High-performance and
Hardware-aware Computing

Proceedings of the Second International Workshop on New Frontiers
in High-performance and Hardware-aware Computing (HipHaC’11)

San Antonio, Texas, USA, February 2011
(In Conjunction with HPCA-17)

Rainer Buchty

Jan-Philipp Weif3
(eds.)

ST ining

Impressum

Karlsruher Institut far Technologie (KIT)
KIT Scientific Publishing

StraBBe am Forum 2

D-76131 Karlsruhe

www.ksp.kit.edu

KIT - Universitat des Landes Baden-Wurttemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

SOME RIGHTS RESERVED

Diese Veroffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2011
Print on Demand

ISBN 978-3-86644-626-7

http://www.uvka.de
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Optimized Replacement in the Configuration Layers
of the Grid ALU Processor

Ralf Jahr, Basher Shehan, Theo Ungerer
University of Augsburg
Institute of Computer Science
86135 Augsburg, Germany

Email: {jahr, shehan, ungerer} @informatik.uni-augsburg.de

Abstract—The Grid ALU Processor comprises a reconfigurable
two-dimensional array of ALUs. A conventional sequential in-
struction stream is mapped dynamically to this array by a
special configuration unit within the front-end of the processor
pipeline. One of the features of the Grid ALU Processor are
its configuration layers, which work like a trace cache to store
instruction sequences that have been already mapped to the ALU
array recently.

Originally, the least recently used (LRU) strategy has been
implemented to evict older configurations from the layers. As
we show in this paper the working set is frequently larger than
the available number of configuration layers in the processor
resulting in thrashing. Hence, there is quite a large gap between
the hit rate achieved by LRU and the hit rate achievable
with an optimal algorithm. We propose an approach called
qdLRU to enhance the performance of the configuration layers.
Using qdLRU closes the gap between LRU and an optimal
eviction strategy by 66% on average and achieves a maximum
performance improvement of 390% and 5.06% on average with
respect to the executed instructions per clock cycle (IPC).

Index Terms—Trace Cache, Replacement Strategy, Post-link
Optimization, Feedback-directed Optimization, Coarse-Grained
Reconfigurable Architecture

I. INTRODUCTION

Within this paper, we present an optimization for the Grid
ALU Processor (GAP), which has been introduced by Uhrig
et al. [1]. It brings together a superscalar-like processor front-
end and a coarse-grained reconfigurable architecture, i.e. a
reconfigurable array of functional units (FUs). The front-end
consisting of instruction fetch and decode unit is extended
with a new configuration unit. This unit maps the instructions
from the instruction stream dynamically and at run-time onto
the array of FUs. Mapping of instructions and execution
of instructions in the array run in parallel until there is a
reason to flush the array and restart the mapping process. The
mapping which has been built until this moment is called a
configuration.

These configurations can be buffered in so-called configu-
ration layers, which are formed by some memory cells very
close to all the FUs. The configuration layers are very similar
to trace caches. If a part of a program, i.e. a configuration, is
already stored in the configuration layers it can be executed
faster because it does not have to go through the front-end first,
so instruction cache misses cannot occur. The timing inside the

Sascha Uhrig
Technical University Dortmund
Robotics Research Institute
44221 Dortmund, Germany
Email: sascha.uhrig@tu-dortmund.de

array is optimized, too. Because of this, it is a worthwhile goal
to increase the usage of the configuration layers. Analyzing
the execution of benchmarks we came to the conclusion
that for some of them our default replacement strategy LRU
works unexpectedly bad, even worse than replacing a random
configuration layer (we call this strategy RANDOM). So LRU
is in some cases not clever at all and humbles the execution
speed.

The main contributions of this paper are (1) the analysis
and comparison of the behavior of well-known replacement
algorithms when applied to the replacement in the configura-
tion layers and (2) the introduction and analysis of qdLRU.
QdLRU improves the hit rate of LRU by adding flags to the
program code based on a feedback-directed approximation of
the working sets.

After giving a short introduction of the target platform
in Section II, we discuss some basics about replacement
strategies in Section III. The extended version of LRU called
qdLRU is introduced in Section IV and evaluated in Section V.
Related work is presented in Section VI and Section VII
concludes the paper.

II. TARGET PLATFORM: THE GRID ALU PROCESSOR

The Grid ALU Processor (GAP) has been developed to
speed up the execution of conventional single-threaded instruc-
tion streams. To achieve this goal, it combines the advantages
of superscalar processor architectures, those of coarse-grained
reconfigurable systems, and asynchronous execution.

A superscalar-like processor front-end consisting of fetch-
and decode units is used together with a novel configuration
unit (see Figure 1(a)) to load instructions and map them dy-
namically onto an array of functional units (FUs) accompanied
by a branch control unit and several load/store units to handle
memory accesses (see Figure 1(b)).

The array of FUs is organized in columns and rows. Each
column is dynamically and per configuration assigned to one
architectural registers. Instructions are assigned to the columns
whose register match the instructions’ output registers. The
rows of the array are used to model dependencies between
instructions. If an instruction B is dependent of an instruction
A, it will be mapped to a row below the row of A. This way
it is possible for the in-order configuration unit to also “issue”

! Processor front-end :
5 Instruction fetch unit ‘ :
) :
S vV VVYy :
5
1%)
C
S | ER Decodeand . .

configuration unit
Memory
= s> access [|

= unit
=
= Memory 2
g = . F—— access |
= Array of reconfigurable FUs unit o
: 2
_Fé [L Memory [a)
E — — acce.ss
o unit

(a) Block diagram of the GAP core

Fig. 1.

dependent instructions without the need of complex out-of-
order logic. A bimodal branch predictor is used to effectively
map control dependencies onto the array.

Execution starts in the first row of the array. The dataflow
is performed asynchronously inside the array of FUs and it is
synchronized with the clock of the branch control unit and the
L/S units by so-called timing tokens [1].

Whenever either a branch is miss-predicted or execution
reaches the last row of the array with configured FUs the array
is cleared and the configuration unit maps new instructions
starting from the first row of the array. In order to save con-
figurations for repeated execution all elements of the array are
equipped with some memory cells which form configuration
layers. Typically, 2, 4, 8, 16, 32, or 64 configuration layers
are available. The array is quasi three-dimensional and its size
can be written as columns x rows x layers.

With this extension it has to be checked before mapping
new instructions if the next instruction to execute is equal
to the first instruction in any of the layers. If a match is
found, the corresponding layer is set to active and execution
continues there. If no match is found, the least recently
used configuration layer is cleared and used to store the
new configuration. In all cases, the new values of registers
calculated in columns are copied into the registers at the top
of the columns.

To evaluate the architecture a cycle- and signal-accurate
simulator has been developed. It uses the Portable Instruction
Set Architecture (PISA), hence the simulator can execute the
identical program files as the SimpleScalar simulation tool
set [2] (but it is not based on it). Detailed information about the
processor are given by Uhrig et al. [1] and Shehan et al. [3].

III. TOWARDS AN IMPROVED PoOLICY

Several basic terms of replacement strategies with respect
to the GAP architecture are discussed in this section.

10

Top registers Configuration busses

l

Memory
- access
5 unit
©°
‘E Memory
S accgss
S unit
c
S
-3 Memory
access
unit
| ALU array
Reconfigurable Backward Forward Horizontal

FUs connections

(b) General organization of the ALU array

connections connections

Architecture of the Grid ALU Processor

A. Measuring the Performance of a Replacement Strategy

To analyze the performance of a replacement policy, we
suggest two measures. The total hit rate hiiq; Of the layer
subsystem, which is the number of accesses of layers which
can be found in the configuration layers ay;; divided by the
total number of accesses aiotq;. The total hit rate hioq; can
also be understood as the sum of the hit rate by re-accessing
the identical configuration subsequently hioop = Gioop/Gtotal
which is independent from the number of layers available,
and the hit rate contributed by the layer subsystem h;,ye, =
Alayer/Qtotal for all other accesses:

Ahit

- Qloop Qlayer

htotal = + = hloop + hlayer

Gtotal Gtotal Gtotal

A replacement policy can influence only the hit rate of the
layer subsystem hyqye,. For a given benchmark, Ay, has the
same value for all replacement strategies.

An optimal offline replacement algorithm (named OPT in
the remainder) has been introduced by Belady [4] and it can be
used as upper bound. In other words, no (online) replacement
policy can achieve a better hit rate than this offline policy,
which chooses the element for eviction that will be reused as
the last one of all elements in the future.

Another offline algorithm has been mentioned by Temam [5]
with the goal to maximize the number of instructions which
can be accessed without cache misses. As upper bound for the
performance of a replacement policy the algorithm OPT is a
much more feasible measure because in the GAP, the penalty
caused by activating the front-end of the processor when a
new configuration must be build is much higher compared to
the time, which is saved when some additional instructions
can be found in a layer.

The second measure to evaluate a replacement policy is the
performance of the whole system, which is e.g. described by
the number of instructions executed per clock cycle (IPC).

B. Known algorithms and their performance

Figure 2 shows the simulated average total hit rate o0
of different well-known page replacement policies and the
optimal offline policy OPT for 15 benchmarks of the MiBench
Benchmark Suite [6] executed on the GAP with an array of
width 12 and height 12 and a varying number of configuration
layers. The hit rate achieved with one layer is equal to hjnp
and replacement policies do not have any influence on it
The additional hit rate achieved with more than one layer is
contributed by the layer subsystem, i.e. hjqyer. As expected,
LRU performs slightly better than FIFO. The out-performance
of RANDOM over LRU is surprising as this replacement
strategy behaves quite dumb by evicting random elements.

B rFO M LRU
0,9

0,8

! RANDOM M OPT
0
0,
0,
0,
0’ "
0,
0,

0

1 2 4 8 16 32 64

Configuration Layers (N)

Total Hit Rate
N ow R T o N

—

Fig. 2. Average total hit rate over 15 benchmarks for several numbers of
configuration layers of GAP configured with an array of 12x12xN functional
units

A more detailed view on the hit rate achieved with FIFO,
LRU, RANDOM and OPT for the 15 benchmarks on GAP
with a 12x12x16 array is presented in Figure 3. Six bench-
marks reach a nearly optimal total hit rate close to 1.0
while benchmarks like auto-gsort, netw-dijkstra,
offi-stringsearch, secu-rijndael-encode and
others show a larger gap between the policies.

Table I shows the gap A between the performance of LRU
and OPT. The second column is the difference A of the hit
rates of LRU and OPT. In the third column, the achievable
improvement with respect to the hit rate of LRU is shown.
Closing this gap is the goal of our work.

C. Thrashing as major drawback of LRU

As first step towards an improved replacement policy we
designed a graphical representation showing configuration
layer accesses and the state of the layers. This type of graphics
is referred to as access plot in the following. As example,
the first 1000 accesses in the layer subsystem are shown in
Figure 4(a) and 4(b). To render an access plot, the accesses
to configurations are recorded in the GAP simulator. Next,

TABLE 1
DIFFERENCE OF THE HIT RATE BETWEEN LRU AND OPT

Layers A | A/LRU
1 0 0%
2 0.09 23%
4 0.15 31%
8 0.09 13%
16 0.08 10%
32 0.12 16%
64 0.08 9%
AVG 0.09 15%

each configuration is given an incrementing number (ID).
Each access to a configuration is numbered, too. To plot an
access, its coordinates are determined by its access number
(X-axis) and the number of the accessed configuration (ID,
Y-axis). If an already available configuration is accessed, it is
colored green (or dark grey, if printed black/white only). If
the configuration is not available it is colored red (or black,
if printed black/white only). If the target configuration is the
same as the one requested by the last access, the current
configuration will not be modified. The reuse of the current
configuration is not shown in the image because it has no
interference with the replacement policy. The content of the
layers at the time an access is done is displayed by vertical
light gray pixels.

Although only a short part of the total program execu-
tion time is visible in Figure III-C it is sufficient to show
some important facts. First, there is only a small number
of different array configurations compared to the number
of actually executed configurations which can be recognized
by the width/hight relationship of the plot. Second, several
patterns appear very often. They differ mostly by the number
of configurations which they contain and the locality [7] of
the accesses of the configurations:

« Sequentially executed code, e.g. the starting sequence:
The reuse distance is extremely high or unlimited.

o Small loops, i.e. a small number of repeatedly executed
configurations: The reuse distance is comparable to the
number of configurations of the loop; the number of
configurations is smaller than the number of configuration
layers.

« Large loops, i.e. a larger number of repeatedly executed
configurations: The reuse distance is comparable to the
number of configurations of the loop; the number of
configurations is larger than the number of configuration
layers.

o Program phases: They consist of multiple loops and
phases of sequentially executed code. As they contain
lots of configurations the locality is only medium. The
reuse distance can vary.

In a more detailed analysis we came to the conclusion
that the well-known and already mentioned eviction polices
show for these patterns always a very similar behavior. For
sequential code, none of the strategies can achieve hits because
configurations with infinite (or very long) time since a last
usage are loaded. Small loops can be handled very well

11

0,9

0,8

0,7
2
o6
Tos
g
=04

0,3

0,2

0,1

0
ot s e N e o YA e e

o g \,\O'Qe‘o g(\eof’éw e 008 cen ™" o e o000 sp0¥¢ o o0 .\e.dec‘ ,\‘B.ef‘c'o(5 s o d6°°¢ oo™

oV peY o 6“ 02 000 (92" co® e .
0S” FEARARNG 3@ L e © 9 e o€
cO dae\' eg\) e\ 00 e‘gﬁv \-
2 \y(L 5O L 1@
€% eC HrFO M RU "I RANDOM M OPT
12. 3. otal hit rate for the nchmarks run on with a X12X arra
Fig. 3. Total hi for the benchmark: GAP with a 12x12x16 \

by LRU and OPT. RANDOM does not perform competitive
because it evicts random configurations that might be needed
again very soon. Large loops are the sticking point. If LRU is
used, thrashing (see. e. g. [8]) can occur because the algorithm
has to evict configurations that are part of the beginning of
the loop and will be reused soon. The hit rate drops to zero.
RANDOM performs better because it keeps at least some of
the configurations of the loop in the layers. The OPT algorithm
does the following: In every iteration of the loop it does
not throw away some of the configurations, but keeps them
for the next iteration. In Figure 5 the access plots for LRU,
RANDOM and OPT can be seen. LRU produces only misses
while RANDOM provides some and OPT a reasonable number
of hits.

In short, for the replacement of the configuration layers
thrashing is the main issue on the way to close the gap between
LRU and OPT. Increasing the number of configuration layers
would solve this problem to some extend but the number of
layers is restricted by their hardware complexity and more
complex applications would tend to thrashing again. Therefore,
we look for a better replacement strategy to prevent thrashing
or at least limit its effects.

IV. QDLRU STRATEGY

The main idea of this new approach is to explicitly add
flags to those configurations which would cause thrashing.
Those marked configurations are then immediately replaced
by another configuration. In other words, they are inserted at
the least recently used position instead of the most recently
used position, Because the marked configurations are dropped
quickly we call the strategy quick drop LRU (qdLRU).

As example assume the configurations cy to cy47 are in a

12

working set W := [cg, ..., ca7] and GAP has 32 configuration
layers. Repeated executions of W would cause thrashing
(when using LRU as replacement strategy) because the size
of the working set |WW| = 48 is larger than 32 which is the
number of layers available in the GAP. If W is executed for
a longer time with LRU then /4y e, drops to 0 because of
thrashing. The optimal offline strategy would buffer 31 of
the 48 configurations, hence: hjqe, ~ 31/48 = 0.64583.
With qdLRU you get the same and optimal hit rate for this
thrashing-risky situation,

A. Adding flags to instructions

QdLRU is a feedback-directed optimization. The basis to
be able to calculate which instructions shall be marked is a
trace of addresses of the first instructions of the configurations
executed during a program execution. To get this trace file we
use the cycle-accurate simulator available for the GAP.

The next step is to find the so-called configuration lines.
A configuration line C, e.g. C = {cg,...,cq7}, represents
one of the diagonal lines in Figure 5 and is very similar
to a working set. To generate the set of all configuration
lines C = {(Y,...,C;} and their usage counters the heuristics
described in Listing 1 is used.

These configuration lines represent the working sets with the
“smallest degree of reuse”. To construct them, we assume that,
whenever a configuration is already available in the working
set and different from the last handled configuration, a branch
back to the start of the current working set is performed.

Afterwards, several configurations within each configuration
line are selected as candidates to be dropped quickly. For this,
the configuration lines are split into two groups, one group
Cghort contains all lines whose length is smaller than the

Listing 1. Algorithm to configuration lines
input: list<configuration> trace
#define line list<configuration>
set<line> all_lines
map<line , int> line_counters

line current_line = {}
configuration last_configuration

foreach(configuration item in trace)
if (item last_configuration)
// Do nothing
if (item ¢ current_line)
current_line += item
last_configuration =
else
all_lines 4= current_line
line_counters[current_line |++
current_line = {}
last_configuration =

else

item

item

number of layers in the processor and the other group Ciopg
contains all the other configuration lines, those configuration
lines are too long to fit into the layers without evictions.
With having prepared these groups the following algorithm
is performed:

1) Select a configuration line item from Cjopg.

2) Select from item the configuration with the least usage
in Cgport, mark its first instruction.

3) Select all configuration lines from C,,, where the
number of all configurations minus the number of all
marked configurations in the line is smaller than the
number of layers of the processor. Move them to Cgp,op-¢-

By this heuristic, we select configurations in a manner
that they influence as little as possible the execution of
configuration lines that fit into the layers. If a configuration
line fits into the layers, but one of its configurations is marked,
than this can humble the hit rate of this configuration line
extremely.

In the last step, our post-link optimization tool GAPtimize
(introduced in [9]) is used to mark the first instruction of the
selected configurations with a special drop quickly flag. This
flag directs the configuration layer subsystem of GAP to drop
the configuration starting with the actual instruction quickly.

B. Executing the modified binary

When implementing qdLRU, changes are necessary both in
hardware and in software. The changes in hardware are very
simple. All which has to be done is to make sure that either a
configuration beginning with a marked instruction is inserted
in the least recently used position in the LRU access queue or
that, when looking for a layer for eviction, it is first looked
for a configuration layer starting with a marked instruction and
then replacing this layer.

If a program is executed on the GAP which has not been
optimized (and is hence without flags), then qdLRU behaves
exactly like LRU, which still offers reasonable performance.
This graceful degradation is one of the requirements of all
techniques used for the GAP.

V. EVALUATION

For the practical evaluation we rely on the cycle-accurate
simulator which has been developed for the GAP and was
extended to support qdLRU. As the hardware complexity of
GAP can vary very much because of different sizes of its

4) If Cyopg is not empty, restart the algorithm with step 1. ALU array, we set it to a fixed size of 12 columns and 12
. Sequential code ——Accesses—»>
. .
N . . o
~ " Sequential code S
[> ES
g
N 5
\ =1
Rk "\)) 5
Part Of short Ioop S S . e N\ o~
(a) Access plot for the first 1000 accesses of configuration layers for benchmark stringsearch
N Sequential code Program phase
N . . . = ~
AN ~
gﬂ w'\\w. -
By Sequentialcode /o N o s . — -
[=] o .
=1 s
i :
——Accesses—p Short loop NN N

(b) Access plot for the first 1000 accesses of configuration layers for benchmark gsort

Fig. 4. Access plots (see Section III-C) for GAP with 12x12x16 array and LRU as replacement policy; some patterns are marked and labeled.

13

h

b .-"'\-L . .-'H. RANDOM

- "

OPT

.5

Fig. 5. Access plots (see Section III-C) for LRU, RANDOM and OPT (from
top to bottom) dealing with a large loop (rijndael on GAP with 12x12x32
array)

rows, which is a realistic size. The performance of the qdLRU
policy was evaluated using a varying number of layers. The
configuration of the GAP is in the following abbreviated as
columns x rows x layers.

We use integer-focused benchmarks from the MiBench
benchmark suite [6] which have been compiled with GCC
for the PISA instruction set architecture (see [2]) with opti-
mizations turned on, i.e. —03. These benchmarks are analyzed
and modified with GAPtimize, our tool for feedback-directed
post-link optimizations.

For 15 benchmarks, including benchmarks where we ex-
pected only little or no change, we achieve an improvement
in performance measured by the IPC of 5.06% on average
for qdLRU compared to LRU. The highest improvements are
achieved for 32 and 64 layers, where we get improvements
of 9.48% and 9.41% respectively (compare Figure 8). These
values do not seem to be very brilliant which is mainly caused
by the fact that for most of the benchmarks we cannot expect
the improvement to be very high due to a very small gap

14

10,00%
9.00% M gdLRU
8,00%
7,00%
6,00%
5,00%
4,00%
3,00%
2,00%
1,00%
0,00%

Improvement of IPC

32 64

Fig. 6. Average IPC improvement for 15 benchmarks executed on GAP and
configurations 12x12xN with qdLRU compared to LRU

2 4 8 18

Configuration Layers (N)

between LRU and OPT. Details are shown in Figure 6.

In the top part of Figure 7, more details on the IPC are
displayed for some selected benchmarks where thrashing is
an issue. The most impressive numbers can be seen for
the benchmarks secu-rijndael-decode and secu-rijndael-encode
with a maximum improvement of 390 % for the IPC achieved
with qdLRU compared to LRU.

This improvement of the IPC is mainly based on the
improved hit rate of the layer subsystem. The total average
improvement of the hit rate over 15 benchmarks and all con-
figurations is 0.06. This average hit-rate improvement seems to
be small but it has to seen in relation to the maximal possible
improvement (0.09) which can be achieved with the optimal
algorithm OPT (see Section III-B).

For selected benchmarks which might cause thrashing with
LRU the total hit rate can be seen in the bottom part of
Figure 7. Here again, the benchmarks secu-rijndael-encode and
secu-rijndael-decode show supreme results as thrashing is here
a very critical problem when using LRU.

In Figure 8 we show the average performance of LRU and
qdLRU compared to OPT and RANDOM. QdLRU shows bet-
ter performance than LRU and RANDOM. The gap between
LRU and OPT can be closed with qdLRU by 65.97 % on
average, varying between 48,38 % for 2 layers and 78,05%
for 32 layers (see Figure 9).

N iRU
0.9 M RANDOM
qdLRU

1
08 MWoprT
07
0,5
ol
0,3
2 4 8 16 32 64

Configuration Layers (N)

Total Hit Rate
(=]
>

S

Fig. 8. Simulated total hit rate for LRU, RANDOM, qdLRU and OPT
(average over 15 benchmarks, GAP with 12x12xN functional units)

70%
° My N4 /g M1 W32 Wes
60%
£ 50%
—
o
< 40%
£
0
o 30%
o
E— 20%
10% I
0% L — _- - —
-10%
0,30
Hy My g Mg M32 Hes
0,25
2
&
«~ 0,20
I
©
£ 0,15
T
!
g 0,10
=
g
© 0,05
o
= L
0,00
auto-gsort offi-stringsearch
-0,05 netw -dijkstra secu-riindael-decode

390,05% 329,55% 107.82%

|]
I

secu-rijndael-decode-nounroll secu-rijndael-encode-nounroll
secu-riindael-encode

Fig. 7. Relative improvement of the IPC (top) and improvement of the hit rate (bottom) for selected thrashing-risky benchmarks run on GAP with configurations

12x12xN for qdLRU compared to LRU

0,9
M gdLRU

08
07
06
0,5
0.4
0,3
0,2
0.1

0

2 4 32 64

8
Configuration Layers (N)

Achieved Ratio of Possible Improvement

Fig. 9. Ratio of the gap between qdLRU an OPT which can be covered by
qdLRU (average over 15 benchmarks, GAP with 12x12xN functional units)

If the memory latency (which has been set to 24 clock
cycles) is increased, we expect the effect of an improved hit
rate to have stronger implications on the system performance.
On the other side, if the size of the also available instruction
cache is increased, the effect of increasing the hit rate will
decrease because the penalty to load instructions from the
instruction cache will decrease due to less instruction cache
misses.

VI. RELATED WORK

As mentioned before the configuration layers of the GAP
are used to buffer configurations. They work like a cache and a
replacement policy is implemented to find the element to evict
if space is needed to load a new one. For the GAP, finding a
suitable replacement strategy for the configuration layers has
not yet been explored. Nevertheless, related work can be found
mainly dealing with caches in general and trace caches.

The main difference of the replacement problem for con-
figuration layers compared to general caches is the extremely
small number of configurations layers compared to the large
number of lines in caches. Because of this, thrashing-risky
situations where the working set is larger than the number of
available lines are much more frequent for configuration layers
than for caches.

Our goal is to find a lightweight solution which can
make use of the software infrastructure already available and
used for other platform-specific code optimizations, e.g. static
speculation [9]. Because of this, our attention is drawn to
techniques using both hardware- and software techniques.

As hardware-only solutions, two classes of strategies are
known. The first are well-known algorithms which can be im-
plemented with small or reasonable effort in hardware. Some
of those strategies are FIFO, RANDOM, WsClock [10] and
LRU. From these strategies, LRU is deemed to be the superior

15

one. Together with OPT as upper bound the performance
of LRU, FIFO and RANDOM have been compared for our
situation in Section III-B.

The second class of algorithms are the Dynamic Insertion
Policy (DIP) proposed by Qureshi et al. [11] and the Shepherd
Cache proposed by Rajan etc al. [12]. Both share the property
that they require additional hardware effort. In our experi-
ments, we also got for our particular situation performance
numbers at most comparable to LRU for the Shepherd Cache.
The DIP is only applicable if it can select between LRU
and BIP with extreme parameters to prevent thrashing. The
suggested approach to divide the configuration layers into two
sets does not seem to be applicable due to the small number
of configuration layers. The small number of lines prevents
using strategies like ARC [13] where the lines are split into
two sections and handled in different ways.

Some other techniques have also been proposed (see
e.g. [14]) but most of them either require large changes of the
hardware and/or are not supposed to work well because the low
number of layers available in the GAP normally restricts the
eventual gain in performance caused by replacement strategies.

Trace caches as introduced by Rotenberg et al. [15] work for
superscalar processors very similar to the configuration layers
because they are used to buffer parts of a program flow, too.
To our knowledge, nobody has yet been working on thrashing
situations in this context.

VII. CONCLUSION AND FUTURE WORK

We introduced a software-supported replacement strategy
for the configuration layers of the GAP processor, which are
used like a trace cache to buffer instructions sequences ready
for execution. So far, LRU is used as replacement strategy
which offers an unsatisfying performance for several bench-
marks. Strangely enough, LRU shows for some benchmarks
even worse performance than RANDOM, a strategy evicting a
random element. The main reason for this is thrashing, which
can happen if the elements of a working set are processed
repeatedly and sequentially, i.e. there is a huge degree of
locality, and the set contains more configurations than the GAP
provides configuration layers. In this case, the hit rate achieved
with LRU collapses.

To overcome this issue, we proposed a replacement strategy
called qdLRU and a heuristic to approximate the working
sets in software. Based on working sets we select some
configurations which are evicted immediately from the con-
figuration layers. With this, we can draw the behavior of
qdLRU nearer to the optimal strategy OPT. The performance
measured by the IPC for qdLRU is on average 5.06% higher
than the performance achieved by LRU. A peak improvement
of 390% is gained for secu-rinjdael-decode caused by a peak
improvement of the hit rate of 0.5.

This approach could be adapted for all situations in which a
replacement strategy is needed for a small number of complex
elements with many thrashing-risky situations. The introduced
strategy requires only very little changes of the hardware when

16

LRU has already been implemented. It also supports graceful
degradation back to LRU.

As future work, we propose to work on the detection of
working sets. The rule which has been introduced is simple
and effective. Nevertheless, there are situations where this rule
cannot find a sufficient solution. Hence, to find better solutions
it should be thought about the scope of the working sets. From
our point of view, it is important that the configurations in a
working set should be executed repeatedly in the same order.
If this restriction is weakened, the scope of working sets could
be enlarged which must be handled carefully but might lead
to further improved results. Concluding, it might be possible
to find better solutions with biologically inspired algorithms,
e.g. ant algorithms or genetic algorithms. Linear programming
should also be taken into consideration.

REFERENCES

[1] S. Uhrig, B. Shehan, R. Jahr, and T. Ungerer, “The two-dimensional su-
perscalar gap processor architecture,” International Journal on Advances
in Systems and Measurements, 2010.

[2] D. Burger and T. Austin, “The simplescalar tool set, version 2.0,” ACM
SIGARCH Computer Architecture News, vol. 25, no. 3, pp. 13-25, June
1997.

[3] B. Shehan, R. Jahr, S. Uhrig, and T. Ungerer, “Reconfigurable grid alu
processor: Optimization and design space exploration,” in Proceedings of
the 13th Euromicro Conference on Digital System Design (DSD) 2010,
Lille, France, 2010.

[4] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems, vol. 5, no. 2, pp. 78-101, 1966.

[5] O. Temam, “Investigating optimal local memory performance,” SIGOPS
Oper. Syst. Rev., vol. 32, no. 5, pp. 218-227, 1998.

[6] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and T. Brown,
“MiBench: A free, commercially representative embedded benchmark
suite,” 4th IEEE International Workshop on Workload Characteristics,
pp. 3—14, December 2001.

[7]1 P.J. Denning, “The locality principle,” Commun. ACM, vol. 48, no. 7,

pp. 19-24, 2005.

P. Denning, “Thrashing: its causes and prevention,” in AFIPS '68 (Fall,

part I): Proceedings of the December 9-11, 1968, fall joint computer

conference, part I. New York, NY, USA: ACM, 1968, pp. 915-922.

R. Jahr, B. Shehan, S. Uhrig, and T. Ungerer, “Static speculation as

post-link optimization for the grid alu processor,” in Proceedings of the

4th Workshop on Highly Parallel Processing on a Chip (HPPC 2010),

2010.

R. W. Carr and J. L. Hennessy, “WSCLOCK - a simple and effective

algorithm for virtual memory management,” in SOSP ’'81: Proceedings

of the eighth ACM symposium on Operating systems principles. New

York, NY, USA: ACM Press, 1981, pp. 87-95.

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,

“Adaptive insertion policies for high performance caching,” in ISCA "07:

Proceedings of the 34th annual international symposium on Computer

architecture. New York, NY, USA: ACM, 2007, pp. 381-391.

K. Rajan and G. Ramaswamy, “Emulating optimal replacement with

a shepherd cache,” in MICRO 40: Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture. Washing-

ton, DC, USA: IEEE Computer Society, 2007, pp. 445-454.

N. Megiddo and D. S. Modha, “Outperforming Iru with an adaptive

replacement cache algorithm,” Computer, vol. 37, no. 4, pp. 58-65,

2004.

G. Keramidas, P. Petoumenos, and S. Kaxiras, “Where replacement

algorithms fail: a thorough analysis,” in CF ’10: Proceedings of the

7th ACM international conference on Computing frontiers. New York,

NY, USA: ACM, 2010, pp. 141-150.

E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a low

latency approach to high bandwidth instruction fetching,” in MICRO 29:

Proceedings of the 29th annual ACM/IEEE international symposium on

Microarchitecture. Washington, DC, USA: IEEE Computer Society,

1996, pp. 24-35.

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

