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PETER ALBERS, URS FRAUENFELDER

Abstract. In this article we study the gradient flow equation of a variant of the Rabinowitz
action functional on very negative line bundles and relate it to periodic orbits on the base of
this bundle. On very negative line bundles there are generically no holomorphic spheres.

Dedicated to Paul Rabinowitz

1. Introduction

Rabinowitz pioneered the application of global methods in Hamiltonian dynamics, see
[17, 18]. This motivated Weinstein to formulate his famous conjecture in [22] on the existence
of periodic solutions of Hamiltonian systems with fixed energy and arbitrary period. For
existence of periodic solutions of fixed period of time-dependent Hamiltonian systems Arnold
formulated in the 60s his famous conjecture, see [15, Chapter 11] for a detailed account.
Arnold’s conjecture motivated Floer to introduce his semi-infinite dimensional Morse homol-
ogy, nowadays referred to as Floer homology, more precisely as Hamiltonian Floer homology
in this context. The analog of Floer homology for the fixed energy problem was introduced by
Cieliebak-Frauenfelder in [3] and is referred to as Rabinowitz Floer homology in reference
to the action functional used in Rabinowitz’ fundamental article [17]. In the present article
we study a variant of the Rabinowitz action functional for the fixed period problem.

Defining Hamiltonian Floer homology on general closed symplectic manifolds (M,ω) is
notoriously difficult due to bubbling-off of holomorphic spheres. Formally bubbling-off of
holomorphic spheres is a codimension two phenomenon, however this leads to sever transver-
sality issues which forces the use of multi-valued perturbations and thus rational coefficients,
see for example [10, 11]. On a sufficiently negative line bundle over the closed symplectic
manifold holomorphic spheres generically do not exist. In this article we analyze what will
happen to the bubbles.

We lift the Hamiltonian dynamics from M to the negative line bundle via a modified
Rabinowitz action functional. If (M,ω) is semi-positive one gets a version of Rabinowitz
Floer homology on the negative line bundle which is canonically isomorphic to the Floer
homology on M . In this paper we don’t want to assume semi-positivity.

We describe here a moduli space of a new PDE-type problem. We refer to solutions to this
problem as onis.1 As with holomorphic spheres onis are the obstructions to a well-defined
boundary operator in Rabinowitz Floer homology. The advantage of the onis is that for
generic almost complex structure one has transversality. In the second part of the paper we
explain how this observation is potentially useful. To tame onis we marry them, i.e. with Z/2-
coefficients the oni-obstruction vanishes and one obtains a well-defined boundary operator.

1Oni ( ) is Japanese for an imp.
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So far, it seems that marrying onis is only possible if the Hamiltonian diffeomorphism φ we
are studying admits a square root, i.e. φ = ψ2 for some other Hamiltonian ψ. Unfortunately,
this is not always the case as we showed in [1]. Marrying onis apparently comes at a price:
we explain that marrying onis in the worst case costs 80% of the sum of the Betti numbers
of M . The undaunted reader is cordially invited to read this gloomy story.

2. From bubbles to Onis

In Floer homology one considers a closed symplectic manifold (M,ω) and a Hamiltonian
H ∈ C∞(M × S1) which is periodic in time. For S1 = R/Z the circle we denote by

LM ⊂ C∞(S1,M)

the component of the free loop space C∞(S1,M) consisting of contractible loops. We consider
the cover

L̃M → LM

consisting of equivalence classes [v, v̄] where v ∈ LM and v̄ is a filling disk of v. Here two
pairs are equivalent if the loops coincide and the integrals of ω as well as of one and hence
every representative of the first Chern class c1(TM) agree on the filling disk. Therefore the

group of decktransformations of the cover L̃M → LM is the group

Γ =
π2(M)

kerω ∩ ker(c1(TM))
.

The action functional of classical mechanics

AH : L̃M → R
is given by

AH
(
[v, v̄]

)
= −

∫
v̄∗ω −

∫ 1

0
H(v(t), t)dt.

If [v, v̄] is a critical point of AH , then v is a contractible time-one periodic orbit of the
Hamiltonian vector field of H, i.e. a solution of the ODE

∂tv(t) = XHt(v(t)), t ∈ S1,

where the Hamiltonian vector field is defined by dHt = ω(XHt , ·), with Ht = H(·, t) ∈ C∞(M)
for t ∈ S1. The Hamiltonian H is called nondegenerate if for each contractible periodic orbit
v the time-one map φH of the Hamiltonian vector field of H satisfies

det
(
dφ(v(0))− id|Tv(0)M

)
6= 0.

If the Hamiltonian is nondegenerate there are only finitely many Γ-orbits of critical points of
AH and the Floer chain space CF∗(H) can be defined as the Z2-vector space consisting of
infinite sums

ξ =
∑

c∈crit(AH)

ξcc

with coefficients ξc ∈ Z2 which satisfy for any r ∈ R the finiteness condition

#{c ∈ crit(AH) : ξc 6= 0, AH(c) > r} <∞.
The grading on CF∗(H) is given by the Conley-Zehnder index. Using the action of Γ on
crit(AH) the Floer chain space can be endowed with the structure of a module over the
Novikov ring of Γ. As a matter of fact the Novikov ring over a field is itself a field.
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To define a boundary operator on CF∗(H) Floer considers the L2-gradient flow equation
for the action functional of classical mechanics. We denote by J circle families Jt for t ∈ S1

of ω-compatible almost complex structures on M . For J ∈ J the metric mJ on L̃M at a

point [v, v̄] is given for two tangent vectors v̂1, v̂2 ∈ T[v,v̄]L̃M = Γ(S1, v∗TM) by

mJ(v̂1, v̂2) =

∫ 1

0
ω
(
v̂1(t), Jt(v(t))v̂2(t)

)
dt.

The gradient ∇JAH of the action functional AH with respect to the metric mJ at a point

[v, v̄] ∈ L̃M is given by

∇JAH([v, v̄]) = J(v)(∂tv −XH(v)).

A gradient flow line w = [v, v̄] ∈ C∞(R, L̃M ) is formally a solution of the ODE

∂sw(s) +∇JAH(w(s)) = 0, s ∈ R

and therefore v ∈ C∞(R× S1,M) is a solution of the PDE

∂sv + J(v)(∂tv −XH(v)) = 0

which is a perturbed holomorphic curve equation. For critical points c−, c+ ∈ crit(AH) we
denote by M(c−, c+; J) the moduli space of unparametrised gradient flow lines [w] of AH
which asymptotically satisfy lims→±∞w(s) = c±. By

Jreg(H) ⊂ J
we denote the subset of second category of J ∈ J such that the linearization of Floer’s gradient
flow equation with respect to Jt along any finite energy gradient flow line is surjective. If
J ∈ Jreg then the moduli space of gradient flow lines is a smooth manifold of dimension

dimM(c−, c+; J) = µCZ(c−)− µCZ(c+)− 1.

In particular if µCZ(c−) = µCZ(c+) + 1 then the moduli space is zero dimensional. Un-
fortunately without additional assumptions on (M,ω) like monotonicity or more generally
semipositivity there is little hope that this moduli space is also compact. This is due to
bubbling of holomorphic spheres. If it is compact then it is a finite set of points and one sets

n(c−, c+, J) = #2M(c−, c+; J)

where #2 denotes cardinality modulo two. In this case the Floer boundary map

∂ : CF∗(H)→ CF∗−1(H)

is defined for ξ =
∑

c∈crit(AH) ξcc ∈ CF∗(H) by

∂(ξ) =
∑

c′∈crit(AH)

∑
c∈crit(AH)

ξcn(c, c′; J)c′.

If the moduli spaces are not compact then one way to still define the Floer boundary operator
is by using abstract perturbation theory. In this case one first compactifies the moduli space
via bubbles and then abstractly perturbs it. Because of the possibility that the bubbles have
nontrivial automorphism group this perturbation is multivalued and one has to restrict in
this case to rational coefficients.

In this paper we study a different kind of perturbation of the moduli spaces of Floer’s
gradient flow equation which also leads to compact moduli spaces. We have to assume in



4 PETER ALBERS, URS FRAUENFELDER

addition that (M,ω) satisfies the Bohr-Sommerfeld condition, i.e. [ω] lies in the image of
H2(M ;Z)→ H2

dR(M). Under this assumption there exists a hermitian line bundle

Eω →M

whose first Chern class satisfies

c1(Eω) = −[ω].

For ν ∈ N we consider the hermitian line bundle

E = Eνω = E⊗νω

whose first Chern class satisfies

c1(E) = −ν[ω].

We fix a hermitian connection α on E whose curvature satisfies

Fα = νω.

If p : E →M denotes the canonical projection, we endow E with the symplectic form

ωE = d(π|u|2α) + p∗ω.

Thinking of M as the zero section in E the restriction of ωE to M coincides with ω. However,
the virtual dimension of the moduli space of holomorphic curves drops in E, because the line
bundle is negative. If the line bundle is negative enough generically there are no holomorphic
curves left in E. To have a quantitative statement to say what ”negative enough” means
we consider the Auroux constant. If β ∈ Ω2(M) and J is an ω-compatible almost complex
structure we set

γβ,J = β(·, J ·) ∈ Γ(T ∗M ⊕ T ∗M)

and abbreviate

κβ(J) = ||γβ,J ||J
where the notation || · ||J means that we take the norm with respect to the metric ω(·, J ·).
We then set

κ(J) = inf
{
κβ(J) : dβ = 0, [β] = c1(TM)

}
and finally

κ(ω) = inf
{
κ(J) : J ω-compatible

}
.

We assume in the following that ν ∈ N satisfies

ν > max
{
n+ κ(ω)− 2, κ(ω)

}
.

This condition turns out to be sufficient to make sure that there are ω-compatible almost
complex structures for which no holomorphic spheres exist.

We denote by µ ∈ C∞(E) the function

µ(u) = π(|u|2 − 1), u ∈ E.
Denote by LE the component of contractible loops in the free loop space C∞(S1, E) and

by L̃E the cover of LE consisting of equivalence classes of pairs [u, ū] where u ∈ LE , ū ∈
C∞(D,E) with D the unit disk is a filling disk of u, and two filling disks are equivalent
if ωE and each representative of p∗c1(TM) agrees on them. For H ∈ C∞(M × S1) the
time-dependent Hamiltonian on the base M , we denote for t ∈ S1

Ĥt(u) = νπ|u|2Ht(p(u)), u ∈ E
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the fiberwise quadratic lift of H to E. We consider the following variant of Rabinowitz action
functional

AµH : L̃E × R→ R
given for

(
[u, ū], η

)
∈ L̃E × R by

AµH
(
[u, ū], η

)
= −

∫
D
ū∗ωE −

∫ 1

0
Ĥt(u)dt− η

∫ 1

0
µ(u)dt.

If P : L̃E × R→ L̃M denotes the projection induced from the projection p : E →M , then

P
(
crit(AµH)

)
= crit(AH).

However, the correspondence is not one to one, but for each c ∈ crit(AH) there is a whole
Z× S1- family of critical points of crit(AµH), i.e.

P |−1
crit(AµH)

(c) ∼= Z× S1, c ∈ crit(AH).

The geometric origin of this fact is the following. The circle acts on E by

r ∗ u = e−2πiru, r ∈ S1 = R/Z, u ∈ E.
In fact this action is Hamiltonian with respect to ωE with moment map µ. This action gives
rise to a Z× S1-action on LE which is given for u ∈ LE by(

(n, r)∗u
)
(t) = (nt+ r)∗u(t), t ∈ S1, (n, r) ∈ Z× S1.

We lift this action to the cover L̃E → LE and extend it trivially to L̃E ×R. The differential
dAµH is invariant under this action and hence we get a Z × S1-action on crit(AµH). The
projection P induces a bijection

crit(AµH)

Z× S1
∼= crit(AH).

A section for the Z-action on crit(AµH) is given by the winding number

w : crit(AµH)→ Z
which for a critical point ([u, ū], η) is given by

w
(
[u, ū], η

)
=

∫
u∗α− ν

∫
ū∗p∗ω.

The connection α induces a splitting

(1) TE = V ⊕H
into vertical and horizontal subbundles. Recalling that p : E → M denotes the canonical
projection, then for each e ∈ E we have canonical identifications

He = Tp(e)M, Ve = Ep(e).

We denote by I the complex structure in V coming from the complex structure of the hermitian
vector bundle E →M . For J ∈ J we denote by abuse of notation its lift to a family of complex
structure on H also by J . We extend the vector bundle End(H,V) over E trivially to E×S1.
For a section B ∈ Γ0

(
E × S1,End(H,V)

)
we abbreviate

Bt = B(·, t) ∈ Γ0

(
E,End(H,V)

)
, t ∈ S1.

Since H is non-degenerate XH has only finitely many periodic orbits. From now on we fix
around each periodic orbit a neighborhood which contracts onto the orbit. Furthermore, we
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assume that all these neighborhoods are disjoint. Let U be the union of these neighborhoods.
If Γ0 stands for sections with compact support we introduce the vector space
(2)

B(J) =
{
B ∈ Γ0

(
E×S1,End(H,V)

)
: BtJt = −IBt, t ∈ S1 and Bt(e) = 0 ∀e with p(e) ∈ U

}
.

Even though B(J) depends on U we will suppress this in the notation.
With respect to the splitting (1) we introduce for B ∈ B(J) the following circle family of

almost complex structures on E

JBt =

(
I Bt
0 Jt

)
.

If B is different from zero then JB is not ωE-compatible, however if B is a small enough
perturbation then JB is still ωE-tame. We therefore introduce the nonempty open convex
subset

BT (J) ⊂ B(J)

consisting of all B ∈ B(J) such that JBt is ωE-tame for any t ∈ S1. If Jt is a smooth family of
ω-compatible almost complex structures and Bt is a smooth family of compactly supported
sections from E to End(H,V) such that Bt ∈ B(Jt) for every t ∈ S1 we denote by mB the

bilinear form on T
(
L̃E × R

)
which is given for

(
[u, ū], η

)
∈ L̃E × R and (û1, η̂1), (û2, η̂2) ∈

T([u,ū],η)

(
L̃E × R

)
= Γ(S1, u∗TE)× R by the formula

mB

(
(û1, η̂1), (û2, η̂2)

)
= −

∫ 1

0
ωE
(
JBtt (u(t))û1(t), û2(t)

)
dt+ η̂1 · η̂2.

If B is different from zero, the bilinear form mB is not symmetric. However, it is nondegen-
erate, and if B is small it is positive. Denote by

R = Xµ ∈ Γ(TE)

the infinitesimal generator of the S1-action on E. The gradient of Rabinowitz action functional

with respect to the bilinear form mB at w =
(
[u, ū], η

)
∈ L̃E × R defined implicitly by the

condition

dAµH(w) = mB

(
∇BAµH(w), ŵ

)
, ∀ ŵ ∈ Tw

(
L̃E × R

)
is given by

∇BAµH
(
[u, ū], η

)
=

(
JB
(
∂tu−XĤ

(u)− ηR(u)
)

−
∫ 1

0 µ(u)dt

)
.

We point out that ∇BAµH is not an honest gradient since mB is not symmetric. But

dAµH(w)∇BAµH(w) = mB

(
∇BAµH(w),∇BAµH(w)

)
> 0

away from the critical points. Moreover mB is a honest metric on loops contained in p−1(U).
Thus, the vector field ∇BAµH(w) is a pseudo-gradient for AµH .

A gradient flow line w ∈ C∞(R, L̃E × R) of Rabinowitz action functional with respect to
mB formally satisfies

∂sw(s) +∇BAµH(w(s)) = 0, s ∈ R.
Hence (u, η) ∈ C∞(R× S1, E)× C∞(R,R) is a solution of the problem

(3)
∂su+ JB(u)

(
∂tu−XĤ

(u)− ηR(u)
)

= 0

∂sη −
∫ 1

0 µ(u)dt = 0.

}
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Writing

∂su = ∂vsu+ ∂hs u, ∂tu = ∂vt u+ ∂ht u

with respect to the splitting (1) we can rewrite (3) to

(4)

∂vsu+ I
(
∂vt u−

(
νH(p(u)) + η

)
R(u)

)
+B

(
∂ht (u)−XH(p(u))

)
= 0

∂hs u+ J(p(u))
(
∂ht (u)−XH(p(u))

)
= 0

∂sη −
∫ 1

0 µ(u)dt = 0.


We abbreviate by R(B) the moduli space of all unparametrised flow lines [w] of ∇BAµH such
that lims→±∞w(s) ∈ crit(AµH) exists. We further introduce the evaluation maps

ev± : R(B)→ crit(AµH)

defined by

ev±([w]) = lim
s→±∞

w(s).

We denote by J ν ⊂ J the nonempty open subset of J ∈ J such that

ν > max
{
n+ κ(Jt)− 2, κ(Jt)

}
, t ∈ S1.

and set

J νreg(H) = J ν ∩ Jreg(H).

For J ∈ J ν we abbreviate by

Breg(J) ⊂ B(J)

the subset of perturbations B ∈ B(J) which satisfy the following three conditions.

(i): The linearization of the flow equation for ∇BAµH on R(B) is surjective.
(ii): The evaluation maps ev+ and ev− are transverse to each other.
(iii): For each t ∈ S1 there are no nonconstant JBt -holomorphic spheres on E.

Proposition 2.1. For J ∈ J νreg the subset Breg(J) ⊂ B(J) is of second category.

Recall that BT (J) denotes the set of perturbations B ∈ B(J) such that JB is ωE-tame. We
set

BT
reg(J) = BT (J) ∩Breg(J).

We make the following definition. A lift

` : crit(AH)→ crit(AµH)

is a section for the projection P : crit(AµH)→ crit(AH), i.e. P ◦ ` = id|crit(AH), satisfying

w(`(c)) = 0, c ∈ crit(AH).

Note that for each c ∈ crit(AH) there is an S1-ambiguity for the choice of `(c). For a lift `
we introduce the following subset of R(B)

R(B, `) =
{

[w] ∈ R(B) : ev−([w]) ∈ `(crit(AH))
}
.

We say that a lift is B-admissible if the following two conditions hold.

(i): The restriction of the linearization of the flow equation of ∇BAµH to R(B, `) is
surjective.

(ii): The evaluation map ev+|R(B,`) is transverse to ev−.
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If B ∈ Breg(J), then the evaluation maps ev− and ev+ are transverse to each other by
assumption and hence a generic lift ` is B-admissible. For c−, c+ ∈ crit(AH), J ∈ J , B ∈
B(J) and a lift ` we abbreviate

R(c−, c+;B, `) =
{

[w] ∈ R(B) : ev−([w]) = `(c−), ev+([w]) ∈ S1 · `(c+)
}
.

The condition for the positive asymptotic can be rephrased by saying that ev+([w]) is a
critical point of AµH of winding number zero. Hence the condition for the positive asymptotic
is actually independent of the choice of the lift. If B ∈ Breg(J), ` is a B-admissible lift, and
c− 6= c+ ∈ crit(AH), then the moduli space R(c−, c+;B, `) is a smooth manifold of dimension

dimR(c−, c+;B, `) = µCZ(c−)− µCZ(c+)− 1

and therefore coincides with the exspected dimension of the moduli space of unparametrized
Floer gradient flow lines from c− to c+.

Theorem 2.2. Assume that the Conley-Zehnder indices of c−, c+ ∈ crit(AH) satisfy µCZ(c−) =
µCZ(c+) + 1, that J ∈ J ν , B ∈ BT

reg(J), and ` is a B-admissible lift, then the moduli space
R(`c− , c+;B) is a finite set.

Under the assumptions of the theorem, we can now set

%(c−, c+;B, `) = #2R(c−, c+;B, `)

the cardinality modulo two of the moduli spaces. If the Conley-Zehnder indices do not satisfy
µCZ(c−)− µCZ(c+) = 1, then we set %(c−, c+;B, `) = 0.

Proposition 2.3. If J ∈ J νreg, B ∈ BT
reg(J) and ` is a B-admissible lift, then the numbers

%(c−, c+;B, `) are independent of the choice of `.

Hence under the assumptions of the proposition we are allowed to set

%(c−, c+;B) = %(c−, c+;B, `)

for any B-admissible lift `. The following Lemma is an immediate consequence of Gromov
compactness applied to the shadows P (w) of flow lines of ∇BAµH by noting that these are
flow lines of ∇JAH .

Lemma 2.4. If J ∈ J νreg, and B ∈ BT
reg(J), then for each real number r ∈ R and c− ∈

crit(AH) the set
{
c+ ∈ crit(AH) : AH(c+) > r, %(c−, c+;B) 6= 0

}
is finite.

In view of the Lemma we can define a Z2-linear map

R : CF∗(H)→ CF∗−1(H)

which is given for ξ =
∑

c∈crit(AH) ξcc ∈ CF∗(H) by

R(ξ) =
∑

c′∈crit(AH)

∑
c∈crit(AH)

ξc%(c, c′;B)c′.

We refer to R as the Rabinowitz Floer map. Since the winding number is unchanged under

the action of Γ0 = π2(M)/ker(ω) = π2(E)/ker(ωE) on L̃E we conclude that the Rabinowitz
Floer map is linear with respect the action of the group ring Z2[Γ0] on CF∗(H).

We next describe the square of the Rabinowitz Floer map. For this we need the following
Definition.
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Definition 2.5. Assume that J ∈ J and B ∈ B(J). An Oni is an element [w] ∈ R(B)
whose asymptotics satisfy w(ev−(w)) = 1 and w(ev+(w)) = 0.

We denote by O(B) the moduli space of Onis. If B = 0 ∈ B(J) then M interpreted as zero
section in E is a complex submanifold of J0. Therefore by positivity of intersections Onis
cannot exist and we have

O(0) = ∅.
But without perturbation all bubbles in M survive. In view of this the following statement
makes sense: Onis are born out of bubbles.

If c−, c+ ∈ crit(AH) we abbreviate

O(c−, c+;B) =
{

[w] ∈ O(B) : P (ev±(w)) = c±
}
.

If B ∈ Breg(J) the moduli space of Onis is a smooth manifold and its dimension is given by

dimO(c−, c+;B) = µCZ(c−)− µCZ(c+)− 2.

If J ∈ J ν , B ∈ BT
reg(J), and c−, c+ ∈ crit(AH) satisfy µ(c−) − µ(c+) = 2, then the same

compactness arguments which lead to Theorem 2.2 also show that the moduli space of Onis
O(c−, c+;B) is a finite set. Hence in this situation we set

$(c−, c+;B) = #2O(c−, c+;B)

and define a map

O : CF∗(H)→ CF∗−2(H)

which is given for ξ =
∑

c∈crit(AH) ξcc ∈ CF∗(H) by

O(ξ) =
∑

c′∈crit(AH)

∑
c∈crit(AH)

ξc$(c, c′;B)c′.

We refer to the map O as the Oni-map. The Oni-map is the obstruction for the Rabinowitz
Floer map to be a boundary operator as the following theorem shows.

Theorem 2.6. Assume that J ∈ J νreg, B ∈ BT
reg(J), then R2 = O.

3. Proofs

3.1. Proof of Proposition 2.3. Given two B-admissible lifts `0, `1 : crit(AH) → crit(AµH)
and two critical points c−, c+ ∈ crit(AH) satisfying µCZ(c−) = µCZ(c+) + 1 we have to show
that

(5) %(c−, c+;B, `0) = %(c−, c+;B, `1).

Choose a smooth family L = {`r}r∈[0,1] of lifts `r : crit(AH)→ crit(AµH) interpolating between
`0 and `1. We consider the moduli space

R(B,L) =
{

(r, [w]) : r ∈ [0, 1], [w] ∈ R(B, `r)
}
.

The boundary of this moduli space is given by

∂R(B,L) = R(B, `0) tR(B, `1).

Therefore to prove (5) it suffices to show that R(B,L) is compact. In view of compactness
for the gradient flow equation of Rabinowitz action functional, see Theorem 3.4, the only
obstruction to compactness is breaking of gradient flow lines. Since B is regular, and we
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consider a 1-dimensional moduli problem it remains to rule out two times broken flow lines
[w1]#[w2] of ∇BAµH for which there exists r ∈ [0, 1] such that

(6)

ev−([w1]) = `r(c−),
ev+([w1]) = ev−([w2]),

w
(
ev+[w2])

)
= 0,

P ev+[w2] = c+.

 .

Its shadow [Pw1]#[Pw2] is then a broken flow line of ∇JAH satisfying

(7)
ev−([Pw1]) = c−,

ev+([Pw1]) = ev−([Pw2]),
ev+[Pw2] = c+.

 .

Since J is regular, we conclude that either Pw1 or Pw2 has to be constant. We first rule out
the case that Pw1 is constant. If this case occured, the positive asymptotic of the first flow
line would satisfy

P ev+([w1]) = c−, w(ev+[w1]) > 0.

But then w2 belongs to a moduli space of negative virtual dimension which contradicts the
assumption that B is regular. Hence the case that Pw1 is constant does not occur. If Pw2 is
constant, the negative asymptotic of the second flow line meets the condition

P ev−([w2]) = c+, w(ev−[w2]) < 0

implying that w1 lies in a moduli space of negative virtual dimension. Again this contradicts
the regularity of the perturbation B. Hence no breaking occurs and the Proposition is proved.
�

3.2. Proof of Theorem 2.6. We pick c−, c+ ∈ crit(AH) satisfying µCZ(c−) = µCZ(c+) + 2.
We have to prove

(8)
∑

c∈crit(AH)

%(c−, c;B)%(c, c+;B) = $(c−, c+;B).

By Proposition 2.3 the number %(c, c+;B) = %(c, c+;B, `) is independent of the choice of
the B-admissible lift `. Therefore for a B-admissible lift ` the left hand side of (8) can
be interpreted as the modulo two number of unparametrized nonconstant broken flow lines
[w1]#[w2] of ∇BAµH subject to the following asymptotic conditions

(9)

ev−([w1]) = `(c−),
ev+([w1]) = ev−([w2]),
w
(
ev+([w1])

)
= 0,

w
(
ev+[w2])

)
= 0,

P ev+[w2] = c+.


Let us consider the one dimensional moduli space R(`c− , c+;B) of all unparametrized flow
lines from ∇BAµH from `c− to a point in S1`c+ . By compactness for gradient flow lines of
∇BAµH we conclude that R(`c− , c+;B) can be compactified to a one dimensional manifold
with boundary whose boundary points are unparametrized nonconstant broken flow lines
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[w1]#[w2] of ∇BAµH which meet the asymptotic conditions

ev−([w1]) = `(c−),
ev+([w1]) = ev−([w2]),

w
(
ev+[w2])

)
= 0,

P ev+[w2] = c+.


Since the number of boundary points of a compact one dimensional manifold is even, we
conclude that the modulo two number of broken flow lines [w1]#[w2] subject to the asymptotic
condition (9) coincides with the modulo two number of unparametrized nonconstant broken
flow lines satisfying

(10)

ev−([w1]) = `(c−),
ev+([w1]) = ev−([w2]),
w
(
ev+([w1])

)
6= 0,

w
(
ev+[w2])

)
= 0,

P ev+[w2] = c+.


In order to ease notation we abbreviate

γ = ev+([w1]) ∈ crit(AµH).

We first note that there exists
ε ∈ {0, 1}

such that
µCZ(`(c−))− µCZ(γ) = 1 + ε, µCZ(γ)− µCZ(`(c+)) = 1− ε.

The reason for the ambiguity in the index computation lies in the fact that γ is not an isolated

critical point of AµH but lies in a circle family of critical points. If P : L̃E × R → L̃M is the
projection we have

µCZ(γ) = µCZ(Pγ)− 2w(γ).

Since the winding numbers of `(c−) and `(c+) vanish, we get

µCZ(`(c−)) = µCZ(c−), µCZ(`(c+)) = µCZ(c+).

Using these facts we compute

µCZ(c−)− µCZ(Pγ) = µCZ(`(c−))− µCZ(γ)− 2w(γ) = 1 + ε− 2w(γ)

and
µCZ(Pγ)− µCZ(c+) = µCZ(γ) + 2w(γ)− µCZ(`(c+)) = 1− ε+ 2w(γ).

We now consider the broken flow line [Pw1]#[Pw2] of ∇JAH . Since J ∈ J νreg there are three
cases to distinguish.

Case 1: The two flow lines Pw1 and Pw2 are not constant. In this case

µCZ(c−)− µCZ(Pγ) = 1, µCZ(Pγ)− µCZ(c+) = 1.

Hence
ε = 0, w(γ) = 0.

Therefore the broken flow line [w1]#[w2] does not satisfy the asymptotic condition (10).

Case 2: The flow line Pw1 is constant. In this case Pγ = c− and

µCZ(c−)− µCZ(Pγ) = 0, µCZ(Pγ)− µCZ(c+) = 2.
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Hence

ε = 1, w(γ) = 1.

Therefore the broken flow line [w1]#[w2] satisfies the asymptotic condition (10).

Case 3: The flow line Pw2 is constant. In this case Pγ = c+ and

µCZ(c−)− µCZ(Pγ) = 2, µCZ(Pγ)− µCZ(c+) = 0.

Hence

ε = 1, w(γ) = 0.

Since Pγ = c+ and w(γ) = 0 we conclude that γ ∈ S1`(c+). Since the action of a noncon-
stant gradient flow line is strictly decreasing we conclude that w2 itself is constant, which
contradicts our assumption. Hence Case 3 never occurs.

Summarizing we have shown that the only broken flow lines [w1]#[w2] meeting the asymptotic
condition (10) are the one’s from Case 2, i.e. Pw1 is constant and w(γ) = 1. We conclude
that w1 is a vortex and w2 is an Oni. Since the vortex number is one by Theorem A.2 we
deduce that the modulo two number of broken gradient flow lines subject to condition (10)
coincides with the number of Onis. This finishes the proof of the Theorem. �

3.3. Proof of Proposition 2.1. To establish that for generic B ∈ B(J) regularity conditions
(i) and (ii) are met, we first observe that since J ∈ J νreg the linearization of the gradient flow
equation (4) along a finite energy gradient flow line w is already surjective in the horizontal
directions. To show that it is also surjective in the vertical directions we distinguish two
cases. In the first Pw is nonconstant, i.e. Pw is a finite energy solution of Floer’s gradient
flow equation. We claim that Pw necessarily leaves the neighborhood U . We recall that U is
the union of disjoint neighborhoods of the periodic orbits of XH where each such neighborhood
contracts onto the periodic orbit, see the discussion before equation (2). If Pw is contained
in U then it has to be a gradient trajectory connecting the same periodic orbit with cappings
d and d#Pw. Since Pw is contained in U the two cappings are homotopic to each other and
thus Pw is constant.

By [7, Theorem 4.3] the set of regular points for Pw is open and dense. In view of
Lemma 3.1 below a standard argument, see for instance [7, Section 5] or [16, Chapter 3]
establishes that for generic B ∈ B(J) the linearization of the gradient flow equation is also
vertically surjective. In the second case Pw is constant. But then w is a vortex and vortices
are by Proposition A.1 always transverse independent of the perturbation B ∈ B(J). This
shows that generically (i) and (ii) hold true.

The rest of the proof is devoted to show that generically the regularity condition (iii), i.e.
the vanishing of JBt -holomorphic spheres, is satisfied as well. Assume that u : S2 → E is a
JBt -holomorphic sphere for some t ∈ S1. Its shadow v = p ◦ u : S2 → M is a Jt-holomorphic
sphere. Hence if β ∈ Ω2(M) is a closed two-form representing the first Chern class of TM we
obtain in local holomorphic coordinates of S2 the inequality

|β(∂xv, ∂yv)| = |β(∂xv, Jt(v)∂xv)| ≤ κβ(Jt)||∂xv||2Jt = κβ(Jt)ω(∂xv, ∂yv)

and therefore after integration

|〈c1(v∗TM), [S2]〉| ≤ κβ(Jt)ω([v]).
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Since β was an arbitrary representative of the first Chern class we get by definition of the
Auroux constant

|〈c1(v∗TM), [S2]〉| ≤ κ(Jt)ω([v]).

Therefore we conclude

〈c1(u∗TE), [S2]〉 = 〈c1(v∗TE), [S2]〉(11)

= 〈c1(v∗TM), [S2]〉+ 〈c1(v∗E), [S2]〉
≤ (κ(Jt)− ν)ω([v])

< min
{

2− n, 0
}
ω([v])

where for the last inequality we used that ν > max{n+ κ(Jt)− 2, κ(Jt)} since J ∈ J ν . The
virtual dimension virdimu

(
H(JBt )

)
of the moduli space H(JBt ) of JBt -holomorphic spheres at

u is given by the Riemann Roch formula

virdimu

(
H(JBt )

)
= 2dim(E) + 2〈c1(u∗TE), [S2]〉 − 6

and hence can be estimated using (11)

(12) virdimu

(
H(JBt )

)
< 2n− 4− 2 max

{
n− 2, 0

}
ω([v]).

Since u is a nonconstant JBt -holomorphic curve it holds that

ω([v]) = ωE([u]) > 0.

Since ω is integral, it follows that

(13) ω([v]) ≥ 1.

Inequalities (12) and (13) imply that

(14) virdimu

(
H(JBt )

)
< 2n− 4− 2 max

{
n− 2, 0

}
≤ 0.

Since the virtual dimension is an even integer we immediately obtain from (14) the stronger
estimate

(15) virdimu

(
H(JBt )

)
≤ −2.

Now assume that u is simple in the sense of [16, Chapter 2.5]. It follows from Lemma 3.3
below, that u is horizontally injective on a dense set, in particular, there are horizontally in-
jective points on E\p−1(U). Therefore the usual transversality arguments as explained in [16,
Chapter 3.2] imply that for generic choice of the perturbation B the moduli space of simple
JBt is a manifold whose dimension equals its virtual dimension. Therefore by (15) generically
there are no simple JBt -holomorphic curves. Hence there are no nonconstant JBt -holomorphic
curves at all, since every nonconstant JBt -holomorphic curve has an underlying simple curve.
This finishes the proof of the Proposition. �

It remains to show two lemmas which were used in the proof above.

Lemma 3.1. Assume e ∈ E, h0 ∈ He, v0 ∈ Ve such that h0 6= 0, and t0 ∈ S1. Then there
exists B ∈ B(J) such that Bt0h0 = v0.

Proof: By local triviality there exists a neighborhood U of e and sections h ∈ Γ(U,H|U )
and v ∈ Γ(U,V|U ) with the property that h is not vanishing and

h(e) = h0, v(e) = v0.
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Choose further a compactly supported function β ∈ C∞(U, [0, 1]) satisfying β(e) = 1. Since Jt
is ω-compatible the orthogonal complement 〈h, Jh〉⊥t ⊂ H with respect to the metric ω(·, Jt·)
is invariant under Jt. We define B ∈ Γ0

(
E,End(H,V)

)
as the section which vanishes outside

U and on U is determined by

Bth = βv, BtJth = −βIv, B|〈h,Jth〉⊥t = 0.

By construction we have BtJt = −IBt and Bt0h0 = v0. This finishes the proof of the Lemma.
�

To state the second lemma we first need a definition. For u ∈ C∞(S2, E) we denote for
z ∈ S2 by

dhu(z) : TzS
2 → Hu(z)

the composition of du(z) with the projection from Tu(z)E to Hu(z) along Vu(z).

Definition 3.2. A JB-holomorphic sphere u : S2 → E is called somewhere horizontally in-
jective if there exists z ∈ S2 such that

dhu(z) 6= 0, u−1(u(z)) = {z}.

Lemma 3.3. Assume that u : S2 → E is a simple JB-holomorphic curve. Then u is hori-
zontally injective on a dense set.

Proof: Denote by I ⊂ S2 the subset of injective points of S2, by S ⊂ S2 the subset
of horizontally injective points and by R(p(u)) ⊂ S2 the subset of nonsingular points of
p(u) : S2 →M . Then

(16) S = I ∩R(p(u)).

We first observe that p(u) is not constant, since otherwise u would lie in one fibre and hence
itself must be constant, contradicting the assumption that it is simple. Hence it follows from
[16, Lemma 2.4.1] that the complement of R(p(u)) is finite. Moreover, it follows from [16,
Proposition 2.5.1] that the complement of I is countable. Hence by (16) the complement of
S is countable. In particular, S is dense. �

3.4. Proof of Theorem 2.2. If w is a flow line of ∇BAµH , then Pw is a flow line of ∇JAH .
Hence both functional AµH and AH ◦ P are decreasing along w. Therefore using that the
perturbation is regular Theorem 2.2 follows from the usual breaking arguments in Morse
homology, see [21], as soon as the following Theorem is established.

Theorem 3.4. Assume that J ∈ J ν and B ∈ BT
reg(J). Suppose further that wν = ([uν , ūν ], ην)

for ν ∈ N is a sequence of flow lines of ∇BAµH for which there exists a < b with the property
that

a ≤ AµH(wν)(s) ≤ b, a ≤ AH(Pwν)(s) ≤ b, ν ∈ N, s ∈ R.
Then there exists a subsequence νj and a flow line w of ∇BAµH such that wνj converges in
the C∞loc-topology to w.

Proof: The proof of Theorem 3.4 follows along standard lines, see [16, Chapter 4] if the
following three conditions for wν can be established.

(i): A uniform C0-bound on the Lagrange multipliers ην .
(ii): A uniform C0-bound for the loops uν .
(iii): A uniform bound on the derivatives of the loops uν .
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Condition (i) is the content of Proposition 3.5, condition (ii) is the content of Proposition 3.6,
and condition (iii) follows because there is no bubbling, since the perturbation B is regular.
This proves the theorem. �

Proposition 3.5. Under the assumptions of Theorem 3.4 there exists a constant c = c(a, b)
such that |ην(s)| ≤ c for every ν ∈ N and every s ∈ R.

Proof: If w = ([u, ū], η) is a critical point of AµH , then a computation shows that

η = AµH(w)−AH(Pw).

By assumption AµH − AH ◦ P is uniformly bounded along the gradient flow lines wν . By
applying the arguments from [3] to AµH −AH ◦ P instead of AµH the Lagrange multipliers ην
can be bounded in terms of AµH −AH ◦ P which gives a uniform bound for them. A similar
argument was used in [5]. For complete details we refer to [9]. �

Proposition 3.6. Under the assumptions of Theorem 3.4 there exists a compact subset K =
K(a, b) ⊂ E such that uν(s, t) ∈ K for every ν ∈ N and every (s, t) ∈ R× S1.

Proof: Since the perturbation B is compactly supported (E, JBt ) is convex at infinity. A
Laplace estimate for the gradient flow equation of Rabinowitz action functional then implies
that uν stay in a bounded set of E. This Laplace estimate was also used in [4]. We refer to
[4] or [9] for complete details. �

4. Homotopies of homotopies

In the following we assume that ν > max{n+ κ(ω)− 1, κ(ω)} which allows us to conclude
that for generic homotopies of homotopies there are still no holomorphic spheres. Instead of
studying a fixed Hamiltonian H, we consider now the continuation from a C2-small Morse
function H0 to the Hamiltonian H. We can use the gradient flow equation of Rabinowitz
action functional to define continuation homomorphisms

Φ: CF∗(H0)→ CF∗(H), Ψ: CF∗(H)→ CF∗(H0).

Namely choose a smooth monotone cutoff function β ∈ C∞(R, [0, 1]) satisfying

β(s) = 0, s < −1, β(s) = 1, s > 1

and consider the s-dependent Hamiltonians

H+
s = β(s)H + (1− β(s))H0, H−s = β(s)H0 + (1− β(s))H

Then Φ is defined by counting gradient flow lines of the s-dependent Rabinowitz action
functional Aµ

H+ between a lift of a critical point of AH0 and a lift of a critical point of AH
and similarly for Ψ one counts gradient flow lines of Aµ

H− . To study their composition Ψ ◦Φ
we consider as usual in Floer homology a homotopy of homotopies. Namely for r ∈ [0, 1]
choose a smooth family of functions βr ∈ C∞(R, [0, 1]) which satisfy the following conditions

• β0 = 0, β1 = 1,
• βr is compactly supported for r < 1,
• For r ∈ [0, 1] the functions βr are monotone increasing for s < 0 and monotone

decreasing for s > 0,
• The time-shifted functions

(
1
r−1

)
∗βr defined by

(
1
r−1

)
∗βr(s) = βr

(
s+ 1

r−1

)
for s ∈ R

converge in the C∞loc-topology to β as r goes to 1.
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• The time-shifted functions
(

1
1−r
)
∗βr converge in the C∞loc-topology to 1− β as r goes

to 1.

For r ∈ [0, 1) we consider the family of s-dependent Hamiltonians

Hr = H0 + βr(H −H0).

A Homotopy-Oni is a pair (r, w) where r ∈ [0, 1) and w is a finite energy gradient flow line
of the time dependent Rabinowitz action function AµHr whose asymptotic winding numbers
satisfy w(ev−(w)) = 1 and w(ev+(w)) = 0. Counting Homotopy-Onis gives rise to a linear
map

O : CF∗(H0)→ CF∗(H0).

We denote by
∂ : CF∗(H0)→ CF∗−1(H0)

the boundary operator obtained by counting Morse gradient flow lines of H0 on M with
respect to a Morse-Smale metric on M coming from a regular ω-compatible almost complex
structure. We refer to [14, 20] for an existence proof of such metrics.

Conjecture 4.1. There exist linear maps T : CF∗(H0)→ CF∗+1(H0) such that

Ψ ◦ Φ = id|CF∗(H0) + T∂ + ∂T + O.

The maps T in the conjecture arise in the same way as in the usual homotopy of homotopies
argument in Floer homology, see [19, Section 3.4]. The proof of the conjecture should follow
by basically the same argument as in the proof of Theorem 2.6, up to one point which involves
abstract perturbation theory. This concerns the identification of the map R(H0) : CF∗(H0)→
CF∗(H0) obtained by counting gradient flow lines of Rabinowitz action functional AµH0

with
the boundary operator in Morse homology. If the symplectic manifold is not semipositive, then
it is hard to image that such a result can be proved without the help of abstract perturbation
theory. In ordinary Floer homology this was proved for example in [10, Section 22]. We
expect that the argument of Fukaya and Ono can be adjusted to our situation which then
leads to a proof of the conjecture.

We like to point out that the Fukaya-Ono argument using multisections proves that the
Floer differential for the C2-smallH0 agrees with the Morse differential. The Morse differential
can be counted with integer coefficients. In their further constructions Q-coefficients are
essential whereas our approach works over Z/2-coefficients.

To deduce some useful information from Conjecture 4.1 one needs to have some information
of the Oni operator. Up to now we only have some clue on it under the additional assumption
that the Hamiltonian satisfies the condition

(17) Ht+ 1
2

= Ht,

i.e. the time one map φH of the Hamiltonian flow admits a square root.

Conjecture 4.2. Assume that the Hamiltonian H satisfies (17), and that ν is even and
bigger than n+ κ(ω). Then there exist linear maps

F : CF∗(H0)→
1⊕

i=−2

CF∗+i(H), G :

1⊕
i=−2

CF∗+i(H)→ CF∗(H0),

and
S : CF∗(H0)→ CF∗−1(H0)
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such that

(18) O = G ◦ F + ∂S + S∂.

We give an outline of the proof of Conjecture 4.2. To consider a homotopy of homotopies
we need a family of almost complex structures indexed by the homotopy parameter r ∈ [0, 1]
which in addition might depend on the parameters s and t. If this family satisfies

(19) JB
t+ 1

2
,s,r

= JBt,s,r

we get an involution on the Homotopy-Oni given by rotating the loop on E by 180 degrees.
Since ν is even this involution keeps critical points of AµH0

of winding number zero fixed but
acts freely on critical points of winding number one. Therefore this involution is free on
the Homotopy-Onis. On the other in general there is little hope to achieve transversality
by keeping condition (19). To overcome this difficulty we proceed a bit different. Choose a
lift ` : crit(AH0)→ crit(AµH0

) which is a section for the projection P : crit(AµH0
)→ crit(AH0)

and satisfies w(`(c)) = 1 for every critical point c ∈ crit(AH0). In the following we drop the
subscripts indicating the dependence of the families of almost complex structures on the s
and r-parameters. If θ ∈ S1 and JB is a family of almost complex structures not necessarily
satisfying (19) we set

(θ∗J
B)t = JBt+θ.

Recall that on LE the circle acts by rotating the loop.

Definition 4.3. A Married Homotopy-Oni is a tuple (w, r) where r ∈ [0, 1) and w is a finite
energy gradient flow line of ∇θ∗BA

µ
Hr

for some θ ∈ S1 satisfying ev−(w) ∈ θ∗`(crit(AH0))
and w(ev+(w)) = 0.

Married Homotopy-Onis are harmless since each Married Homotopy-Oni has a partner
obtained by rotating the loops by 180 degrees. Therefore the Oni operator Om obtained by
counting Married Homotopy-Onis modulo two vanishes

Om = 0: CF∗(H0)→ CF∗(H0).

We next construct a homotopy between Homotopy-Onis and Married Homotopy-Onis. To
this end we first choose a smooth homotopy JBθ,ρ where θ ∈ S1 and ρ ∈ [0, 1] such that

JBθ,0 = JB, JBθ,1 = θ∗J
B.

Note that since JB already depends on the three parameters t, s and r we have no a five-
parameter family of almost complex structures on E. We apologize for any inconvenience
this might cause to the reader. Since ν > κ(ω) + n for generic choice of this five parameter
family of almost complex structures there are no holomorphic spheres. In the following we
abbreviate for (θ, ρ) ∈ S1 × [0, 1]

∇θ,ρ = ∇Bθ,ρ .
Note that the critical manifold of AµH consists of a disjoint union of circles. We choose a
Morse function

h : crit(AµH)→ R
with the property that h restricted to each circle has precisely one maximum and one mini-
mum. We further choose a Riemannian metric on crit(AµH) and denote by

φτ∇h : crit(AµH)→ crit(AµH), τ ∈ R
the gradient flow of h on the critical manifold of AµH .
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Definition 4.4. A Kibidango2 is an m-tuple

k = (ki)1≤i≤m

for some positive integer m satisfying the following properties.

(i): If m = 1, then k1 = (w, r, ρ) is a triple, where r ∈ [0, 1), ρ ∈ [0, 1], and w is a finite
energy gradient flow line of ∇θ,ρAµHr with positive asymptotic satisfying w(ev+(w)) =

0 and θ ∈ S1 determined by ev−(w) ∈ θ∗`(critAH0).
(ii): If m > 1, then ki = (zi, ρi) is a tuple for each i ∈ {1, · · · ,m}, with the following

properties
(a): 0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ ρm ≤ 1,
(b): z1 = w1 is a finite energy flow line of ∇θ,ρ1A

µ
H+ where θ = θ(k) is determined

by ev−(w1) ∈ θ∗`(crit(AH0),
(c): zi = [wi] is an unparametrised finite energy flow line of ∇θ,ρiA

µ
H for 1 < i < m,

(d): zm = wm is a finite energy flow line of ∇θ,ρmAµH− whose positive asymptotic
satisfies w(ev−(wm)) = 0,

(e): if 0 < ρi ≤ ρi+1 < 1 for 1 ≤ i < m, then ev+(wi) = ev−(wi+1),
(f): if ρi = 1 for 1 ≤ i < m, then ev+(wi) /∈ crit(h) and there exists τ ≥ 0 such

that φτ∇h(ev+(wi)) = ev−(wi+1),
(g): if ρi = 0 for 1 < i ≤ m, then ev−(wi) /∈ crit(h) and there exists τ ≥ 0 such

that φτ∇h(ev+(wi−1)) = ev−(wi).

Kibidangos interpolate between Homotopy-Onis and Married Homotopy-Onis. However,
the moduli space of Kibidangos does not need to be compact. Namely Kibidangos might break
at critical points of AµH0

or critical points of the Morse function h on the critical manifold

of AµH . The first occurence should give rise to the term ∂S + S∂ in (18). However, to make
this precise one has to relate gradient flow lines of AµH0

with Morse gradient flow lines of H0

which requires abstract perturbation theory and a generalization of the Theorem of Fukaya
and Ono to our set-up. To see at which critical points of h a Kibidango can break one has to

analyze again the shadow of a Kibidango under the projection P : L̃E×R→ L̃M . By looking
at the indices it turns out that generically breaking can only happen at winding number 0 or
1. Hence for each critical point of AµH there are four critical points of h at which breaking
might occur, namely the maximum and minimum of h on the two circles corresponding to
winding number 0 and winding number 1. Hence we can identify these points with vectors
in
⊕1

i=−2CF∗+1(H) and the broken Kibidangos give rise to the maps F and G in (18). This
finishes the outline of the proof of Conjecture 4.2. �

As a consequence of Conjecture 4.1 and Conjecture 4.2 we obtain the following Corollary.

Corollary 4.5 (assuming Conjectures 4.1 and 4.2). Assume that φ is a nondegenerate Hamil-
tonian symplectomorphism which has a square root. Then

#Fix(φ) ≥ 1

5

2n∑
k=0

bk(M ;Z2)

where bk(M ;Z2) are the Z2-Betti numbers of M and Fix(φ) is the set of contractible fixed
points.

2Eating Kibidangos Momotaro was able to fight the onis.
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Proof. The proof follows from next Proposition as follows. So far, we worked with the Novikov
ring over

Γ =
π2(M)

kerω ∩ ker c1
.

This as the advantage of having a well-defined grading. Instead, if one uses the Novikov ring
over

Γ0 =
π2(M)

kerω
then Floer homology looses its Z-grading. On the other hand the Novikov ring over Γ0 is a
field Λ. The corresponding chain groups are denoted by CF (H). Thus,

#Fix(φ) = dimΛCF (H).

Moreover, dimΛHF (H0) =
∑2n

k=0 bk(M ;Z2). We set

V := CF (H0), W := CF (H), X := W ⊕W ⊕W ⊕W .

Furthermore, we set R := T + S. Then we conclude from the next Proposition that

2n∑
k=0

bk(M ;Z2) = dimH(V, ∂) ≤ 5 dimW = 5#Fix(φ) .

�

Proposition 4.6. Let V , W , and X finite dimensional vector spaces over some fixed field.
We consider maps

Φ : V →W

Ψ : W → V

F : V → X

G : X → V

∂ : V → V

R : V → V

satisfying ∂2 = 0 and

ΨΦ +GF = idV +R∂ + ∂R .

Then the following inequality holds

dimH(V, ∂) ≤ dimW + dimX .

Proof. First we explain that we may assume that X = {0} is the trivial vector space. For
that we set

Φ̃ : V →W ⊕X
v 7→ (Φv, Fv)

Ψ̃ : W ⊕X → V

(w, x) 7→ Ψw +Gx

and compute

Ψ̃Φ̃ = ΨΦ +GF = idV +R∂ + ∂R .
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Thus, the assertion of the Proposition in the case X = {0} implies the general case since
dimW ⊕X = dimW + dimX. It remains to prove

dimH(V, ∂) ≤ dimW .

whenever

ΨΦ = idV +R∂ + ∂R .

First we show that

ker
(
Φ|ker ∂

)
⊂ im ∂ .

Indeed, if v ∈ V satisfies ∂v = 0 and Φv = 0 then

0 = ΨΦv = v +R∂v + ∂Rv = v + ∂Rv .

Then we can estimate

dimH(V, ∂) = dim ker ∂ − dim im ∂

= dim ker
(
Φ|ker ∂

)︸ ︷︷ ︸
≤dim im ∂

+ dim im
(
Φ|ker ∂

)
− dim im ∂

≤ dim im
(
Φ|ker ∂

)
≤ dimW

and this proves the Proposition. �

Appendix A. Vortices

A.1. The vortex equation. As vortices we refer to solutions (u, η) ∈ C∞(R × S1,C) ×
C∞(R,R) of the problem

(20)
∂su+ i∂tu− 2πηu = 0

∂sη − π
∫ 1

0 |u|
2(t, ·)dt+ π = 0

}
whose energy is finite

E(u, η) :=

∫
R×S1

|∂su|2dsdt+

∫
R
|∂sη|2ds <∞.

Vortices arise as gradient flow lines of Rabinowitz action functional

Aµ : C∞(S1,C)× R→ R

given by

Aµ(u, η) = −
∫
u∗λ− η

∫
µ(u)dt

where λ = xdy is the primitive of the standard symplectic structure on C. The gradient is
taken with respect to the product metric on C∞(S1,C)×R which on the first factor is given
by the L2-metric and on the second by the standard inner product of R.

The differential of Rabinowitz action function dAµ is invariant under the S1×Z-action on
C∞(S1,C)× R given by

(r, k)∗(v, η) = ((r, k)∗v, η + k), (r, k) ∈ S1 × Z

where

(r, k)∗v(t) = e−2πire−2πiktv(t), t ∈ S1.
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Due to the invariance under this group action Rabinowitz action functional Aµ is not Morse
but only Morse-Bott. The critical manifold consists of one single S1 × Z orbit, namely

crit(Aµ) = (S1 × Z)∗(1, 0).

Note that since the metric is invariant under the action as well, the vortex equations itself
are S1 × Z-invariant. The action value for the critical point corresponding to (r, k) ∈ S1 × Z
computes to be

Aµ
(
(r, k)∗(1, 0)

)
= πk

namely the area of the unit disk times the winding number around it. The assumption that
the energy is finite guarantees that vortices exponentially converge to critical points of Aµ at
both asymptotic ends. In particular, if (u, η) is a vortex there exist (r±, k±) ∈ S1 × Z such
that

lim
s→±∞

(u, η)(s) = (r±, k±)∗(1, 0).

Since the action is nonincreasing along gradient flow lines, we observe that

(21) k− ≥ k+.

Alternatively, this fact can also be deduced via positivity of intersections by interpreting −k±
as asymptotic winding numbers of the vortex. We further note, that the inequality is strict,
unless the vortex is constant.

A.2. Transversality. In this section we show that the standard complex structure on C
given by multiplication with i is regular, i.e. the linearization of the vortex equation at
each vortex is surjective. Since Rabinowitz action functional is only Morse-Bott we have
to consider the linearization in suitable weighted Sobolev spaces in order that it becomes a
Fredholm operator. Because critical points of Aµ consist of a single S1×Z-orbit, the spectrum
of the Hessian is independent of the critical point. We choose δ > 0 smaller then the spectral
gap at zero, i.e. smaller then the minimum of the absolute value of all nonzero eigenvalues of
the Hessian. We further choose a smooth function β ∈ C∞(R, [−1, 1]), for which there exist
T > 0 with the property that

β(s) =

{
−1 s < −T
1 s > T

We define

γδ ∈ C∞(R,R), γδ(s) = eβ(s)δ, s ∈ R.
We abbreviate

W 1,2
δ =

{
f ∈W 1,2

loc : fγδ ∈W 1,2
}

the space of all W 1,2-functions which at both asymptotics exponentially decay with weight at
least δ. Note that this definition is independent of the choice of the function β. Using these
spaces the linearization along a vortex gives rise to a Fredholm operator

D = D(u,η) : W 1,2
−δ (R× S1,C)×W 1,2

−δ (R,R)→ L2
−δ(R× S1,C)× L2

−δ(R,R)

given for (û, η̂) ∈W 1,2
−δ (R× S1,C)×W 1,2

−δ (R,R) by

D(û, η̂) =

{
∂sû+ i∂tû− 2πηû− 2πuη̂

∂sη̂ − 2π
∫
uû.

Proposition A.1. Along any vortex the Fredholm operator D is surjective.
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Proof: Showing surjectivity of D is equivalent to showing injectivity for the adjoint oper-
ator D∗. The adjoint operator

D∗ : W 1,2
δ (R× S1,C)×W 1,2

δ (R,R)→ L2
δ(R× S1,C)× L2

δ(R,R)

is given by

D∗(û, η̂) =

{
−∂sû+ i∂tû− 2πηû− 2πuη̂

−∂sη̂ − 2π
∫
uû.

Assume that

(û, η̂) ∈ kerD∗.

We first show that η̂ vanishes. For this purpose we compute using (20)

∂2
s η̂ = −2π

∫
(∂su)û− 2π

∫
u(∂sû)

= 2π

∫
〈i∂tu, û〉 − 4π2

∫
η〈u, û〉

−2π

∫
〈u, i∂tû〉+ 4π2

∫
η〈u, û〉+ 4π2

∫
η̂〈u, u〉

= 4π2η̂

∫ 1

0
|u|2dt

Taking the product of this expression with η̂ and integrating over R we obtain via integration
by parts

4π2

∫ ∞
−∞
|η̂(s)|2

(∫ 1

0
û(s, t)|dt

)
ds = −

∫ ∞
−∞
|∂sη̂|2ds.

The lefthandside is nonnegative and the righthandside is nonpositive therefore both sides have
to vanish and we conclude that ∂sη̂ vanishes identically. Since η̂ ∈W 1,2

δ (R,R) we conclude

η̂ = 0.

Using again that (û, η̂) is in the kernel of D∗ we conclude that û is a solution of the PDE

−∂sû+ i∂tû− 2πηû = 0.

We expand û into a time dependent Fourierseries

û(s, t) =
∑
k∈Z

ak(s)e
2πikt.

The Fouriercoefficients are solutions of the ODE

∂sak + 2π(k + η)ak = 0.

Asymptically η converges to minus the asympotic winding numbers of the vortex (u, η)

lim
s→±∞

η(s) = k±.

which satisfy k− ≥ k+ by (21). We claim that

(22) ak = 0, k ∈ Z.

Otherwise, since ak decays exponentially at the positive end we would obtain

k > −k+.
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Since ak also decays exponentially at the negative end the inequality

k < −k−

has to hold true as well. Together we conclude

k+ < k−

contradicting (21). This proves (22) and therefore

û = 0.

We have shown that (û, η̂) = (0, 0) and the proof of the Proposition is complete. �

A.3. The vortex number. If the asymptotic winding numbers k± of a vortex (u, η) satisfy

k− = k+ + 1,

then the Fredholm index of the Fredholm operator D = D(u,η) is

ind(D) = 3.

We denote by Ṽ(k−, k+) the moduli space of all vortices with asymptotic winding numbers
k− and k+. By Proposition A.1 it is a three dimensional manifold. The group R acts on
vortices by timeshift and the group S1 acts on vortices by rotation of the domain of the loop
as well as by rotation on the target C. Since all this actions commute we get an R× S1 × S1

action on Ṽ(k−, k+). Since the two asympotics are different, the action is free. Therefore the
quotient

V(k−, k+) = Ṽ(k−, k+)/(R× S1 × S1)

is a zero dimensional manifold. Since it is compact, see [3, 8] it is a finite set and we define
the vortex number as

v = #V(k−, k+) mod 2 ∈ Z2.

Note that since the vortex equation is invariant under the Z-action the vortex number does
not depend on the asymptotic winding numbers. The vortex number has the following inter-
pretation. If (r−, k−) and (r+, k+) are two elements in S1 × Z satisfying k− = k+ + 1 then v
is the modulo 2 number of vortices (u, η) subject to the asymptotic conditions

lim
s→±∞

(u, η)(s) = (r±, k±)∗(1, 0) ∈ crit(Aµ).

Theorem A.2. The vortex number equals one.

Proof: Since the unit circle in the complex plane is Hamiltonian displaceable, Rabinowitz
Floer homology vanishes by [3]. If the vortex number were zero, Rabinowitz Floer homology
would be equal to the homology of the critical manifold of Aµ which is a countable disjoint
union of circles. Therefore the vortex number has to be equal to one. For an alternative
argument based on finite dimensional approximation we refer to [8]. �

Appendix B. Square roots in simple groups

In this section we prove that in the Hamiltonian symplectomorphism group of a closed
connected symplectic manifold each element can be written as a finite product of elements
which admit a square root. This result is a straightforward consequence of a deep result due
to Banyaga.
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Theorem B.1. Assume (M,ω) is a closed connected symplectic manifold. Then for each
φ ∈ Ham(M,ω) there exists n ∈ N and ψi ∈ Ham(M,ω) for 1 ≤ i ≤ n such that

φ = ψ2
1 · · ·ψ2

n.

Before embarking on the proof of the Theorem we first consider an arbitray group G. We
denote by G2 the subgroup of G generated by all squares in G, i.e.

G2 =
{
g2

1 · · · g2
n : g1, · · · , gn ∈ G, n ∈ N

}
.

Lemma B.2. G2 is a normal subgroup in G.

Proof: Let g ∈ G and g2
1 · · · g2

n ∈ G2. Then

gg2
1 · · · g2

ng
−1 = (gg1g

−1)2 · · · (ggng−1)2 ∈ G2.

This finishes the proof of the Lemma. �

Corollary B.3. If G is simple and not two-torsion, then G2 = G.

Proof: Since G is not two-torsion G2 is nontrivial. Therefore by Lemma B.2 G2 is a
nontrivial normal subgroup of G. Since G is simple G2 = G. �

Proof of Theorem B.1: We can assume without loss of generality that M has pos-
itive dimension and therefore Ham(M,ω) is not two-torsion. By Banyaga’s theorem, see
[2], the Hamiltonian symplectomorphism group is simple. Hence the Theorem follows from
Corollary B.3. �
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