COMPACTNESS FOR PUNCTURED HOLOMORPHIC
CURVES

K. CIELIEBAK AND K. MOHNKE

Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder recently proved
a general compactness result for moduli spaces of punctured holomor-
phic curves arising in symplectic field theory. In this paper we present
an alternative proof of this result. The main idea is to determine a pri-
ori the levels at which holomorphic curves split, thus reducing the proof
to two separate cases: long cylinders of small area, and regions with
compact image. The second case requires a generalization of Gromov
compactness for holomorphic curves with free boundary.

1. Introduction

In this paper we prove the following compactness result for holomorphic
curves under the splitting of a symplectic manifold along a stable hyper-
surface. See Section 2 for all the definitions.

Theorem 1.1. Let (X,w,J) be a closed symplectic manifold with a tamed
almost complex structure. Let M C X be a closed stable hypersurface on
which all closed Reeb orbits are Morse—Bott non-degenerate. Let Ji be the
sequence of almost complex structures obtained by stretching the neck along
M. Let fr : (g, k) = (X, Ji) be a sequence of holomorphic curves of the
same genus such that the areas fEk frw are uniformly bounded. Then a sub-
sequence of (fi) converges to a stable broken holomorphic curve F.

Here the notion of convergence includes the following:

e convergence of the underlying Riemann surfaces to a decorated nodal
curve;



e uniform convergence of maps (after reparameterizations) that is smooth
outside some collection of simple loops;
e convergence of areas and of homology classes.

This notion of convergence is relevant in symplectic field theory [5]. An
analogous compactness theorem was proved by Bourgeois et al. [3]. In fact,
Theorem 1.1 is only formulated for a closed manifold X instead of a general
symplectic cobordism. This special situation was chosen in order to keep
the notation simple and because it naturally arises in applications, e.g., [4].
Moreover, all the essential features are already present in this situation and
the proof immediately generalizes to a general symplectic cobordism, see
Remark 2.15.

So why bother to present a new proof of the result in [3]7 In fact, we
had developed the ideas for the present paper (in the contact case) before
[3] became available. It then became clear that our proof is orthogonal to
the one in [3]. Roughly speaking, the proof in [3] focuses on the domains,
ignoring the level structure in the image (and reconstructing it a posteriori),
while our proof focuses on the level structure in the image, ignoring the
domains (and reconstructing them a posteriori). More technically, the proof
in [3] is based on repeated bubbling off analysis at points where the gradient
explodes, while our proof follows the strategy of Gromov’s proof [6] in the
closed case. Analyzing changes of action and topology of sub-level sets, we
determine a priori the levels at which splitting occurs. This reduces the proof
to two separate cases: long cylinders of small area and regions with compact
image. The first case also arises in [3] and we quote the main technical
result in Section 4. The second case requires the following generalization of
Gromov compactness to holomorphic curves with free boundary, which is
proved in Section 3 (the precise statement is Theorem 3.2).

Theorem 1.2. Let fi : (Zg,Jk) — (X, J) be a sequence of holomorphic
curves defined on compact surfaces with boundary of the same genus and with
the same number of boundary components. X is not necessarily closed here.
Suppose that the areas are uniformly bounded and the images are contained
mn a compact subset. Moreover, suppose that the boundary circles have dis-
joint collars whose modulus is uniformly bounded below by a sufficiently large
constant and the differentials of fr on these collars are uniformly bounded
below and above. Then a subsequence of (fi) converges to a nodal holo-
morphic curve.

A similar situation was considered in [11]. The point here is that the
convergence is up to the boundary and no area nor topology is lost.

This paper was originally restricted to the case that the hypersurface
M is of contact type and separates X into two components. Following the
referee’s suggestion, we subsequently rewrote the paper to accommodate the
general situation of a stable hypersurface considered in [3].



2. Statement of the compactness theorem

2.1. Hamiltonian structures. Let M be a (2n — 1)-dimensional closed
manifold. A Hamiltonian structure is a closed 2-form wps of (maximal) rank
n — 1 on it. This implies that the kernel Ker(wys) = {v € T, M | wps(v,-) =
0} is a one-dimensional subspace of T,,M for all z € M. We will call it the
Hamiltonian line field. Such a form wjs is said to be stable if there exists a
I-form A on M with Ker(wps) C Ker(dA) while A[ker(w,,) # 0 everywhere.
Notice that the form wys + d(r)) is a symplectic form on (—e,e) x M, with
r € (—e,¢) for € > 0 so small that r d\ 4+ wy; is non-degenerate on Ker(\)
for |r| < e.

Example 2.1. Let A € Q'(M) be a contact 1-form. Then dX is of maximal
rank and thus defines a Hamiltonian structure.

2.2. Reeb vector field. In particular, A uniquely determines a section of
the Hamiltonian line field, R, by the condition A(R) = 1 which we will refer
to as the Reeb vector field. A closed orbit v of the Reeb vector field is called
non-degenerate if the linearized return map on a transverse section has no
eigenvalue 1. The closed Reeb orbits are called Morse-Bott non-degenerate
in the sense of [2, 3] if the following holds: For all T' > 0, the set N C M
formed by the T-periodic Reeb orbits is a closed submanifold, the rank of
d\|n;, is locally constant, and TNy = ker(Tp¢r — 1) for all p € Np, where
¢y is the Reeb flow. Note that the case dim N7 = 1 corresponds to non-
degeneracy of closed Reeb orbits. We will refer to this case as the Morse
case.

2.3. Stable hypersurfaces. A hypersurface in a symplectic manifold is
called stable if the restriction of the symplectic form is a stable Hamiltonian
structure.

Example 2.2. If the Hamiltonian structure of the hypersurface is defined
by a contact form A, i.e., w|pr = d\, we call it a hypersurface of contact type.

The name “stable” is explained by the following.

Lemma 2.3. For a closed hypersurface M in a symplectic manifold (X, w),
the following are equivalent:

(a) M isstable in the sense of [10], i.e., there exists a tubular neighborhood
(—e,e) x M of M = {0} x M such that the Hamiltonian line fields on
{r} x M are conjugate for all r € (—¢,¢).

(b) There exists a vector field Y transverse to M such that ker(w|pr) C
ker(Lyw|ar).

(¢) (M,wyr :=wl|ar) is a stable Hamiltonian structure.



Proof.

(a) = (b): Let (—e,e) x M be a tubular neighborhood such that
ker(w|(yxar) is independent of 7. Set YV := % on (—e,e) x M and denote
by ¢¢ : (r,x) = (r+t, ) its flow. Then ker(¢;w|o1xas) is constant in ¢ and
differentiation at ¢ = 0 yields ker(w|ys) C ker(Lyw|p).

(b) — (C): Set A := iyw|M.

(¢) = (a): The closed 2-form

Wi=wy +d(rA) =wp +dr AN+ rdA

is symplectic on (—¢,¢&) x M for ¢ sufficiently small. Its kernel ker(@| 1 r)
contains the Reeb vector field R and is thus independent of r € (—¢,¢). By
the coisotropic neighborhood theorem, a neighborhood of M in (X,w) is
symplectomorphic to ((—6,6) X M,d}). O

2.4. Symplectic cobordisms. A symplectic cobordism is a compact
symplectic manifold (X,w) with stable boundary 0X = M II M. Here
we allow one or both of M,M to be empty. A connected component
M of the boundary belongs to M if its collar is symplectomorphic to
((—&,0] x M,w|p + d(rA)) and to M otherwise. Notice that this specifi-
cation depends on the choice of A and can be reversed by replacing A by
—X. Let X be the manifold obtained by gluing Ry x M and R_ x M to
X identifying the corresponding components of the boundary. X is diffeo-
morphic to X, obtained by gluing [0,2) x M and (—¢,0] x M to X instead of
the infinite cylinders. On the collars of the boundary components, we have
w = wpr + d(r\). For € small enough we can thus extend the symplectic
structure to X, and obtain a symplectic structure on X which will control
the almost complex structure introduced below. We usually refer to X as the
symplectic cobordism with positive end R, x M and negative end R_ x M
although the symplectic structure on it is not determined by w on X. We
will not need to specify it nor should we due to the character of the control
by Hofer’s energy. Obvious examples of symplectic cobordisms are closed
symplectic manifolds and cylinders over manifolds with stable Hamiltonian
structures.

2.5. Almost complex structures.Let (M,wp;) be a Hamiltonian
structure. Let J be a translation invariant almost complex structure on
the cylinder R x M. Denote by A € Q'(M) the 1-form which is uniquely
determined by 73,A(J(9/0r)) = 1 and A¢ = 0 for the CR-structure
E:=T{0} x M)NJ(T({0} x M)).

We call J tamed by wyy if

e J(0/0r) = R is a vector field on M,
L wM(R7 ) = 07

o d\(R,") = 0;

e wy(v,Jv) >0 for all v € €.



Notice that A(R) = 1 by the definition of A and the first requirement.
The existence of such structure implies that wjs is stable. Note that there
exists an € > 0, such that (was + rdX)(v, Jv) > 0 for all v € § and |r| < e.
There also exists a (possibly smaller) € > 0 such that (wps +rdA) (v, Jv) > 0
for allv € T(R x M) and |r| <e.

An almost complex structure on a symplectic cobordism (X,w) is called
tamed if it is equal to a structure on the cylinders R x X tamed by w|, g on
the cylindrical ends and w(v, Jv) > 0 for allv € TX. Tamed almost complex
structures exist and form a contractible space J (with the C* topology).

2.6. Punctured holomorphic curves. Consider an almost complex struc-
ture Jy; on R x M which is tamed by a stable Hamiltonian structure wjy.
Let A be the corresponding 1-form. Let v : [0,7] — M be a (not necessarily
simple) closed orbit of the Reeb vector field R of period T'. A J-holomorphic
map f = (a,u) : D\O — R x M of the punctured unit disk is called positively
(resp. megatively) asymptotic to 7 if lim, o a(pe’’) = oo (resp. —o0) and
lim,—y0 u(pe®) = (T9/27) (vesp. lim,—ou(pe®) = v(=T6/27)) uniformly
in 6.

Now let (X,w) be a symplectic cobordism with tamed almost complex
structure J. A punctured holomorphic curve in (X, J) consists of the follow-
ing data:

e A Riemann surface (X, j) with distinct positive and negative points
Z:=(Z1,...,%p), 2:= (21, .-, 2p). We denote by ¥* := ¥\{Z;, 2,} the
corresponding punctured Riemann surface.

e Corresponding vectors I' := (... p), L= (11, . 71;;) of closed

Reeb orbits in M, M.
e A (4, J)-holomorphic map f: ¥* — X which is positively (resp. nega-
tively) asymptotic to 7, (resp. lj) at the punctures z; (resp. z;).

In a symplectization R x M, a cylinder over a T-periodic Reeb orbit ~
R
f:RxZ—HRxM, (s.t) = (Ts,y(Tt))

is a punctured holomorphic curve with one positive and one negative
puncture.

Denote by 3 the compactification of the punctured surface ¥£* by adding
a circle at each puncture, and abusing notation by X the compactifica-
tion of the manifold X by adding a copy of M resp. M at the positive
resp. negative end. The latter space is indeed diffeomorphic to the original
symplectic manifold with boundary. In view of the behavior near the punc-
tures, the holomorphic map f : ¥* — X above extends to a continuous map
f: ¥ — X. This extension represents a relative homology class

[f] € HZ(X7FU£)'



2.7. Neck stretching. Consider a closed connected symplectic manifold
(X,w) and a closed stable hypersurface M C X. Let A be the correspond-
ing 1-form on M and wys := w|y. Fix a parameterization of a bi-collar
neighborhood by [—¢,¢] x M on which w = wys + d(rA). Pick a tamed
almost complex structure J on (X, w), i.e., w(X,JX) > 0 for any X € TX.
Suppose its restriction Jys to [—¢,¢] X M is the restriction of an wy—tamed
structure on R x M with A\; = A

Define a sequence of symplectic manifolds as follows. Denote by Xg :=
X\(—¢,€) x M the manifold with boundary 9Xo = M, [[ M_, where M_ :=
{—e} x M and M, := {e} x M. For an integer k > 0, let

Xi = XoUn_tim, ([—k —e,e] x M)

where M_ is identified with {—k — ¢} x M while M, is identified with
{e} x M. This manifold is, of course, canonically diffeomorphic to X, but
X} is a more convenient domain for describing the deformed structures.
Define an almost complex structure on Xj by

[ J on Xo,
T Iy on [k — e, €] x M.

This almost complex structure is tamed by the symplectic form on Xj
given by

o w on)_((),
* 7 Ywn +d(oN) on [k —¢,e] x M,

where ¢ : [—k —e,e] = [—¢,¢] is a diffeomorphism with ¢’ = 1 near the end
points of the interval. Note that the cohomology class [wy] does not depend
on the choice of such a function ¢. As k — oo, an observer in X will see
either one of the following symplectic cobordisms arising as a limit: one of
the connected components of Xy (X completed with half cylinders over M
at their boundary components) or R x M. The almost complex structures
will converge to tamed ones on all of these cobordisms, wy;—tamed on the
ends and translation invariant on R x M. The symplectic forms, however,
will only converge in a certain sense if we carefully choose a sequence (¢y) of
such functions. Moreover, there is no canonical choice of symplectic forms
in the limit.

Example 2.4 [The contact case]. Let us consider the case that M C X is a
hypersurface of contact type and that M separates X into two components
Xo = )_(aL II Xo_ . In this case, we can define another sequence of symplectic
structures wy by setting

w on X,
wr = d(e"\) on [—k,0] x M,
e *w  on X, .



Here we use a slightly different symplectic identification of a neighborhood
of M with ([log(1 — ¢),log(1 + ¢)] x M,d(e"X)). The results of the present
paper were originally restricted to this case. This explains why all our figures
show this feature.

In contrast to the general case, here the limits are equipped with natural
symplectic structures: Each cylinder R x M is equipped with the symplectic
form d(e"\), and Xg = Xg' IT Xy is equipped with the symplectic forms
w* on X satistying w® = w on X7 and w® = d(e"\) on Ry x M. Notice
that to “see” these symplectic structures on R x M and X in the limit,
the observer has to rescale them. For example, w™ is obtained as the limit
of eFwy, on compact subsets of X, -

2.8. Broken holomorphic curves. We will now describe the limiting
objects of sequences of Ji-holomorphic curves in the neck stretching pro-
cedure. We retain the setup of the preceding section. Assume for simplicity
that M is connected; see Remark 2.14 at the end of this section for the
modifications required in the disconnected case.

Given an integer N > 1, we set

(X(V) J(V)) — (XO,J) fOI' V= O,N + 1
’ ) (Rx M, Jy) forv=1,...,N.
Define the disjoint union
N
X =xOnu[x",
v=1

equipped with the almost complex structures J* induced by the J®). Glue
the positive boundary component of the compactification X®) (by copies

of M) to the negative boundary component of X (#+1) to obtain a compact
topological space X.

Note that X is naturally homeomorphic to X (see the proof of Lemma 2.6
for a particular homeomorphism), so we can identify homology classes in X
and X. The natural inclusion X* C X is dense. Its complement consists of
a finite number of disjoint copies of M.

Let ¥ be a closed oriented surface, z = (z!,..., 29) € ¥ ¢ distinct points,
and A = A, UA, C S\ {z!,...,29} a collection of finitely many disjoint
simple loops divided into two disjoint sets. Denote by 3 the surface obtained
by collapsing the curves in A, to points. This way we think of A,, as the set
of nodes of ¥. The points 2!, ..., 2¢ will usually be referred to as marked
points. Write

N
T =3\A, = 2O n 5%,
v=1



as a disjoint union of (not necessarily connected) components ). Let j be
a conformal structure on ¥\ A such that (X\A,j) is a punctured Riemann
surface together with an identification of distinct pairs of punctures given
by the elements of A. This gives ¥* the structure of a nodal punctured
Riemann surface with a remaining identification of punctures given by the
loops {6'}ier = Ap. A broken holomorphic curve (with N + 1 levels)

F=FOD FO  FWMY (2 5) = (X*, T

is a collection of punctured holomorphic curves F*) : () j) — (X®), J®))
such that F : ¥* — X* extends to a continuous map F : ¥ — X. Moreover,
we require that F is stable: For 1 <v < N, F ) is not the union of cylinders
over closed Reeb orbits without any marked points on them. Moreover, >*
does not contain any sphere with less than three special points (punctures,
nodal or marked points), nor a torus without special points, on which F is
constant.

See Figure 1 for the case N = 2 and X = X II X consisting of two
connected components Xt and X~. In this case, we denote by Xio), Fio)
the sets and maps which belong to either side of M.

Note that, by continuity of F, the number of positive punctures of F @)
agrees with the number of negative punctures of F’ +1) and the asymptotic

Reeb orbits at the punctures agree correspondingly: ™ = r+n.

Remark 2.5. Every broken holomorphic curve has an underlying graph.
Its vertices are the connected components of ¥*, and each loop §° defines
an edge between the corresponding components. Note that if ¥ has genus
zero, the underlying graph is a tree. See Figure 1 for a genus three case.

Pick a homeomorphism @ : X — X which is the identity on X\(—z,¢) x M
and of the form (r,z) € R x M — (¢(r),z) on the cylindrical parts, where
the homeomorphism

¢ [_Ea OO] Utoo [—OO, OO] Utoo " Utoo [—OO, 5] — [_578]

is a diffeomorphism outside the points 00 and ¢(r) = r near +e. Denote
by #) the restriction to the union of the first and last interval if ¥ = 0 and
to the (v+ 1)st interval if v = 1,..., N. Note that ®*w defines a symplectic
form wg on X* which is of the form wys + d(¢A) on the cylindrical part.
Moreover, the continuous map ®o F : ¥ — X represents the homology class
A€ H, (X; Z)

Lemma 2.6. The homology class A := [F] € Ho(X;Z) of a non-constant
broken holomorphic curve F : (¥*,5) — (X*, J*) satisfies

(], A) = /E*@OF)*W _ /E Frwy > 0,

In particular, the integral of wy does not depend on the choice of ¢.
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Figure 1. A broken holomorphic curve of genus 3 in the
setting Xo = X II X .

Proof. We first note that ®*w is tamed by J*. Hence

/*(QOF)*wz/*F*w¢>O

for every non-constant broken holomorphic curve F' : (¥*,j) — (X*, J%).

For the proof of the equality, we first describe a situation were
Stokes’ theorem holds which is maybe well-known but included for sake of
completeness.

2.9. Claim. Let F': C' — M be a continuous map from a smooth compact
manifold C with boundary OC' = B to another smooth manifold M. Suppose
that Flintc and F|p are smooth and there exists an exhaustion C; C Cy C



-+ C int C, where C; are smooth manifolds with boundaries B;, together
with diffeomorphisms ¢; : B — B; C C such that Foy; — F|p in C'. Then
Stokes’ theorem holds, i.e., for any k-form A on M, k = dim C — 1, we have

/ d(F*)\)z/ F
int C B

whenever the integrand of the left-hand side is absolutely integrable.
Using the standard form of Stokes’ theorem the proof is very simple. Since
the C; are smooth manifolds, we have

/F*d/\:/ F*\.
C; B;

Now by assumption, both sides converge to the corresponding expressions
of the claim.

Turning back to the proof of the lemma, note that in view of the asymp-
totic behavior of the F(*) the assumptions of the claim are satisfied. More-
over, in some small neighborhood N®) of the corresponding set of Reeb
orbits TV = T+ the form wy, is exact, i.e., there is a 1-form a®) on N®)
with da”) = wys| v . For R sufficiently large fg) = FO(2®)n ({R} x
M) C N consists of as many loops as ) and each of them is C'-
close to the corresponding Reeb orbit. Analogously, Lg) = F (V)(E(V NN
({=R} x M) ¢ NV is a set of loops which is C'-close to I*). Now
73%”) = (F("))_l(fg)) and 12’) = (F(V))_I(Lg)) are small simple loops
around the corresponding positive and negative punctures, respectively. The
region between ﬁg) and Zgﬂ) in ¥ consists of a disjoint union A®) of annuli
bounded by one component of each set. So we can deform F to a smooth
map F : ¥ — X (Le., ® o F is smooth) which agrees with F outside these
annuli and maps cach A®) into the corresponding neighborhood N®). Now
by the claim above,

[ s = [ (5) (o0 o)

<[ () o),

since the integrals over the common boundaries of the annuli cancel each
other. But the integrals on the right-hand side are exactly the same as the
integral of F*(a¥) + ¢)) over the same set of loops. Thus by (ordinary)
Stokes’ theorem, we obtain

/A o F*(wpr + d(pN)) = / F*(wy + d(oN)).

AW)



Since F = F outside the annuli A®) | we conclude that
| P = [ Forw) = (Wl 1F]) = (). 4),

where [F] = [F] = A because F was a deformation of F. O

For A, = (6Y)er, let I®) be the set of i such that ¢° is adjacent to ©(*)
and 2| Fix disjoint embedded annuli

At = [-1,1] x % CX\A,
such that {0} x R/Z = ¢’, and {—1} x R/Z c ¥®) for i € I,

2.10. Convergence to a stable broken holomorphic curve. Now we
return to the sequence of almost complex manifolds (X, Jx) defined above.
For R € R, denote by

Xp = XoUn_um, [-k—e+Re+ R xM, z—z+R
the map which equals the identity on X, and is given by (r, x)— (r+ R, x)
on [—e — k,e] x M. Consider sequences of numbers

—k= 7“,20) < r,(gl) < e < T£N+1) =0

such that r,(CVH) — 7“,(:) — 00 as k — oo. Define the manifolds

X,gu) = XO U]\/[_]_U\/[Jr [—E - k—?“](cy),S—T,(:)] X M, vV = 1,...,N,

o ._[ k X e E e A (E
Xk‘ = |: 27€:| XMUALI‘ XOUM_ |: 672:| % (-k/z,LL‘) 27:1; .

Note that for an observer in (0, z) € X,gy) with x € M, we have Xlg”) - X
on compact subsets containing (0,x) as k — oco. For maps f; : X — X
define

f,gy) (Y — X,iy), féy)(z) = fr(z) — 7",(:), v=1,...,N.

Forv =0, let f,go) (X — X}go) be composition of f with the map X — X,go)
that equals the identity on [—k/2,e] x M U X, and maps (r,z) — (r + k, x)
on [—k —e,—k/2] x M. Denote by mg : Rx M = Rand mpy : Rx M — M
the obvious projections.

Finally, let a sequence of diffeomorphisms ¢y : [—¢ — k, 2] — [—¢,¢] be
given with ¢/ = 1 near the boundaries. Define

qﬁl(:) = ¢k< . +7",(€V)) : [—a —k —r,(:),e - 7"1(:)] — [—¢,€]
forv=1,...,N. For v =0, let

[_Ev k/Q]

(0) .
¢k0 : [_k/2?€] U (—k:/2 N ]{,‘/2)

— [—&,¢]



be the map which equals ¢ on [—k/2,¢]| and ¢y (- —k) on [—e, k/2]. Suppose
that limg_, ng;:) = qb(”) in O for v =0,..., N, with ¢(”) as defined right
before Lemma 2.6.

Definition 2.7. A sequence of punctured holomorphic curves with ¢ marked
points fr : (Xg. Jk, 2r) — (X, Jx) converges to a broken holomorphic curve
with ¢ marked points F' : (¥*,j,z) — (X*,J*) if there exist orientation

preserving diffeomorphisms ¢y : ¥ — ¥ and numbers —k = 7’(0 < r(l

- < ikNH) = 0 with 7',(:“) (V) — o0 such that the following holds:
( ) (¢r)«gr — J in C2%. on E*\An and pp(zh) — 2 forl=1,...,q.
(b) For every i € I, the annulus (A’, (¢r)« jk) is conformally equivalent to
a standard annulus [—L%, L}] x R/Z by a diffeomorphism of the form
(s,t) — (o(s),t), with L} — co as k — oc.
(c) flgy) oyt = FW in Cf2 on X\ A, and in P on 1) .
(d) For every i € I mpro f 0901;1 — 7y o F uniformly on A*. Moreover,
for every R > 0, there exist p > 0 and K € N such that mg o f; o
o (s,t) € [P + Rr™) — R for all k > K and all (s,t) € A® with
Is| < p. _
€) Jy, fivon = Juo Frwp = w([F]).
Remark 2.8.

(1) Condition (b) implies that the conformal structures (¢y).ji converge
to j as a (partially) decorated nodal surface in the sense of [3].

@)

(2) The sequence r;’ is almost uniquely determined by condition (c): If

condition (c¢) also holds with rla) replaced by s(y) then r(l’) ,(C")
remains bounded as kK — co. Here we use the stablhty assumptlon
(3) Condition (d) implies convergence of homology classes [fi o ;'] —
[F] € Hy(X;Z) under the canonical identifications Ho(X}) = Ha(X) =2
Hy(X).
2.11. Compactness. We will actually prove the following more precise
version of Theorem 1.1 .

Theorem 2.9 (Gromov—Hofer compactness). Let (X,w) be a closed sym-
plectic manifold and M C X a stable closed hypersurface. Assume that
all closed Reeb orbits on (M, \) are Bott non-degenerate. Define (X, Ji)
as above. Let fr : (X, jk,2r) — Xi be a sequence of Jy-holomorphic
curves of the same genus with ¢ marked points and with uniformly bounded
areq fEk frw < Eo, where we identify Xy, = X. Then a subsequence
of (fx) converges to a broken holomorphic curve with q marked points
F: (X", j,2) — (X*,J%) in the sense of Definition 2.7.

The proof of Theorem 2.9 is carried out in Section 5. As explained above,
the proof reduces to two separate cases: long cylinders of small area and



regions with compact image. The first case also arises in [3] and we quote the
main technical result in Section 4. The second case requires a generalization
of Gromov compactness to holomorphic curves with free boundary, which is
proved in Section 3.

The following corollary is sometimes useful [4].

Corollary 2.10. In the situation of Theorem 2.9, assume in addition that
the genus is zero and all the fi, represent a homology class A which cannot
be written as A = B+ C with B,C € Hy(X;Z) satisfying w(B),w(C) > 0.
Then F is a broken holomorphic curve without nodes, i.e., A, = 0 and the
convergence statements simplify accordingly .

Proof. Suppose F has a node. Since the genus is zero, the node decomposes
the domain ¥ into two connected components Y, 1. The restrictions of F’
to these components define non-constant stable broken holomorphic curves
Fy, F1 representing homology classes Ag, A1 € Ho(X;Z) with Ag+ A1 = A.
Then Lemma 2.6 yields w(Ap),w(A4;) > 0, contradicting the assumption
on A. O

Next consider the case that M C X is a hypersurface of contact type
which separates X into Xy = Xar IT X, . Define the symplectic structures
wi on X and w* on XS—L as in Example 2.4. Denote by

FO. 5P & xF c X
the components of F(©) in XSE. The following corollary is important for the

applications in [4]. Tt will be proved at the end of Section 5.

Corollary 2.11. In the situation of Theorem 2.9, assume in addition that
M is of contact type and separates X into two components Xéc. Then with
the above notation, we have

lim frwg :/ (Fj_o)) wt.
k—oc Jy, »(0)

2.12. Reformulation. Before turning to the proof, let us give a reformu-
lation of Theorem 2.9. Define the intervals

[0, 00) for v =0,
E®) .= (—00,00) forv=1,...,N,
(—00,0]  forv=N+1

and glue their compactifications along their endpoints to

E:=EWUpo E@ Uino - Usoe BNV,
Then the topological space X can be written as

X = X() U]\/[_]_[]\/[Jr (E X M)



Since E is homeomorphic to a closed interval, X has naturally the struc-
ture of a topological manifold. We can define a smooth structure on X
as follows. Set E* := ]_[,1/\]:1 E™) < E. Pick a strictly increasing smooth
parameterization

®:E — [a,b]

onto a closed interval [a,b] C R whose restriction to E* is a diffeomorphism
onto its image. The induced homeomorphism @ : X — Y onto the smooth
manifold

Y = XO UM_HM+ [a,b] x M

(with the identity on X) induces a smooth structure on X. Any two such
smooth structures are obviously diffeomorphic. Fix a model Y and denote
the restrictions of ® to E) by
2@ [0,00) = [V, alV), PN (—00,0] = (aM), aN TV,
o) . (—00,00) — (a(”_l),a(")), v=1,...,N,
where a = a¥) < oM < ... < oVt =, o

Now consider sequences —k = T’,(CO) < ry
(v+1) (v)
Ty -7

< o< N = 0 with

— o0 as above. For diffeomorphisms @, : [—k, 0] — [a, b] define
CD,(C") : [—k — r,(:), —r,(cy)] — [a, b], <I>,(€V) (z) := CDk(m + 7‘,(:)).
We impose the following hypothesis on the sequence (®y):

(2.1) ol — o)

k—o0

in C° on B (). Note that the convergence makes sense because, by the hypo-

(v+1) _
k

thesis r r,(cy) — 00, every compact subset of EW) is contained in the

domain of definition of @2,”) for k sufficiently large. Denote by dp: X, oY
the map induced by ®; and the identity on Xj.

Proposition 2.12. Let fi, : (3k, jk) — (X&, Jx) be a sequence of punctured
holomorphic curves and F : (X*,j) — (X*,J*) a broken holomorphic curve.
Let @y : [—k,0] — [a,b] be a sequence of diffeomorphisms satisfying hypo-
thesis (2.1). Then conditions (c¢) and (d) in the definition of convergence
fr = F are equivalent to

() Dpo fro 901;1 — do F in Cre on ¥* (away from the nodes),
(d) o fro ot — d o F' uniformly on X.

Proof. The equivalence of (c) and (¢/) follows immediately from &y o fj, =
CD,(:) o flg'/) and hypothesis (2.1). We prove the implication (¢/), (d) = (d').



Let € > 0 be given. By hypothesis (2.1) and monotonicity of CI)l(:), there
exist R > 0 and Ky € N such that for all k > Kgand v =0,..., N,

@2’/)(1") > q) — g for r > R, (I)ECVH) (r) < a") + % for r < —R.

By the definition of <I>(V), this is equivalent to
Dp(r) > > % 5 for r > r,(c )—l—R Pp(r) < < a4+ g for 1 < r,(:H)—R.

Consider now i € I, By (d), there exist pp > 0 and K; > K such that
for all k > K and (s,t) € A® with |s| < po, we have 7g o fi, 0 ¢ ' (s.t) €

[r(l’) + R, r(yﬂ) R], and hence

TR © (i)k o fro Qplzl(s,t) c (I(V) — g,a(’/) + % .
By 7r o do F(6) = a) and continuity of 7 o d o I, there exists a p1 < po
such that for all k¥ > K; and (s,t) € A" with |s| < p1, we have |1 o ® o
F(s,t) —a)] < ¢/2 and hence

[z 0 ®p 0 fr 00 (s,t) —mr 0 Do F(s,t)] <e.

Together with the uniform convergence of the M-components in (d) this
qhowq that for k£ > Ks sufficiently large and every ¢ € I, the maps <I>k o fro
¢r " and ® o F are uniformly e-close on some annulus [—pa, po] X R/Z C A'.
By the Cp°-convergence on ¥* in (c¢’), the maps are also e-close on the
complement of these annuli for & > K3 sufficiently large. This proves (¢/),
(d) = (d’). The converse implication is proved similarly. g

Remark 2.13. Condition (d) implies properties analogous to (a) and (b)
for the almost complex structures (®).Jx. Consider the almost complex
structure ®,.J* on Y\ 2, where Q := ]_[,]Ll{a(”)} x M. For the analog of

(a), note that the C°-convergence CIDI(:) — &™) and J, — J* imply C-

loc loc™

convergence (Pp)Jp = (fl)l({"))*Jk — ®,J* on Y\Q. For the analog of (b),

note that in view of the C} -convergence (I)](:) — &™) the numbers

W) (1)
") = (@)~ (%)

remain bounded as k — co. Thus i),;l maps the cylinder

(v) (v—1) (V) (v+1)
<["’f th % to ]xM,@k)*Jk)




bi-holomorphically onto the standard cylinder ([7“,(:) + bg/) , TISIH) + b;ﬂyﬂ)] X

M, Jyr), and the “modulus” (r,(:H) + bggyﬂ)) — (1“](:) + b,(:)) tends to oo as
k — oo.

Remark 2.14. If the hypersurface M is disconnected, everything remains
valid with the following adjustments. Denote by M, the connected compo-

nents of M. For every ¢, take some number N, of copies XL(V) of R x M, and
define

N,
X =X ][ x"

L v=1
A broken holomorphic curve is now a collection F = (F(©), FL(V)) of stable

punctured holomorphic curves in X,,(V) which extends to a continuous map
F — X, where X is obtained from X* as before. Now the definition of
convergence and Theorem 2.9 carries over with the obvious adjustments.

Remark 2.15. If X is not closed but already a symplectic cobordism, every-
thing remains valid with the following adjustments. In the hypothesis of
Theorem 2.9, the uniform area bound ka frw < Ep must be replaced by
a uniform bound on the Hofer energy (Section 4). Then the discussion in
Sections 4 and 5 also applies to the ends Ry x M and R_ x M. In this
case, besides the components F*) described in Theorem 2.9, the limit bro-
ken holomorphic curve F' will also have finitely many levels of punctured
holomorphic curves in the symplectizations R x M and R x M.

3. Gromov compactness with free boundary

In this section, we extend Gromov’s compactness theorem to holomorphic
curves with boundary which satisfy gradient bounds near the boundary.
This extension is needed in the proof of the compactness Theorem 2.9. Our
proof follows Gromov’s original arguments and their exposition in [12]. How-
ever, the extension to the case with boundary is not entirely straightforward;
it involves a detailed analysis of embedded annuli in Riemann surfaces.

Throughout this section, (X, J, ) denotes an almost complex, not neces-
sarily closed, manifold (X, J) with a Hermitian metric u, i.e., a J-invariant
Riemannian metric. To a map f : ¥ — X from a compact surface, we
associate its p-area area,(f).

Let 3 be a compact surface of genus g with m smooth boundary compo-
nents and ¢ distinct marked points z = (z!,...,29) C int(2) in the interior
of ¥. Here g is by definition the genus of the surface obtained by filling in a
disk at each boundary component. Consider a finite collection A of disjoint
simple loops in the interior of ¥. Denote by X the nodal surface obtained
by collapsing the loops in A. Thus X is a finite disjoint union of smooth
surfaces with finitely many pairs of points identified. As above, denote by A



also the image of A under the projection 7 : ¥ — . A conformal structure
j on ¥ is a conformal structure on each component of 3. The pair (X, j) is
called a nodal Riemann surface. A continuous map f : (X,7) — (X,J) is
called a nodal holomorphic curve if its restriction to each component of X
is holomorphic. Moreover, we require that there is no sphere with less than
three nodal or marked points on which f is constant. As before, we will
refer to this property as stability. Marked and nodal points will be some-
times called special points. Denote by f: ¥ — X its lift (which is constant
on cach component of A).

Definition 3.1. We say that a sequence of holomorphic curves with ¢
marked points fx : (2, jk,2zk) — (X, J) converges to a nodal holomorphic
curve f: (X, j,z) — (X, J) if there exist diffeomorphisms ¢y : £ — X such
that

(a) (dr)ejr — 77 in C° on D\ A and ¢y (L) — 2%

(b) froodyt — fin C on £\ (A UIL);
(c) frog,' — fin CP. on £\0%;

loc

(d) areay(fi) — areay(f).
Here A C ¥ and f: ¥ — X are as above.

We will impose the following conditions on a holomorphic curve

f(E) = (X, J).

(A1) X is a compact Riemann surface of genus g with m boundary compo-
nents and ¢ distinct marked points z = {z!,..., 27} in the interior.

(A2) The p-area of f is at most C.

(A3) The image of f is contained in a compact subset K C X.

(A4) At the boundary components v of (X, j), there exist mutually disjoint
conformal embeddings 37 : [0,5L] x R/Z — ¥\ z mapping {0} x R/Z
onto v for some L > Lo(g,m,q.C, K) > 1.

(A5) For each boundary component 7, the differential of f o 37 satisfies
1/D < |[T(f o 87)|| < D with respect to the Euclidean metric on
[0,5L] x R/Z and u, for some constant D > 0.

Here [0,5L] X R/Z is equipped with the conformal structure induced from
C. Now we can state the main result of this section.

Theorem 3.2 (Gromov compactness with free boundary). Let (X, J, ) be
an almost complex manifold with Hermitian metric. Let fy : (X, jk, 2r) —
(X,J) be a sequence of holomorphic curves with q marked points satisfying
(A1-A5) with g,m,q,C, K, L, D independent of k. Then a subsequence of
(fr) converges to a mnodal holomorphic curve with q marked points f :
(X,7,2z) = (X, J).

Moreover, we can choose the maps ¢ such that the restricted maps ¢y, o
By [0, L] x R/Z — S\A are independent of k for all ~.



Remark 3.3. The constant Lg(g,m,q,C, K) in hypothesis (A4) is deter-
mined by Lemma 3.19. It depends only on g, m, C in (Al and A2) and
the constants ey, Cwr,, Csr, associated below to the set K C X. These con-
stants depend on the injectivity radius of K, as well as on the Monotonicity
Lemma 3.17 and the Schwarz Lemma 3.18 on K.

3.1. Conformal modulus. The following discussion is borrowed from
Ahlfors [1]. Let (X, 7) be a Riemann surface, possibly with smooth bound-
ary, and let I" be an isotopy class of simple smooth loops in ¥. A measurable
conformal metric p is a symmetric (0, 2) tensor that in local conformal coor-
dinates is a multiple of the Euclidean metric by a non-negative measurable
function. Define the minimum length of curves in I by

L,T):=inf L )
p(I) ;IelI‘ p(7)
Define the modulus of T by

. areay(X)
M) := I%f L7
where the infimum is taken over all measurable conformal metrics with 0 <
L,(T) < oo. Clearly, M(I") is a conformal invariant. Its reciprocal, 1/M(T),
is known as the “extremal length.”

An annulus is a surface diffeomorphic to [0, 1] xR/Z. We restrict ourselves
to closed annuli, but the discussion below extends to open or semi-open
annuli. By the uniformization theorem, every conformal annulus is confor-
mally equivalent to an annulus [0, L] x R/Z with the standard conformal
structure induced from C.

Lemma 3.4. For an annulus A, let I" 4 be the class of simple loops isotopic
to a boundary component. If A is conformally equivalent to [0,L] x R/Z,
then

M(T4) = L.

Proof. Let A = [0, L] x R/Z with conformal coordinates s+ it. Any measur-
able conformal metric on A can be written as p = f(s,t)?(ds®@ds+dt®dt) for
a non-negative measurable function f: A — R. Suppose that L,(I'y) > 1.

Then fol f(s,t)dt > 1 for almost all s and we compute

L< /A f(s,t)dsdt < (/A f(s,t)ds dt) v (,Al ds dt) " = \/Z\/areap(A).

Thus L < area,(A) for every measurable conformal metric p such that
L,(T'a) > 1. This proves L < M(I'4). Moreover, in the computation above,
equality is attained if and only if p is a constant multiple of the Euclidean
metric. O



The number M(T'4) is called the modulus of the annulus A and denoted
by Mod(A). This definition agrees with the one in [1] and differs from the
one in [12] by a factor of 2.

Lemma 3.5. Let ¥9 C X be an embedded surface (with boundary) in a
Riemann surface (X,7) and set 1 := X\ Xg. Let I' be an isotopy class of
loops in ¥ and set I'; :=={y €' | v C £;} fori=0,1. Then
M(To) + M(I'y) < M(T)
where M(T;) =0 if T; = ().
Proof. Let p be a measurable conformal metric on ¥ and p; its restriction
to ;. Then clearly area,, (o) + area,, (¥1) < area,(X). Moreover, since
Ly, (v) = Ly(v) for every v € I'y, L, (I';) > L,(I"). Hence
area,(X) - areay, (Xo) + area,, (X1)
Lp(T)? — min(Lyy(To)?, Lpy (T1)%)
arca,, (Xg) — area,, (31)
T Lp(To)* Ly, (Ih)?
> M(To) + M(Ty).

Taking the infimum on the left-hand side, the lemma follows. O

In particular, if an embedded annulus Ag C A in a conformal annulus A
is non-contractible, then Mod(4g) < Mod(A). Note that this is generally
false if Ag is contractible. Lemma 3.5 also immediately implies

Corollary 3.6. For any isotopy class I' of loops in a Riemann surface (X, j),

sup{Mod(A) | A C ¥ embedded annulus containing a curve in I'} < M(T).

Remark 3.7. In fact, the inequality in Corollary 3.6 is an equality [13].
But we will not need this deeper fact.

The following lemma and its proof were explained to us by Kerckhoff, see
Figure 2.

Lemma 3.8. Let v be a boundary component of a Riemann surface (3,7).
Suppose that there exists a conformal embedding [0,L 4+ 1/2] x R/Z — X
mapping {0} xR/Z ontoy. Letp € ¥ be the image of a point (L, t) under this
embedding. Then for every embedded annulus A C X\ {p} whose boundary
is isotopic to v in L\{p},

Mod(A) < L+ %

Remark 3.9. Note that the modulus of A is surprisingly close to L. If in
the hypothesis L + 1/2 is replaced by L + r with large r, the estimate can
be further sharpened. Ahlfors [1] shows that in the limit » — oo, one can



Figure 2. Embedded annulus adjacent to a boundary
component.

replace 1/2 in the conclusion by In16/4w. For our purposes, however, any
universal constant in place of 1/2 would suffice.

Proof. Denote the images of [0, L] x R/Z and [L,L + 1/2] x R/Z under
the embedding by Ay and A;, respectively. Note that Mod(A4p) = L and
Mod(A;) = 1/2. Consider the isotopy class I' of simple loops in X\ {p} that
are isotopic to v in X\ {p}. Corollary 3.6 implies

Fry — i e\ {p})
Mod(A) < M(T") 1r';t LIy
Thus we can estimate Mod(A) from above by picking a particular conformal
metric on X\ {p}. Let p be the measurable conformal metric on ¥ which
corresponds to the Euclidean metric on Ag U Ay and equals zero outside.

Let A be a loop in I (e.g., A could be a boundary component of the
annulus A in Figure 2).

If A is contained in Ag U Ay, its p-length is at least 1. Otherwise, A contains
two arcs in Ay connecting its two boundary components dyg A1, d1 A1 and we
obtain L,(A\) > 2dist(dyA1.01 A1) = 1. This shows that L,(I') > 1. On the
other hand, the p-area of ¥ equals L + 1/2, and therefore

, area,(X\{p}) . 1
O

3.2. Hyperbolic surfaces. Here we follow the discussion in Chapter IV
of [12]. A hyperbolic surface (3,h) is a complete oriented surface with
a metric of curvature —1 having geodesic boundary and finite area. Its
topology is determined by its signature (g,m,l). Here m is the number of
boundary components, [ is the number of ends and g is the genus of the



l

Figure 3. Riemann surface of genus g with m boundary
components and [ cusps.

surface obtained by filling in a disk at each boundary geodesic and a point
at each end, see Figure 3. Denote by j the conformal structure induced by
h. Since each end is part of a standard cusp ([12], Proposition 1V.3.6), j
extends uniquely to a conformal structure on the compact surface obtained
by adding a point at each end. Hence (X, j) is conformally equivalent to
a closed surface of genus g with m open disks and [ points removed. Its
Euler characteristic is given by x(X) = 2 — 2g — m — [ < 0. Conversely, by
the uniformization theorem, every closed Riemann surface of genus g with
m open disks and [ points removed carries a unique compatible hyperbolic
metric, provided that 2 —2g —m — 1 < 0.

Lemma 3.10. Let (X, h) be a hyperbolic surface and let A C 3 be an embed-
ded annulus containing a simple closed (interior or boundary) geodesic .

Then
—2mx (%)

Mod(A) -

Proof. Since v minimizes the length in its isotopy class I' (see, e.g., Theo-
rem 4.3.2. in [14]), Corollary 3.6 yields

o = La(r: < ) ¢ o)

Now the lemma follows because by the Gauss—Bonnet theorem (see [12],
Proposition IV.2.8) the area of a hyperbolic surface equals —27x(X). O

Li(7)? <

The following lemma is proved in [12], Lemma IV.1.5, Lemma IV.1.6 and
Proposition 1V.2.2, see Figure 3.



Lemma 3.11. Let (X,h) be a hyperbolic surface. Then its boundary geo-
desics 7y possess mutually disjoint embedded collars Cp(y) = {z € X |
dp(z,7) < wp(v)} whose widths wy(y) satisfy

sinh wp, (7y) - sinh Ly () = 1.

Next we recall the compactness theorem for hyperbolic surfaces. Consider
a surface ¥ of signature (g, m,[) and a finite collection A of disjoint simple
non-contractible (interior or boundary) loops of Y. Denote by ¥ the nodal
surface obtained by collapsing the loops in A. Thus X is a finite disjoint
union of smooth surfaces with finitely many pairs of points identified. As
before, we denote by A also the image of A under the projection ¥ — X.
A hyperbolic structure h on X is a hyperbolic structure on X\ A. The pair
(X, h) is called a nodal hyperbolic surface.

We say that a sequence (X, hy) of hyperbolic surfaces converges to a
nodal hyperbolic surface (3, h) if there exist collections Ay C X of simple
hy-geodesics and diffeomorphisms ¢y, : £ — ¥ with ¢,(Ax) = A such that
(or)shr — h in C2 on £\ A where we denote by h the pull-back of h
under the projection ¥ — ¥. For the proof of the following result, see [12],
Proposition IV.5.1 (the result is formulated there only in the case where no
pinching of interior geodesics occurs; the general case follows by applying
this special case to all the pieces in a pair-of-pants decomposition, cf. [12],
Theorem IV.3.7).

Proposition 3.12 (compactness of hyperbolic surfaces). Let (X, hy) be
a sequence of hyperbolic surfaces of the same signature. Suppose that the
lengths of all boundary geodesics are uniformly bounded from above. Then a
subsequence converges to a nodal hyperbolic surface.

Remark 3.13. Consider a sequence (X, jx) of compact Riemann surfaces
of genus g with m boundary components. Fix an integer [ > 0 such that
2—2g—m—1 < 0. For each k, let Fj, C ¥} be a set of [ non-boundary points.
Let hy be the unique hyperbolic metric on 3;\Fj, and suppose that the
lengths of all boundary geodesics of (3\F}, hx) are uniformly bounded from
above. Then Proposition IV.5.1 in [12] yields the following refined result.
After passing to a subsequence, there exists a compact surface ¥ of genus
g with m boundary components, a subset F C ¥ with |F| = |F}|, a finite
set A of disjoint simple non-contractible loops in ¥\ F' and diffeomorphisms
br : X — X with ¢ (Fy) = F and ¢, (Ag) = A for collections Ay, of simple
hi-geodesics such that the following holds. Let ¥ be the nodal surface
obtained by collapsing the loops in A. Denote by A and F' also the images
of A and F' in ¥. Then there exist a hyperbolic metric A on ¥\ (F UA) and
a compatible conformal structure j on ¥\ A such that

o (¢pr)«hx = hin C on £\ (FUA) and
o (¢g)wjr — j in G on T\A.



Define convergence to a nodal Riemann surface as convergence of nodal
holomorphic curves in X = pt. In view of Lemma 3.10, the preceding remark
implies

Corollary 3.14 (compactness of Riemann surfaces). Let (Xg,ji) be a
sequence of compact Riemann surfaces of the same genus and with the same
number of boundary components. Suppose that all boundary components are
contained in mutually disjoint embedded annuli whose moduli are uniformly
bounded from below. Then a subsequence converges to a nodal Riemann
surface.

3.3. Thick-thin decomposition. Let (X, k) be a hyperbolic surface with-
out boundary. For 0 < § < arsinh(1), define the d-thin part of (X,h) as the
set of all points at which the injectivity radius is less than § and the -thick
part as its complement. The following lemma is proved in [12], Proposition
IV.4.2 and Example 1.5.5.

Lemma 3.15. For 0 < § < arsinh(1), every component of the §-thin part of
a hyperbolic surface without boundary is conformally equivalent to a punc-
tured disk or an annulus. Moreover, for all 0 < § < arsinh(1) and L > 0,
there exists a &' > 0 (depending only on &, L) such that every component
of the §'-thin part is contained in an annulus A of modulus Mod(A) > 5L
which is contained in the d-thin part.

For z € ¥, let By(z) := {2’ € ¥ | dy(z,2") < p}. Note that B,(z) is
the image of an isometric immersion of a hyperbolic disk of radius p. The
following lemma is proved in [12] (replacing arsinh(1) by ¢ in the proof of
Lemma V.2.3), see Figure 4.

Figure 4. dp-thick part (left) and Jp-thin part (right).



Lemma 3.16. For any positive constants C, L,d,€, there exists a pg > 0
(depending only on C,L,6,e) such that 6y := 2,/py < 6 and the following
holds. For any hyperbolic surface without boundary (X, h), any point z €
Y, and any holomorphic map f : (X,h) — (X, J, 1) to an almost complex
manifold with Hermitian metric with area, (f) < C, there exists an embedded
annulus A C X with the following properties.
(i) By (2) C A.
i) Mod (A) > 3L.
ii) L ( (0; )) < € for both boundary components Oy A, A of A.
V) If z lzes in the do-thick part, then A C Bs,(2) is contractible and can
be chosen to enclose a given point 2’ with dp(z,2") = 2pg.
(v) If z lies in the dp-thin part, then A is contained in the d-thin part and
1s mon-contractible.

(i
@
(i

3.4. Monotonicity and Schwarz Lemma. Let (X, J, ) be an almost
complex manifold with Hermitian metric 4 and K C X a compact subset.
The following two lemmas were proved by Gromov [6], see Chapter II in
[12] for more detailed proofs.

Lemma 3.17 (Monotonicity Lemma). There ezist constants ey, Cyvr, > 0
such that for any J-holomorphic map f : 3 — X from a compact Riemann
surface, passing though a point v € K and with f(0X) outside the u-ball
B,(x) of radius p < enr,, we have

area, (B,(z) N f(2)) > Crwp®.

For a map f: D — X from the unit disk, denote by ||7yf||,, the norm of
its differential at 0, measured with respect to the hyperbolic metric on the
disk and the metric pu.

Lemma 3.18 (Schwarz Lemma). There exist constants egr,, Cs, > 0 such
that for any J-holomorphic map f: D — X whose image is contained in a
p-ball of radius egr, centered at x € K,

1T fl; < Csu.

As in [12], Remark I1.4.3, we pick an g9 > 0 satisfying the following
conditions:
(i) e is smaller than the p-injectivity radius of K,
(ii) €p is smaller than the constants ey, gy, in the Monotonicity resp.
Schwarz Lemma,
(iii) every closed J-holomorphic curve in X whose image is contained in a
p-ball of radius ¢ centered at x € K is constant.

3.5. Gradient bounds. Let (X, .J, 1) be an almost complex manifold with
Hermitian metric pu. Let f : (X,5) — (X, J) be a holomorphic curve satis-
fying conditions (A1-A5). Note that since f o 7 is holomorphic, condition



(A5) is equivalent to
V{|Eucl
lsue < s o ) - vl < Dl

for all v € T'([0,5L] x R/Z).

Let g, Cvr, Cst, be the constants associated above to the compact set
K C X (arising in the Monotonicity and Schwarz Lemma). For 0 < < 5L,
set

Al(’)/) =37 <[0,l] X %), A= UWAZ(’V)'

Now we proceed as in Gromov’s original compactness proof, following
Chapter V of [12]. For z € X, denote by U(z) the connected compo-
nent of f_lBEO/lg (f(z)) containing z. Pick a maximal set F' of points in
¥\ (int Az, U z) such that for any z € F, U(z) is disjoint from U(z’) and
U(z") for any 2/ € F\{z} and any marked point z' € z. By the Mono-
tonicity Lemma 3.17, the number of points is bounded by (18/¢¢)?C/Ch,
where C is the constant from (A2). Now enlarge F' so that it contains
points of DAL(v), DAar () and dAyr () for each boundary geodesic v and
all marked points. Moreover, pick enough points such that the punctured
surface 3 := X\ F has negative Euler characteristic. The cardinality |F| is
still bounded by a constant depending only on m, q, C, g and Clyy,. Notice
that the Riemann surface 3 depends on L. Let h be the unique hyperbolic
metric on 3 compatible with the conformal structure.

Lemma 3.19. There exist constants Lo > 1 and I;,w_ > 0 depending
only on g,m,q,C,eq and Cyr,, and for every L > Lg, there exist constants
l_,wy > 0 depending only on L, such that the following holds. For every
J-holomorphic curve f satisfying (A1-A5) and (3, h) as above, there exist
mutually disjoint collars Cp(v) C ¥ around the boundary geodesics of (X, h)
of width wy () such that for all boundary geodesics 7,

- < Lh('}/) <4, w- < wp(y) < wy
Moreover, we may assume Cp(y) C AL(7Y).

Proof. By hypothesis, each boundary geodesic v of (2, h) is contained in
an annulus of modulus Lg. Hence by Lemma 3.10, its length is bounded

from above by I, := y/—27x(2)/Lo. By this bound and Lemma 3.11, the

boundary geodesics possess mutually disjoint collars Cp(y) whose widths
are bounded from below by a constant w_ depending only on /.. Note that
ly — 0 and w_ — oo as Ly — co. Moreover, the width and the modulus of
a collar are related by an increasing bijective function Ry — R (see [12],
Proposition TV.2.2 and Example 1.5.5). So if Lg is sufficiently large, then
each collar will have modulus at least 1.



Consider a collar C = Cp(y). Let Cop C C be a smaller collar such that
Mod(Cp) < Lo—1/2 and Mod(C\Cp) > 1/2. Suppose that Cy is not contained
in Ar,(y). Then there exists a point p € 9Cy which is not contained in
Ary(v). Applying Lemma 3.8 with A = Ay, (v) and L = Mod(Cp), we
conclude Lo = Mod(AL,(v)) < Mod(Co) 4 1/2, contradicting the choice of
Co. Hence Cy C Ar,(7), so after replacing the Cy(v) by smaller collars, we
may assume Cp(7y) C Ar,(7).

Now let L > L. Remember that in 3 we have removed a point of Ay (7)
for each boundary geodesic 7. Hence by Lemma 3.8, applied to the non-
punctured surface (X, j), every embedded annulus A in 3 with one boundary
component v has modulus Mod(A) < L + 1/2. Applying this to the collar
Ch(v) C T at 7, we see that its modulus is at most L+ 1/2. Since the width
and the modulus of a collar are related by an increasing bijective function
Ry — Ry, the width is bounded from above by a constant wy depending
only on L. Now again by Lemma 3.11, the length of each boundary geodesic
is bounded from below by a universal constant [_ depending only on L. [

Lemma 3.20. Let A C ¥ be an annulus such that neither of its bound-
ary components OgA, O1A is entirely contained in As; and such that
L,(f(9;A)) < e := min(ep/6,L/D). Then A C ¥\ Ay and f(A) has
w-diameter smaller than £g.

Proof. First suppose that some boundary component 9; A meets Ayp. Since
0; A is not contained in Asz, there exists a boundary geodesic v such that 9; A
meets A (y) and is not contained in Az (7). Let A be an arc of (87)71(9;A)
that connects the two boundary components in [L.2L] x R/Z. Then by
condition (Ab),

dA L
L (@) > [ |10 G Sma > .

contradicting the hypothesis Lu(f (8Z-A)) < L/D. This shows that both
boundary components of A, and therefore A itself, are contained in Z‘\AL.

The remaining argument carries over without changes from Chapter V of
[12]. We first show that d(f(2), f(OA)) < £0/6 for every z € A. Indeed, if
U(z) intersects OA, then d(f(z), f(DA)) < e0/18. Otherwise, by maximality
of F, there exists a point z9 € F with U(zg) NU(z) # 0. Since z9 ¢ A,
there exists a point 2/ € U(zp) N 9A and we conclude d(f(z), f(A)) <
d(f(2), f(20)) +d(f(20), f(')) < €0/6. Since A is connected,

{z € Ald(f(2), f(DA)) < %0} n {z c A|d(f(2), f(AA)) < 5—60} £ 0,

and therefore d(f(dpA), f(O1A)) < g9/3. Combining the estimates, we find
d(f(2), f(z)) <eg for all z,2" € A. O



Let & Uss Y be the hyperbolic surface without boundary obtained by
gluing two copies of 3 along their boundary. For 0 < § < arsinh(1), define
the d-thin part of (2, h) as the set of all points at which the injectivity radius
of ¥ Upy, ¥ is less than § and the §-thick part as its complement. Following
Chapter V of [12], we shall call a constant universal if it depends only on
€0, CML, OSL7 g,m,q, C, L and D.

Lemma 3.21. There exists a universal constant pg > 0 with the following
property. Fvery point z € E\AQL is the center of an immersed h-disk
B C X\ Ay of radius py such that f(B) has p-diameter < eq.
Proof. Pick 0 < § < min(w_,l_/2). In view of Lemma 3.19, the condition
0 < 1_/2 ensures that OX belongs to the J-thick part. Let ¢ > 0 be the
constant defined in Lemma 3.20, and let C, L be the constants in hypothe-
ses (A1-A5). Let po > 0 and do := 2,/pg be the constants provided by
Lemma 3.16.

Consider first a point z € ¥\ Ayy, in the dg-thick part of 3. By Lemma 3.19,
z ¢ Ay, implies z ¢ UyCp(y). From this and d9 < w_, we conclude Bj,(2) C
$\d%. Pick a point 2’ € ¥\ Ayr, with dp(2,2') = 2py. Let A C Bs,(2) C
Z\BZ be the annulus provided by Lemma 3.16, enclosing the point 2/. It
contains the hyperbolic disk B = B, (z) and satisfies L, (f(0;A)) < . If one
boundary component of A was contained in Ay, we would have 2’ € Agyy,
contradicting the choice of 2. So A satisfies the hypotheses of Lemma 3.20
and we conclude that f(A), and therefore also f(B), has diameter < ¢g.

Next consider z € 2\A2L in the do-thin part. Let A C Y Upy; 2 be the
annulus provided by Lemma 3.16. It is contained in the d-thin part. Since
0% belongs to the J-thick part, this ensures A C Z\(?E. Moreover, A is
non-contractible in 3, it contains the immersed hyperbolic disk B = By (2),
and it satisfies Mod(A) > 3L and L, (f(8;4)) < e. Now there are two cases.

Case 1. A is non-contractible in X. Then if one boundary component 9; A
is contained in Agp, it is isotopic to some boundary geodesic v in Aar (7).
Now remember that the set F' contains a point p € dAsr (), thus A C S\{p}
with boundary isotopic to 7. But then Lemma 3.8 yields Mod(A) < 2L+41/2,
contradicting Mod(A) > 3L. So A satisfies the hypotheses of Lemma 3.20
and we conclude that f(A), and therefore also f(B), has diameter < eq.

Case 2. A is contractible in 3. Denote by 01 A the outer boundary com-
ponent. Since z ¢ Asy, 01 A cannot be contained in Asy,. A length estimate
as in the proof of Lemma 3.20 shows that 01 A C Z\AL. This implies
A C X\ Ar. Now the last part of the proof of Lemma 3.20 shows that f(A),
and therefore also f(B), has diameter < . O

By the Schwarz Lemma 3.18 and rescaling, the differential of f at the
center of B in the preceding lemma is universally bounded with respect to
the metrics h and p. This proves



Proposition 3.22. Let [ : (X,j) — (X, J, u) satisfy (A1-A5). Then there
exists a finite set F' C ¥\AyL such that the differential of f on X\(FUAsay) is
universally bounded with respect to the hyperbolic metric h and the Hermitian
metric . Moreover, the number of points in F is universally bounded.

Corollary 3.23. There exists a universal constant 61 > 0 such that no sim-
ple loop X in X with Lp(X\) < 201 which is non-contractible in ¥ meets Asy,.

Proof. Let 6 be the constant defined in the proof of Lemma 3.21. Pick
01 < &, where §' is the constant provided by Lemma 3.15. Let A be a
simple loop in 3 with Ly (M) < 261 which is non-contractible in ¥. Suppose
first that A\ is contained in Ay4y. Since A is non-contractible in X, it must
be isotopic to some boundary geodesic v in A4r(y). Hence by Lemma 3.8,
Mod(A) < 4L +1/2 for every annulus in ¥ containing A. On the other hand,
A is contained in the d;-thin part and 6; < ¢’. Hence, by Lemma 3.15, A
is contained in an annulus A C ¥ Upy 3 of modulus Mod(A) > 5L which
is contained in the J-thin part. Since (by the choice of d) 9% belongs to
the d-thick part, it follows that A C 2\32, and we get the contradiction
Mod(A) < 4L+ 1/2.

Now suppose that A is not contained in A4z (7) and meets Asp(y). Let
A1 be an arc of (37)"! o A that connects the two boundary components in
[3L,4L] x R/Z. Then

dA L

Lu(f o 8700)) =/HT(fom)-d—t1 .

On the other hand, by Proposition 3.22, the differential of f with respect

to the hyperbolic metric satisfies | Tf|| < U on ¥\ Ayp, for some universal
constant U. Thus

1
dt > BLEUCI()\l) >

Lu(fo"(M)) U Lp(N) < 2U &1
For 41 small, these two inequalities contradict each other. U

Proof of Theorem 3.2. Let (X, J,pn) and fr : (Zg,jk) — (X,J) be as in
Theorem 3.2. For 0 < I < 5L, let Z; be the disjoint union of m copies of
[0,7] x R/Z. Denote by B : Zsr, — Sk the embedding induced by the G
For each k, pick a finite subset Fj, C X;\0x(Z1) as in Proposition 3.22 and
a constant 07 as in Corollary 3.23. After passing to a subsequence, we may
assume that the cardinality |Fy| is the same for all k. By Lemma 3.19, the
lengths of the boundary geodesics for the hyperbolic metrics hy on X\ Fy
are uniformly bounded. Hence, by Proposition 3.12, a subsequence of (3 \
F, hy) converges to a nodal hyperbolic surface (%, k). More precisely, by the
remark following Proposition 3.12, the following holds. After passing to a
subsequence, there exists a compact surface ¥ of genus ¢ with m boundary
components, a subset F' C ¥ with |F| = |F},|, a finite set A of disjoint
simple non-contractible loops in ¥\ F' and diffeomorphisms ¢, : ¥ — &



with ¢ (Fr) = F and ¢ (Ar) = A for collections Ay of simple hg-geodesics
such that the following holds. Let X be the nodal surface obtained by
collapsing the loops in A. As above, denote by A and F' also the images in
3. Then there exist a hyperbolic metric h on X\ (F U A) and a compatible
conformal structure 7 on 3\ A such that

o (¢r)sxhi — hin C3. on _i\(F UA) and
o (dr)«jr — j in CpF on X\ A,

with the same conventions for h and j as above. Define

hio = (dr)hu, Tk = (Dk)sk

and consider the holomorphic maps

fr=fuoor ' (B\A ) = (X, J),
B =g 0 Br : (Zsr,,1) = (E\A, Jk).

By Proposition 3.22, the differential of fj, is uniformly bounded with respect
to hy and pon ¥ := i\(FUAUﬁ_k(ZgL)). By the Arzela—Ascoli theorem and
standard elliptic estimates, it follows that a subsequence of f; converges in
CiX on % to a holomorphic map f : (£¢,j) — (X, J). By the uniform area
bound and removal of singularities (see [12], Theorem II1.2.1), f extends
smoothly over the points of F and f, — f converges in Choe on i\(A U
Bk(Zar))- _

By Corollary 3.23, 8j(Z4) does not meet any component of the d;-thin
part of (X, hy) containing a geodesic from Ag. Thus the 8j,(Z41) are con-
tained in a uniform compact subset of Z\A Hence a subsequence of Sy
converges in C® on Z3y, to a holomorphic map 8 : (Z3r,i) — (Z\A, ).
(This is a special case of Gromov compactness with Lagrangian boundary
conditions with the Lagrangians being curves in surfaces). Since the 3 are
embeddings, so is § (otherwise § would be a branched covering, contradict-
ing injectivity of (B for large k).

By hypothesis (A5) and the Arzela—Ascoli theorem, a subsequence of
fi o Bi, converges in O on the interior of Z37. Since () converges to an
embedding (3, this implies C}3 -convergence of fi on the interior of 3 (Zsp) to
amap f which agrees with the previous map on 3(Z31\Zaz). Altogether, we
have shown C{-convergence fr — f on £\ A to a (4, J)-holomorphic map
f. This proves properties (a) and (b) of the convergence to the nodal holo-
morphic curve f. Now properties (c) and (d) follow as in Chapter V of [12].

It remains to show that we can make the maps ¢ o B : 21, — B\ A
independent of k. Recall that the embeddings i converge in C* on Zsj,
to an embedding 3 : Z3;, — Z\A So we can modlfy the G to embeddlngs

ﬂk Zs;, — % satisfying ,Bk = ,Bk on Zsr\ Zar, ,Gk = [ on Zj, and ,Bk — [ in



C* on Z3;,. Define maps c;ASk 1Y — X by

by = <Z_>k on ¥p\ Br(Z2L),
BroB,' on fBr(ZsL).

Note that the two definitions agree on (x(Z51\ Z2r), so the o lift to diffeo-
morphisms ¥, — ¥. Moreover, on Zp,, the maps quSk of3r = [ are independent
of k. The conformal structures ji, := (¢p)+jr agree with 7, on £\3(Zsr) and
with (Bk)*z on Bk(Zg)L). In particular, ji — 7 in C%, on i\A. Now replace
o1 by q@k and J; by jx and conclude the proof as before.

There is one more subtlety to consider. It could happen that the limit
curve f obtained by forgetting the additional marked points in F’ is unstable.
By construction, even the domain ¥ of the limit is stable if we include all
points of F' into the set of marked points. Forgetting all but the ¢ marked
points in F'; a sphere on which f is constant may end up with less than
three special points. By the choice of F', such a sphere contains at most
one point of F. Hence the image of the constant sphere can only be a
double point in the image. To solve this problem, we remove these unsta-
ble components from the limiting curve while the two corresponding nodal
points on the adjacent components fit into one pair of nodal points of the
new curve which we will also denote by f : (%,7,z) — (X, J). Notice that
the corresponding surface ¥ is diffeomorphic to the old one. However, the
set A C ¥ of nodal curves has changed. An unstable sphere corresponds
to a pair of nodal curves which bounded an annulus A C ¥ parameter-
ized by S x [~1,1], say. Let the neighborhood of A be parameterized by
[-1 —¢,1+¢] x S extending that parameterization and the neighborhood
of the new single nodal curve v be parameterized by [—¢, +¢] x S*. Pick a
sequence of diffeomorphisms v, : [~1—¢,1+4¢] x ST — [—¢, +¢] x St, which
are given by diffeomorphisms of the intervals, which are simply translations
by +1 near the boundaries, and which converge uniformly to

s+1 se[-1—g,—1]
P(s) =40 se[-1,1]
s—=1 sefl,1+¢].

Then )y, o ¢y, fr and the new stable f : ¥ — (X, J) with its model ¥ will
satisfy Definition 3.1. Since 1 converges in C'*° to a diffeomorphism outside
A, it is clear that (wk_l)*o(gblzl)*jk and f o ¢;1 o 1/1;;1 converge in C1. in the
complement of v in a neighborhood of it and therefore in the complement of
the new set A. The issue here is uniform convergence across A which is satis-
fied since the sequence fio¢y|A uniformly converges to the nodal point corre-
sponding to the unstable sphere. This finishes the proof of Theorem 3.2. [



4. Holomorphic cylinders of small area

In this section, we establish uniform convergence of holomorphic cylinders
of small area (Theorem 4.18). The main technical ingredient for this result,
Proposition 4.5, is proved in [9] in the Morse case and in [3] in the Morse—
Bott case. Moreover, we estimate the conformal modulus of a holomorphic
cylinder from below (Lemma 4.20).

Throughout, (M,w,J) is a compact odd-dimensional manifold with a
stable Hamiltonian structure w and J is an w-tamed, translation invariant
almost complex structure on R x M. Let A = \; be the associated 1-form.
We assume that the closed Reeb orbits are Morse—Bott non-degenerate as
defined in Section 2. Throughout this section, we fix an £ > 0 such that

(rd\+w)(v,Jv) >0 for 0# v € ker A and |r| <e.

4.1. Various notions of energy. For a collection of (not necessarily
embedded) smooth curves I" in M, let us denote by Ax(I') its A-action:

AN(D) = /F A

To a smooth map f: 3 — R x M from a (not necessarily closed) surface ¥,
we associate the following quantities:

its w-energy (or area)
BN = [ fro
b

its A-energy and its (g, \)-energy
E\(f —sup/f gb(rdr/\)\) E5(f :—sup/fd
peS HES:
where S resp. S. denotes the set of all smooth non-decreasing functions
¢:R —[0,1] resp. ¢ : R — [—¢,¢]; its Hofer energy and e-energy
E(f)=E.(f)+ExX(f),  E°(f) = Eu(f) + EX(f)-
Note that Ey(f) and E5(f) are nonnegative by definition (since ¢ = 0 is
allowed) and E,(f) > 0 if f is J-holomorphic. Here J-holomorphicity of a
map
f=(au):(3,5) > RxM
translates into the equations
uw* Ao j = da, 7Tuo j = Jy onTu,
or in local holomorphic coordinates s + it on X3,
as = Nuyg), ar = —A(usg), Tug + Jrug = 0.

Here as etc. denotes partial derivatives and 7 : TM — £ is the projection
along the Reeb vector field. Denote by R the set of regular values of the



map a : ¥ — R. We always orient a non-empty regular level set a~!(R) as
the boundary of the region {a < R}.

The following lemma shows that for holomorphic maps, the energies E(f)
and E°(f) are equivalent.

Lemma 4.1. For a J-holomorphic map f = (a,u) : (3,7) = R x M, the
following holds.
(a) fa—l(R) u*A > 0 for every R € R with a=*(R) # 0, and

E\(f) = sup /_1(R) u .

ReR
(b) The energies with and without € are related by
2eE5\(f) — Eu(f) < EX(f) < 2eEX(f) + Eu(f),
2e
1+ 2

E(f) < E*(f) < 2max(1,2)E(f).

Proof.

(a) The orientation of a~!(R) as the boundary of the region {a < R} means
that a tangent vector v to a1 (R) is orienting the level iff da(—jv) > 0.
Since u*A(v) = da(—jv), this shows fa—l(R) u*A > 0. For the second
statement, we compute for ¢ € S and regular values R < S of a:

4(5) / RS / RS / IR CUR

— [ rE@daN [P,
a—'([R,S]) a=([R,S])

Since its integrand is non-negative, the first term in the last line is
< E\(f). The second term in the last line becomes arbitrarily small
if we choose R close to S. Taking ¢(R) = 0 and ¢(S) = 1, this shows
fa—l( R) u*N < E)(f). The converse inequality follows from the
following estimate for ¢ € S:

[rwoany = [ o) ( [ u*A) i

[e.9]
< sup/ u*)\/ ¢ (r)dr < sup/ u* .
RER Ja—1(R) —o0 ReR Ja—1(R)

(b) Write the (e, \)-energy as
10 = s (L@« [ rena).

The absolute value of the second integral on the right-hand side is not
bigger than [y, f*w = E,(f) by definition of ¢ while the supremum



of the first integral equals 2 FEy(f). This shows the first statement
|ES(f) — 2¢EX(f)| < EL(f). Rewrite this as 2¢ E)(f) < E°(f) and
E=(f) < 2eE\(f) 4+ 2E,(f). The second statement follows from these

inequalities:
(1+2e)E°(f) 2 E°(f) + 2eEu(f) = 2¢E(f),
E°(f) < 2eEx(f) + 2Eu(f) < 2max(1,e)E(f). O

The following lemma gives a lower bound for the area of an arbitrary
punctured holomorphic curve with no negative punctures.

Lemma 4.2. There is a number 31 > 0, depending only on (M,w, J), such
that for any punctured holomorphic curve f : 3 — R X M without negative
or without positive punctures

Ew(f) > ﬁl-

Note that the statement includes J-holomorphic curves without any punc-
tures at all and that ; does not depend on the number of punctures, the
genus of ¥, nor the Hofer energy of f.

Proof. Assume that f = (a,u) has no negative punctures. We apply the
Monotonicity Lemma 3.17 to R x M equipped with the product metric
w(-,J-) +dr? + X2, which is J-invariant by assumption. Pick any point f(2)
on the curve. Then the area of (a connected component of) the pre-image
C of a ball B of radius p < ey, satisfies

/ (u*w+ da A u*\) > Curp®.
C

Let p := min(s,enp)/4. Pick a function ¢ : R — [—¢/2,0] with ¢’ > 0 and
¢(r) — 0 asr — oo with ¢/ =1 on [a(z) — £/4,a(z) + /4]. Then we have

Eu(f) = /E (e + Fr(6N))
> /C (u'w + Frd(oN)

| (%u*erf*(dcb/\A))
C
— / (%u*w +da A u*)\)
JC

> Chp? /2.

Here, in the first line, we have used [i f*d(¢)) = 0; in the second line the

positivity of the integrand on ¥; in the third line the positivity of f*(¢pd\)+

$u*w which is due to [¢| < £/2 and the definition of e; in the fourth line



¢'(a) = 1 on C which holds because |a — a(z)| < /4 on C}; in the last line
the positivity of da A u*A.
The case that f has no positive punctures is similar. Here we choose

¢:R—[0,e/2]. O

4.2. Estimates for holomorphic cylinders. Set S := R/Z, so an annu-
lus [R, S] x S! (with the standard conformal structure) has modulus S — R,
cf. Section 3, Lemma 3.4.

Lemma 4.3. For every J-holomorphic cylinder f = (a,u) : [-L, L] x St —
R x M satisfying E(f) < Ey and E,(f) < 1 and every § > 0, all derivatives
of f (of order > 1 for a) on [~L +6,L — 6] x S' are bounded by constants
depending only on M,w,J, Ey and 9.

Proof. By elliptic bootstrapping, it suffices to prove uniform gradient
bounds. Suppose by contradiction that there is a sequence of J-holomorphic
cylinders fi @ [~Lk,Li] x S' — R x M satisfying E(fx) < Ep and
E,(fx) < 1 whose gradients are unbounded at points in [—Ly + 8, Ly — d].
Then standard bubbling off analysis as in [7] (see also [3]) yields a non-
constant punctured J-holomorphic plane f with E(f) < Eg and E,(f) < 3.
Hence the singularity at oo is either removable or gives rise to one (positive
or negative) puncture. Hence Lemma 4.2 implies E,(f) > (1, which is a
contradiction. O

Recall next the asymptotic behavior of holomorphic curves with finite
energy. The following result was proved in [7] in the Morse case and in
[2, 8] in the Morse-Bott case.

Proposition 4.4. Let f = (a,u) : Ry x S' = R x M be a J-holomorphic
half-cylinder of finite Hofer energy such that a is not bounded from above.
Then there exists a closed Reeb orbit v of period T > 0 and a constant ag
such that

(a(s,t) —ag — Ts,u(s,t)) — (0, 7(Tt)>

5—00
uniformly in t with oll derivatives.
The following proposition shows that the M-components of long holo-
morphic cylinders approach closed Reeb orbits. It was proved in [9] in the

Morse case and in [3] (Proposition 5.7) in the Morse-Bott case. Let d be
any Riemannian distance on M.

Proposition 4.5. For all Ey,6 > 0, there exist 3,¢ > 0 (depending only on
M,w, J,Ey and ) such that for every J-holomorphic cylinder f = (a,u) :
[-L,L] x S — R x M with L > ¢ satisfying E(f) < Eo and E,(f) < 3,
we have

d(u(s,t),u((),t)) <0
for all (s,t) € [-L+¢,L — (] x S*.



The following lemma guarantees that the area of a J-holomorphic cylin-
der (a punctured holomorphic sphere with one positive and one negative
puncture) cannot be arbitrarily small. It was proved in [3] (Lemma 11.8.).
We include the proof here for sake of completeness.

Lemma 4.6. For every Eg > 0, there exists a constant B2 > 0 (depending
only on M,w, J and Ey) such that the area of every J-holomorphic cylinder
f:RxS"' =R x M with E(f) < Eq and E,(f) > 0 satisfies

Eu(f) > PBa.

Remark 4.7. If w = d)\ for a contact form A, this statement follows
immediately from discreteness of the action spectrum (which is an easy
consequence of the Morse-Bott hypothesis). In the general case, discreteness
of the values of E,, still holds as a consequence of Gromov—Hofer compact-
ness. However, as we want to use Lemma 4.6 in the proof of this compactness
theorem, we cannot use discreteness here.

Proof. Assume on the contrary that there is a sequence f, = (an,uy) :
R x S* — R x M of J-holomorphic cylinders with E(f,) < Eo and positive
arcas 0 < E,(f,) = 6, — 0. Denote the asymptotic orbits of f, by ~.F. By
Proposition 4.4, there exist L, > 0 such that

1
d(un(s,t), % (1)) < - for s € [Ly, o),

1
d(un(s, 1), 7, (t)) < -~ for s € (—o0, —Ly).

Let ¢y, 3y, be the constant in Proposition 4.5 corresponding to Ep,d = 1/n.
By relabeling the sequence { f,}, we may assume that d,, < (3,. The maps
Fnl[=Ln—tn,Ln+t,)x s have energy < Ep and area < d,. Hence, by Proposi-
tion 4.5,

1
d<un(s,t),un(0,t)) < —
n
for all s € [-L,, L,]. It follows that

d<un(s,t),fyff(t)> < %

for all s € R, so u, stays in the 4/n-neighborhood of v* in the loop space AM
of M (equipped with the C°-topology). In particular, d(yT(t),7~(t)) < 4/n
for all ¢ € S'. By compactness of M and the Morse-Bott assumption,
there are only finitely many connected manifolds of closed Reeb orbits of
A-action smaller than Fy. Pick n so large that the 4/n-neighborhoods of
these manifolds in AM are disjoint. Then the asymptotic orbits 7= must
belong to the same connected manifold C of closed Reeb orbits. Moreover,
the path u, : R — AM in the loop space stays in the C'/n-neighborhood of
C for a constant C' that only depends on the compact submanifold C C AM.



Therefore, for n sufficiently large, we can project u, onto a smooth path
vp : R — C connecting v* in the manifold C. Since v,(s,-) is a closed Reeb
orbit for all s, we have v;w = 0 and thus foSl vpw = 0. Since w is closed
and the cylinders uy,,v, : R x S* — M are homotopic with fixed loops at
+o00, it follows that

5n=Ew(fn)=/ v =0,
Rx St
contradicting the assumption d,, > 0. O

Corollary 4.8. Let f : R x S' = R x M be a holomorphic map with Hofer
energy E(f) < Ey and action E,(f) < 1. Then f must be constant or has
exactly one positive and one negative puncture. Moreover, if E,(f) < (a2, f
is a cylinder over a closed Reeb orbit.

Fix a number Ey < oo. We will study J-holomorphic curves (in fact,
cylinders) f: (%,7) — (R x M, J) satisfying the following hypothesis:

(B1) E(f) < Eo, E,(f) < Bo := min(B1, B2),

where (1, B2 are the constants from Lemma 4.2 and Lemma 4.6, respectively.
We first note a sharpening of Proposition 4.5.

Corollary 4.9. For all Ey,6 > 0, there exists an £ > 0 (depending only on
M,w,J,Ey and §) such that for every J-holomorphic cylinder f = (a,u) :
[-L,L] x S* = R x M with L > ¢ satisfying hypothesis (B1), we have

d(u(s,t),u((),t)) <0
for all (s,t) € [-L+¢,L —¢] x S

Proof. Assume that, on the contrary (after replacing ¢ by 2¢), there is a 5>0
such that for any ¢ > 0, there is an L > 2¢ and a J-holomorphic cylinder
f=(a,u): [~L,L] x S* = R x M with E(f) < Fy and E,(f) < 3 such
that d(u(s,t),u(0,t)) > 6 for some (s,t) € [~L+2¢,L—2(] x S*. Let 3> 0
and ¢ > 0 be the constants corresponding to 6 and FEy in Proposition 4.5.
Applying Proposition 4.5 to the restriction g := f|[_1 1/ 1—gxs for £ > l,
we conclude that E,(g) > 3. Write g = (b,v) : [—¢,¢] x St — R x M with
c:=L—V/.

Now we argue as in the proof of Lemma 4.6. By the Morse-Bott assump-
tion, there are finitely many connected manifolds of closed Reeb orbits of
A-action smaller than 2Ey. Fix p > 0 so small that the p-neighborhoods of
these manifolds in the loops space AM (with the CY-topology) are disjoint.
Suppose that v(s, ) is p-close to a closed Reeb orbit for all s € [—¢, ¢|. Since
E(f) < Ey, this implies that v(s,-) is p-close to one connected manifold C
of Reeb orbits for all s € [—¢,¢]. As in the proof of Lemma 4.6, we project
v onto a path o in C. Let vy be the shortest path connecting v(+c,-) to



its projection ¥(%c,-). Then v,7 and v* form a null-homotopic loop @ in
AM, so [0*w = 0. Now [7*w = 0 because ¥ consists of Reeb orbits, and
Jviw < Cp for a constant C only depending on C because w = dA4 is
exact in the p-neighborhood of o(%c,-). So we conclude that [v*w < 2Cp
if v(s,-) is p-close to a closed Reeb orbit for all s € [—c¢, c]. For p < 3/2C,
this implies that there exists a § € [-L + ¢, L — ] such that u(5,.) is not
p-close any closed Reeb orbit.

Now pick a sequence ¢, — oo and define the sequence of J-holomorphic
cylinders f, = (an,un) : [~ Ln, Ly] X St — R x M as above, with L, > 2¢,.
Thus E(f,) < Fo, E,(fn) < Po, and there exist 5, € [—Ly + €, Ly, — 5]
such that u,(5,,.) is not p-close to any closed Reeb orbit (with p > 0 fixed
as above). Set g, := (bp,vp) @ [, €n] x ST — R x M with

Un(8,t) == up(s+ 5n.t), bp(s,t) :=an(s+ 5n,t) — an(Sn,t).

By Lemma 4.3, all derivatives of g, are uniformly bounded. Hence a
subsequence of g, converges in Cpy. to an infinite holomorphic cylinder
g = (bv) : Rx S" - R x M with E(g9) < Ey and E,(g) < By. Since
Bo < 2, Lemma 4.6 implies E,(g) = 0, so g is a cylinder over a closed
Reeb orbit. On the other hand, by construction of g, and C}-convergence,
v(0, ) is not p-close to a closed Reeb orbit. This contradiction concludes the

proof. (I

The next lemma describes the R-components of long holomorphic cylin-
ders. Notice that the action of a closed Reeb orbit cannot be arbitrarily

small:
/ A>3 >0
v

for any closed R-orbit 7.

Lemma 4.10. There exists an £ > 0 (depending only on M,w,J and Ey)
such that for every J-holomorphic cylinder f = (a,u) : [-L, L] xS* — Rx M
with L > ¢ satisfying hypothesis (B1),

da

%(s,t) >0 >0

for all (s,t) € [-L+¢,L —f] x S*.

Proof. Suppose not. Then there exist sequences L > f — oo and J-
holomorphic cylinders fy = (ag,ug) : [~Lg, Lg] x S* — R x M satisfying
hypothesis (B1) such that

Oa,

s (sk-tr) < do



for some (sy,tr) € [~Lg + g, Ly — £x] x S'. Consider the shifted maps
g = (b, vp) [, k] x ST =R x M,

gk(s,t) = fk(b + sg.t+ tk) — <ak(8k,tk), 0).

By the C*-bounds in Lemma 4.3 and the Arzela—Ascoli theorem, a sub-
sequence of gy converges in C}}. to an infinite holomorphic cylinder g =
(b,v) : R x S' — R x M of energy E(g) < Eo. By Proposition 4.4, g is
asymptotic at its punctures to closed Reeb orbits v~,7%. By construction,
we have E(g) < Ep and E,(g9) < (. By Lemma 4.6, g has area zero and
is hence a cylinder over a closed Reeb orbit v of action T' > dp. So we
have %(0,0) =T > 0p. On the other hand, a765(070) < §p for all k implies

95(0,0) < o and we have a contradiction. O

4.3. C-convergence. Consider now a sequence of J-holomorphic
cylinders
fe = (ap,up) : [-Lp — 1. L+ 1] x S' 5 R x M

satisfying hypothesis (B1) with uniform constants Ey, 5p. Set

T = iItlfak(—Lk, t), r,j = sgp ay(Lg, t),
and impose the hypothesis
B2 Ly, — oo, S —r, — 0.
( ) k k—o00 > "k "k k—o00 >

Define the shifted maps
fk_(svt) = fk(S_kat)_(r];7O)7 86[072Lk‘]7
f,j(s,t) = fr(s+ Lg,t) — (r,':,()), s € [-2L,0].

Lemma 4.11. A subsequence of the shifted maps f; : [0,2Lg] x ST —
R x M converges in C° on [0,00) x S' to a holomorphic half-cylinder f~
[0,00) x S' — R x M. Similarly, a subsequence of the f,j : [=2Lg, 0] x
St — R x M converges in C2. on (—00,0] x S to a holomorphic half-
cylinder f+: (—o00,0] x St — R x M. Moreover, f~ and f* are positively
resp. negatively asymptotic to closed Reeb orbits v~,~T of length not greater
than Ey.

Proof. The uniform bounds on derivatives in Lemma 4.3 and the Arzela—
Ascoli theorem imply C3X-convergence of subsequences f, — f~ and
f]j — fT. The limit maps have Hofer energy at most Ey. Moreover, hypoth-
esis (B2) implies that a™ is not bounded from above and a™ is not bounded
from below. So, by Proposition 4.4, f~, f* are asymptotic to closed Reeb
orbits 77, ~". By Lemma 4.1, we have fv‘ A, f7+ A < Ey. O

The following two lemmas control the maps fi over the middle parts of
the cylinders.



Lemma 4.12. The asymptotic orbits agree: v~ = v+ =: ~. Moreover, for
every § > 0, there exist a constant L > 0 (depending only on M,w, J, Ey and
d) such that for all sufficiently large k and for all (s,t) € [—Lg + L, Ly —
L] x ST,

(s, 6),7(8)) <5,

Proof. Let 6 > 0 be given. By Corollary 4.9, there exists an L > 0 (depend-
ing only on M,w,J, Ey and ¢§) such that d(uk(s,t),uk(o,t)) < § for all
(s,t) € [Lg + L, Ly — L] x S* and all sufficiently large k. By the asymp-
totics, for s > L sufficiently large, u~(s,t) is d-close to y_(t) for all + € S*.
By the Cpo-convergence of u, , for k sufficiently large, uy(—Ly + s,t) is 0-
close to u~(s,t) for all t € S'. Thus ug(0,t) is 30-close to v~ (¢) for all
t € S'. Similarly, ug(0,t) is 36-close to v (t) for all t € S'. Hence v~ (t)
is 66-close to 4+ (t) for all t € S'. Since this holds for all 4, we conclude

~~ = ~T =: 4. Moreover, the preceding argument shows that for k& suffi-
ciently large, uy (s, t) is 40-close to v(t) for all (s,t) € [~Lyg+L, Ly — L] x S*.
Now replace 40 by 9. O

Lemma 4.13. For every R > 0, there exist a constant L > 0 (depending
on the sequence (fx) and R) such that for all sufficiently large k and for all
(s,t) € [-Ly+ L,Lj, — L] x S*,

ak(s,t) € [ry + R,rf — R].

Proof. By Lemma 4.10, there exists an £ > 0 such that %“8&(5, t) > 0 for all
(s,t) € [~Lyp+¥, L —€) x S* and sufficiently large k. By the asymptotics, for
L > ¢ sufficiently large, a=(L,t) > R+ 1 for all t € S*. By the Cp-conver-
gence of a; , for k sufficiently large, ay(—Ly + L,t) > 7, + R for all t € S'.
Similarly, ag(Ly — L,t) < r: — R for all t € S!. Now the statement follows
from the monotonicity %(s,t) >0 for (s,t) € [-Ly+ L, Ly — L] x S*. O
4.4. Uniform convergence. Let fj, = (ag,ug) : [~Lp — 1, Ly + 1] x S —
R x M and f* = (a*,u™) be as above. That is, f satisfies (B1 and B2)
and f* are the limit maps provided by Lemma 4.11. Consider a sequence of
increasing diffeomorphisms 6 : [—Ly, L] — [—1,1] and define the shifted
maps

0, (s) = 0k(s— L), s €[0,2Ly],

0 (s) :=0k(s+Ly), s€[-2L 0
We impose the following hypothesis on the sequence 6j:
(B3) 6, — 6~ :[0,00) — [-1,0), 0, — 67 : (—00,0] = (0,1],

k—o0 k—o00

where the convergence is in C, on [0, 00) resp. (—00, 0] and the maps §~, A
are diffeomorphisms.



Remark 4.14. Such a sequence clearly exists: Pick arbitrary diffeomor-
phisms 0% and let 6}, be any diffeomorphism with x(s) = 0~ (s + Ly) for
s € [~Lg,—1] and 0 (s) = 01 (s — Ly) for s € [1, Lg].

Define maps

ge(s.) = fi (6,1 (5),t), s € [-1.1],

g (5,0 = i ()71 6)t), s e =11,
g (s, t) = £ (07 6)t), s el-11),
g (50 =1 (077 (s),t), s € [-1,0),
g (5.0 == ((09) 7 (s),t), s € (0,1)

Lemma 4.15. We have C{X.-convergence g, — g~ on [—1,0) x S and
g — g™ on (0,1] x S*.

Proof. Note that the inverse maps to Gki, are given by
O) 7 (s) =0 () + Li, (80)7'(s) = 61 (5) — L

The convergence assumption (B3) implies 6, '(0) + Ly — oo and 6, '(0) —
Ly, — —oco. Moreover, the restrictions (6, )~ : [=1,0) — [0,6,(0) + L)
and (6,)7' : (0,1] = (8, ' (0)— Ly, 0] converge in C2° to (§7) " resp. (§+)71.
Therefore, the maps f,~ ((9;)*1(3),15) converge to ¢~ in Cf° on [—1,0) x S
and similarly for g7. O
Write gx = (bg,vx) and gt = (b%,v*F). By the asymptotics of f*, the
M-components v* fit together to a continuous map (which is smooth in t)
v (s,t) :se[-1,0),
v(s,t) == ¢ y(t) is=0,
vT(s,t) :s€(0,1].

Lemma 4.16. The maps vy converge to v uniformly on [—1,1] x S*.

Proof. Let § > 0 be given. In view of the continuity of v and the C%-
convergence in Lemma 4.15, it suffices to find ¢ > 0 and K € N such that

d(vi(s.0).9(0) <0

for all (s,t) € [~0,0] x S' and k > K. By Lemma 4.12, there exist K € N
and L > 0 such that for all k > K and for all (s,t) € [~Ly+ L, Ly, — L] x S*,

d(uk(s,t),fy(t)> <.



Recall that (#7)~! maps [~1,0) diffeomorphically onto [0, c0). Thus we find
a o > 0 such that (§7)"!(—0) > L+ 1. By the C%-convergence, we obtain
0 (=0) + Ly = (0;) "' (—0) = L
for k sufficiently large, hence 6,;1 (=0) > —Lg+ L. Similarly, we can achieve
9,;1(0) < Lj — L and, therefore, by monotonicity of 6,

0, ((-o,0]) C [-Lk + L, Ly, — L].
Then for s € [—0,0] and k sufficiently large,

d(vk(s,t),'y(t)) - d(uk (9,;1(5),15),7(75)) <. 0

The following lemma asserts a kind of uniform convergence of the R-
components.

Lemma 4.17. For every R > 0, there exist p > 0 and K € N such that
b(s,t) € [r), + R,rf — R] for all k > K and (s,t) € [—p, p] x SL.

Proof. Let R > 0 be given. By Lemma 4.13, there exists L > 0 such that
ar(s,t) € [r;, + R,r; — R] for all sufficiently large k and (s,t) € [—Ly +
L,Ly — L] x St. As in the proof of Lemma 4.16, we find a p > 0 such that

0 (=p.pl) € [=Ly + L, Ly — L]
for sufficiently large k. Then for s € [—p, p|] and k sufficiently large,

bio(s,t) = ay (9,;1(5),75) €[ry + Ryrj — R]. 0
Lemmas 4.15-4.17 yield the main result of this section:

Theorem 4.18. Let f; : [~Ly — 1,Ly + 1] x S = R x M be a sequence of
J-holomorphic cylinders satisfying hypotheses (B1) and (B2) with constants

morphisms satisfying hypothesis (B3). Define the maps g, = (bg,vx), 9° =
(b5, v%) and v as above. Then for a subsequence of gy, the following holds:
(i) g5 =9 on[-1,0) x S* and gi — gt on (0,1] x S* in C2.
(ii) v — v uniformly on [-1,1] x S*.
(iii) For every R > 0, there exist p > 0 and K € N such that by(s,t) €
[ry, +R,rif — R] for all k > K and (s,t) € [—p, p] x S'.

4.5. Reformulation. We have stated Theorem 4.18 in the form it is needed
in the proof of Theorem 2.9. For the sake of aesthetics, we will reformulate it
in a more symmetric form. Recall that by hypothesis (B2), the numbers rf
satisfy r,j —r, — 00 as k — oco. Moreover, by Lemma 4.11, there exists an
Ry > 0 such that ay(s,t) € [r, — Ro,r,:r + Ro) for all (s,t) € [~Lg, Li] x St.



Consider a sequence of increasing diffeomorphisms ©y, : [, — Ry, r,j +Ro| —
[—1,1] and define the shifted maps
0, (s) :==O(s+ry), s€[—Ro,mi —r, + Ro,
Of(s) :==O(s+r{), selr, —ri — Ro, Ro).
We impose the following hypothesis on the sequence ©y:
(B4)
©, — O :[-Rp,00) — [—1,0), 0, — 01 : (oo, Ro] — (0,1],

k koo P koo
where the convergence is in C%. on [—Rp, 00) resp. (—oo, Rg] and the maps
©~, 01 are diffeomorphisms. By the asymptotics of f*, the maps % o b+
fit together to a continuous map (which is smooth in )
O~ ob (s,t) :s€[-1,0),
c(s,t) =<0 15 =0,
OT obt(s,t) :s€(0,1].
Corollary 4.19. Let f : [~Ly —1,L;+ 1] x S* — R x M be a sequence of
J-holomorphic cylinders satisfying hypotheses (B1) and (B2) with constants
independent of k. Let 0y, : [—Ly, L] — [-1,1] and Oy : [r, 7] = [-1,1] be
sequences of diffeomorphisms satisfying hypotheses (B3) and (Bj4), respec-
tively. Define the maps
hy = (@k obk,vk) : [—1,1] X Sl — [—1, 1] X M,
hi=(c,v):[-1,1] x S' — [-1,1] x M
as above. Then a subsequence of hy, converges to h in C32 on ([—1,1)\{0}) x
St and uniformly on [—1,1] x S*.
Proof. Since
O, ob, = O ob, =06 ob/,
the C -convergence follows from Lemma 4.15 and hypothesis (B4). For the

uniform convergence, let § > 0 be given. In view of the continuity of ¢ and
the C}. -convergence, it suffices to find p > 0 and K € N such that

1Ok 0 bi(s,t)| <0

for all (s,t) € [-p,p] x S' and k& > K. Recall that ©~ maps [—Rp, 0)
diffeomorphically onto [—1,0). Thus we find an R > 0 such that © (R) >
—0/2. By the CX -convergence, we obtain

Ok + R) = O} (R) > —5

for k sufficiently large. Similarly, we can achieve Oy(rf — R) < § and,
therefore, by monotonicity of Oy,

Ok ([ry + R, 77 — R]) C [-4,4].



By Lemma 4.17, there exists a p > 0 such that by(s,t) € [r, + R,rl,:r — R]
for all sufficiently large k and (s,t) € [—p, p] x S'. Hence

@kobk([—p,p] X Sl) - [—5,5] O
4.6. Estimates on the conformal modulus

Lemma 4.20. Denote by A, := [0, L] xS the annulus of conformal modulus
L. Let f = (a,u) : A, = R x M be a J-holomorphic map with boundary
conditions a(0,t) = R and a(L,t) = .S. Then

SR S/ u*)\—l—l/ urw < 1E(f)
L {L}xs1 € JA,L S

where £ > 0 is the constant from the beginning of this section. The first
iequality is an equality if and only if u*w = 0.

Proof. Recall that in coordinates (s,t) on the annulus, J-holomorphicity of
f is equivalent to

as = Nug), ar = —Ausg), mug + Jmuy = 0.

We compute

L L
/ ds N u*\ :/ ds/ uA :/ ds/ as(s,t)dt
Ap 0 s}x St 0 {s}xS1t

L q
= ds—/ as,tdtz/ a(L,t) — a(0,t) |dt
| ot [ ottie= [ (o —a.0)
=S—-R.

Now we use the hypothesis u*(edA + w) > 0 to obtain

/ ds Nu*\ = / d(su*\) — / su*d\
Ap Ar Ap
. k L . %
< / d(su*X) + — / wrw
JAL € Jag

1
:L(/ u*)\—l——/ u*w>
{L}xS? € JA,

< LE(f )7
€
where the last inequality follows from Lemma 4.1. The last statement of the
lemma holds since u*(e d\ + w) = 0 only if vw*w = 0. U

Corollary 4.21. Let f = (a,u) : A, = R x M be a J-holomorphic map
such that sup, a(0,t) < inf; a(L,t). Then

irgfa(L,t)—sthlpa(O,t) §L</{ u*)_,.l/ALu*w) < LE(f).

L}xS! € €



Proof. Pick €1 > 0 and regular levels R, S of a such that
supa(0,t) < R <supa(0,t) +¢e; < irtlfa(L,t) -1 <8< irtlfa(L,t).
t t

Then there exists a component v of a~!(R) separating {0} x S from {L} x
St. (Otherwise we could connect {0} x S! to {L} x S' in Ap\a }(R),
contradicting the hypothesis.) Similarly, there exists a component yg of
a~1(S) separating vg from {L} x S'. Since vg,7s are disjoint embedded
loops isotopic to {0} x S1, they bound an annulus A’ C A; of modulus
L’ < L (see Section 3). Now apply Lemma 4.20 to A’ to obtain

(4.1) —2e1 + iItlf a(L,t) —supa(0,t) < S—R
t

(4.2) gL’(/ u*/\—l—l/ u*w) §L</ u*/\+1/ u*w).
Vs €Ja {Lyx s € /AL

Here the last inequality follows from nonnegativity of u*(ed\ + w). As
€1 — 0, the result follows. (I

The following lemma will be used in the proof of Theorem 2.9 to verify
the hypotheses of Theorem 4.18.

Lemma 4.22. Let f = (a,u) : [-L —1,L+1] x S* = Rx M be a J-
holomorphic map such that a(—L — 1,t) = R < S = a(L + 1,t) for all
te St. Then

E(f)

€

iIL}fa(—L,t) <R+ E(f)/e, supa(L,t) > S —
t

Proof. 1f inf, a(—L,t) < R, the first inequality holds, so suppose inf; a(—L,
t) > R. Then apply Corollary 4.21 to the restriction of f to [~L—1, —L] x S*
to obtain

E(f)

€
The second inequality follows similarly. (I

irgfa(—L,t) -R<

5. Proof of the compactness theorem

Now we return to the setup of Section 2, which we briefly recall. We are
given a closed connected symplectic manifold (X.,w) and a closed stable
hypersurface (M,wps := w|pr, A) in X. Fix € > 0 such that w = wpr + d(r )
on [—¢,¢] x M. Fix a tamed almost complex structure J on (X,w) whose
restriction Jys to [—&,e] X M is wy-tamed with Ay = A. Define the sequence
of manifolds (X, Ji,we,) as in Section 2. Recall that wg, depends on the
choice of a diffecomorphism ¢y, : [k — £,¢] — [—¢,¢] with ¢/ = 1 near the
end points of the interval, but its cohomology class [wg,] is independent of
this choice.



5.1. Monotonicity. The metric gas := was(-, Jas.) + dr? + X2 on R x M is
invariant under translation and under Jj;. Pick a J-invariant metric g on
X which equals gps on the neck [—z,¢] X M. Equip each X} with the Ji-
invariant Riemannian metric g which equals gps on the neck [—k —e,e] x M
and g on Xy. Pick 1 > 0 smaller than the injectivity radius of (X,g), €
and % Then any ball in (Xg, gx) of radius p < e is isometric to some
ball in (X, g) and the almost complex structures agree under this isometry
(which is simply given by a shift in the R-component). Let ey, Cyr, be
the constants in the Monotonicity Lemma 3.17 for (X, J, g). Then by the
preceding discussion, the Monotonicity Lemma holds on (Xp, Ji, gx) with
constants

gp = min(el, EML)

and Cyr, independent of k:

Lemma 5.1. For any Ji-holomorphic map f : ¥ — Xy from a compact
Riemann surface, passing through a point x with f(0X) outside the gy-ball
B,(x) of radius p < g9, we have areag, (f) > Cnpp®.

Since Ji is tamed by w on Xy and by wjys on the neck, the compactness
of Xy and M and translation invariance imply

Lemma 5.2. There exist a constant Cp > 0, not depending on k, such that

(war + sdX +dr A X) (v, Jv) > Crlv
veT([-k—ee] x M)
w(v, Jv) > C’T|fu|3k forv e TX,.

|3k for s € [—¢,¢],

5.2. Energy estimates. Now let X be a closed connected Riemann surface
and f : (X,j) — Xk be a Jg-holomorphic curve. Define its w-energy (or
area)

E(f) f=/2f*w¢w

and recall that it does not depend on the choice of the function ¢,. Over
the set f~'([~k,0] x M), we write

f=(a,u): fL([~k,0 x M) = R x M.
For a subset A C [—k, 0], we introduce the abbreviation
a1 (A) = f7HA x M).
Lemma 5.3. The energy of the restriction f|a—1([_k70]) satisfies

2€

mE(flafl([—k,O])) < E*(fla1(=r0)) < E(f).



Moreover, the action of every regular level R of the function a : a~!

([—k,0]) = R satisfies

1
u\ < —E(f).
/Q—l(R) 2e

Proof. Set C := f~1([~k,0] x M). Consider any smooth non-decreasing
function ¢ : [—k,0] — (—¢,¢). Extend ¢ to a smooth non-decreasing func-
tion ¢ : [~k — &,2] — [—&,2] such that ¢’ = 1 near the end points. Non-
negativity of the integrand f*w s implies

/C Frus< /Z Frwg = E().

Taking the supremum over all such ¢ yields the inequality E°(f|c) < E(f).
The other inequalities now follow from Lemma 4.1 and ¢ < 1/2. 0

Remark 5.4. Lemma 5.3 remains valid if X is a symplectic cobordism and
E(f) is the Hofer energy of f.

5.3. Bounds on the topology. Consider a smooth map f : ¥ — X} from
a surface Y. For a regular level —k + 1 < R < —1, let Cr be the collection
of connected components of a ™' ([R, R+ 1]) and a~!([R — 1, R]). We define
subsets C}% C Cg as follows: First, we include in C}f all components that
meet a (R + 1), as well as those in a *([R, R + 1]) that do not meet R.
Similarly, we include in C all components that meet a Y (R—1), as well as
those in a1 ([R — 1, R]) that do not meet R. Next, we inductively include
in CE all components that can be connected in Cp to CE without passing
through C. Finally, we include all remaining components in Cj,.

For regular levels —k +1 < R < S < —1 with S — R > 2, we define the
following subsets of 3, see Figure 5:

Y2(f) =a Y[R+ 1,5 - 1)) uChucCy,
SE(f) = Z\ZR(f).

Note that in ¥%, closed components of ! ([R—1, R+1]) that meet a ™! (R)
are excluded and closed components of a~ ' ([S — 1, S +1]) that meet a~!(S)

are included. All boundary components of % lie in a=!(R) or a~1(S). More-
over, for —k+1 < R< S<T < —-1with §—R,T— 5> 2, we have

SRNHUES() =SR().  EENE§cai(S).
We will always assume without further mentioning that R and S, as well as

R4+1 and S +1, are regular values of the function a : f~1([—k,0] x M) — R
associated to f.

Lemma 5.5. For any Ji-holomorphic curve f : 3 — X and regular levels
—k+1<R<S<—-1withS—R?>2, the number of connected components
of each of the sets SE(f) and X3(f) is at most 2E(f)/Cyi,Cres.



Proof.
(i) Fix a smooth non-decreasing map ¢ : [—k,0] — [—¢, e] with ¢(R) = —¢
and ¢(S5) = ¢ and define the 2-form wy := wps + d(¢pA) on [k, 0] x M
as before. By Lemma 5.3, we have

/25 [rwe < E5(fla-1(j=r0p) < E(S)

Now let Xy be a connected component of E%( f). We construct a point
zp € X as follows. If ¥g has a boundary component on level R, we
choose zg € g on level R + 1/2 (which exists by definition of 7).
If 39 has no boundary component on level R but one on level S, we
choose zp € ¥p on level S — 1/2. If ¥y has no boundary, pick any
20 € Yo. Let B be the gg-ball around b := f(z¢) of radius 9. The
choice of zp and g9 < 1/2 implies f(9%¢) N B = (). Hence Lemma 5.1
yields
areag, (fls,) > CnmLes.

Now assume first that 0¥ # (. Pick a smooth non-decreasing map
¢o ¢ [—k,0] = [—e,¢] with ¢o(R) = —e and ¢o(S) = € such that
¢o(r) =r —>bforr € [b—ep,b+ ep| (this is possible because ¢ < ¢).
Then wy, = wp +d((r —b)A) on B, so Lemma 5.2 yields wg, (v, Jyv) >
CT|’U|§k for v € TB, which in view of f*wg, > 0 implies

f*w¢ =/ f*w% > CTCML?:%'
Yo Yo

A U Z—l

Figure 5. Ignoring small “stalactites” in S5 (f).



Here the first equality follows from Stokes’ theorem in view of ¢(R) =
do(R) and ¢(S) = ¢o(S). If Xy is closed, we take ¢g : [b—e,b+¢] —
[—¢,¢], ¢o(r) := r — b, and obtain the same estimate. Thus for any
connected component g of Z}%, we have

f*W¢ > C’TCMLE(Q).
3o

Since [s f*wy < E(f), the number of connected components cannot
““R

exceed E(f)/CrOuLe.

(ii) The proof for Z(f) works similarly. Here we choose a surjective non-
decreasing map ¢ : [—k, 0] — [—¢, 2] with ¢(R) = ¢(S) = 0. If 9% # 0,
we choose zp € X such that a(zp) = R—1/2 or a(zg) = S+ 1/2. Thus
this time, we obtain a bound given by 2E(f)/CrCumpe3. O

Let —k+1 < Ry < —1. A subset Xy C X is called an essential local
minimum on level Ry of f : 3 — X if ¥y is a connected component of
a ' ([~k, Ry + 1]) and Ry = ming,a. See Figure 6.

Similarly, an essential local maximum on level Ry is a connected compo-
nent Yo of a~'([Ro — 1,0]) such that Ry = maxy,a.

Note that a closed component g of a™'([—k + 1, —1]) gives rise to both
an essential local minimum and maximum.

Lemma 5.6. For any Ji-holomorphic curve f : ¥ — X, the number of
essential local minima and mazima is bounded above by E(f)/CrCyLed.

Proof. The proof is very similar to that of Lemma 5.5. Consider a point
on an essential local minimum or maximum ¥y with a(z9) = Ry and let B
be the gg-ball of radius ¢y around f(z). Pick a smooth non-decreasing map
¢ : [—k,0] = [—&,¢] with ¢(—k) = —e and ¢(0) = ¢ such that ¢(r) =r — Ry
for r € [Ry — €9, Ro + £0]. As in the proof of Lemma 5.5, we find

CrCvneg < | frwg < E(f).
Yo
Choosing disjoint balls around all local minima and maxima, this bounds

the number of essential local minima and maxima by E(f)/CrCyrei. O

Finally, we need to bound the Euler characteristic x of the sets Z?( f) and
Y2(f). Recall that the Euler characteristic of a compact connected oriented
surface Xg of genus g with n boundary components is given by

x(Zo)=2—-2g—n.

In particular, x(Xg) < 2 with equality iff 3¢ is the sphere; x(3¢) = 1 iff 3
is the disk; x(2p) = 0 iff X is the torus or the cylinder. The surface XgUX;



obtained by gluing two surfaces Y, >1 along some of their boundary circles
has Euler characteristic

X(2o UX1) = x(20) + x(21).

From now on, we assume that ¥ is connected and F(f) < Ey. Set

Ey
Ny := 2m: —_— .
0 HMX<CTCML€5,1>

Lemma 5.7. With the notation of Lemma 5.5, we have the following esti-
mates for the Fuler characteristic:

X(Z) = No < x(Z4(f)) < No,
X(2) — No < x(2%(f)) < No.

Proof. By Lemma 5.5, Eg has at most Ny components. If one component
is a sphere, then it equals ¥ because X is connected, so X(E?) <2< Npin
this case. Otherwise all components have Euler characteristic at most 1, and
again X(Eg) < Np. The other upper estimate follows similarly. The lower
estimates follow from x(X) = x(2&) + x(2%) < x(Z£) + Ny and similarly
for the other case. O

Lemma 5.5 and Lemma 5.7 show that the number of possible topological
types of each of the sets L&(f) and ¥3(f) is uniformly bounded. To see
this, note that the genus of each of the sets is bounded above by the genus of
Y, thus the bounds on the Euler characteristic yield bounds on the number
of boundary components. The following lemma gives a more precise control
of the topology.

Lemma 5.8. With the notation of Lemma 5.5, we have
X(Z‘}%(f)) < #{essential minima or mazima Loy C £3}.

If 25.(f) contains neither essential minima nor mazima and x (X5(f)) =0,
then Z%(f) 18 a disjoint union of cylinders connecting the levels R and S.

Proof. Let 1 be a component of 23 (f) with x(X1) > 0. If ¥; is a sphere,
then it has at least one essential maximum and one essential minimum. If
¥, is not a sphere, then x(X1) = 1 and ¥ is a disk with boundary in
a=}(8) (resp. a }(R)). Now ¥; C B9,(f) (resp. %1 C U%(f)) implies
that Ry := miny,a < S — 1 (resp. Ry := maxy,a > R+ 1). Let ¥y be
a component of 31 N a~!([Ro, Ry + 1]) (resp. X1 Na " ([Ro — 1, Rg]) on
which the minimum (resp. maximum) Ry is attained. Since 37 has no lower
(resp. upper) boundary, ¥ is a connected component of a=1([—k, Ry + 1])
(resp. a~'([Rp — 1,0]) and is thus an essential minimum (resp. maximum).
This proves the estimate.



For the last statement, suppose that E% contains neither essential minima
nor maxima. Then, by the argument above, each component ¥; of Z%
has Euler characteristic < 0. Thus x(X%) = 0 implies x(¥1) = 0. If ¥
had no boundary, it would be an essential local minimum (and maximum),
contradicting the hypotheses. So ¥; has non-empty boundary and is thus a
cylinder. If this cylinder had both boundary components on level R (resp.
level S), it would contain an essential local maximum (resp. minimum), so
each cylinder connects the levels R and S. U

Define a function xy : [-k + 1. =3]ieg — Z on regular values of a by

xr(r) = x(Z71(F))-
This function will play an important role in the compactness proof. It is
bounded by Lemma 5.7. We call a value r € [—k + 1, —3] an upward jump if

hy(r) := limsup x;(S) — liminf x ;(R) > 0,
SN\ R r

and a downward jump if

h_(r) := limsup x;(R) — liminf x;(S) > 0.
R 7 SN\

Here the infima and suprema are taken over regular values of the function
a. The numbers hy(r) and h_(r) are called the height of the jump, see
Figure 6.

Lemma 5.9. The height of a downward jump of the function x; at r €
[k +1,—3] is at most the number of essential local minima on levels r and
r — 1 plus the number of essential local maxima on level r + 1. The total
height of all downward jumps, in particular their number, is at most Ny.
The total height of all upward jumps, wn particular their number, is at most
3No — x(2).

Proof. Consider regular values —k +1 < R < S < —3. By construction,
we have ' (f) € £;'(f). Hence the difference x;(S) — x(R) equals the
sum of —x(C) over all connected components C' of X' (f)\Sg'(f). The
contribution —x(C) of a connected component C' is negative only in the
case that C is either a sphere or a disk. If C' is a sphere, we must have
R < minca < S (the first condition ensuring C' C Egl( f) and the second
one C ¢ Zgl( f)), so C contains an essential local miminum in the interval
[R, S]. If C is a disk, its boundary must lie on {R} x M or {S} x M. In the
first case, we must have R+1 < maxc a < S+1 (the first condition ensuring
C C Egl(f) and the second one C' ¢ Egl(f)), so C' contains an essential
local maximum in the interval [R+1, S+ 1]. Similarly, in the second case we
must have R—1 < ming a < S—1, so C contains an essential local minimum
in the interval [R — 1,5 — 1]. Choosing suitable sequences of regular values
R 71 and S\, r, this proves the first assertion of the lemma.



Ry+1

o,

Figure 6. An upward jump at r due to a non-extremal
critical point z and a downward jump at Rg+ 1 due to an
essential local minimum y. Notice that no jump occurs at
the other local minimum.

It follows that the total height of all downward jumps is bounded by
twice the number of essential local extrema (maxima and minima), which is
at most Ny by Lemma 5.6. Since by Lemma 5.7, the values of xf(r) lie in
an interval of length 2Ny — x(X), the total height of all upward jumps is at
most 3Ny — x(X). O

In view of the preceding lemma, we can extend Xy from the regular values
to a function xy : [~k 4 1, —3] = Z which is locally constant except at the
finitely many jumps.

5.4. Detecting the levels. Let now (fx)ren be a sequence of Jg-holo-
morphic maps fi : (Zk,jx) — Xk of the same genus and with uniformly
bounded energy E(fi) < Ey. We will screen the neck of X, for the essential
parts f; which have the potential to give rise to non-trivial components of
the limit. This part of the proof is borrowed from the Floer theory. The
new feature here is that, in addition to non-trivial action, we also have to
detect non-trivial topology.



For each k, consider the functions
it k13220357,

Ag i [k, 0] = R, r— frwm.
£ L ([r,01x M)

More precisely, both functions are first defined on regular values and then
extended such that Ay becomes continuous and yj is locally constant except
for finitely many jumps as above. Note that the function Ay is strictly
decreasing because ffwy > 0. Recall the definition of 3y from Section 4.

Call a level r € [—k, 0] essential for fy if it satisfies one of the following
conditions:

er=0orr=—k;

o Ai(r) = jBo for some j € Z;

e fi has an essential minimum on the level »—1 or an essential maximum
on the level r + 1;

e i has a jump at r;

e fi. has a marked point on level r.

In view of Lemma 5.6, Lemma 5.9 and the energy bound 0 < Ag(r) < Ejp,
the number of essential levels of fi is bounded by a constant independent
of k. After passing to a subsequence, we may assume that this number is

constant, say N’ 4+ 2. For each k order, the essential levels as —k = Sl({O) <

- < s,&MH) = 0. Call two levels v and p equivalent if s,(:) —si“ ) is uniformly
bounded for all k. Retain only one level in each equivalence class, including
the highest and lowest level. Pass to a subsequence such that the number
of equivalence classes is constant, say N + 2 for some N < N’. Order the
remaining levels again as

—k =r,§0) << r,(CNH) =0.

By construction, limg_,s 'r,(;’H) - r,(;') = 00. Since every equivalence class
above contained only finitely many levels, there exists an Ry > 0 such that

,(:) are contained in the

all the dropped levels sl(f ) that were equivalent to r
interval (1"](:) — Ry, r,(f) + Ro).
For k > 2Ry, define the essential regions 5,?/) and the cylindrical regions

Z,(CV) by (Figure 7).

L ,(V) R,
&" =R, &) =500, v=1. N,
k

Z}gu) — 27»;"“) —Ry

= =R, (fx), v=0,...,N.
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Figure 7. Essential and cylindrical parts in X of f.

By construction, for k sufficiently large, the interval [r,(cy) + Ry, r,(:H) — Ry]
contains neither essential minima nor maxima nor jumps of the function .
Hence X(Z,gy)) = Xk(r,(gy) + Rp) — Xk(rl(:H) — Rp) = 0, so by Lemma 5.8,
Z,(CV) is a union of cylinders connecting the levels 7“,(:) + Rp and 7',(:“) — Ro.
We summarize this discussion in the following lemma.

Lemma 5.10. There exist constants N and Ry, independent of k, and levels
—k= 7',20) << r,(CNH) = 0 with the following properties.

(i) limgyoo "™ =+ = o0 forv=0,...,N.



(ii) For k sufficiently large and v =0, ..., N, the region Z]i”) s a union of
at most No cylinders (with Ny as defined before Lemma 5.7) connecting
the levels r,(cy) + Ry and 7’,(;/“) — Rg.

(iii) For every v =0,..., N, there exists a j € Z such that for sufficiently
)

large k, the area in Z,EV satisfies

80 < A (r) + Ro) < Ap(r"™ = Ro) < (j + 1)Bo.

Bookmark for later that we have already obtained the number N of levels
of the limit curve.

Corollary 5.11. In Lemma 5.10, after increasing Ro and passing to a
subsequence, we may further assume the following properties.
(i) The topology of the surfaces 5,?/) and Z,(CV) 1s independent of k.
(ii) The conformal modulus of each component of Z,gy) tends to infinity as
k — oo.

Proof.

(i) It follows from Lemma 5.5 and Lemma 5.7, see the discussion following
Lemma 5.7.

(ii) It follows from Lemma 4.20 and the upper bound on the action in
Lemma 5.3. g

5.5. Decomposing the domains. Next we will slightly modify the regions
&, and Z;, to make them fit into the setup of Sections 3 and 4. Let 5y > 0 be
the constant defined in Section 4 and ¢ > 0 be the constant in Lemma 4.10.
Let Ly > 1 be the constant in the remark after Theorem 3.2, where ¢, Cvr,
and cgr, are the constants associated to (X, Ji, gx) (which are independent
of k). Fix some L > L.

Consider one connected component Cj, of a cylindrical region Z,gy). (In the
following discussion, v is fixed and often suppressed in the notation.) Let Gy :
[~Lyp—5L 0, Ly+5L+£] x St — (Cy, ji) be a conformal parameterization
from a standard annulus. Consider the Jjs-holomorphic map hy := fi o Ok :
[~Ly — 5L — £, Ly + 5L+ (] x S — R x M. Denote by ||Vhg|| the norm of
the gradient with respect to the Euclidean metric on the cylinder and the
metric gy on R x M defined at the beginning of this section.

Lemma 5.12. After passing to a subsequence and increasing Ry, we may
assume that for every component of Z,gy), the corresponding maps hy =
(ck,wg) : [-Lg — DL — €, L + 5L+ €] x R/Z — R x M have the following
properties, with constants D > 0 and Ry > Ry not depending on k and v:
(i) L — o© as k — oo;
(ii) E(hk) < E()/S and EwM(hk) < Bo;
(iii) 1/D < ||Vhy(s,t)|| < D for all (s,t) € [-Ly — 5L, Ly + 5L] x S';



(iv) r”) + Ro — 1 < infyex(—Ly — 1,8) < sup, cp(— Ly, t) < 7 + Ry and
rl(€,/+1) — Ry <infyep(Lg, t) < sup; cp(Ly + 1,¢) < rlgr/+1) — Ro+ 1.

Proof.

(i) It is contained in Corollary 5.11.
(ii) The first statement follows from Lemma 5.3 and the second one from
Lemma 5.10 (iii).
(iii) Lemma 4.10 and the choice of ¢ yield the lower estimate ||Vhg(s,t)|| >
%}(s,t) > bp for s € [-Ly, — 5L, Ly + 5L]. The upper estimate follows
from Lemma 4.3 and property (ii) above.

(iv) Set
e = il}fck(—Lk — 5L — ¢+ 1,1), 1 i=supcg(Ly + 5L+ € —1,t).
t

Then Lemma 4.22 with R = 7’,(:) + Ry, S = T](€u+1) — Ry and E; := Fy/e?
yields

T < r,(cy) + Ry + Ei, 7’,;" > TI(CVH) — Ry — FEy.
In particular, r,j —1, — 00 as k — oco. Hence the maps hy satisty hypothe-
ses (B1) and (B2) of Section 4. By Lemma 4.11, a subsequence of the shifted
maps hy (s,t) := hg(s — Ly — 5L — £+ 1,t) — (r;/,0) converges in CX. on
[0,00) x S*. In particular, their R-components c;  satisfy

cp(—Lg,t) =7, =c¢, (BL+L—1,t) <p
for all sufficiently large k and a constant p. With the estimate on r;, this
yields
_ () _ .0
ek ( Lk,t) <r, -|-R0-|-E'1-|-p—’l“;€ + R;
for Ry := Rp + E1 + p. An analogous argument shows
Ck(Lk,t) > T‘,(CV_H) —Ry—F1—p= 7“,(;/+1) — R;.

For the converse estimates, note that Bi(—Lg — 1,t) € Z,gy) for all ¢, so by
the definition of Z,gy), we have

cr(=Lp = 1,t) = ag o Bp(=Ly — 1,£) > ') + Ry — 1.
An analogous argument yields ¢, (Li+1,t) < r,(:H) — Rp—+1. This concludes
the proof. O

Now we need some notation. Recall that the number of components of
Z,(CV) is independent of k. So we can parameterize the components by the
same index set 1) for all k and write

Z]El/) _ U Zi

icIw)



as a disjoint union of cylinders. Each cylinder is parameterized by a confor-
mal diffeomorphism

Bi:[~Li —5L— ¢, Lt +5L+ 4 xS* — 2}
as above. Define the slightly smaller cylinders
Zp = Bp([-L, — 1, Lj, + 1] x S*) C 2}

and set
' N-1 o Nl
7=z, 1=U  z=Uzn-Uz"
ier) v=1 el =l

Define the slightly larger essential regions

£ =800 U pi(i-th-st -6t x ')

iel®)
<u ﬁ,@([L", i 4+ 5L+ 0] 51>
ielf(v=1)
and set
N
E,:=JEBY.
v=1

Note that ¥ = Ep U Z; and
B0z = |J a1 -1,-1i] x 8Y),
ie[(u)
B0z = si(Imri+ 1 sh).
ieIv=1

5.6. Essential components. Consider the holomorphic maps fi : (Ep,
Jr) = (Xg, Ji) on the essential components. Define the maps

10 B0 — X,
= fel g —r L EY S Rx M, v=1,... N,

where f,io) equals the composition of f| p( with the map X N —k/2}x M —
k
Xy that shifts by k on [—k, —k/2) x M.

Lemma 5.13. For every v = 0,..., N, the maps f,gy) satisfy hypotheses
(A1-A5) in Section 3 with constants independent of k.

Proof. By Corollary 5.11 (i), for any g, n*, the number of connected compo-
nents with genus g and n™ positive and n~ negative boundary components

of the regions E,(Cy) is independent of k. By Lemma 5.12 (iv), the image of

f,gy) is contained in the compact region [—Ry, R1] x M for v =1,..., N and



in XoU[=R1,0] x MU0, R;] x M for v = 0. By Lemma 5.3, the gi-areas
of f,gy) are uniformly bounded by a constant independent of k. This shows
hypotheses (A1-A3) with u = gi.

By construction, we have at each positive boundary component of E,EV)
an embedded annulus

B [=5L,00 x St — B (s,1) — Bi(s — Li,t), i€V,
and at each negative component

Bt [0,50) — S' = EY), (s,0) s Bi(s + Ly t), i€ IV,
By Lemma 5.12 (iii), the gradients of the maps
0 B [=BL,0] x S' = R x M, W) o Bt 0,50 x S* - R x M

are bounded from below and above by positive constants independent of k.
This shows hypotheses (A4 and A5). O

Now Theorem 3.2 implies.

Corollary 5.14. Subsequences of f,g_y) converge as k — oo to nodal holo-
morphic curves
FO L (B®jO) — XoU[~Ry,0] x MU0, Ry] x M,
f 2 (EW ) — [~Ri,Ri]x M, v=1,...,N.
To simplify notation, we have dropped all the bars and do not distinguish
between E®) and E™) ete. Morcover, by starting with a slightly larger
region, we may assume that the convergence is up to the boundary of E®*).

With this understood, there exist diffeomorphisms 90,(:) : E,iy) — EW such
that
° (gp](c”))*jk — j¥) in 0 (away from the nodes),
° IEV) o (gp,(:))_l — ) in C* (away from the nodes) and in C° over the
nodes.

Moreover, for each boundary component ¢ € 1 @) resp. i € IV"Y | the maps
e o8 [-1,00x S — BV, o ogiti[0,1] x §' — E)

are independent of k.

5.7. Cylindrical components. For ¢ € I, consider the Jj;-holomorphic
cylinders
hi = frofh: [-LL — 1,0, +1] x S' - R x M.

Lemma 5.15. For each i € I, the maps h: = (c};,w};) satisfy hypotheses
(Bl and B2) in Section 4 with constants independent of k.



Proof. Hypothesis (B1) follows from Lemma 5.12 (ii). Hypothesis (B2) fol-

lows from Lemma 5.12 (i) and (iv) and r,(:ﬂ) — r,(:) —o0ask—oo. O

Consider i € I™). By Lemma 5.12 (with Ry > 1), we have

= iItlf ci(—Li,t) e [r,(c”),rz(f) + Ry,

it = sup (L, t) € [r,(:H) — Rl,r,(:H)].

() (

This allows us to replace ch_ by ;7 and r}j’ by rkVH) in the statements in
Section 4. Thus by Lemma 4.11, a subsequence of the shifted maps

hZ_(s,t) = hi(s— Li,t) — 7",(:), hfj(s,t) = hi(s+ Li,t) — T}(€u+1)
converges in C. to holomorphic half cylinders
R 0,00) x St — R x M, A" :(—00,0] x S' — R x M.

By Lemma 4.12, the half cylinders hi~ and h'T are asymptotic to the same
closed Reeb orbit +*.
Pick a sequence of diffeomorphisms

0, :[-Li —1,L, + 1] — [-2,2]
such that

i (s) = s+L}:€ —1 forse [—L;; - 1,—Li],
F s—Li+1 forse[L,Li+1].

The reason for choosing these slightly larger intervals will become clear
below. Moreover, we assume that their restrictions to [—Lj,, L} ] satisfy hypo-
thesis (B3). Thus the shifted maps

0; (s) :=0}(s — L}), 0, (s) := 0}.(s + L)
converge in Cp>° to diffeomorphisms

0" . [=1,00) — [=2,0), 6T :(—=o0,1] — (0,2].



By abuse of notation, let us denote the maps [—Lj — 1,Li + 1] x S' —
[—2,2] x S induced by 6% by the same letter. As in Section 4, define
g = (b vp) = ho ()" 1 [-2,2] x §' — R x M,
= O o) = e 0 2,2 x 8T R XM,
git = (b o) =Rt o (9”) 1 [-2,2] x S' — R x M,
g = (0, 07) =R 0 (07) 7 [<2,0) x ST — R x M,
gt = (v = AT o (0T) 7L (0,2] x ST — R x M,
v (s,t) s €[-2,0),
vi(s,t) == 4i(t) :5=0,
v (s,t) s €(0,2].
Corollary 5.16. For each i € I and a subsequence of g',‘;, the following
holds:
(i) gk — g on [-2,0) x S* and gi" — ¢'* on (0,2] x S* in C2..
(ii) vl — o' uniformly on [—2,2] x St
(iii) For every R > 0, there exist p > 0 and K € N such that b,(s,t) €
(s o) 4 g’+1) —R] for all k > K and (s,t) € [-p,p] x S*.
Proof. For the restrictions to [—1,1] x S!, this follows from Lemma 5.13
and Theorem 4.18. Moreover, by Lemma 5.12 (iv), the maps hj, also satisfy

hypotheses (B1 and B2) of Section 4 with Ly replaced by (Li+1). Hence the
convergence on [—2, —1] x St and [1,2] x S! follows from Lemma 4.11. O

5.8. Domain of the limit curve. For the following discussion, see
Figure 8.
Define the disjoint unions of standard annuli

Co= Tt L+ x st o=T]l-2.2x s,

el el

¢y =[]~ -1,-Li] xs', ¢ =]]l-2-1]xs",
i€l el

ol =1L, L+ 11 x s', ¢t =]]l1,2 x 5"
el el

The diffeomorphisms 6}, : [-Li —1, L} +1] — [—2, 2] induce diffeomorphisms
0y, : Cx, — C which are of the form (s,t) — (s+ const,t) on each component
of C; UCY.

Recall that 7 = U;¢ IZ,Z'C and E;, = U,JJVZOE,E,’V). The diffeomorphisms
Bi:[—Li —1,L% +1] x S' — Z} induce conformal diffeomorphisms
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Figure 8. Patching together the cylindrical and essential
pieces of fi.

Set ZkjE = ﬁk(Cki) and note that £, N2y = Z, U Z,j. The diffeomorphisms
99,(;') : E,(CV) — E™ induce diffeomorphisms

N
on: By — E:=]] EY

v=0

such that (yg)«jr converges to the (nodal) conformal structure j on E
induced by the j*). Moreover, the embeddings

ﬂ:chkoﬂkoﬁlzlzC_UC+—>E
are independent of k. Glue E and C' to obtain a closed surface
Y.=FK Ug C.

Sinceﬁoﬁkoﬁk_l = . on E; N Z, the maps ¢ : By — F and 6’koﬁk_1 :
7, — C fit together to yield diffeomorphisms

ngZZk—)E.



5.9. Convergence of conformal structures. Define the union of disjoint
simple loops
A:=]J{o}x 5" cc
icl
Viewing A as a subset of 3, we define

N
2 =3\A = [[£@,
v=0
where (=" is the component containing E®) . The diffeomorphisms 6"~ :
[-1,00) = [-2,0) and 6" : (—o0, 1] — (0, 2] induce a diffeomorphism

9 : (]_[[—1,00) X 51) 11 (H(—oo, 1] x Sl> — C\A.
iel i€l
Since 0? — 0™ in Cp°, the conformal structures ().i converge in C£2,
on C'\ A to 6.i. Moreover, by construction, we have (6j)«i = 6.i = i on
C~UCT. On the other hand, we have (¢).jr — j in C2° on E (away from
the nodes). Moreover, on (C~ U C™), we have

(Pr)sdk = (o 0 Br)xi = Pui
for all k£, and therefore j = B4i. This shows that the structures 7 on F
and 0,7 on C'\ A fit together to a conformal structure j on X* making it a
punctured Riemann surface.

By definition of ¢ : ¥ — X, the structure (pg)«jr on X is given by
(¢k)«jk on E and by (6 o ﬂ,;l)*jk = (0x)«i on C. Hence by the preceding
discussion, (¢r)«jr — j in CL2 on ¥*. This proves property (a) of Defini-
tion 2.7 for the sequence Fy : (g, jk) — (Xg, Ji). Property (b) holds with
annuli (0f)'([—L%, Li] x 1) [-1,1] x St — [-Li, Li] x S*.

5.10. Convergence of maps. For £ € N and v = 0,..., N, define the
maps

Fpi=frop,' 1 X — X,

FIEV) = Ig”) o @];1 D J{COJNN XIEV).
First consider their restriction to an essential component E*). By Corol-
lary 5.14, a subsequence of F,gy) = ,5") o (go,(;j))_l : E™ — X®) converges in
the sense of Definition 3.1 to the nodal holomorphic curve f*) : E®) — x ),

Next consider a cylindrical component C* = [-2,2] x S with i € I,
Recall that ¢y, is given on Z} by 0% o (81)~1 : Z! — C®. This implies
Filei = fro Bpo(0p) " = hio (6})7 =g : C" — Rx M,

and similarly

F o = gt FY )| = git



By Corollary 5.16, for subsequences, we have C} -convergence g;; — g
on [-2,0) x S! and g?’ — ¢'* on (0,2] x S'. By construction, the maps
f@), gt~ for i € IV and ¢/t for j € I~ fit together to punctured nodal
holomorphic curves F' OIS S O ¢ ) and a subsequence of F, ,gy) converges
to F®) in Cre. on »*) (away from the nodes). This proves property (c) of
Definition 2.7. Denote by F : ¥* — X* the map induced by the FW .
») — X By construction, each F(*) contains an essential level and is
thus stable.

For property (d), consider first the M-components 7y 0 Fi|ci = mas og,’;j =
v,i : C* — M. By Corollary 5.16, a subsequence of ”2 converges uniformly
to v* : C* — M. This shows that F': ¥* — X™* extends to a continuous map
F:% — X and 7y o Fy — 7wy o F uniformly on A? = [-1,1] x ST C C*.
The R-components satisfy mg o Fi|ci = g o g,i = bfC : C* — R. Thus the
second statement of property (d) follows from Corollary 5.16 (iii).

5.11. Stability. Unfortunately, it may happen that the so-obtained broken
holomorphic curve is unstable, i.e., one of the pieces F*) is a disjoint union
of cylinders without marked points over a collection of closed Reeb orbits
. By construction of the essential levels 7",(:), this can only happen if
there is a j € Z such that for all sufficiently large k, we have Ax(r) = j3
for some r € [r,(:) - Ro,r,(:) + Ry]. Tt follows that the two neighboring
pieces F@ED are both stable: If one of them, say FHD - was unstable,
it would have to be the same collection of orbit cylinders as F*) because

the asymptotics agree; on the other hand, it would satisfy Ag(r) = j'8 for
some 7 € [7“,(:-'_1) — RO,T,({VH) + Ro] with j" # j € Z, which contradicts the
vanishing of wys on cylinders over Reeb orbits.

Notice that this discussion remains true for any choice of sufficiently small
Bo. Now repeat the selection of essential levels with Gy replaced by (Go/2.

If a limit piece F) is unstable, we omit, a posteriori, the level 7"](;/) and go
again through the process in the compactness proof. Since by the previ-
ous discussion no two adjacent levels become unstable, the wj,-areas of the
cylindrical parts are at most (3y5. So the compactness proof goes through as
before, yielding a stable broken holomorphic curve in the limit.

5.12. Convergence of area. Let ¢y : [-e—k, e] — [—¢, €] be a sequence of
diffeomorphisms with ¢} = 1 near the boundaries. For v =0,..., N, define
#W) and qb,EV ) as in Section 2 and assume that ¢,(:) — ¢®) in O We need
to show

f;w% —>/ F*W¢.
Yk 3*



With the form W) on X,gy> which equals wy; + d((b,(:))\) on the neck and w
k

on Xy, this is equivalent to

N ) N
FNYw FUY wy.
;)/E(V)(k)w¢;>—>;)/2( )

)

In view of the hypothesis ¢,(€V) — o™, we have w () — wg in CPY on X,
k

¢
Together with the C}X -convergence of maps F,gy) — F") this implies

[y — [ oy,
K Pk K

for every compact subset K C ©(*). Thus it suffices to show that all the
integrals are arbitrarily small outside a sufficiently large compact subset.
More precisely, let [—6,6] x S C C! be a small annulus around a loop
AP C A in ¥ and let X®), 2+ be the components adjacent to A’. Then
we need to show that for each p > 0, there exists a § > 0 such that the
following statements hold:

1) f[—6,6]><51 Frwg < p;
(2) f[_(g 5]><51(fk o ¢ ' )*we, < p for all sufficiently large k.

Statement (1) follows as in the proof of Lemma 2.6: Let N C M be a
neighborhood of the asymptotic Reeb orbit 4% at A’ on which wy; is exact,
say wyr = do’. Arguing by Stokes’ theorem as in the proof of Lemma 2.6,
we find

(5.1) / Fruy = / F*a + ¢X) — / F* (o + o).
[—d,0]x.S1 {6} x ST {—d} xSt

Now by the asymptotic behavior, for 4 small, the M-component of F/[{15 s
is C'-close to 7% and $oF| (1551 1s close to a constant ¢, so the right-hand
side becomes < p.

For statement (2), first note that due to uniform convergence (Corol-
lary 5.16), for small 0, the M-projection of fj o¢;1([—6, 8] x S1) is contained
in N* for all sufficiently large k. Thus Stokes’ theorem yields

/[—5 5]x 51 (fk o ¢;;1)*W¢k = / (F]S/—i—l))*(ai + </j)](€’/+1))\)

{5}x St
- /{ e (@ 0)

In view of the C"*°-convergence F; ,iy) — F) on compact subsets of ¥* noted
above, the right-hand side of this equation converges to the right-hand side
of equation (5.1) as kK — oo (with § small but fixed) and is therefore < p for
k sufficiently large.



This proves property (e) of Theorem 2.9 and hence concludes the proof
of the Gromov—Hofer compactness theorem.

5.13. The contact case. Finally, we discuss convergence of area in the
case that M C X is a hypersurface of contact type which separates X into
Xy = Xar IT X, . Recall from Section 2 the definition of the symplectic forms

w on X,
w = d(e"\) on [—k,0] x M,
e *w  on )_(0_.

The following lemma estimates the wg-areas from above.

Lemma 5.17. Let f : X — Xj be a Jy-holomorphic curve. Then

| oooresEg. [ pecsetEg),
XD F=1Xy)

Moreover, for any reqular levels —k < R < S < 0, we have

/ prop < CEU).
FURSIxM) 28

Proof. The first two inequalities follow immediately from non-negativity of

frw:
/ .m%=/  Fw< B,
F~UED) F~UXD)

/ o [ = e_k/ o flw< e FE(f).
f~HXg) 71X

The last inequality follows from positivity of ff—l( (R}x M) f*A (Lemma 4.1
(a)) and Lemma 5.3:

/ Frwr =/ eSf*/\—/ e A
FHIR,S)x M) FHSIxM) F {RYx M)
o Jpdsyan o 2

O

Proof of Corollary 2.11. Let p > 0 be given. Lemma 5.17 provides for any
k € Nand S € [k, 0] the estimates

S
/ o frwp < e_kE(f)7 / frwg < € g(f)
£ X)) Fi ([~ k,S]x M) 5




Since the integrand f;wy is non-negative, this shows the existence of K € N
and S < 0 such that

/ fl;kwk_pS/ . fifwké/ frws
Sk Fe M8 0] x MUX ) b8

for all k> K. Now by construction, we have f, '([S,0] x M U X]) C ES?)
for k sufficiently large. Thus the middle integral equals

<F£0)> *w+
(Fj(LO)> *w+

by the Cp-convergence F, IEO) — Fj_o) on EEE) and the properness of F_E_O).
This implies the existence of the limit of areas together with the estimate

/f—l([s 0] x MUX) T = /(F(O))l([s 0] x MUXH)
b 0 Pl 0

k k

. /
k=00 J({®)-1([8,0)x MUX{)

lim frwg —p <

(0)>* + : *
F wT < lim frwg
koo Jx, /(Ff))l([s,meuXJ)( i k ‘

—00 Ek

for any p > 0. Moreover, the asymptotics of FJ(FO) imply

/zf) (Fi0)>*w+ —p< /(FP)_I([S)O]XMUXJ) (F@)*w* < /z<+°> (FJ(QL))*WJ’

for S sufficiently negative. Together the inequalities imply

lim / frwr —p < / (Fio)) w™ < lim / frwk +p
k—o00 Ek Ef) k—o00 Ek
for arbitrary p > 0. This concludes the proof of Corollary 2.11. O
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