� j �N � 1 the homotopies

H j
� DHjC�=N ; �j

� D �jC�=N :

By choosing N 2N large enough we can assume that for each 0� j �N � 1 the
inequality

(27)
�
cC
kH jk1

�2

�
�

�
k PH jk1Ck

P�jk1 � kH
j
k1

�
�

1

16
:

holds. To simplify notation, we replace the original homotopy by the homotopy
.H

j
� ; �

j
� / for some j and drop the index j , so that H� satisfies inequality (27).

Define the .s; t/-dependent Hamiltonian H
�
s and H

�
˙

as in the discussion before
Theorem 3.6 and pick Morse functions h˙ on the crit.AH

�

˙/. For two critical
points c˙ 2 crit.h˙/ we consider the moduli space of gradient flow lines with
cascades Mc�;cC.A

H
�
s ; h;J;g˙/ for the s-dependent action functional AH

�
s . It

follows from the Compactness Theorem 3.6 that its zero dimensional component
M0

c�;cC
.AH

�
s ; h;J;g˙/ is a finite set. We set

m.c�; cC/D # M0
c�;cC

.AH
�
s ; h;J;g˙/ mod 2 2 Z2

and define a linear map

�WCF.AH
�
C ; hC/! CF.AH�

� ; h�/

as the linear extension of

�.cC/ WD
X

c�2crit.h�/

m.c�; cC/c�

for cC 2 crit.hC/.
Again, we need to verify that the sum in the definition of �.cC/ satisfies the

finiteness condition (25) for every cC. Since by Corollary 3.8, m.c�; cC/ ¤ 0

implies AH�
� .c�/�max.2AH

�
C.cC/; 1/, this follows again from the finiteness

statement (26) for H�
� .
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Again using the Compactness Theorem 3.6 the standard argument in Floer the-
ory shows that

@�� D �@C;

so � induces a map on Floer homology

ˆ W HF.AH
�
C/! HF.AH�

� /:

For � 2 Œ0; 1� define the inverse homotopy

H� DH1�� ; �� D �1�� :

Again this homotopy yields a homomorphism

‰WHF.AH�
� /! HF.AH

�
C/

by counting gradient flow lines of AH
�
s . For R � 1 define the concatenation of

H
�
s and H

�
s by the formula

K�
s DH�

s #R H�
s D

(
H
�
sCR

s � 0;

H
�
s�R

s � 0:

The s-dependent Hamiltonian K
�
s gives a homotopy from H�

� via H
�
C back to H�

� .
From (27) it follows that�

cC
kKk1

�2

�
�

�
k PKk1Ck

P�jk1 � kKk1

�
�

1

8
:

Using again Corollary 3.7 and Corollary 3.8 together with the standard gluing
argument we see that the composition

ˆ ı‰WHF.AH�
� /! HF.AH�

� /

is given by counting gradient flow lines of AK
�
s . Now for r 2 Œ0; 1� consider the

homotopy of homotopies

H�;r
s DH�

rs; H�;r
s DH�

rs:

Define further for s 2 R

K�;r
s DH�;r

s #R H�;r
s :

Then for each r 2 Œ0; 1� the estimate�
cC
kKrk1

�2

�
�

�
k PKrk1Ck P�k1 � kK

r
k1

�
�

1

8
:

continues to hold. Moreover,
K�;0

s DH�
�
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does not depend on the s-variable any more and therefore induces the identity on
Floer homology. It follows that

ˆ ı‰ D idWHF.AH�
� /! HF.AH�

� /:

Similarly, by concatenating H
�
s with H

�
s we see that

‰ ıˆD idWHF.AH
�
C/! HF.AH

�
C/;

hence ˆ defines an isomorphism between the Floer homology groups HF.AH
�
C/

and HF.AH�
� / with inverse ‰. This finishes the proof of Theorem 1.1. �

3.3. Proof of Theorem 1.2. For the proof of Theorem 1.2 we will consider more
general Rabinowitz action functionals depending on two (possibly time-dependent)
Hamiltonians H;F 2 C1.R=Z�V /,

AH
F .v; �/ WDAH .v; �/�

Z 1

0

F
�
t; .v.t/

�
dt:

Critical points .v; �/ 2 L�R of AH
F

are solutions of the equation

(28)

(
@tv D �XH .v/CXF .v/R 1

0 H
�
t; v.t/

�
dt D 0:

The gradient of AH
F

with respect to the L2-metric on L�R induced by a family
of almost complex structures Jt is given by the formula

(29) rAH
F .v; �/D

 
J.t; v/.@tv� �XH .t; v/�XF .t; v//

�
R 1

0 H.t; v/ dt

!
:

Next consider s- and t -dependent Hamiltonians H;F 2 C1.R�R=Z�V / which
agree with s-independent Hamiltonians H˙;F˙ 2 C1.R=Z� V / for large ˙s.
Then gradient flow lines of rAH

F
with respect to an s- and t -dependent almost

complex structure J are solutions .v; �/ 2 C1.R � S1;V � R/ of the following
problem

(30)

(
@svCJ.s; t; v/

�
@tv� �XH .s; t; v/�XF .s; t; v/

�
D 0

@s�C
R 1

0 H.s; t; v/ dt D 0:

In particular, if XH ;XF vanish outside a compact set K � V for all .s; t/ the first
equation shows that v is J -holomorphic outside K. If in addition J is cylindrical
outside K the maximum principle shows that v cannot exit K.
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In the s-dependent case the action along a gradient flow line w D .v; �/.s/ is
not necessarily decreasing any more. Instead of that the following formula holds:

d

ds
AH

F .v; �/.s/D krAH
F .v; �/.s/k

2
C .@sAH

F /.v; �/.s/

D krAH
F .v; �/.s/k

2
� �.s/

Z 1

0

@H

@s
.s; t; v/ dt

�

Z 1

0

@F

@s
.s; t; v/ dt

� krAH
F .v; �/.s/k

2
�k�k1

Z 1

0

max
x

@H

@s
.s; t;x/ dt

�

Z 1

0

max
x

@F

@s
.s; t;x/ dt:

(31)

We set

k@sHk1;1 WD

Z 1
�1

Z 1

0

max
x

@H

@s
.s; t;x/ dt ds;

and similarly for F . Moreover, we abbreviate

M WDmax
˚
jA

HC
FC
.vC; �C/j; jAH�

F�
.v�; ��/j

	
;

Using (31) we estimate the action of the gradient flow line .v; �/ for each s 2R by

(32) jAH
F .v; �/.s/j �M Ck�k1k@sHk1;1Ck@sFk1;1:

In the s-dependent case the energy is not given any more just by the action differ-
ence. We abbreviate by

� WDA
HC
FC
.vC; �C/�AH�

F�
.v�; ��/

the action difference. Then the energy is given by

E WD

Z 1
�1

krAH
F .v; �/.s/k

2 ds

D��

Z 1
�1

�
@sAH

F

�
.v; �/.s/ ds:

Using (31) we obtain the estimate

(33) E ��Ck�k1k@sHk1;1Ck@sFk1;1:

Proof of Theorem 1.2. For a defining Hamiltonian H we abbreviate the support of
its Hamiltonian vector field by

S.XH / WD clfx 2 V WXH .x/¤ 0g:
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If F 2 C1.R=Z�V / is a displacing Hamiltonian for † we can choose a defining
Hamiltonian in such a way that

�1
F .S.XH //\S.XH /D∅:

We first consider the following version of the Rabinowitz action functional AH .
Pick a smooth function � 2 C1.S1;R/ with the following properties

(34) supp.�/� .0; 1=2/;
Z 1

0

�.t/ dt D 1:

We define the time-dependent Hamiltonian H�.t;x/ D �.t/H.x/ as before and
consider the following perturbation of AH�

. We first modify the displacing Hamil-
tonian F in the following way. Choose a smooth map � 2 C1.Œ0; 1�; Œ0; 1�/ satis-
fying

�jŒ0;1=2� D 0; �.1/D 1:

For t 2 R set

F
�
t WD P�.t/F�.t/ 2 C1.V /:

Note that

�t
F� D �

�.t/
F

:

We define

AH�

F� WL�R! R

by

AH�

F� .v; �/ WDAH�

.v; �/�

Z 1

0

F
�
t ..v.t// dt:

Critical points .v; �/ 2 L�R of AH�

F�
are solutions of the equation

(35)

(
@tv D ��XH .v/C P�XF .v/R 1

0 �.t/H.v.t// dt D 0:

It is easy to check that there are no solutions of (35). Indeed, assume first that
.v; �/ is a solution of (35) with

v.0/ …S.XH /:

Since P� has support in .1=2; 1/ it follows from the first equation in (35) that

vjŒ0;1=2� � v.0/ …S.XH /:

Since 0 is a regular value of H it follows that

H.v/jŒ0;1=2� � c ¤ 0:
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In particular, since � has support in .0; 1=2/ we obtainZ 1

0

�.t/H.v.t// dt D c

Z 1=2

0

�.t/ dt D c ¤ 0

contradicting the second equation in (35). So assume that .v; �/ is a solution of
(35) such that

(36) v.0/ 2S.XH /:

Since the vector fields XH� and XF� are supported in disjoint time intervals we
obtain from the first equation in (35) that

(37) v.0/D v.1/D �1
F� ı�

1
�H�.v.0//D �

1
F ı�

�
H
.v.0//:

Since v.0/2S.XH / we conclude that ��
H
..v.0//2S.XH /, and since �F disjoins

S.XH / from itself we conclude with (37) that v.0/ …S.XH / contradicting (36).
This proves that

(38) crit
�
AH�

F�

�
D∅:

Remark. At this point, one would like to interpret (38) as vanishing of the Floer
homology HF

�
AH�

F�

�
and conclude the proof of Theorem 1.2 by showing the iso-

morphism HF
�
AH��

Š HF
�
AH�

F�

�
. This would require a definition of the Floer

homology HF
�
AH�

F�

�
for arbitrary H;F and can indeed be done. However, below

we will prove HF
�
AH��

D 0 more directly without actually defining the more
general Floer homologies HF

�
AH�

F�

�
.

For the proof of Theorem 1.2 we need the following lemma which strengthens
the assertion (38).

Lemma 3.9. Let H� and F� be as above. Let Jt be a smooth family of !-
compatible almost complex structures on V . Then there exists a constant 
 D

 .J / > 0 such that for any .v; �/ 2 L�R

rJ AH�

F� .v; �/




J
� 
:

Proof. Recall that for .v; �/2L�R the gradient of the perturbed action functional
AH�

F�
with respect to the metric on L�R induced from the family of almost complex

structures Jt is given by the formula

(39) rAH�

F� .v; �/D

 
Jt .v/.@tv� ��XH .v/� P�XF .v//

�
R 1

0 �.t/H.v.t// dt

!
:
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We prove the lemma in three steps.

Step 1. There exists �0D�0.J / having the following property. Assume that .v; �/2
L�R satisfies 

@tv� ��XH .v/� P�XF� .v/




2
< �0:

Then

.v.0/; v.1=2// …S.XH /�S.XH /:

For x 2 V define a norm on the tangent space TxV by

k OxkJ ;F;� D min
t2Œ0;1�

kd�
�.t/
F

.x/ OxkJt
; Ox 2 TxV:

Let

d1
J ;F;�WV �V ! Œ0;1/

be the metric on V induced from the norm k�kJ ;F;�. Define a second metric

d2
J ;F;� D .�

1
F /�dJ ;F;�WV �V ! Œ0;1/:

Since S.XH / is compact and �1
F

displaces S.XH / from itself there exists �0 > 0

such that

(40) d2
J ;F;�

�
S.XH /; �

1
F .S.XH //

�
D �0:

Now suppose that .v; �/ satisfies the assumptions of Step 1 We argue by contra-
diction and assume that

(41) v.0/ 2S.XH /; v.1=2/ 2S.XH /:

Let us denote ��s
F
WD .�s

F
/�1 for s 2 Œ0; 1� and define a path w 2C1.Œ0; 1�;V / by

w.t/ WD �
��..tC1/=2/
F

.v..t C 1/=2//:

Solving for v..t C 1/=2/ and differentiating we find

(42) @tw D
1
2
d�
��
F
.v/
�
@tv� P�XF� .v/

�
:

By (41) the endpoints of this path satisfy

w.0/D v.1=2/ 2S.XH /; w.1/D ��1
F .v.1//D ��1

F .v.0// 2 ��1
F .S.XH //:
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Using (42), the definitions of �0 and the metric d2 as well as the fact that � vanishes
on the interval Œ1=2; 1� we deduce that

�0 � d2
J ;F;�

�
�1

F .w.0//; �
1
F .w.1//

�
(43)

D d1
J ;F;�

�
w.0/; w.1/

�
�

Z 1

0

k@twkJ ;F;� dt

D

Z 1

1=2



d�
��
F
.v/
�
@tv� P�XF� .v/

�


J ;F;�

dt

�

Z 1

1=2

k@tv� P�XF� .v/kJt
dt

� k@tv� ��XH .v/� P�XF� .v/k1

� k@tv����XH .v/ P�XF� .v/k2

< �0:

This contradiction proves Step 1.

Step 2. There exist �1 > 0 and ı > 0 with the following property. Assume that

@tv� ��XH .v/� P�XF� .v/




2
< �1:

Then
jH.v.t//j �

ı

2
for all t 2 Œ0; 1=2�:

Since H is constant outside of a compact set and 0 is a regular value of H we
conclude that

inf
V nS.XH /

jH j D ı > 0:

It follows from the first estimate in Step 2 of Proposition 3.2 that there exists �0
0
> 0

such that if 

@tv� ��XH .v/� P�XF� .v/




2
< �00

then

(44) max
.t0;t1/2Œ0;1=2�2

ˇ̌
H.v.t0//�H.v.t1//

ˇ̌
�
ı

2
:

Here we have used �D 0 on Œ0; 1=2�. Let �0 be as in Step 1 and set

�1 Dminf�0; �
0
0g:

Then it follows from Step 1 that

(45) max
t2Œ0;1=2�

ˇ̌
H.v.t//

ˇ̌
� ı:
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Combining (44) and (45) the assertion of Step 2 follows.

Step 3. We prove the lemma.

Let �1 and ı be as in Step 2. We set


 WDmin
n
�1;

ı

2

o
:

If k@tv���XH .v/� P�XF� .v/k2�
 the assertion of the lemma follows by looking
at the first component of the gradient in (39). If k@tv���XH .v/� P�XF� .v/k2<


then the assertion of the lemma follows from Step 2 by looking at the second
component of the gradient and noting that � has support in .0; 1=2/ and integrates
to one. This completes the proof of Lemma 3.9. �
Proof of Theorem 1.2 continued. To simplify notation we will drop in the follow-
ing the superscripts � and � and write H for H� and F for F�. To prove that
HF.AH /D 0 we look at two s-dependent action functionals AH

Fs
and AH

F s
which

interpolate between AH and AH
F

, respectively between AH
F

and AH . Since the
norm of the gradient of AH

F
is positively bounded from below, we will see that

there are no finite energy gradient flow lines for the s-dependent functionals AH
Fs

and AH
F s

. To prove HF.AH /D 0 we glue Fs and F s together and homotope it to
zero. For these homotopies of homotopies we prove compactness modulo breaking
for the moduli spaces of gradient flow lines.

Choose a smooth monotone cutoff function ˇ 2C1.R; Œ0; 1�/ satisfying ˇ.s/D
1 for s � 1 and ˇ.s/D 0 for s � 0. Define

Fs D ˇ.s/F; F s D .1�ˇ.s//F:

For R� 1 we define a parametrized family of concatenations of Fs and F s by

F s #R Fs D

�
FsCR s � 0;

F s�R s � 0:

We prove the theorem now in three steps.

Step 1. There exists a constant R0 depending only on H and the action values of
AH at .v˙; �˙/ with the property that if R � R0, then there are no flow lines of
the s-dependent gradient rAH

F s #R Fs
converging asymptotically to .v˙; �˙/.

Let 
 > 0 be as in Lemma 3.9. We abbreviate

kFk1 D max
t2Œ0;1�;x2V

jFt .x/j:

Choose R0 2 R such that

R0 >
AH .vC; �C/�AH .v�; ��/C 2kFk1

2
 2
C

1

2
:
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Let R � R0. We assume by contradiction that w.s/ D .v; �/.s/ is a flow line of
rAH

F s #R Fs
converging asymptotically to .v˙; �˙/. We estimate using Lemma 3.9

0 �

Z �RC1

�1

k@swk
2 dsC

Z 1
R

k@swk
2 ds

D

Z 1
�1

k@swk
2 ds�

Z R

�RC1

k@swk
2 ds

DAH .vC; �C/�AH .v�; ��/�

Z 1
�1

�
@sAH

F s #R Fs

�
.w/ ds

�

Z R

�RC1

krAH
F .w/k

2 ds

� AH .vC; �C/�AH .v�; ��/C 2kFk1� .2R� 1/
 2 < 0:

This contradiction shows that w cannot exist and hence Step 1 follows.

Step 2. Let F W V ! R be a Hamiltonian (not necessarily displacing †) such that
XF has compact support. Assume that R � 1 and w.s/ D .v; �/.s/ is a flow line
of rAH

F s #R Fs
which converges asymptotically to .v˙; �˙/. Then the Lagrange

multiplier �.s/ is bounded uniformly by a constant depending only on H , kFk1,
R and the action values of AH at .v˙; �˙/.

Let � > 0 be the constant in Proposition 3.2. For � 2 R define �.�/� 0 by

�.�/ WD inf
n
� � 0 W krAH

F s #R Fs
.w/.� C �/k< �; � C � … .�R;RC 1/

o
:

According to (33) the energy E of the gradient flow line w is bounded from above
uniformly by

E �AH .vC; �C/�AH .v�; ��/C 2kFk1:

From this we obtain as in (12) the estimate

(46) �.�/�
AH .vC; �C/�AH .v�; ��/C 2kFk1

�2
C 2RC 1DW �1:

Since � C �.�/ … .�R;RC 1/ we have

(47) rAH
F s #R Fs

.w/.� C �.�//DrAH .w/.� C �.�//:

Observe further that for all s 2 R the absolute action value at w.s/ is uniformly
bounded by

(48) jAH
F s #R Fs

.w.s//j �maxfjAH .vC; �C/j; jAH .v�; ��/jgC 2kFk1 DW �2:

Let c be the constant appearing in Proposition 3.2. Combining Proposition 3.2 with
(47) and (48) we get the estimate

(49) j�.� C �.�//j � c.�2C 1/:
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The second component in the gradient flow Equation (30) for AH
F s #R Fs

shows that

(50) j@s�j � kHk1 Dmax
x2V
jH.x/j:

Combining (46), (49), and (50) we obtain

j�.�/j � j�.� C �.�//jC

Z �C�.�/

�

j@s�j ds � c.�2C 1/CkHk1�1:

Since �1 and �2 depend only on H , kFk1, R and the asymptotic action values
Step 2 follows.

Step 3. We prove the theorem.

Let F be a displacing Hamiltonian and R0 the constant from Step 1. Set R WDR0

and consider the Hamiltonians rF for 0�r�1. Step 2 provides a uniform bound on
the Lagrange multiplier along gradient flow lines of AH

rF s #R rFs
for all r 2 Œ0; 1�,

which implies compactness modulo breaking for this homotopy in r . The usual
argument in Floer theory shows that the maps on Floer homology

 r W HF.AH /! HF.AH /

induced by counting gradient flow lines of AH
rF s #R rFs

are independent of r . Since
 1 D 0 by Step 1 and since  0 D id, this proves that HF.AH / D 0, and hence
completes the proof of Theorem 1.2. �

4. Index computations

In this section we prove Theorem 1.3. The proof comes down to the computation
of the indices of generators of the Floer chain complex in the case that † is the
unit cotangent bundle of the sphere.

We first have to study the question under which conditions RFH.†;V / has a
Z-grading. Throughout this section, we make the following assumptions:

(A) Closed Reeb orbits on .†; ˛/ are of Morse–Bott type (see Section 3).

(B) † is simply connected and V satisfies Ic1
D 0.

Under these assumptions the (transversal) Conley Zehnder index of a Reeb orbit
v 2C1.S1; †/ can be defined in the following way. Since† is simply connected,
we can find a map v 2 C1.D; †/ on the unit disk D D fz 2 C W jzj � 1g such
that v.e2�it /D v.t/. Choose a (homotopically unique) symplectic trivialization of
the symplectic vector bundle .v��; v�d˛/. The linearized flow of the Reeb vector
field along v defines a path in the group Sp.2n � 2;R/ of symplectic matrices.
The Maslov index of this path [Robbin and Salamon 1993a] is the (transversal)
Conley–Zehnder index �CZ 2

1
2

Z. It is independent of the choice of the disk v
due to the assumption Ic1

D 0 on V .
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Let M be the moduli space of all finite energy gradient flow lines of the action
functional AH . Since AH is Morse–Bott every finite energy gradient flow line
.v; �/2C1.R�S1;V /�C1.R;R/ converges exponentially at both ends to critical
points .v˙; �˙/ 2 crit.AH / as the flow parameter goes to ˙1. The linearization
of the gradient flow equation along any path .v; �/ in L � R which converges
exponentially to the critical points of AH gives rise to an operator DAH

.v;�/
. For

suitable weighted Sobolev spaces (the weights are needed because we are in a
Morse–Bott situation) the operator DAH

.v;�/
is a Fredholm operator. Let C�;CC �

crit.AH / be the connected components of the critical manifold of AH containing
.v�; ��/ or .vC; �C/ respectively. The local virtual dimension of M at a finite
energy gradient flow line is defined to be

(51) virdim.v;�/M WD indDAH

.v;�/C dimC�C dimCC

where indDAH

.v;�/
is the Fredholm index of the Fredholm operator DAH

.v;�/
. For

generic compatible almost complex structures, the moduli space of finite energy
gradient flow lines is a manifold and the local virtual dimension of the moduli
space at a gradient flow line .v; �/ corresponds to the dimension of the connected
component of M containing .v; �/. Our first goal is to prove the following index
formula.

Proposition 4.1. Assume hypotheses (A) and (B) hold. Let C�;CC � crit.AH /

be two connected components of the critical manifold of AH . Let .v; �/2C1.R�

S1;V /�C1.R;R/ be a gradient flow line of AH which converges at both ends
lims!˙1.v; �/.s/! .v˙; �˙/ to critical points of AH satisfying .v˙; �˙/2C˙.
Choose maps v˙ 2 C1.D; †/ satisfying v˙.e2� it / D v˙.t/. Then the local
virtual dimension of the moduli space M of finite energy gradient flow lines of
AH at .v; �/ is given by

virdim.v;�/M D �CZ .v
C/��CZ .v

�/C 2c1.v
�# v # vC/

C
dimC�CdimCC

2

(52)

where v� # v # vC is the sphere obtained by capping the cylinder v with the disks
vC and v�, and c1 D c1.T V /.

The proof is based on a discussion of spectral flows.

Spectral flows. It is shown in [Robbin and Salamon 1995] that the Fredholm index
of DAH

.v;�/
can be computed via the spectral flow �spec (see Appendix C) of the

Hessian HessAH along .v; �/ by the formula

(53) indDAH

.v;�/ D �spec
�
HessAH .v; �/

�
:
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Our proof compares the spectral flow of the Hessian of AH with the spectral
flow of the action functional of classical mechanics which can be computed via
the Conley–Zehnder indices. For a fixed Lagrange multiplier � 2 R the action
functional of classical mechanics arises as

AH
� WDAH . � ; �/WL! R:

Assume first that the periods �˙ of the Reeb orbits v˙ are nonzero. We begin by
homotoping the action functional AH via Morse–Bott functionals with fixed criti-
cal manifold to an action functional AH 1

which satisfies the assumptions of (the in-
finite dimensional analogue of) Lemma C.6. There exists a neighbourhood U �V

of† and �>0 such that U is symplectomorphic to
�
†�.1��; 1C�/; d.r˛/

�
, where

r is the coordinate on .1��; 1C�/. Since AH is Morse–Bott and the Hamiltonian
vector field XH .x/ for x 2 † equals the Reeb vector field R.x/, there exists a
homotopy H s for s 2 Œ0; 1� which satisfies the following conditions:
� H 0 DH .

� XH s .x/DR.x/ for x 2† and s 2 Œ0; 1�.

� There exist neighbourhoods U˙ � U of the critical manifolds C˙ and func-
tions h˙ 2 C1..1� �; 1C �// satisfying h˙.1/D 0, h0

˙
.1/D 1, h00

˙
.1/¤ 0,

and h0
˙
.r/¤ 0 for r 2 .1� �; 1C �/ such that H 1.x; r/D h˙.r/ for .x; r/ 2

U˙ �†� .1� �; 1C �/.

� AH s

is Morse–Bott for all s 2 Œ0; 1�.

Here the signs of h00
˙
.0/ are determined by the second derivatives of H in the

direction transverse to † along C˙. Since AH can be homotoped to AH 1

via
Morse–Bott action functionals with fixed critical manifold, we obtain

(54) �spec
�
HessAH .v; �/

�
D �spec

�
Hess

AH 1 .v; �/
�
:

If .v0; �0/ 2 C1.S1; †\U˙/�R is a critical point of AH , then .v0; �0/ is also
a critical point of AH 1

. Moreover, the family .v�; ��/ 2C1.S1;U /�R given by

v�.t/D .v0.t/; h
�1.��//; �� D

�0

h0.h�1.��//

consists of critical points for the family of action functionals AH 1;�WL�R! R

given for .v; �/ 2 L�R by

AH 1;�.v; �/ WD

Z
v��� �

�Z 1

0

H 1.v.t// dt C �

�
:

Note that

@���j�D0 D�
�0h00
˙
.1/

h0
˙
.1/2

:
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Recalling that h0
˙
.1/D 1 we see that for �0 D �

˙ ¤ 0 the hypotheses of Lemma
C.6 are satisfied. It follows from Theorem C.5 and Lemma C.6 that the spectral
flow can be expressed in terms of the spectral flow of the action functional of
classical mechanics plus a correction term accounting for the second derivatives of
H transversally to † as

(55) �spec
�
Hess

AH 1 .v; �/
�

D �spec
�
Hess

AH 1
�

.v/
�
C

1
2

�
sign.�� � h00�.0//� sign.�C � h00C.0//

�
:

It follows from a theorem due to Salamon and Zehnder [1992] that the spectral flow
of the Hessian of AH 1

� can be computed via Conley–Zehnder indices. However, the
Conley–Zehnder indices in the Salamon–Zehnder theorem are not the (transversal)
Conley–Zehnder indices explained above, but the Maslov index of the linearized
flow of the Reeb vector field on the whole tangent space of V and not just on the
contact hyperplane. For a Reeb orbit v we will denote this second (full) Conley–
Zehnder index by O�CZ .v/. Note that O�CZ .v/ depends on the second derivatives of
H transversally to † while �CZ .v/ does not. Another complication is that we are
in a Morse–Bott situation and we have to adapt the Salamon–Zehnder theorem to
this situation. Formula (74) defines the spectral flow also for Morse–Bott situations.
To adapt the Conley–Zehnder indices to the Morse–Bott situation observe that
in a symplectic trivialization the linearized flow of the Reeb vector field can be
expressed as a solution of an ordinary differential equation

P‰.t/D J0S.t/‰.t/; ‰.0/D id;

where t 7!S.t/DS.t/T is a smooth path of symmetric matrices. For a real number
ı we define ‰ı as the solution of

P‰ı.t/D J0

�
S.t/� ı � id

�
‰ı.t/; ‰ı.0/D id;

and set �ı
CZ
.v/, respectively O�ı

CZ
.v/ as the Conley–Zehnder index of ‰ı where

in the first case we restrict ‰ı to the contact hyperplane and in the second case we
consider it on the whole tangent space. We put

�C
CZ
.v/ WD lim

ı&0
�ıCZ .v/; ��CZ .v/ WD lim

ı&0
��ıCZ .v/

and analogously O�C
CZ
.v/ and O��

CZ
.v/. Note that while O�CZ .v/ and �CZ .v/ are

half-integers, O�˙
CZ
.v/ and �˙

CZ
.v/ are actually integers. We are now in position

to state the theorem of Salamon and Zehnder.
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Theorem 4.2 (Salamon–Zehnder [Salamon and Zehnder 1992]). The spectral flow
of the Hessian of AH 1

� is given by

�.H
AH 1
�

.v//D O�C
CZ
.vC/� O��CZ .v

�/C 2c1.v
� # v # vC/:

Relations between Conley–Zehnder indices. The following two lemmata relate
the different Conley–Zehnder indices to each other.

Lemma 4.3. For a Reeb orbit v with period �¤ 0, viewed as a 1-periodic orbit of
the Hamiltonian vector field of �H , we have

O�˙CZ .v/D �
˙
CZ .v/C

1

2

�
sign

�
�h00.0/

�
� 1

�
:

Proof. By the product property [Salamon 1999] of the Conley–Zehnder index the
difference of O�˙

CZ
.v/ and�˙

CZ
.v/ is given by the Conley–Zehnder index of the lin-

earized flow of the Hamiltonian vector field restricted to the symplectic orthogonal
complement �! of the contact hyperplane in the tangent space of V . With respect
to the trivialization C! �!.v.t// given by xCiy 7! .x �rH.v.t//Cy �XH .v.t///

for t 2 S1, the linearized flow ‰.t/ of the Hamiltonian vector field satisfies the
differential equation

P‰.t/D

�
0 0

�h00.0/ 0

�
‰.t/; ‰.0/D id

and is thus given by

‰.t/D

�
1 0

t�h00.0/ 1

�
:

Abbreviate a WD � � h00.0/. Then the perturbed flow ‰ı.t/ satisfies the differential
equation

P‰ı.t/D

�
0 ı

a� ı 0

�
‰ı.t/; ‰ı.0/D id:

The matrix in this equation has eigenvalues ˙�, where

� WD

(p
ı.a� ı/ ı.a� ı/ > 0;

i
p
�ı.a� ı/ ı.a� ı/ < 0:

Diagonalizing the matrix, we find the solution

‰ı.t/D
1

2ı�

�
ı ı

�� �

��
e��t 0

0 e�t

��
� �ı

� ı

�
D

1

2ı�

�
ı�.e�t C e��t / ı2.e�t � e��t /

�2.e�t � e��t / ı�.e�t C e��t /

�
:
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Inserting �2 D ı.a� ı/ and expanding in powers of ı yields

‰ı.t/D
�
1CO.ı/

� � 1 ıt

.a� ı/t 1

�
:

Recall from [Salamon 1999] that the Conley–Zehnder index can be computed in
terms of crossing numbers, where a number t 2 Œ0; 1� is called a crossing if the
equality det.id � ‰ı.t// D 0 holds. The formula above shows that for ı small
enough the only crossing happens at zero. Hence by [Salamon 1999] the Conley–
Zehnder index is given by

�CZ .‰ı/D
1

2
sign

�
a� ı 0

0 �ı

�
:

If jıj< jaj we obtain

�CZ .‰ı/D
1

2

�
sign.a/� sign.ı/

�
D

1

2

�
sign

�
�h00.0/

�
� sign.ı/

�
and hence

O�˙CZ .v/��
˙
CZ .v/D

1

2

�
sign

�
�h00.0/

�
� 1

�
: �

Lemma 4.4. Let v be a Reeb orbit with period �¤ 0 and Cv the component of the
critical manifold of AH 1

which contains v. Then

O�CZ .v/D O�
˙
CZ .v/˙

dimCv

2
; �CZ .v/D �

˙
CZ .v/˙

dimCv � 1

2
:

Proof. Obviously

(56) O��CZ .v/� O�
C

CZ
.v/D dimCv; ��CZ .v/��

C

CZ
.v/D dimCv � 1:

The reason for the minus one in the second formula is that the transversal Conley–
Zehnder index only takes into account the critical manifold of AH 1

modulo the S1-
action given by the Reeb vector field. The Conley–Zehnder index can be interpreted
as intersection number of a path of Lagrangian subspaces with the Maslov cycle;
see [Robbin and Salamon 1993a]. Under a small perturbation the intersection num-
ber can only change at the initial and endpoint. Since the Lagrangian subspace at
the initial point is fixed it will change only at the endpoint. There the contribution is
given by half of the crossing number which equals dimCv in the case one considers
the Conley–Zehnder index on the whole tangent space respectively dimCv�1 if one
considers the Conley–Zehnder index only on the contact hyperplane. In particular,

(57) j O�CZ .v/� O�
˙
CZ .v/j �

dimCv

2
; j�CZ .v/��

˙
CZ .v/j �

dimCv � 1

2
:

Comparing (56) and (57) the lemma follows. �
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Proof of Proposition 4.1. We first assume that �� and �C are nonzero. Combining
the theorem of Salamon and Zehnder (Theorem 4.2) with Lemma 4.3 and Lemma
4.4 we obtain

�.H
AH 1
�

.v//D O�C
CZ
.vC/� O��CZ .v

�/C 2c1.v
� # v # vC/

D �C
CZ
.vC/���CZ .v

�/C 2c1.v
� # v # vC/� 1

C
1

2

�
sign.�C � h00C.0//� sign.�� � h00�.0//

�
D �CZ .v

C/��CZ .v
�/C 2c1.v

� # v # vC/�
dimC�C dimCC

2

C
1

2

�
sign.�C � h00C.0//� sign.�� � h00�.0//

�
:

Combining this equality with (51), (53), (54), and (55) we compute

virdim.v;�/MD indDAH

.v;�/C dimC�C dimCC

D �.HAH .v; �//C dimC�C dimCC

D �.H
AH 1 .v; �//C dimC�C dimCC

D �.H
AH 1
�

.v//C
1

2

�
sign.�� � h00�.0//� sign.�C � h00C.0//

�
C dimC�C dimCC

D �CZ .v
C/��CZ .v

�/C 2c1.v
� # v # vC/

C
dim.C�/C dim.CC/

2
:

This proves the proposition for the case where the periods of the asymptotic Reeb
orbits are both nonzero. To treat also the case where one of the asymptotic Reeb
orbits is constant we consider the following involution on the loop space L

I.v/.t/D v.�t/; v 2 L; t 2 S1:

We extend this involution to an involution on L�R which we denote by abuse of
notation also by I and which is given by

I.v; �/D .I.v/;��/; .v; �/ 2 L�R:

The action functional AH transforms under the involution I by

AH .I.v; �//D�AH .v; �/; .v; �/ 2 L�R:

In particular, the restriction of the involution I to the critical manifold of AH

induces an involution on crit.AH / and the fixed points of this involution are the
constant Reeb orbits.
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We consider now a finite energy gradient flow line .v; �/ 2 C1.R� S1;V /�

C1.R;R/ of the action functional AH whose right end .vC; �C/ is a constant Reeb
orbit and whose left end .v�; ��/ is a nonconstant Reeb orbit. For the path .v; �/
in L�R we consider the path .v; �/I D .vI ; �I / in L�R defined by .v; �/I .s/D
I.v; �/.�s/ for s2R. The path .v; �/I goes from .vC; �C/ to I.v�; ��/ and gluing
the paths .v; �/ and .v; �/I together we obtain a path .v; �/ # .v; �/I from .v�; ��/

to I.v�; ��/. The Fredholm indices of the different paths are related by

indDAH

.v;�/ D indDAH

.v;�/I
; indDAH

.v;�/ # .v;�/I
D indDAH

.v;�/C indDAH

.v;�/I
C dimCC:

From this we compute, using (52) for the case of nonconstant Reeb orbits and the
equality �CZ .I.v

˙//D��CZ .v
˙/,

indDAH

.v;�/ D
1

2
� indDAH

.v;�/ # .v;�/I
�

dimCC

2

D
1

2

�
�CZ .I.v

�//��CZ .v
�/C 2c1.v

� # v # vI # IvC/

�
dimC�CdimIC�

2

�
�

dimCC

2

D��CZ .v
�/C 2c1.v

� # v/� dimC�CdimCC

2
;

from which we deduce (52) using (51). This proves the proposition for the case of
gradient flow lines whose left end is a constant Reeb orbit. The case of gradient
flow lines whose right end is constant can be deduced in the same way or by
considering the coindex. This finishes the proof of the Proposition 4.1. �

In order to define a Z-grading on RFH.†;V / we need that the local virtual
dimension just depends on the asymptotics of the finite energy gradient flow line.
By (52) this is the case if Ic1

D 0 on V . In this case the local virtual dimension is
given by

(58) virdim.v;�/MD �CZ .v
C/��CZ .v

�/C
dimC�C dimCC

2
:

In order to deal with the third term it is useful to introduce the following index for
the Morse function h on crit.AH /. We define the signature index ind�h.c/ of a
critical point c of h to be

ind�h.c/ WD �
1

2
sign.Hessh.c//;

see Appendix A. The half signature index is related to the Morse index indm
h .c/,

given by the number of negative eigenvalues of Hessh.c/ counted with multiplicity,
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by

(59) ind�h.c/D indm
h .c/�

1

2
dimc

�
crit.AH /

�
:

We define a grading � on CF�.A
H ; h/ by

�.c/ WD �CZ .c/C ind�h.c/:

By considering the case of nondegenerate closed Reeb orbits, one sees that � takes
values in the set 1

2
CZ, so it is indeed a Z-grading (shifted by 1

2
). Using Equation

(58), it is shown in Appendix A that the Floer boundary operator @ has degree �1

with respect to this grading. Hence we get a Z-grading on the Rabinowitz Floer
homology RFH�.†;V /.

Proof of Theorem 1.3. We use the fact that the chain groups underlying the Floer
homology HF�.AH / only depend on .†; ˛/ and not on the embedding of† into V .
We show that for the unit cotangent bundle S�Sn for n � 4 the Floer homology
equals the chain complex. More precisely, we choose the standard round metric on
Sn normalized such that all geodesics are closed with minimal period one. For this
choice assumption (A) from Section 3.2 is satisfied. The critical manifold of AH

consists of Z copies of S�Sn, where Z corresponds to the period of the geodesic.
There is a Morse function h0 on S�Sn with precisely 4 critical points and zero
boundary operator (with Z2-coefficients!) whose Morse homology satisfies

HMk.S
�Sn
IZ2/D CMk.h0IZ2/D

�
Z2 k 2 f0; n� 1; n; 2n� 1g;

0 else:

Let h be the Morse function on the critical manifold which coincides with h0 on
each connected component. The chain complex is generated by

crit.h/Š Z� crit.h0/:

A closed geodesic c is also a critical point of the energy functional on the loop
space. The index indE.c/ of a closed geodesic is defined to be the Morse index
of the energy functional at the geodesic and the nullity �.c/ is defined to be the
dimension of the connected component of the critical manifold of the energy func-
tional which contains the geodesic minus one. The (transverse) Conley–Zehnder
index of a closed geodesic is given by

(60) �CZ .c/D indE.c/C
�.c/

2
:

This is proved in [Duistermaat 1976; Weber 2002] for nondegenerate geodesics; the
degenerate case follows from the nondegenerate one using the averaging property
of the Conley–Zehnder index (Lemma 4.4). By the Morse index theorem (see
[Morse 1996] or [Klingenberg 1995, Theorem 2.5.14]) the index of a geodesic is
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given by the number of conjugate points counted with multiplicity plus the con-
cavity. The latter one vanishes for the standard round metric on Sn, since each
closed geodesic has a variation of closed geodesics having the same length [Ziller
1977].

Using the Morse index theorem and equations (60) and (59), we compute the
index of .m;x/ 2 Z� crit.h0/:

�.m;x/D �CZ .m;x/C ind�h.x/

D indE.m;x/C
�.m;x/

2
C ind�h.x/

D .2m� 1/.n� 1/C
2n�2

2
C ind�h.x/

D 2m.n� 1/C indm
h .x/�

2n�1

2
:

It follows from Lemma 3.3 that the action satisfies

AH .m;x/Dm:

In order to have a gradient flow line of AH from a critical point .m1;x1/ to a
critical point .m2;x2/ we need

AH .m2;x2/�AH .m1;x1/Dm2�m1 > 0;

�.m2;x2/��.m1;x1/D 2.m2�m1/.n� 1/C .i2� i1/D 1

for i1; i2 2 f0; n� 1; n; 2n� 1g, which is impossible if n � 4. Hence there are no
gradient flow lines, so the Floer homology equals the chain complex. This proves
Theorem 1.3. �

Appendix A: Morse–Bott homology

We briefly indicate in this appendix how to define Morse–Bott homology by the
use of gradient flow lines with cascades. More details of this approach can be
found in [Frauenfelder 2004, Appendix A]. We begin with the finite dimensional
situation. Let M be a manifold and f 2 C1.M / a Morse–Bott function, that is,
the critical set crit.f / is a manifold and

Txcrit.f /D ker Hessf .x/; x 2 crit.f /;

where Hessf .x/ denotes the Hessian of f at x. We then choose an additional
Morse function h on crit.f /. The chain group for Morse–Bott homology is the
Z2-vector space given by

CM.f; h/ WD crit.h/˝Z2:
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Figure 1. A flow line with cascades.

Morse–Bott homology should also be definable over the integers via the cascade
approach, but this is nowhere written down. The boundary operator is defined by
counting gradient flow lines with cascades between two critical points of h which
are indicated by Figure 1.

A gradient flow line with cascades starts with a gradient flow line of h on crit.f /
which converges at its negative asymptotic end to a critical point of h. In finite
time this gradient flow line meets the asymptotic end of a gradient flow line of the
Morse–Bott function f . We refer to this gradient flow line of f as the first cascade.
The cascade converges at its positive end again to a point in crit.f /. There the flow
continues with the gradient flow of h on crit.f /. After finite time a second cascade
might appear but having passed through finitely many cascades we finally end up
with a gradient flow line of h which we follow until it converges asymptotically
to a critical point of h. Gradient flow lines with zero cascades are also allowed.
They correspond to ordinary Morse flow lines of the gradient of h on the manifold
crit.f /. For a formal definition of gradient flow lines with cascades we refer to
[Frauenfelder 2004].

We finally discuss the grading for Morse–Bott homology. If f is Morse then the
following two index conventions are often used. Either Morse homology is graded
by the Morse index indm

f , given by the dimensions of the negative eigenspaces, or
by the signature index

ind�f .x/ WD �
1
2

sign Hessf .x/; x 2 crit.f /;

where sign denotes the signature of the quadratic form given by the difference
of the dimensions of the positive and negative eigenspaces. The two indices are
related by the following global shift

(61) ind�f D indm
f �

1
2

dim.M /:
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In particular, if M is even dimensional then the signature index is integer valued
and if M is odd dimensional then it is half integer valued. The signature index
plays an important role in Floer’s semi-infinite dimensional Morse theory. There
the stable and unstable manifolds are both infinite dimensional and hence the Morse
index is infinite. The grading given is given by the Maslov index which can be
interpreted as a signature index as explained in [Robbin and Salamon 1993b; 1996].

Both the Morse index and the signature index can be defined in the same way
also for a Morse–Bott function f . The corresponding indices for a pair .f; h/
consisting of a Morse–Bott function f and a Morse function h on crit.f / are
defined by taking sums

indm
f;h.x/ WD indm

f .x/C indm
h .x/; ind�f;h.x/ WD ind�f .x/C ind�h.x/; x 2 crit.h/:

The shift formula (61) continues to hold for these indices in Morse–Bott theory.
Consider gradient flow lines with k cascades between components C0; : : : ;Ck

of crit.f /, starting at a critical point x� of h on C� D C0 and ending at a critical
point xC of h on CCDCk . For generic metric, their moduli space (divided by the
R-actions on the cascades) M.x�;xCIC0; : : : ;Ck/ is a manifold of dimension

dim M.x�;xCIC0; : : : ;Ck/

D indm
h .x

C/� indm
h .x

�/� 1C

kX
iD1

�
dim M.Ci�1;Ci/� dim Ci

�
;

where M.Ci�1;Ci/ is the moduli space of gradient flow lines of f from Ci�1 to
Ci (not divided by the R-action). From

(62) dim M.Ci�1;Ci/D indm
f .Ci/� indm

f .Ci�1/C dim Ci

we obtain the dimension formula in terms of Morse indices:

(63) dim M.x�;xCIC0; : : : ;Ck/

D indm
h .x

C/�indm
h .x

�/�1Cindm
f .C

C/�indm
f .C

�/

D indm
f;h.x

C/�indm
f;h.x

�/�1:

On the other hand, in the Morse–Bott case the Morse and signature indices of a
critical component C are related by

ind�f .C /D indm
f .C /�

1
2
.dim M � dim C /:

Inserting this in Equation (62) yields

(64) dim M.Ci�1;Ci/D ind�f .Ci/� ind�f .Ci�1/C
dim Ci C dim Ci�1

2
;



A FLOER HOMOLOGY FOR EXACT CONTACT EMBEDDINGS 297

which in turn yields the dimension formula in terms of signature indices:

(65) dim M.x�;xCIC0; : : : ;Ck/

D indm
h .x

C/�indm
h .x

�/�1Cind�f .C
C/�ind�f .C

�/�
dim CC

2
C

dim C�

2

D ind�f;h.x
C/�ind�f;h.x

�/�1:

So we get the same formula for dim M.x�;xCIC0; : : : ;Ck/ using either Morse
indices or signature indices. Since this dimension equals zero for the moduli spaces
contributing to the boundary operator in Morse–Bott homology, this shows that
the boundary operator has degree �1 with respect to either grading. However, we
would like to point out that a mixture of Morse indices and signature indices does
not lead in general to a grading on Morse–Bott homology unless all the connected
components of the critical manifold of f have the same dimension.

Finally, consider the situation in Floer homology where the ambient space is
infinite-dimensional, but the components of the critical set crit.f / and the moduli
spaces M.Ci�1;Ci/ are still finite-dimensional. Moreover, (under suitable hy-
potheses) the dimension of these moduli spaces can be expressed by a formula
analogous to (64) in terms of Conley–Zehnder indices:

dim M.Ci�1;Ci/D �CZ .Ci/��CZ .Ci�1/C
dim Ci C dim Ci�1

2
:

See for example Equation (58) for the Floer homology considered in this paper.
This suggests that the Conley–Zehnder index should be viewed as a signature in-
dex, and the same computation as in the finite dimensional case above yields the
dimension formula

(66) dim M.x�;xCIC0; : : : ;Ck/D �.x
C/��.x�/� 1

with respect to the signature index

�.x/ WD �CZ .x/C ind�h.x/:

Thus the boundary operator in Floer homology has degree �1 with respect to �
and � descends to an integer grading on Floer homology. Actually, in the case
considered in this paper this grading takes values in 1

2
C Z, where the shift by 1

2

reflects the 1-dimensional constraint imposed on the free loop space.

Appendix B: A Wasserman-type theorem for the Rabinowitz action
functional

Let .V; �/ be an exact symplectic manifold of dimension n � 2 and let L D

C1.S1;V / be the free loop space. Denote by C1c .V / the vector space of smooth
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functions on V whose differential has compact support. Recall that for a Hamil-
tonian H 2 C1c .V / the Rabinowitz action functional

AH
WL�R! R

is given by

AH .v; �/D

Z 1

0

v��� �

Z 1

0

H.v.t// dt:

The circle acts on L by rotation of the domain, that is,

r�.v/.t/D v.t C r/; v 2 L; r; t 2 S1:

This action extends to an action on L � R, where the circle acts trivially on the
second factor. The Rabinowitz action functional is invariant under this circle ac-
tion. In particular, its critical set is invariant, too. Hence we cannot expect the
Rabinowitz action functional to be Morse. However, we show in this section that
generically the Rabinowitz action functional is Morse–Bott. Here a function f
is called Morse–Bott if its set C of critical points is a submanifold (possibly with
components of different dimensions), and for every x 2C the kernel of the Hessian
of f at x equals TxC .

A classical theorem of A. Wasserman [1969] asserts that if G is a compact
Lie group, then on finite dimensional G-manifolds the critical set of a generic G-
invariant function consists of nondegenerate isolated G-orbits. The aim of this
section is to prove a statement similar to Wasserman’s theorem for the Rabinowitz
action functional. Namely, we show that generically the fixed part of the critical set
is a connected Morse–Bott component and away from the fixed part the assertion
of Wasserman’s Theorem holds true. Note that in the case of the Rabinowitz action
functional the fixed part of the S1-action on the critical set corresponds to the con-
stant solutions on H�1.0/ with Lagrange multiplier 0, and the part of the critical
set on which the circle acts with finite isotropy corresponds to the nonconstant
Reeb orbits.

Theorem B.1. There exists a subset U � C1c .V / of the second category, such
that for every H 2 U the Rabinowitz action functional AH is Morse–Bott and its
critical set consists of H�1.0/ together with a disjoint union of circles.

Proof. We prove the theorem in four steps. For k 2 N we denote by C k
c .V / the

vector space of C k-functions on V of class C k .

Step 1. For each n � k � 1 denote by Uk
1

the subset of C k
c .V / consisting of

H 2 C k
c .V / with the property that 0 is a regular value of H . Then Uk

1
is an open

and dense subset of C k
c .V /.

Pick H 2 C k
c .V /. We first show that H can be approximated by elements in

Uk
1

. By Sard’s theorem for each H 2 C k
c .V / the set R.H /� R of regular values
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of H is dense. Hence we can choose a sequence c� 2 R.H / converging to 0. It
follows that HCc� is a sequence in Uk

1
which converges to H . Hence Uk

1
is dense

in C k
c .V /. Moreover, since H�1.0/ is compact for every H 2 Uk

1
it follows that

Uk
1

is also open in C k
c .V /.

Step 2. For each n�k<1 there exists a subset Uk
2

of Uk
1

of second category such
that for every H 2Uk

2
all nontrivial Reeb orbits are isolated and nondegenerate.

Consider the Hilbert manifold

HDW 1;2.S1;V /�R

where we define W 1;2.V / by embedding V into RN for N large enough. Over
the Hilbert manifold H we introduce the Hilbert bundle

� WE!H

whose fiber over .v; �/ 2H is given by

E.v;�/ DL2.S1; v�T V /�R:

For H 2 C k
c .V / we define a section

sH WH! E

by
sH .w/DrAH .w/:

Note that the zero set s�1
H
.0/ coincides with the critical points of the Rabinowitz

action functional. If w 2H� E, then there is a canonical splitting

TwED Ew �TwH:

We denote by
…wWTwE! Ew

the projection along TwH. If w 2 s�1
H
.0/ the vertical differential

DsH .w/WTwH! Ew

is given by
DsH .w/D…w ı dsH .w/:

Note that it coincides with the Hessian of the Rabinowitz action functional at w.
If w D .v; �/ is a critical point of AH , then it follows from the S1-invariance of
AH that the infinitesimal generator

RD .@tv; 0/

of the S1-action satisfies
R 2 coker

�
DsH .w/

�
:
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We introduce the following quotient space of Ew

Fw D Ew=hRi:

We denote by
DsH .w/WTwH! Fw

the linear map introduced from the vertical differential.
We extend the section sH to a larger space by considering the section

S WUk
1 �H! E

which is defined by

S.H; w/D sH .w/; H 2Uk
1 ; w 2H:

If .H; w/ 2 S�1.0/ with w D .v; �/, then the vertical differential

DS.H; w/WT.H ;w/
�
Uk

1 �H
�
D C k

c .V /�TwH! Ew

is given for yH 2 C k
c .V / and Ow 2 TwH by

(67) DS.H; w/. yH ; Ow/DDsH .w/ OwC

�
�r yH .v/

0

�
:

As before we denote by

DS.H; w/WT.H ;w/
�
Uk

1 �H
�
! Fw

the linear map induced from DS.H; w/.
The crucial point to establish Step 2 is the following claim.

Claim. If .H; w/ 2 S�1.0/ and w is not a fixed point of the S1-action, then
DS.H; w/ is surjective.

Since DsH .w/ is Fredholm, the image of DS.H; w/ is closed. Hence to show
surjectivity, it suffices to prove that the orthogonal complement of the image of
DS.H; w/ vanishes. To see that, pick

x D .y; �/ 2 im DS.H; w/?:

It follows from (67) that

(68)
�
hDsH .w/ Ow;xi D 0; 8 Ow 2 TwH

hr yH .v/;yi D 0; 8 yH 2 C k
c .V /:

The first equation in (68) implies that

x 2 ker
�
DsH .w/

��
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which shows that each representative z 2 L2.S1; v�T V / of y is of class C k�1.
Pick such a representative z of y and assume by contradiction that there exists
t0 2 S1 such that

z.t0/ … h@tv.t0/i:

Choose C k-coordinates around v.t0/ of the following form. For � > 0 there is a
C k�1-map

 WQD .��; �/n! V

satisfying �
 .r1; 0/D v.t0C r1/; r1 2 .��; �/

@2 .0/D z.t0/:

Choose compactly supported functions ˛; ˇ 2 C k
0

�
.��; �/

�
such that

˛.0/D 1; ˇ.0/D 0; ˇ0.0/D 1:

We introduce the function h 2 C k
0
.Q/ by

h.r1; r2; r/D ˛.r1/ �ˇ.r2/; r1; r2 2 .��; �/; r 2 .��; �/n�2:

Now define yH 2 C k
c .V / by

yH .v/D

�
h. �1.v//; v 2  .Q/

0 v …  .Q/:

The function yH has the properties

(69)

(
d yH .v.t0//.z.t0//D 1

d yH .v.t//@tv D 0; t 2 S1:

Moreover, since z is continuous, as we noted above, we can achieve by letting ˛
decay fast enough that in addition the following property holds:

(70) d yH .v.t//.z.t//� 0; t 2 S1:

We further note that the second condition in (69) implies that if Qz is another repre-
sentative for y, then

(71) d yH .v.t//.Qz.t//D d yH .v.t//.z.t//:

We deduce from equations (69), (70), and (71) that

hr yH ;yi D inf
z2W 1;2.S1;v�T V /

Œz�Dy

Z 1

0

d yH .v.t//.z.t// dt > 0

contradicting the second equation in (68). We conclude that y D 0.
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To show that x vanishes it remains to argue that � vanishes. To see that we write

Ow D . Ov; O�/ 2 TwHDW 1;2.S1; v�T V /�R:

Since y D 0 the first equation in (68) becomes

�

Z 1

0

dH.v.t//. Ov.t// dt D 0; 8 Ov 2W 1;2.S1; v�T V /:

Note that .v; �/ is a critical point of the Rabinowitz action functional, hence v is
contained in H�1.0/. Since H 2 Uk

1
it follows that 0 is a regular value of H .

Hence dH.v.t// does not vanish identically and we conclude that � D 0. Hence
x D .y; �/ vanishes and this finishes the proof of the claim.

Step 2 follows from the claim by a standard argument: The zero set Z D

S�1.0/�Uk
1
�H is a Hilbert manifold and the projection onto the second factor

induces a Fredholm map � WZ!Uk
1

. By the Sard–Smale theorem the set Uk
2
�Uk

1

of regular values of � is of second category and satisfies the properties in Step 2.

Step 3. There exists a subset U1
2

of U1
1

of second category such that for every
H 2U1

2
all nontrivial Reeb orbits are isolated and nondegenerate.

Step 3 follows from Step 2 by an argument due to Taubes. Choose T > 0 and
abbreviate

critT .AH /D
˚
.v; �/ 2 crit.AH / W j�j 2 .0;T �

	
:

It follows from the Arzela–Ascoli theorem that the set critT .AH / is compact. For
n� k �1 we abbreviate

Uk
2.T /D

˚
H 2Uk

1 W DsH .w/ surjective for all w 2 critT .AH /
	
:

Since critT .AH / is compact it follows that Uk
2
.T / is open in Uk

1
.T /. Moreover,

it follows from Step 2 that if k <1 it is also dense in Uk
1

. Since C1 is dense in
C k for every k, a diagonal argument shows that U1

2
.T / is also dense in U1

1
. It

follows that
U12 D

\
T2N

U12 .T /

is of second category in U1
1

. This finishes the proof of Step 3.

Step 4. UDU1
2

meets the requirements of the theorem.

By Step 1, U1
1

is open and dense in C1c .V / and by Step 3, U is of second
category in U1

1
. It follows that U is of second category in C1c .V /. Moreover, by

definition for each H 2U the Rabinowitz action functional AH is Morse–Bott at
the nontrivial Reeb orbits and these are isolated. Hence, the only point to verify,
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is that AH is also Morse–Bott at the trivial Reeb orbits. Hence let .v; 0/ with
v 2H�1.0/ be a trivial Reeb orbit. In this case the kernel of the Hessian

HessAH .v; 0/WW 1;2.S1;TvV /�R!L2.S1;TvV /�R

is given by solutions Ov 2W 1;2.S1;TvV / and O� 2 R of the problem

(72)

(
@t Ov.t/D O�XH .v/; t 2 S1R 1

0 dH.v/ Ov.t/ dt D 0:

Since H 2U1
1

and v 2H�1.0/ it follows that XH .v/¤ 0. Hence it follows from
the first equation in (72) that

O�D 0; @t Ov D 0; t 2 S1:

Now the second equation in (72) implies that

Ov 2 ker
�
dH.v/

�
D TvH

�1.0/:

Consequently, the Rabinowitz action functional AH is also Morse–Bott at the triv-
ial Reeb orbits. This finishes the proof of Step 4 and hence of Theorem B.1. �

Appendix C: Spectral flow

We compare in this appendix two spectral flows which appear in Lagrange mul-
tiplier type problems. To motivate this we first consider the Lagrange multi-
plier functional in finite dimensions. Let .M;g/ be a Riemannian manifold and
.V; h� ; �i/ be a Euclidean vector space. For functions f 2 C1.M / and h 2

C1.M;V / the Lagrange multiplier functional F 2 C1.M �V / is given by

F.x; v/D f .x/Chv; h.x/i:

For v 2 V we denote by Fv 2 C1.M / the function given by

Fv D F. � ; v/:

The Hessian of F with respect to the metric g˚gV on M �V , where gV D h � ; � i

is the Euclidean scalar product on V , is given by

HessF .x; v/D

�
HessFv .x/ dh.x/�

dh.x/ 0

�
:

Here the adjoint of dh.x/ is taken with respect to the inner products on TxM and
Th.x/V Š V given by the metric g and by h � ; � i.

We compare in this appendix the spectral flows of HessF and HessFv for La-
grange multiplier functionals not necessarily defined on a finite dimensional man-
ifold. We will apply this in the following way. For F D AH the functional Fv is
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the action functional of classical mechanics whose spectral flow can be computed
via the Conley–Zehnder indices [Robbin and Salamon 1995].

To formulate our theorem we use the setup of Robbin and Salamon [1995].
Let W and H be separable real Hilbert spaces such that W �H is dense and the
inclusion is compact. Let A WW !H be a bounded linear operator (with respect to
the norms on W and H ). Viewing A as an unbounded operator on H with domain
dom.A/DW , recall the following definitions (see for example [Kato 1976]). The
adjoint operator

A� W dom.A�/ WD fv 2H j jhv;AwiH j � C jwjH for all w 2W g !H

is defined by the equation

hA�v;wiH D hv;AwiH :

A is called symmetric if W � dom.A�/ and A�jW D A, that is, hA�v;wiH D
hv;AwiH for all v;w 2W . A is self-adjoint if it is symmetric and dom.A�/DW .
The spectrum of A is the set of all complex numbers � such that the operator

A�� � idWW !H

is not bijective. Denote by ker.A/ and R.A/ the kernel and range (D image) of A,
respectively. Denote by L.W;H / the space of bounded linear operators and by

S.W;H /� L.W;H /

the subspace of self-adjoint operators. The following lemma clarifies these con-
cepts.

Lemma C.1. Let W �H be Hilbert spaces such that the inclusion is compact and
let A W W ! H be a symmetric bounded linear operator. Then the following are
equivalent:

(i) There exists � 2 R such that A�� � idWW !H is bijective.

(ii) A is self-adjoint considered as an unbounded operator on H with domain
dom.A/DW .

(iii) One of the defect indices d˙.A/ WD codim.R.AC˙ i � id/;H C/ is zero. Here
AC WW C!H C denotes the complex linear extension of A to the complexified
Hilbert spaces.

(iv) The spectrum of A is discrete and consists of real eigenvalues of finite multi-
plicity.

Proof. We first show that (i)) (ii), that is, dom.A�/ D dom.A/ D W . To see
this let v 2 dom.A�/. Since A�� � id is bijective and A is symmetric, there exists
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w 2W such that

.A��� � id/v D .A�� � id/w D .A��� � id/w;

which implies
.A�� � id/�.v�w/D 0:

Again using the fact that A� � � id is bijective, we conclude that .A� � � id/� is
bijective and hence

v D w 2W:

It follows that A is self-adjoint with dom.A/DW .
If A is self-adjoint, then both defect indices are zero (see for example [Kato

1976, Theorem V.3.16]) so that .ii/) .iii/.
We show that .iii/) .iv/. Assume that d�.A/ is zero, that is, AC�i �id WW C!

H C is invertible. Since the inclusion �WW !H is compact, the operator

R WD � ı .AC
� i � id/�1

WH C
!H C

is compact. In particular, its spectrum �.R/ consists of eigenvalues, the only ac-
cumulation point in �.R/ is zero, and the eigenspace for each eigenvalue except
zero is finite dimensional. Let � 2 C n fig. Then the following relations hold for
the ranges

R.AC
� � � id/DR�1R

�
R�

1

� � i
� id
�

and the kernels

ker.AC
� � � id/D ker

�
R�

1

� � i
� id
�
:

In particular, we have a bijection

�.R/ n f0g ! �.AC/; � 7!
1

�
C i

between the spectra under which the corresponding eigenspaces do not change,
that is, for every � 2 �.R/ n f0g the eigenspaces satisfy

E�.R/DE1=�Ci.A
C/�H:

We conclude that the spectrum of A consists of discrete eigenvalues of finite mul-
tiplicity, which are real because A is symmetric. A similar argument holds for the
case that dC.A/ is zero. This shows that (iii) implies (iv).

That .iv/) .i/ is obvious. �

Assume in addition that V is a finite dimensional Hilbert space. Let A 2

S.W;H / be as before and B 2L.V;H / be a bounded linear operator. We denote
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by ABWW ˚V !H ˚V the bounded symmetric operator defined by

AB.w; v/D .AwCBv;B�w/:

Lemma C.2. The operator AB is in S.W ˚V;H ˚V /.

Proof. We have to show that AB is self-adjoint. This is true if BD 0. For arbitrary
B this follows from Theorem V.4.3 in [Kato 1976]. �

In the following orthogonality is always understood with respect to the inner
product of H and never with respect to the inner product of W .

Definition C.3. Let A2S.W;H /, and B 2L.V;H /. We say that the tuple .A;B/
is regular if:

(i) B is injective and R.B/�W .

(ii) A maps R.B/ to itself and the restriction yA WDAjR.B/ is bijective.

A regular pair .A;B/ gives rise to the symmetric operator

SA;B WD B� yA�1B

on V whose signature we denote by

(73) �.A;B/D sign.SA;B/:

We now consider maps AWR! S.W;H / and BWR!L.V;H / which are contin-
uous with respect to the norm topology such that the limits

lim
s!˙1

A.s/DA˙; lim
s!˙1

B.s/D B˙

exist and A˙ 2 S.W;H /. We then define the map ABWR! S.W ˚ V;H ˚ V /

by
AB.s/ WDA.s/B.s/; s 2 R:

Denote by
ADA.R;W;H /

the space of maps AWR!S.W;H / as above, which in addition satisfy that A˙ is
bijective. Recall the following theorem of Robbin and Salamon about the existence
of the spectral flow [Robbin and Salamon 1995, Theorem 4.23].

Theorem C.4. There exist unique maps �WA.R;W;H /! Z, one for every com-
pact dense injection of Hilbert spaces W ,!H , satisfying the following axioms.

(1) (Homotopy) � is constant on connected components of A.R;W;H /.

(2) (Constant) If A is constant, then �.A/D 0.

(3) (Direct sum) �.A1˚A2/D �.A1/C�.A2/.

(4) (Normalization) For W DH D R and A.t/D arctan.t/, we have �.A/D 1.
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The number �.A/ is called the spectral flow of A.

These axioms easily imply the following generalization of the normalization
axiom:

� (Crossing) For W DH finite dimensional,

�.A/D
1

2

�
sign.AC/� sign.A�/

�
:

To define the spectral flow also for maps A whose limits A˙ are not necessarily
bijective we choose a smooth cutoff function ˇ2C1.R; Œ�1; 1�/ such that ˇ.s/D1

for s � 1 and ˇ.s/D�1 for s � �1 and define

(74) Aı.s/ WDA.s/� ıˇ.s/id; �.A/ WD lim
ı&0

�.Aı/:

Note that the limit in �.A/ stabilizes for sufficiently small ı > 0.

Theorem C.5. Let AWR! S.W;H / and BWR! L.V;H / be continuous maps
whose limits lims!˙1A.s/DA˙ and lims!˙1B.s/DB˙ exist. Assume more-
over that .A˙;B˙/ are regular pairs. Then the spectral flows of A and AB are
related by

�.AB/D �.A/C
1

2

�
�.A�;B�/� �.AC;BC/

�
:

Proof. Choose two cutoff functions ˇ˙ 2 C1.R; Œ0; 1�/ with the property that
ˇC.s/D 1 for s � 1, ˇC.s/D 0 for s � 0, ˇ�.s/D 1 for s � �1, and ˇ�.s/D 0

for s � 0. Define SA;B 2A.R;V;V / by

SA;B.s/D ˇ
C.s/SAC;BC Cˇ

�.s/SA�;B� :

Abbreviate PV WH ˚ V ! V the canonical projection. We prove the theorem in
three steps.

Step 1. If ı > 0 is small enough then .AB/ı is homotopic in A.R;W;H / to
.Aı/B � ıP

�
V

SA;BPV .

To see this, we first compute

.AB/ı.w; v/D .AwCBv� ıˇw;B�w� ıˇv/;

.Aı/B.w; v/D .AwCBv� ıˇw;B�w/;

.AB/ı.w; v/� .Aı/B.w; v/D .0;�ıˇv/;

thus .AB/ı D .Aı/B � ıˇP
�
V

PV . We will show that for ı > 0 sufficiently small
and symmetric linear maps S˙ 2L.V / whose norm is small enough the operators
.A˙
ı
/B˙ CP�

V
S˙PV are bijective; applying this to S˙ D�.1� t/ı � id� tıS˙

A;b

for t 2 Œ0; 1� then proves Step 1.
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By Theorem V.4.3 in [Kato 1976] the operators .A˙
ı
/B˙ CP�

V
S˙PV are self-

adjoint with dense domain W ˚V , hence by Lemma C.1 their spectrum consists
of eigenvalues. Thus it suffices to show injectivity. Let .w; v/ 2W �V be in the
kernel of .A˙

ı
/B˙ CP�

V
S˙PV . Then .w; v/ solves

(75)
�
.A˙� ı � id/wCB˙v D 0

.B˙/�wCS˙v D 0

which is equivalent to

(76)
�

w D�.A˙� ı � id/�1B˙v

�.B˙/�.A˙� ı � id/�1B˙vCS˙v D 0:

But .B˙/�.A˙�ı � id/�1B˙ converges to the nondegenerate linear map SA˙;B˙

as ı goes to zero, and hence the second equation in (76) has only the trivial solution
v D 0 if the norm of S˙ is small enough and hence .w; v/ D .0; 0/. This shows
injectivity and hence the assertion of Step 1 follows.

Step 2. For ı > 0 small enough and � 2 Œ0; 1� the maps .Aı/�B � ıP�V SA;BPV are
in A.R;W ˚V;H ˚V /, that is, their asymptotics are bijective.

Step 2 follows by a similar reasoning as Step 1. Assume that .w; v/ 2W ˚V

lies in the kernel of one of the asymptotic operators. Then .w; v/ solves�
w D��.A˙� ı � id/�1B˙v

��2.B˙/�.A˙� ı � id/�1B˙v� ıSA˙;B˙v D 0:

The second equation has the form

�.�2
C ı/CıvCDıv D 0

with CıD .B
˙/�.A˙�ı �id/�1B˙, which is invertible for all sufficiently small ı,

and an operator Dı of order ı2. For � 2 Œ0; 1� and sufficiently small ı0 this equation
has only the trivial solution v D 0, thus .w; v/D .0; 0/ and Step 2 follows.

Step 3. We prove the theorem.

Using the properties of the spectral flow from Theorem C.4 we are now in po-
sition to compute

�
�
.AB/ı

�
D �

�
.Aı/B � ıP

�
V SA;BPV

�
D �

�
.Aı/0� ıP

�
V SA;BPV

�
D �.Aı˚�ıSA;B/D �.Aı/C�.�ıSA;B/

D �.Aı/C
1
2

�
�.A�;B�/� �.AC;BC/

�
:

Here we have used Step 1 for the first equality, Step 2 for the second one, and
the (crossing) property of � for the last one. Taking the limit ı& 0 the theorem
follows. �
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There are scenarios where the signature �.A;B/ can easily be computed. We
formulate such an example for a Lagrange multiplier functional on a finite dimen-
sional manifold which can easily be generalized to infinite dimensional cases.

Lemma C.6. Let .M;g/ be a Riemannian manifold and let f; h 2 C1.M / be
such that 0 is a regular value of h. Let .x0; v0/ be a critical point of the Lagrange
multiplier functional F 2C1.M �R/ given by F.x; v/D f .x/Cvh.x/. Assume
that there exists � > 0 and a smooth curve .x; v/ 2C1

�
.��; �/;M �R

�
satisfying

.x.0/; v.0//D .x0; v0/ such that the following holds:

(i) @�x.0/Drh.x0/.

(ii) @�v.0/¤ 0.

(iii) .x.�/; v.�// for �2 .��; �/ is a critical point of the Lagrange multiplier func-
tional F� 2 C1.M �R/ given by F�.x; v/ WD f .x/C v � .h.x/� �/.

Then the pair .HessFv0
.x0/;rh.x0// is regular in the sense of Definition C.3 and

its signature is

�
�

HessFv0
.x0/;rh.x0/

�
D�sign

�
@�v.0/

�
:

Proof. The identity dF�
�
x.�/; v.�/

�
D 0 for � 2 .��; �/ is equivalent to

(77)
�

df
�
x.�/

�
C v.�/ � dh

�
x.�/

�
D 0

h
�
x.�/

�
D �:

The first equation in (77) can be written as

rf
�
x.�/

�
C v.�/ � rh

�
x.�/

�
D 0:

Differentiating this identity with respect to � and evaluating at �D 0 we compute
using assumption (i)

0D Hessf .x0/@�x.0/C v0 Hessh.x0/@�x.0/C @�v.0/rh.x0/

D HessFv0
.x0/rh.x0/C @�v.0/rh.x0/:

More specifically, rh.x0/ is an eigenvector of HessFv0
to the nonzero eigenvalue

�@�v.0/.
It is now straightforward to check that the pair .HessFv0

.x0/;rh.x0// is regular.
Condition (i) in Definition C.3 follows from the assumption that 0 is a regular value
of h and thus rh.x0/ ¤ 0. Since rh.x0/ is an eigenvector of the Hessian to a
nonzero eigenvalue, condition (ii) is satisfied as well.
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To compute the signature we calculate

�
�

HessFv0
.x0/;rh.x0/

�
D sign

�
dh.x0/bHessFv0

.x0/
�1
rh.x0/

�
D sign

�
�
krh.x0/k

2

@�v.0/

�
D�sign

�
@�v.0/

�
: �

Appendix D: Some topological obstructions

During the first author’s talk at the Workshop on Symplectic Geometry, Contact
Geometry and Interactions in Lille 2007, E. Giroux suggested that in the case nD2,
Corollary 1.7 results from the following topological fact.

Lemma D.1. There exists no smooth embedding of S�S2ŠRP3 into a subcritical
Stein surface.

Right after the talk, participants suggested the following three proofs of this
fact. Note that every subcritical Stein surface is C2 or a boundary connected sum
of copies of S1�R3, which embeds smoothly into R4; thus for the lemma it suffices
to prove that RP3 admits no embedding into R4.

Proof 1 (V. Kharlamov). This proof is based on the following theorem of Whitney
(see for example [Massey 1969]): The Euler number e.†/2Z of the normal bundle
of a closed connected nonorientable surface † embedded in R4 satisfies e.†/ �

2�.†/ mod 4. Now suppose we have an embedding RP3 � R4. Then the normal
Euler number of the linear subspace RP2 �RP3 �R4 satisfies e.RP2/� 2 mod
4. But a nonvanishing normal vector field to RP3 in R4 (which exists because RP3

is orientable) provides a nonvanishing section of the normal bundle of RP2 �R4,
contradicting nontriviality of e.RP2/. �

Proof 2 (T. Ekholm). This proof is based on a theorem of Ekholm [2001]: The Euler
characteristic of the (resolved) self-intersection surface of a generic immersion of
S3 to R4 has the same parity as the number of quadruple points. Now suppose
we have an embedding RP3 � R4. Composition with the covering S3 ! RP3

yields an immersion of S3 to R4 which can be perturbed (via a normal vector
field to RP3 vanishing along RP2) to have self-intersection surface RP2 and no
quadruple points, contradicting Ekholm’s theorem. �

The third proof, suggested by P. Lisca, yields in fact the following more general
result:

Proposition D.2. For n � 2 even there exists no smooth embedding of S�Sn into
a subcritical Stein 2n-manifold.

Proof 3 (P. Lisca). Suppose we have an embedding S�SnŠ†� V into a subcrit-
ical Stein 2n-manifold V for n� 2 even. From H2n�1.V IZ/D 0 it follows that †
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bounds a compact subset B�V . Denote by C the closure of V nB, so V DB[†C .
Since n is even, the Gysin homology sequence of the sphere bundle S�Sn! Sn

shows Hn.S
�SnIZ/D0 and Hn�1.S

�SnIZ/DZ2. Using this and Hn.V IZ/D0,
the Mayer–Vietoris sequence for V DB[†C implies Hn.BIZ/DHn.C IZ/D 0.
Let X WD D�Sn [† B be the closed oriented 2n-manifold obtained by gluing
the unit disk cotangent bundle D�Sn (with orientation reversed) to B along †.
Again by the Mayer–Vietoris sequence, we find that the free part Hn.X IZ/=torsion
is isomorphic to Z and the zero section Sn � D�Sn is a generator or twice a
generator. But for n even the zero section Sn has self-intersection number 2 in
D�Sn, hence �2 in X . This is impossible if the zero section is twice a generator
of Hn.X IZ/=torsion, and if it is a generator this contradicts unimodularity of the
intersection form (which is an immediate consequence of Poincaré duality). �

Remark. The fact that S�S2 has no exact contact embedding into a subcritical
Stein surface V can also be proved symplectically as follows, using a deep result by
Gromov about holomorphic fillings. First note that every subcritical Stein surface
admits an exact symplectic embedding into R4. (A subcritical Stein domain of
complex dimension 2 is either B4 or the boundary connected sum of k � 1 copies
of S1 �B3, which can be realized as a Stein domain in C2 using the techniques
in [Eliashberg 1990]; see also [Gompf 2005].) Thus it suffices again to consider
the case V D R4.

Suppose there exists an exact contact embedding � WS�S2 ,!R4. Removing the
bounded component of R4n�.S�S2/ and gluing in the unit ball bundle D�S2 yields
an exact convex symplectic manifold W which contains an embedded Lagrangian
2-sphere (the zero section in D�S2). On the other hand, W is symplectomorphic
to R4 outside compact set. So a result of Gromov [1985] implies that W is in fact
symplectomorphic to R4. But this is a contradiction because R4 does not admit
any embedded Lagrangian 2-spheres.

Remark. We have not investigated obstructions to smooth embeddings of S�Sn

into subcritical Stein manifolds for n odd. As pointed out in the introduction, at
least for n D 3 and n D 7 there are no obstructions and S�Sn embeds smoothly
into Cn.

Appendix E: Cylindrical contact homology

In this appendix we collect known results on the cylindrical contact homology of
.S�Sn; �st/ and the boundaries of subcritical Stein domains. In the latter case we
have:

Theorem E.1 (M.-L. Yau [2004]). Let V be a subcritical Stein domain of di-
mension 2n � 4 with c1.V / D 0, and let �subcrit be the contact structure on @V
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given by the maximal complex subspaces. Then the cylindrical contact homology
of .@V; �subcrit/ is well-defined and given by

HC
cyl
� .M; �subcrit/Š

M
k2N

Hn�1��C2k.V IQ/:

Here (and throughout this appendix) cylindrical contact is taken with Q-coeffi-
cients and graded by Conley–Zehnder indices. Applying this result to the subcrit-
ical Stein domain BnC1 �Sn�1 we find:
For n even,

HC
cyl
� .S

n
�Sn�1; �subcrit/Š

8̂<̂
:

Q � � nC 1 odd,

Q � � 2 even,

0 else.

For n odd,

HC
cyl
� .S

n
�Sn�1; �subcrit/Š

8̂<̂
:

Q˚Q � � nC 1 even,

Q 2� � � n� 1 even,

0 else.

In particular, for nD 3 and nD 7 we obtain:

HC
cyl
� .S

3
�S2; �subcrit/Š

8̂<̂
:

Q˚Q � � 4 even,

Q � D 2;

0 else,

HC
cyl
� .S

7
�S6; �subcrit/Š

8̂<̂
:

Q˚Q � � 8 even,

Q � D 2; 4; 6;

0 else.

Next we consider the unit cotangent bundle .S�Sn; �st/ with its standard contact
structure. As noted in Section 4, the Morse index of a k-fold covered closed geo-
desic for the round metric on Sn equals .2k � 1/.n� 1/. The following lemma is
well known.

Lemma E.2. For each k 2N the space of k-fold covered (unparametrized) closed
geodesics is diffeomorphic to the complex quadric Qn�1 � CPn and has the fol-
lowing homology:
For n even,

H�.Qn�1IQ/Š

(
Q 0� � � 2.n� 1/ even,

0 else.
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For n odd,

H�.Qn�1IQ/Š

8̂<̂
:

Q˚Q � D n� 1;

Q 0� � � 2.n� 1/ even, � ¤ n� 1;

0 else.

By a Morse–Bott argument, the complex for cylindrical contact homology is
generated by elements of degrees .2k � 1/.n� 1/C dj , k 2 N, where dj are the
degrees of generators of H�.Qn�1IQ/. Since the homology of Qn�1 lives in even
degrees, it follows that all generators have odd (if n is even) respectively even (if n

is odd) degrees. So the boundary operator is zero and cylindrical contact homology
is freely generated by elements of degrees .2k � 1/.n� 1/C dj , k 2 N. Now a
short computation yields:
For n even,

HC
cyl
� .S

�Sn; �st/Š

8̂<̂
:

Q˚Q � D k.n� 1/; k � 3 odd,

Q � � n� 1 odd, � ¤ k.n� 1/ for odd k � 3,

0 else.

For n odd,

HC
cyl
� .S

�Sn; �st/Š

8̂<̂
:

Q˚Q � D k.n� 1/; k � 2;

Q � � n� 1 even, � ¤ k.n� 1/ for k � 2;

0 else.

In particular, for nD 3 and nD 7 we obtain:

HC
cyl
� .S

�S3; �st/Š

8̂<̂
:

Q˚Q � � 4 even,

Q � D 2;

0 else,

HC
cyl
� .S

�S7; �st/Š

8̂<̂
:

Q˚Q � D 6k; k � 2;

Q � � 6 even, � ¤ 6k for k � 2;

0 else.

Together these computations show:

Corollary E.3. The contact structures �st and �subcrit on S�S3ŠS3�S2 have iso-
morphic cylindrical contact homology, while the contact structures �st and �subcrit

on S�S7 Š S7 �S6 have nonisomorphic cylindrical contact homologies.
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