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Starting from classical Hamiltonian mechanics, we derive for the dynamics of 
gross variables in nonequilibrium systems exact nonlinear generalized 
Fokker-Planck and Langevin equations in which the effect of the initial 
preparation is taken into account explicitly. This latter concept allows for the 
construction of a uniquely determined projection operator. The memory 
functions occurring in the Langevin equations are related to the random 
forces by a fluctuation-dissipation theorem of the second kind. We discuss 
the connection with the generalized Fokker-Planck equation. The known 
results for equilibrium fluctuations are recovered as a special case. 

KEY WORDS: Nonlinear relaxation; nonequilibrium fluctuations; non- 
linear generalized Langevin equation ; generalized Fokker-Planck equation ; 
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1. I N T R O D U C T I O N  

Nonl inea r  coupl ings  among  gross  var iables  p lay  an impor t an t  role in many  
p rob lems  of  irreversible stat ist ical  t he rmodynamics  current ly  receiving at ten-  
t ion. In systems where the s teady state is a thermal  equi l ibr ium state these 
coupl ings  are par t icu lar ly  impor t an t  near  cri t ical  points ,  ~1'2~ but  they also p lay  
a ma jo r  role for  certain effects which occur  outs ide  the cri t ical  regime. (3,~ 
The nonl inear  coupl ings  are of  fundamenta l  relevance in systems far  f rom 
equil ibrium/s~ where the s teady state is i tself  a true nonequi l ib r ium state. 

In  an irreversible system the gross var iables  undergo  f luctuat ions and 
their  mo t ion  can only be character ized by means  of  a s tochast ic  process.  Two 
wel l -known descr ipt ions  for  such processes exist:  The Langevin  equat ion and  
the F o k k e r - P l a n c k  equat ion.  The enormous  success o f  these or iginal ly  
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phenomenological methods has raised the question of their statistical me- 
chanical foundation. 

The investigation of this problem was pioneered by Green, (6~ who 
derived a generally nonlinear Fokker-Planck equation from statistical 
mechanics under the assumption that the stochastic process of the gross 
variables is Markovian. A generalized Fokker-Planck equation which allows 
for memory effects was put forward by Zwanzig, ~7) who made use of the 
projection operator technique. Mori (8~ used a modified projection operator 
technique in order to derive linear Langevin equations, and Kawasaki ~9~ 
extended this approach to nonlinear Langevin equations where couplings 
among the gross variables are apparent. In all of these approaches it is ex- 
plicitly or tacitly assumed that the steady state of the system is a thermal 
equilibrium state. 

In the present paper we extend the statistical mechanical foundation of 
the Fokker-Planck and the Langevin approaches to systems which may be 
far from equilibrium. A generalization of the equilibrium methods has already 
been attempted in some previous papers, (1~ However, the resulting equa- 
tions generally display some undesirable features, such as an inhomogeneity 
in the Fokker-Planck equation and nonvanishing mean values of the Langevin 
random forces. 

It has been pointed out previously a2~ that the macroscopic dynamics 
depends on the preparation of the initial state. We incorporate the effect of 
preparation by an adequate choice of the projection operator and obtain 
uniquely defined equations of motion of the same basic structure as in the 
equilibrium case. For instance, a nonequilibrium situation is not described by 
additional terms in the equations of motion, but by modified transport 
coefficients which may lack some of the properties of the corresponding 
equilibrium quantities. 

The paper is organized as follows: In the next section we decompose the 
phase space into a set of hypersurfaces which correspond to the macroscopic 
states of the system. The probability distribution of the molecular realizations 
of a given macroscopic state in the initial ensemble, as it results from the 
preparation procedure, defines an adequate measure for the averaging over 
the microscopic degrees of freedom at fixed values of the gross variables. In 
Section 3 we use this quantity to define a projection operator which projects 
the phase functions into the subspace of the state functions in such a way that 
their mean value in the initial ensemble remains unchanged. 

By means of this projection operator we derive in Section 4 an exact 
equation of motion for the occupation probabilities of the state space cells. 
From this equation we obtain in Section 5 both a generalized Fokker-Planck 
equation and a generalized Langevin equation. We show that the Fokker- 
Planck equation describes the relaxation Of the macroscopic single event 
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probability as well as the time evolution of initial correlation functions. In 
order to extract information from the associated generalized Langevin 
equations the properties of  the random forces determined by the fluctuation- 
dissipation theorem are generally not sufficient, because of the nonlinearities 
in the equations of motion. 3 On the other hand, additional properties of  the 
random forces can in principle be obtained by use of the given molecular 
expressions of the random forces. 

In the last section we discuss the simplifications that occur if the stochas- 
tic process of  gross variables is stationary. 

2. IN IT IAL  D I STRI BUT I ON AND PREPARATI ON CLASS 

We confine ourselves to classical statistical mechanics. The macroscopic 
state of the system will be defined by a set a = (a 1 .... , a~,...) of  gross variables, 
quantities like energy, magnetization, electric charge. These gross variables 
represent coordinates in the state space ~, and every point in Z corresponds to 
a macroscopic state of  the system. 

On the molecular level the gross variables are represented as phase 
functions A(F), where F is a point in the phase space. Clearly, there is a huge 
number of microscopic states i-' which are molecular realizations of the same 
macroscopic state ~. In the phase space these realizations constitute the 
hypersurface S(a) on which the phase functions A(F) assume the values a. 

The microscopic dynamics is governed by the Hamilton function H(F)  
of the system. Hamilton's  equations of motion determine the time evolution 
of a microscopic state 1 ~ in a deterministic way. One of the characteristic 
features of  macroscopic systems is the fact that their initial microscopic state 
is not known; at best, we will know the probability distribution p0(F) of the 
microscopic states P at the initial time to = 0. 

The initial microscopic probability distribution p0(P) can be viewed as a 
probability density of initial states of  an ensemble of systems to which the 
same preparation procedure has been applied. In fact, a preparation pro- 
cedure may just be defined as an experimental device which, when applied to 
an ensemble of systems, yields in a reproducible way a well-defined distribution 
function p0(F) at a given instant of  time to. 

Usually a point F in the phase space is specified by a set of  conjugate 
position and momentum coordinates: I '  = (ql, pl  ..... q~, pL...). However, we 
might as well write P = (a, f/o), where ~ specifies a point on the hyper- 
surface S(a). In the latter case we first give the macroscopic state a which is 

3 An approach which avoids this difficulty, splitting the dynamics into a nonlinear mean 
value dynamics and a linear but nonstationary fluctuation dynamics, has been given in a 
recent work. (13~ 
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associated with a microscopic state P and then we specify the specific molecular 
realization of this state by f~a. 

Correspondingly, the phase space volume element dF splits into the state 
space volume element da and a volume element dg2~ of the hypersurface 
S(a): 

dE = da df2a (I) 

The volume element d ~  may be written 

df2~ = 8(A(F) - a ) d r  (2) 

where 8(a) is a multidimensional 8-function. 
To the decomposition (1) of the volume element dP there corresponds a 

decomposition of the probability distribution p0(P) into the probability 
distribution po(a) of the associated macroscopic states a and the probability 
distribution wo(a, ~ )  of the molecular realizations f~= of a given state a, i.e., 

po(a) = po(a)wo(a, f2a) (3) 
where P - (a, f2~). 

The macroscopic probability distribution po(a) determines the prob- 
ability of finding the system on the hypersurface S(a) and it is obtained from 
the microscopic probability distribution po(P) = po(a, f2~) by adding up the 
probabilities of the molecular realizations f2~. With (2) we have 

po(a) = f df2~po(a, f~a) = f dr' 8(A(F) - a)po(r) (4) 

The function wo(a, f~) = Wo(P) gives the probability of finding a specific 
molecular realization f2~ of a known macroscopic state a. This probability is 
normalized on every hypersurface S(a) 

f dD~wo(a, f~) = f dr  a ( A ( r )  - a )w0(r )  = 1 (5) 

While the statistics of the gross variables a at the initial time to = 0 is com- 
pletely specified by po(a), their future statistics will be influenced by wo(P) as 
well, since the gross variables couple to the remaining degrees of freedom. In 
a macroscopic description po(a) is explicitly taken into account as the initial 
distribution of the gross variables, whereas the influence of wo(P) appears 
only implicitly in the form of the macroscopic evolution laws. Since the form 
of those laws only depends on w0(P) and not onpo(a), it is natural to introduce 
preparation classes of initial microscopic distributions po(l?) which lead to the 
same probability distribution wo(a, g~a) = Wo(P) for the molecular realiza- 
tions f2~ of a given state a. This probability distribution for the f~  which is 
common to the distributions po(I?) forming a preparation class will be denoted 
by w(P) henceforth. A special member of a preparation class differs from 
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other members by the form ofp0(a). In other words, the elements of a prepara- 
tion class may assign different probabilities to the hypersurfaces S(a); 
however, the probabilities on the hypersurfaces are common to the whole 
class.(12) 

3. M I CROSCOPI C  DYNAMI CS  AND STOCHASTI C  
PROCESSES OF GROSS VARI ABLES 

In a macroscopic description of the system we want to determine the 
macroscopic state a t at time t. Even if we know the initial macroscopic state 
a0, we cannot determine the future state at with certainty since we have only 
probabilistic information about the molecular realization of the initial state. 
This means that the gross variables describing the state have to be considered 
as stochastic variables. 

In a stochastic theory we may ask for the probability pt(a) da that the 
gross variables assume values in the state space volume element da around a 
at time t. The probability p,(a) da can be viewed as the average occupation 
probability of the state space cell da in the considered ensemble of systems. 
On the molecular level the occupation number of the cell da is represented by 
a phase function ~F~(F) da, where 

qea(F) = 3(A(F) - a) (6) 

The quantities ~Fa(P) have the properties 
~Fa(P)W~'(r) = ~(a - a')W~(F) (7) 

f dr w(r)vo(r) = 1 (8) 

and their ensemble average yields the macroscopic probability distribution 

pt(a) = f dF ~F~(r)pt(r) (9) 

where pt(P) is the microscopic probability distribution at time t. 
In statistical mechanics every state functionf(a) is represented by a phase 

function F(F)  which is a linear combination of the ~Fa(P), 

F(P) = f aa f(a)~a(F) = f(A(F)) (10) 

We now introduce a scalar product in the space of phase functions by 

(X, Y) = f d r  w ( r ) x ( F ) Y ( r )  (11) 

Then, because of (7) and (8), the ~F~(F) are orthonormal with respect to this 
scalar product 

OI ,o, 'F~') = 8(a - a') (12)  
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and according to (10) the ~ ( P )  provide a basis in the subspace of those phase 
functions that are state functions. For an arbitrary phase function X(P) the 
orthogonal projection into this subspace reads 

DX(P) = f da tt"=(P)(~=, X) (13) 

The operator [D has the usual properties of an orthogonal projection operator 

D 2 =  D (14) 
(X, D Y) = (DX, Y) (15) 

and it projects out the ~F=(P) 
D'F~(P) --. W'~(F) (16) 

Hence, D reduces the set of all variables of the system to the subset of those 
variables that are still taken into consideration in a macroscopic description. 

In Eq. (9) the time dependence ofpt(a) originates from the time depend- 
ence of the microscopic probability distribution pt(P). On the other hand, we 
might look upon the phase functions tF~(P) as time-dependent quantities and 
take the average over the initial distribution po(P) 

pt(a) = _f dr  /Ft~(P)po(F) (17) 

where 

The phase point P, is the microscopic state into which a system initially at the 
point P evolves in the time t according to Hamilton's equations of motion. 
Hence, we have 

Pt = e -  L~F ( 1 9 )  

where the Liouville operator k acts upon a phase function X(P) as the 
Poisson bracket with the Hamilton function 

LX(F) = {H(F), X(F)} (20) 

This Poisson bracket structure of the Liouville operator leads to the relations 

d r  J((r)~_g(~_) = - f d r  g(p)IkX(p) (21) 

LXY(F) = Y(P)LX(F) + X(F)IkY(F) (22) 

and in particular 

a ~ro(r)L#(r) (23) 
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Because of (19) and (22), Eq. (18) reads 
~Ft=(P) = e-at~~ (24) 

The time evolution of the phase function F(P) associated with a state function 
f ( a )  reads 

Ft(P) = J daf(a)~Ft~(P) (25) 

just because of Eqs. (10) and (24). 
Multitime moments (correlation functions) of arbitrary state functions 

f f (a) , . . . , f '~(a)  are, on the molecular level, defined by 

1 2 n _I 1 2 (A~f~2 "" f,~) = d P  Ft ,(P)Fa(P ) ... F~(P)po(r) (26) 

If we insert (25), we obtain 
1 2 n 

= .f dal da2 ... da,~ff(az)f2(a2) ...f'~(a,~) 

x Pt~,t~ ..... t,,(a~, a2,...,a,~) (27) 
where 

r 
IF~p0(P) (28) o i 6 

is the joined n-time probability distribution function. These quantities charac- 
terize the stochastic process of the gross variables a completely. Hence, we 
should look at the evolution law of the Wt~(P) in order to see the connection 
between the macroscopic irreversible process of the gross variables and the 
underlying microscopic dynamics. 

4. TIME EVOLUTION OF ~F~a(P) 
In this section we want to split the time rates of change of the ~Ft~(F) = 

~~ D~,) into two parts: a first part describing the systematic evolution 
which is common to all realizations f~, of a process starting out from a state 
a', and a second part describing a " r andom"  contribution. This latter contri- 
bution to (6/~t)~Ft~(F) will be denoted by Rta(F). The random part depends 
on s On the other hand, in order that it does not contribute to the system- 
atic evolution of the gross variables, we have to demand that its average over 
the realizations fl~, of a given intial state a' should vanish: 

f o '  dg),v w(a', ~a,)Rt (a ,  g)~,) 

= ( , / r  a(A(v) - a ' ) w ( r ) n ? ( r )  0 (29) 
d 
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where w(a', f~a,) is the probability distribution of the molecular realizations 
f~a, of an initial macroscopic state a' in the considered preparation class. 

In view of (6) and (11), Eq. (29) reads 

(~a' ,  Rd) = 0 (30) 
which equally well may be written 

13Rd = 0 (31) 

where 9 is the projection operator defined by (13). Hence, the random contri- 
bution Rt ~ to the time rate of change of Wd has to be orthogonal to the sub- 
space of those phase functions that are state functions. 

A decomposition of (~/~t)~Fd of the desired form can be obtained by 
means of the well-known projection operator technique. In the following we 
outline the basic steps of the procedure only and obtain the main result in Eq. 
(48). We start by noting that the microscopic time evolution operator e-at 
splits into 

e - u  = e-~t03 + (1 - [D)e-(~-mu(1 - ~) 

/0' - dSe-~-"-s~DIk(~ - D)e-(~-~as(1 - D) (32) 

This identity can be verified by differentiation. Next, we have from (24) 

(8/~t)uG ~ = - e-  a~_~Fa (33) 

If we insert (32) into (33), we obtain 
a t 

-~ 'I't = - f  da' "FP'('V~ ~-'t'9 + fo ds f da' ~V?2 X'V% 0-(' - D)e -('-e'-s 
x (1 - ID)IDF ~) + Rd  (34) 

where we have made use of (13) and (24) and where 
R d =  - (~  - D)e-q-~)u(~ - D)LW ~ (35) 

is the random part of the time rate of change, which satisfies (31) quite 
obviously, 

The structure of the basic equation of motion (24) becomes more explicit 
if we further evaluate the scalar products appearing therein. To this purpose 
we first mention that the Liouville operator k may not be antisymmetric with 
respect to the scalar product (11); it rather satisfies 

(X,  0_ Y)  = - @_X, Y)  + ( X A  ~ Y)  (36) 
where the phase function A~ is the logarithm of the probability distribution 
w(F) of the molecular realizations, i.e., 

A ~ -- In w (37) 
and where 

d ~ = - ILA ~ (38) 
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By use of  (7) and (23) we obtain 

~ ~ v'(a) ~(a - a')  (~ ' ,  ~_'W) = 

where v~(a) is the drift  vector  

v'(a) = (~% d ' )  = ( d r  3(A(P) - a) W(I~)A~([ ~) 
t 

and 
At = - ~_A ~

Further ,  using (7), (23), and (36) we find 

(~'~', L( I  - D~)e-(~-~)~-~(l - ~ ) L ~  '~) 

82 8 
V 

where we have introduced the generalized diffusion kernels 

u (W~'A:, (~ D)e-(~-#)a_~(,O D~ (a ,  a ' )  = - - O ) ' I ' ~ A  ~) 

= f d I '  w(P) 8(A(s - a')[AJ(F) - vJ(a')Je- (~- ~)~-~ 

x [ s  - v~(a)] ~ ( A ( r )  - a) 

and 

(39) 

(40) 

(4 l )  

(42) 

(43) 

D~~ a ' ) =  (T='A ~ ({ - D)e-(~-D)~s(l -- D)u:~Ai) 

= f d I ' w ( r )  8(A(F) - a ')[d~ - v~ -(~- ~)as 

x [ s  - v'(a)] ~ ( a ( r )  - a) (44) 

The drift v~ reads 

v~ = (~s A ~ = ~ ~ v'(a) (45) 

Finally, using (23), we may  write the r a n d o m  par t  (35) of  the t ime rate of  
change of  ~Fr ~ as 

8 q~ (46) g ? - - -  b-ga~ 

where 

~ = (4 - D)e-(~-~)z~(l - D)A~XF ~ (47) 
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Now, because of (39), (42), and (46)7 the equation of motion (34) for the ~Ft ~
takes the form 

aT 

 9 " a ' )  ' v ~ ' ~  

- 

This is the first main result of the present work. It should be emphasized that 
the consideration of the preparation has played a major role in the derivation 
of (48); by taking the effect of preparation explicitly into account we obtained 
a unique decomposition of the time rate of change into a systematic and a 
random part, where the random part has the property that its statistical 
average over the realizations of the stochastic process starting from a given 
macroscopic state vanishes. This property of the random part establishes the 
connection with the preparation since the preparation determines the prob- 
ability distribution of the realizations. 

Furthermore, the preparation also affects the systematic part of the time 
evolution because that part is related to the random part by the fluctuation- 
dissipation theorem of the second kind. In the present case, this theorem has 
the form 

D~J(a a') = (cp~ ~, eyo ~') (49) 

which can easily be seen by inspection of the molecular expressions (43) and 
(47). While the random part ~0~ a depends on the specific realization f~,, the 
generalized diffusion kernels r,s~'~iSra, a') are only affected by the probability 
distribution w(P) of the f~,, which is common to all processes within the 
considered preparation class! 

5. GENERALI ZED FOKKER- PLANCK AND LANGEVI N  
EQUATI ONS 

Our further investigations are based on Eq. (48). First we average the 
equation over the initial microscopic probability distribution p0(P). Accord- 
ing to (17), the average of qet~ yields the macroscopic probability distribution 
pt(a). The average of the q~ia defined in (47) vanishes, since 

~ o  = o (50) 
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f 
t vt(&) + Jo -~ & = 

where 

by construction. Consequently, the average over Eq. (48) reads 

~p~(a) = - ~ ~ v~(a)pt(a) 

+ ds ~ da' D~J(a, a') 

+ ~o ')1 ' ~9~ (a, a Pt- ~(a ) (51) 

This equation of motion for the probability distribution of the gross variables 
has the form of a generalized Fokker-Planck equation. The derivation of this 
master equation for a non-Markov process has been accomplished in a 
previous study. C12~ It has been pointed out there that the lack of an in- 
homogeneity in this exact equation of motion and its uniquely defined form 
result from the fact that the initial preparation has been taken into account 
explicitly. 

Besides the relaxation of an initial macroscopic probability distribution 
po(a), the master equation (51) also governs the time evolution of initial 
correlation functions ( f g o )  where the first time of observation coincides with 
the initial time of preparation to = 0. This is so because the associated 
probability densitypt,0(a, a') is the solution of the master equation (51) with 
the initial condition 

Po,o(a, a') = S(a - a')po(a) (52) 

as can be seen from (48) and (28), if we observe that the average of q~a 
vanishes on every hypersurface S(a'). 

In what follows we consider the nonlinear generalized Langevin equa- 
tions for the gross variables. The phase functions At(P) associated with the 
gross variables are related to the tFt~ by 

= f aa a'%~ 
&~(P) (53) 

Consequently, an equation of motion for the At is obtained from (48) if we 
multiply by a and afterwards integrate over the entire state space Z. The result 
reads 

ds ~ 7~(A(t - s)) - 7~~ - s)) + (t t (54) 

7~J(a ') f da *J = D, (a, a') (55) 

7,~~ ') = f da D~s~ a') (56) 

~t' = f da cp~" (57) 
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Note that the knowledge of the diffusion kernels D~ J in the generalized 
Fokker-Planck equation (51)allows one to determine the memory functions 
~,~J in the generalized Langevin equation (54) but not vice versa. 

Using Eqs. (43), (44), and (47), we obtain for the memory functions 7~ j
and the random forces ~t ~ molecular expressions of the form 

7,~J(a) = (u/~AJ, (4 - O)e-d-D)as(~ -- D)A ~) (58) 

?'~~ = (~F~A ~ (~ - D)e -`~ - D)as(1 - [I})A ~) (59) 

G~= (4 - D)e-(~-D)L~(~ -- D)A ~ (60) 

The average of the random forces vanishes on every hypersurface S(a) 

('F ~, ~t ~) = / d P  w(P) 8(A(P) - a)~/(F) = 0 (61) 

and the correlation functions of the random forces ~ on a hypersurface S(a) 
are related to the memory functions y~J(a) by a fluctuation-dissipation 
theorem of the form 

~,~J(a) = (W a, ~t~o j) = f dF w(l?) 3(A(F) a)~t~(I~)~ff(P) (62) 

This follows from the molecular expressions (58), (60) by use of (14), (15) and 

 9  = ~F~)X (63) 

The Langevin equations (54) determine the stochastic process of the gross 
variables A in terms of another process, the stochastic process of the random 
forces ~. This means that we have to know the stochastic process of the ran- 
dom forces completely in order to determine the stochastic process of the 
gross variables. The properties (61) and (62) of the random forces are not 
suMcient to obtain any exact nontrivial result from the Langevin equations 
(54), so that one might question the usefulness of an approach by nonlinear 
generalized Langevin equations. 

In order to overcome this diMculty one either has to calculate further 
properties of the random forces by use of their molecular expressions (60), or 
one has to make approximations. The usefulness of Eq. (54) lies in the fact 
that it is particularly suitable for such approximations. 

The Langevin equations (54) as they stand are equations for phase 
functions and we might ask for their connection with stochastic differential 
equations as they appear in the theory of stochastic processes. Whenever we 
specify the initial microscopic state P the gross variables &(P) are uniquely 
defined functions of t and so is each single term of Eq. (54). 

The &(P) specify a trajectory at in the state space Z, and (54) de- 
composes the velocity vector at = (8/at)&(P) into three parts. The first two 



                                                                    549 

parts depend only on the end point at and on that part of the trajectory which 
the system has already run through, respectively. This means that these terms 
are implicit functions of l" via as = As(F), s ~< t. Only the third part, the 
random force ~t, depends on 12 explicitly. Consequently, Eq. (54) can be solved 
for At(F) as a function of a = A0(I') and as a functional of the random forces 
~t(a, f2a). The dependence on both a and ~da, f~a) may be nonlinear. The 
quantities which we want to determine are certain functions of the At(P) 
averaged over po(P). Such an average splits into an average over the molecular 
realizations f~a of a state a and an average over the macroscopic states a, 
according to Eqs. (1) and (3). 

The average over the molecular realizations affects only the random 
forces. It can be done if one knows the correlations of the random forces on a 
given hypersurface S(a), microscopically defined by 

( ~F~, et, "" ~tr,) = f d r  w(I') 3(A(P) - a)r -.. G(p) (64) 

These quantities specify the stochastics of the random forces. The usual 
interpretation of a Langevin equation is that of an equation which specifies 
trajectories in the state space ~, and two kinds of averages are explained: the 
average over the random forces, which is done with fixed values of the gross 
variables a and which is specified by the correlations (~t~ "'" ~t,; a), n = 1, 2 ..... 
and an average over the gross variables. Naturally, the expression of At as a 
function o fa  = A0 and a functional of ~t resulting from (54) is quite independ- 
ent of an interpretation of those quantities as phase functions. Consequently, 
if we identify ~t~ "'" ~ ;  a)  with (~F ~, ~t~ "" -~t~), our Langevin equations (54) 
show precisely the features of the familiar stochastic differential equations in 

space. This clarifies a recent discussion of the meaning of statistical me- 
chanical Langevin equations. (~*~ 

6. STAT I ONARY NONLI NEAR FLUCTUATI ON DYNAMI CS  

We now restrict ourselves to the dynamics of spontaneous fluctuations 
in a stationary state. Let ~(F) be a stationary distribution function satisfying 

~ = 0 (65) 

The steady macroscopic probability distribution reads 

~(a) = f d r  3(A(~') - a)~(a) (66) 

and the probability distribution ~(1") of the molecular realization of a given 
macroscopic state is defined by 

tifF) = ~(F)/~(A(P)) (67) 
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In the stationary preparation class the time rate of change of the variable A ~ 
defined in Eq. (37) is related to the time rates of change of the gross variables 
A by 

A o = - N" ~ In ~ ( A )  At (68) c3A ~

This follows by use of Eqs. (22), (23), and (65)-(67). Because of (68) the diffu- 
sion kernels defined by (43) and (44) are related by 

In ~(a ')  
io = (69) D~ (a, a') - ~ D~Y(a, a') ~a'J 

J 

It is now easy to show that the generalized Fokker-Planck equation (51) can 
be recast into the form 

-~pt(a) = -~i, ~ 
aa---~ vi(a)pt(a) 

fo ~i O' 7'  ~a"~ Pt-~(a')fi(a') " (70) + ds d a ' ~  D~J(a, a')!)(a') 

Now, (68) implies 

which yields with Eq. (45) 

v0 = _ ~  a lnp(a)aa ~ v~ (71) 

~ ~'(a)p(a) = 0 (72) 

so that p(a) is in fact the stationary solution of Eq. (70). 
The relaxation of an arbitrary initial probability distribution po(a) as 

well as the time evolution of the stationary two-point correlation functions 

<ft+~g~) = ~figo) (73) 
are governed by the generalized Fokker-Planck equation (70), which is the 
master equation for a stationary non-Markov process. 

The associated generalized Langevin equation reads 

At = v~(At) + ds~O(At_~) -1 . ~7,~J(At_,)~O(At_~) + ~t ~ (74) 

where we have used the relationship 

In ~(a') (75) 
~4~ = - r ,  ~J(a') ~a'~ 

J 

which follows from (69) by means of (55) and (56). 
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Let us restate the known properties of the random forces. The hyper- 
surface averages and the initial hypersurface correlation functions are given 
by 

(W~, ; /)  = 0 ( 7 6 )  

(~~ ~ o  j) = V~S(a) (77) 

The correlation functions in the stationary ensemble t~(F) read 

i j ~ Y .f = ( ~ -  s~o ) da 7~ j_ s(a)fi(a) (78) 

The stationarity of these correlations is due to the fact that in Eq. (78) we 
average over the complete phase space with the stationary probability distri- 
bution t~(F). A similar property does not hold for the conditional average 
(77). 

As we have already mentioned, we have to determine further properties 
of the random forces if we want to extract information about the stochastic 
properties of the gross variables from Eq. (74). Generally this has to be done 
by use of the molecular expressions (60), and the resulting formulas get 
increasingly more involved the higher is the order of the considered correla- 
tion function. This is so because, up to this point, we have not made any 
assumption about the considered set of gross variables and the outlined theory 
is formally exact even for the most inadequate choice of the set of gross 
variables. 

Considerable simplification occurs if the gross variables form a so-called 
complete set of macroscopic variables. This means that the state functions 
exhaust the set of slowly varying quantities of the system. In this case we 
might treat the time rates of change ~ of the gross variables as small quantities 
and derive approximate equations of motion which generally are well suited 
to describe the dynamics of macroscopic systems. A discussion of this problem 
would be beyond the scope of this paper, where we have restricted ourselves 
to exact results only. We hope to return to this problem in a future communi- 
cation. 
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