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1. OVERVIEW

The thesis presents the results of the Numerical Renormalization Group (NRG)
approach to three impurity models centered on the issues of impurity quantum
phase transitions.

We start from introducing general concepts of quantum phasetransitions
and address the relevant physical questions of the impuritymodels (Chapter 2).
Chapter 3 consists of the technical details of the NRG, wherewe discuss how the
NRG tracks down possible �xed points that govern the universal behavior of the
system at low temperature.

All the three impurity models studied show second order quantum phase tran-
sitions and quantum critical points but the levels of understanding of each case,
particularly to the issues of quantum phase transitions, are quite di�erent for
historical reasons. The soft-gap Anderson model (Witho� and Fradkin 1990) is
one of the most well-established cases in the contexts of impurity quantum phase
transitions and various analytic and numerical methods examined the physical
properties of the quantum critical phase as well as the stable phases on both sides
of the transition point. Our contribution is made to the former case by analyzing
the NRG many-particle spectrum of critical �xed points, with which we can see
how the impurity contribution of the thermodynamic quantit ies have fractional
degrees of freedom of charge and spin.

The quantum phase transition of the spin-boson model has a long his-
tory (Leggett, Chakravarty, Dorsey, Fisher, Garg and Zwerger 1987) but most of
achievements were reached for the ohmic dissipation1. In the ohmic case, a de-
localized and a localized phase are separated by a Kosterlitz-Thouless transition
at the critical coupling � = 1.2 The new development of the NRG treating the
bosonic degrees of freedom broadened the range of the parameter space to include
the sub-ohmic case and, as a result, second order phase transitions were found
for the bath exponent0 < s < 1 (Bulla, Tong and Vojta 2003) as we discuss in
Chapter 5.

The bosonic single-impurity Anderson model (bsiAm) is a very new model and
there is no precedent work on it. Nonetheless, the NRG approach to the bsiAm
shows that the zero temperature phase diagrams are full of interesting physics
such as the enhancement or the suppression of the Bose-Einstein condensation by
the impurity and the existence of quantum critical points. The works presented

1 The s = 1 case wheres is the exponent of the bath spectral function.
2 for the unbiased case of� = 0 .
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in Chapter 6 indicate the possibility that the quantum phasetransition of the
Bose-Hubbard model originates from the physics at the localsites so that the
self-consistent treatments of the local and the global properties, for example,
dynamical mean �eld theory, allow to solve the problem.

Appendice A and D show the details of the calculations that are abridged
in the main sections. Appendix B describes the thermodynamics in the ohmic
spin-boson model calculated with the NRG method, which proves the success of
the NRG approach to the spin-boson model by showing a good agreement to the
precedent result (Costi 1998). Appendix C is about the BEC ofan ideal bosonic
gas with a �xed (zero) chemical potential, which is frequently mentioned in the
Chapter 6 of the bosonic single-impurity Anderson model.
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2. INTRODUCTION TO QUANTUM PHASE
TRANSITIONS

This chapter aims to cover the basic ideas of quantum phase transitions that are
frequently used in the main body of the thesis (Chapter 4, 5, and 6).

We start to giving the de�nitions of the scaling limit and universality from the
viewpoint of classical phase transitions with an example ofthe one dimensional
Ising model and introduce universal functions that represent the physics in the
vicinity of the critical points as a function of two large (macroscopic) lengths,L �

(system size) and� (correlation length).1

We bring those concepts de�ned in the classical cases into quantum systems
to develop a universal critical theory for quantum phase transitions. Again the
physical properties near to the critical points are characterized by the universal
scaling function, of which the argument is the dimensionless ratio of two small
energy scales,T (temperature) and � (an energy gap between the ground state
and the �rst excitation), instead of the classical counterparts L � and � . We take
the two-point correlation,

C(x; t ) � h �̂ z(x; t )�̂ z(0; 0)i ; (2.1)

as an example to discuss the shape of the universal scaling function in the critical
phase (Section 1.2).

Finally, we enter the subject of the thesis, impurity quantum phase transitions,
in Section 1.3, where we mention the speci�c issues of impurity models, such
as the impurity contribution of the physical observables and the local response
functions at the impurity site. The universal critical theory for the impurity
model is distinguished from the one for the lattice system ina few respects. For
examples, the feature of spatial correlations, one of the important issues of the
criticality of lattice systems, is absent (or disregarded)in impurity systems and
the quantum critical behavior reveals not in the response toa uniform global �eld
H but rather in that to a local �eld h coupled solely to the impurity. All the
arguments concerning the response to the magnetic �eld are given for a situation
where the impurity has a single SU(2) spin̂S of sizeS and the conduction band
is considered as a spinful bath.

1 To be precise,L � and � are not treated independently but form a single argument as the
dimensionless ratioL � =� .
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2.1 The scaling limit and universality

The scaling limit of an observable is de�ned as its value whenall corrections
involving the ratio of microscopic lengths, such as the lattice spacinga, to large
macroscopic ones of the correlation length� , the observation scale� , and the
system size

L � � Ma; (2.2)

are neglected. To take a concrete form of the scaling limit, we discuss the manner
in which the parameterK of the Ising chainH I

H I = � K
MX

i =1

� z
i � z

i +1 : (2.3)

must be treated. The partition function and the two-point spin correlation are
exactly evaluated from the original solution of Ising (Ising 1925) as discussed
in (Sachdev 1999) and here we skip over the detail steps just to write down the
results. The partition function calculated within the periodic boundary condition
is given as

Z =
X

f � z
i g

MY

i =1

exp(K� z
i � z

i +1 ) = � M
1 + � M

2 ; (2.4)

with � 1 = 2 coshK and � 2 = 2 sinh K . The two-point spin correlation has the
exact form of

h� z
i � z

j i =
1
Z

X

f � z
i g

exp(� H I )� z
i � z

j

=
� M � j + i

1 � j � i
2 + � M � j + i

2 � j � i
1

� M
1 + � M

2
: (2.5)

Introducing the concept of correlation length,� , from the Eq. (2.5) in the limit of
an in�nite chain (M ! 1 ) allows a simple form to the two-point spin correlation:

h� z
i � z

j i = (tanh K ) j � i : (2.6)

It is useful for the following discussion to label the spins not by the site index i ,
but by a physical length coordinate� . So if we imagine that the spins are placed
on a lattice of spacinga, the � z(� ) � � z

j where

� = ja: (2.7)

With this notation, we can write Eq. (2.6) as

h� z(� )� z(0)i = e�j � j=� ; (2.8)



2.1. The scaling limit and universality 5

where the correlation length,� , is given by

1
�

=
1
a

ln coth K: (2.9)

The notion of the correlation length� given above helps us write a universal criti-
cal theory of the Ising chainH I in the scaling limit, where the detail informations
of the �nite-size system (M , K and a) are absorbed into the macroscopic lengths
� and L � with replacements ofM = L � =a and K = ln coth � 1(a=�) and, �nally,
take the limit a ! 0 at �xed � , L � and � .

We �rst describe the results for the free energy. The quantity with the �nite
scaling limit should clearly be the free energy density,F :

F = � ln Z =Ma

= E0 �
1

L �
ln

�
2 cosh

L �

2�

�
; (2.10)

whereE0 = � K=a is the ground state energy per unit length of the chain.
In a similar manner, we can take the scaling limit of the correlation function in
Eq. (2.5). We obtain

h� z(� )� z(0)i =
e�j � j=� + e� (L � �j � j)=�

1 + e� L � =�
: (2.11)

The assertion ofuniversality is that the results of the scaling limit are not sen-
sitive to the microscopic details. This can be seen as the formal consequence
of the physically reasonable requirement that correlations at the scale of large�
should not depend upon the details of the interactions on thescale of the lattice
spacing,a.
We can make the assertion more precise by introducing the concept of auniversal
scaling function. We write Eq. (2.10) in the form

F = E0 +
1

L �
� F (

L �

�
); (2.12)

where � F is the universal scaling function, whose explicit value canbe easily
deduced by comparing with Eq. (2.10). Notice that the argument of � F is simply
the dimensionless ratios that can be made out of the large(macroscopic) lengths
at our disposal: L � and � . The prefactor, 1=L� , in front of � F is necessary
because the free energy density has dimensions of inverse length.
In a similar manner, we can introduce a universal scaling function of the two-point
correlation function. We have

h� z(� )� z(0)i = � � (
�

L �
;
L �

�
); (2.13)

where� � is again a function of all the independent dimensionless combinations of
large lengths and the exact form of� � is obtained by comparison with Eq. (2.11).
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2.2 Quantum phase transitions and quantum critical
points

Quantum phase transitions can be identi�ed with any point ofnon-analyticity in
the ground state energy and the types of non-analyticity divide quantum phase
transitions into the �rst and the second order. As in the classical cases, only
second order transitions show critical behaviors near to the transition points and
our focus shall be on the case.

A point of non-analyticity in the ground state energy and thedistance from
the point in the parameter space is quanti�ed by an energy gap� between the
ground state and the lowest excitation vanishing at the critical point. Consider
a Hamiltonian H (g) that varies as a function of a dimensionless couplingg.

H (g) = H0 + gH1 (2.14)

whereH0 and H1 are not commutable in general. In most cases, we �nd that, as
g approaches the critical valuegc, �( g) vanishes as

�( g) / j g � gcjz� ; (2.15)

with a critical exponent z� . The value of the critical exponentz� is universal,
that is, it is independent of most of the microscopic detailsof H (g). In the
vicinity of the quantum critical point ( g � gc), the physical properties such as a
free energy densityF = � T ln Z and the dynamic two-point correlations of the
order parameter�̂ z,

C(x; t ) � h �̂ z(x; t )�̂ z(0; 0)i (2.16)

are characterized by the universal scaling function of the dimensionless ratio of
the small energy scales� and T.2

As an example, we discuss the second order quantum phase transition of the
Ising chain in a transverse �eld,

H I (g) = � J
X

i

(g�̂ x
i + �̂ z

i �̂ z
i ): (2.18)

following the calculations in (Sachdev 1999). The exact single-particle spectrum
is given as

" k(g) = 2 J (1 + g2 � 2gcosk)1=2; (2.19)

2 This is the analog of the large length scales of the classicalproblem, while the universal
behavior at large length scales (� and L � ) in the classical system maps onto the physics at small
energy scales (� and T) in the quantum system.

� =
1
�

; T =
1

L �
: (2.17)
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with which the Hamiltonian in Eq. (2.18) is written in a diagonal form of

H I (g) =
X

k

" k(g)( 
 y
k 
 k � 1=2): (2.20)

The diagonal form in Eq. (2.20) is obtained using the two consequent transfor-
mations of the Jordan-Wigner transformation3 and the Bogolioubov transforma-
tion.4

The ground state, j0i , of H I (g) has no 
 fermions and therefore satis�es

 k j0i = 0 for all k. The excited states are created by occupying the single-
particle states; they can clearly be classi�ed by the total number of occupied
states and an-particle state has the form
 y

k1

 y

k2
:::
 y

kn
j0i , with all the ki distinct.

The energy gap between the ground state and the �rst excited one occurs at
k = 0 and equals

�( g) = 2 J (1 � g): (2.21)

Therefore the modelH I (g) exhibits a quantum phase transition at the critical
coupling g = 1, which separates an ordered state withZ2 symmetry broken (g �
1) from a quantum paramagnetic state where the symmetry remains unbroken
(g � 1). The state at g = 1 is critical and there is a universal continuum quantum
�eld theory that describes the critical properties in its vicinity.
We shall now obtain the critical theory for the model in Eq. (2.18). We de�ne
the continuum Fermi �eld

	( x) =
1

p
a

ci ; (2.22)

that satis�es
f 	( x); 	 y(x0)g = � (x � x0): (2.23)

To expressH I (g) in terms of 	 and the expansions in spatial gradients yields the
continuum HF ,

HF = E0 +
Z

dx
�

c
2

(	 y @	 y

@x
� 	

@	
@x

) + �	 y	
�

+ :::; (2.24)

where the ellipses represent terms with higher gradients, and E0 is an uninterest-
ing additive constant. The coupling constant inHF are

� = 2 J (1 � g); c = 2Ja: (2.25)

Notice that at the critical point g = 1, we have� = 0 , and we have� > 0 in the
magnetically ordered phase and� < 0 in the quantum paramagnet.

3 To map the Hamiltonian H I (g) with spin-1/2 degrees of freedom into a quadratic ones with
the spinless Fermi operators

4 To transform the quadratic Hamiltonian into a form whose number is conserved.
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The subsequent scaling analysis of the continuum Hamiltonian HF is per-
formed in a Lagrangean path integral representation of the dynamics ofHF :

Z =
Z

D	 D	 y exp(�
Z 1=T

0
d�dxL I ) (2.26)

with the Lagrangean densityL I ,

L I = 	 y @	
@�

+
c
2

(	 y @	 y

@x
� 	

@	
@x

) + �	 y	 : (2.27)

The fact that the action L I , as a universal critical theory of the modelH I , has
to remain invariant under scaling transformations, where all modes of the �eld 	
with momenta between� and � e� l are integrated out to yield an overall additive
constant to the free energyF = � T ln Z , determines the rescaling behaviors of
the elements in the Lagrangean densityL I :

x0 = xe� l ;

� 0 = �e � zl ;

	 0 = 	 el=2;

� 0 = � el : (2.28)

Accordingly, the scaling dimension of each element is givenas5

dim[x] = � 1;

dim[� ] = � z;

dim[	] = 1 =2;

dim[�] = 1 : (2.29)

The temperatureT, is just an inverse time, therefore has a dimension,

dim[T] = z = 1; (2.30)

for the given modelH I . The parameterz is the dynamical critical exponentand
determines the relative rescaling factors of space and time. The present modelH I

has z = 1 as it is related to classical problem that is fully isotropicin D spatial
dimensions.

The scaling dimension of the order parameter̂� z is quite di�cult to determine
since it is not a simple local function of the Fermi �eld	 and here we present
the result only.

dim[�̂ z] = 1=8: (2.31)

Armed with the knowledge of the scaling dimensions, we can put important gen-
eral constraints on the structure of universal scaling forms for various observables.

5 � 0 = �( el )
dim [�]
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As an example of such considerations, let us consider the scaling form satis�ed
by the two-point correlation C(x; t ) de�ned in Eq. (2.16):

C(x; t ) = ZT 1=4� I (
Tx
c

; T t;
�
T

): (2.32)

A prefactor, consisting of an overall non-critical normalization constant Z and
T1=4, shows consistency of the scaling dimension of theC(x; t ).6 A dimensionless
universal scaling function� I has three arguments; time and spatial coordinates
x and t and the energy gap� are combined with a power ofT to make the
net scaling dimensions07. The properties of the two points correlation depends
completely on the ratio of two energy scale, that of theT = 0 energy gap to
temperature: � =T. There are two low-T regimes withT � j � j; the magnetically
ordered side for� > 0 and the quantum paramagnetic ground state for� < 0.
Then there is a novel continuum high-T regime, T � j � j, where the physics
is controlled primarily by the quantum critical point � = 0 and its thermal
excitations and is described by the associated continuum quantum �eld theory.
Here we focus on the last regime and show the structure of the scaling function
in it.

At the quantum critical point ( T = 0, � = 0 , g = gc), we can deduce the
form of the correlation by a simple scaling analysis. As the ground state is scale
invariant at this point, the only scale that can appear in theequal-time correlation
is the spatial separationx; from the scaling dimension̂� z in Eq. (2.31), we then
know that the correlation must have the form

C(x; 0) �
1

(jxj=c)1=4
(2.33)

at T = 0, � = 0 . We can also include time-dependent correlations at this level
without much additional work. We know the continuum theory (2.27) is Lorentz
invariant, and so we can easily extend (2.33) to the imaginary time result

C(x; � ) �
1

(� 2 + x2=c2)1=8
(2.34)

at T = 0, � = 0 . This result can also be understood by the mapping to the clas-
sical D = 2 Ising model, where correlations are isotropic with allD dimensions,
and so the long-distance correlations depend only upon the Euclidean distance
between two points.

We extend the result (2.34) toT > 0 by the transformation

c� � ix !
c

�T
sin

�
�T
c

(c� � ix )
�

; (2.35)

6 dim [C(x; t )] = dim [h� z (x; t )� z (0; 0)i ] = 1 =4 with dim [T ] = z = 1 for the given model H I .
7 the velocity c is invariant under the scaling transformation, i.e. dim[c]=0.
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which makes a very general connection betweenall T = 0 and T > 0 two-point
correlation of the continuum theoryL I (Cardy 1984). Applying the mapping in
Eq. (2.35) to the Eq. (2.34) allow us to obtain the correlation at T > 0:

C(x; � ) � T1=4 1

[sin(�T (� � ix=c)) sin(�T (� + ix=c))]1=8
(2.36)

at T = 0.
As expected, this result is of the scaling form in Eq. (2.32) of which the last

argument is zero. It is the leading result everywhere in the continuum high-T (i.e.
quantum critical) region. Notice that this result has been obtained in imaginary
time. Normally, such results are not always useful in understanding the long
real-time dynamics atT > 0 because the analytic continuation is ill-posed.

2.3 Impurity quantum phase transitions

We give an overview of the quantum phase transitions in impurity models (Bulla
and Vojta 2003, Vojta 2006, A�eck 2005), of which the detailed contexts cover
the rest of the thesis.

All our impurity models have the general form,

H = H b + H imp ; (2.37)

whereH b contains the bulk degrees of freedom8 and H imp contains the impurity
degrees of freedom, e.g., one or more quantum spins, together with their coupling
to the bath, which typically is local in space.

The physical properties relevant to the impurity quantum phase transition are
classi�ed to two categories; one is the impurity contribution to the total system
and the other is the local quantity at the impurity site.

In the former case, a physical observableA is de�ned to be the change in
the total measured value ofA brought about by adding a single impurity to the
system. Each such contribution can be computed from an expression of the form

hAi imp = hAi � hAi 0

= Tr( Ae� � H ) � Tr 0(Ae� � H b) (2.38)

whereTr 0 means a trace taken over an impurity-free system.
For example, the impurity contributions to the entropy and the speci�c heat

are obtained as (Krishna-murthy, Wilkins and Wilson 1980)

Simp = �
@F imp

@T
;

Cimp = � T
@2F imp

@T2
: (2.39)

8 The bulk systems generically are interacting but, under certain circumstances the self-
interaction is irrelevant and can be discarded from the outset.
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Here,F imp is the di�erence between the total Helmholtz free energy of the system
with and without the impurity:

F imp = � T ln Z imp = T ln
Z 0

Z
; (2.40)

with
Z = Tr e� � H ; Z 0 = Tr e� � H b: (2.41)

In general, zero-temperature impurity critical points canshow a non-trivial resid-
ual entropy [contrary to bulk quantum critical points where the entropy usually
vanishes with a power lawS(T) / T y]. The stable phases usually have the im-
purity entropy of the form Simp (T ! 0) = ln g where g is the integer ground
state degeneracy, e.g.,g = 1 for a Kondo-screened impurity andg = 2S + 1 for
an unscreened spin of sizeS. At a second-order transition,g can take fractional
values (Andrei and Destri 1984, Bolech and Andrei 2002, Gonzalez-Buxton and
Ingersent 1998).

Another quantity of interest is the impurity contribution t o the zero-�eld
magnetic susceptibility, given by

� imp = �
�

@2F imp

@H2

�

H = h=0

(2.42)

where the uniform and local magnetic �eld,H and h, enter the Hamiltonian H
in Eq. (2.37) through an additional term (Ingersent and Si 2002) 9,

H mag =
X

�

"

(H + h)Sz +
H
2

X

k

cy
k� � z

�� ck�

#

: (2.43)

For an unscreened impurity spin of size,S, we expect� imp (T ! 0) = S(S +
1)=(3T) in the low-temperature limit - note that this unscreened moment will be
spatially speared out due to the residual coupling to the bath. A fully screened
moment will be characterized byT � imp = 0 (Gonzalez-Buxton and Ingersent
1998, Vojta 2006). In the presence of global SU(2) symmetry,the susceptibility
� imp does not acquire an anomalous dimension at criticality, in contrast to � loc

below, because it is a response function associated to the conserved quantity
Stot (Sachdev 1997). Thus we expect a Curie law

lim
T ! 0

� imp (T) =
Cimp

T
; (2.44)

where the prefactorCimp is in general a non-trivial universal constant di�erent
from the free-impurity valueS(S+1) =3. Apparently, Eq. (2.44) can be interpreted

9 Sz and cy
k� � z

�� ck� represent the spin of the impurity and the conduction electrons, respec-
tively.
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as the Curie response of a fractional e�ective spin (Sachdev, Buragohain and
Vojta 1999) - examples are e.g. found in the pseudo-gap Kondomodel and in the
Bose Kondo model (Vojta 2006).

An important example of the local quantities, i.e., the static local sus-
ceptibility � loc, naturally comes up from the �eld-dependent Hamiltonian
H mag (Ingersent and Si 2002).

� loc = �
�

@2F imp

@h2

�

H = h=0

: (2.45)

In an unscreened phase we have� loc / 1=T as T ! 0. This Curie law de�nes
a residual local momentmloc at T = 0, which is the fraction of the total, free
�uctuating, moment of size S, which is remained localized at the impurity site:

lim
T !

� loc(T) =
m2

loc

T
: (2.46)

A decoupled impurity has m2
loc = Cimp = S(S + 1) =3, but a �nite coupling to

the bath implies m2
loc < Cimp . The quantity mloc turns out to be a suitable

order parameter (Ingersent and Si 2002) for the phase transitions between an un-
screened and screened spin: at a second-order transition itvanishes continuously
as t ! 0� . Here, t = ( r � r c)=rc is the dimensionless measure of the distance
to the criticality in terms of coupling constants, with t > 0 (t < 0) placing the
system into the (un)screened phase. Thus,T � loc is not pinned to the value of
S(S + 1) =3 for t < 0 (in contrast to T � imp ).

An important observation from the above analysis on the impurity and local
susceptibility is that the quantum critical behavior reveals itself, not in the re-
sponse to a uniform magnetic �eldH , but rather in that to a local magnetic �eld
h coupled solely to the impurity.

Given that the local �eld h act as a scaling variable, a scaling ansatz for the
impurity part of the free energy takes the form,

F imp = T� F (gT� 1=� ; hT � b); (2.47)

where the coupling coe�cients g measures the distance to criticality atg = gc

and h is the local �eld. � is the correlation length exponent which describes the
vanishing energy scale� 10:

� / j g � gcj � :11 (2.48)

With the local magnetization M loc = hŜz i = � @F imp =@hand the correspond-
ing susceptibility � loc = � @2F imp =(@h)2 we can de�ne critical exponents as

10 The energy gap between the ground state and the �rst excitation
11 Note that there is no independent dynnamical exponent z for the present impurity models,

formally z=1. See Eq. (2.15).
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usual (Ingersent and Si 2002, Vojta 2006):

M loc(g < gc; T = 0; h ! 0) / (gc � g)� ;

� loc(g > gc; T = 0) / (g � gc)
 ;

M loc(g = gc; T = 0) / j hj1=� ;

� loc(g = gc; T) / T � x ;

� 00
loc(g = gc; T = 0; ! ) / j ! j � ysgn(! ): (2.49)

The last equation describes the dynamical scaling of the local susceptibility.
In the absence of a dangerously irrelevant variable, there are only two inde-

pendent exponents. The scaling form in Eq. (2.47) allows to derive hyper-scaling
relations:

� = 

1 � x

2x
; 2� + 
 = �; � =

1 + x
1 � x

: (2.50)

Furthermore, hyper-scaling also impliesx = y. This is equivalent to so-called!=T
scaling in the dynamical behavior-for instance, the local dynamic susceptibility
will obey the full scaling form (Sachdev 1999),

� 00
loc(!; T ) =

B1

! 1� � �
� 1

�
!
T

;
T1=�

g � gc

�
; (2.51)

which describes critical local-moment �uctuations, and the local static suscepti-
bility follows

� 00
loc(T) =

B2

! 1� � �
� 2

�
T1=�

g � gc

�
: (2.52)

Here, � � = 1 � x is a universal anomalous exponent, and� 1;2 are universal
crossover functions (for the speci�c critical �xed point), whereasB1;2 are non-
universal prefactors.
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3. NUMERICAL RENORMALIZATION GROUP
APPROACH

3.1 Kondo problem and invention of NRG

Wilson originally developed the numerical renormalization group method (NRG)
for the solution of the Kondo problem (Wilson 1975). The history of this prob-
lem (Hewson 1993) goes back to the 1930's when a resistance minimum was
found at very low temperatures in seemingly pure metals (de Haas, de Bör and
van den Berg 1934). This minimum, and the strong increase of the resistance
� (T) upon further lowering of the temperature, has been later found to be caused
by magnetic impurities (such as iron). Kondo successfully explained the resis-
tance minimum within a perturbative calculation for the s-d (or Kondo) model
(Kondo 1964), a model for magnetic impurities in metals. However, Kondo's re-
sult implies a divergence of� (T) for T ! 0, in contrast to the saturation found
experimentally. The numerical renormalization group method, where the concept
of poor man's scaling (Anderson 1970) is adopted into the numerical diagonaliza-
tion procedure, succeeded to obtain many-particles spectra with extremely high
energy-resolution and to explain the �nite value of resistance � (T) for T ! 0.
The detailed strategy is discussed in the following section.

3.2 Summary of the Basic Techniques

The fact that a proper description ofT ! 0 limit is achieved only after ther-
modynamic limit (N ! 1 ) is taken into account makes it di�cult for the usual
numerical approaches on impurity models to pursue theT ! 0 limit. For ex-
ample, substituting a continuous band with a �nite set of discrete states yields
a �nite size of mesh�" in energy-space, with which one can describe thermody-
namics of the continuous system only for the temperatureT larger than �" . In
this sense, a given temperatureT makes a criterion for discretization,

�" � T: (3.1)

Assuming that an impurity couples to an electronic bath witha band-width
D, the number of degrees of freedom of the discretized system (N ) is roughly
estimated as

N /
D
�"

�
D
T

: (3.2)
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Brute-force technique holds good untilT � 10� 3D(N � 103) and discarding some
of electronic states, so calledtruncation, is indispensable to proceed calculations
into a lower temperature.

Let us assume that we reduce the system-size fromN � N to N=2 � N=2 by
discarding the high-energy states, which are not stirred bythermal-�uctuations
in given temperatureT. We can invest the surplus degrees of freedom into the
low-lying spectrums and improve the energy-resolution in the small energy-scale.
With the additional elements, the new Hamiltonian producesN of many-particle
states which are more concentrated on the low energy-scale compared to the pre-
vious case. The critical point is how to include extra degreeof freedoms for low
energy-scale in the existing spectrum. In general, adding new conduction elec-
trons can break the symmetry of the previous system so that all the eigenstates
are mixed up to construct a new set of eigenstates. Now, severe errors can occur
if we lose some of the eigenstates of the previous system withtruncation. To get
around the trouble, Wilson introduced two sophisticated steps into the numerical
renormalization group method:

� logarithmic discretization

� iterative diagonalization of a semi-in�nite chain

The �rst one is to discretize the energy-space with a logarithmic mesh and select
a discrete set of electronic degrees of freedom for numerical diagonalization. The
reason why the mesh is logarithmic is discussed in Section 3.2.1. The second step
is to add new degrees of freedom without touching the electronic con�gurations
at the impurity-site. In these schemes, we can proceed the iterations avoiding
arti�cial e�ects due to truncation and obtain the many-part icles spectra with an
arbitrary �ne mesh �" , which makes it possible to simulate the thermodynamics
of a continuous system for an arbitrary low temperatureT with a discretized
band.

3.2.1 Logarithmic discretization

The Hamiltonian of the conventional single-impurity Anderson model (Wilson
1975, Hewson 1993) is given by

H = " f

X

�

f y
� 1� f � 1� + Uf y

� 1" f � 1" f y
� 1#f � 1#

+
X

k�

" kcy
k� ck� +

X

k�

V(" k)
�
f y

� 1� ck� + cy
k� f � 1�

�
(3.3)

where thec(y)
k� denote standard annihilation (creation) operators for band states

with spin � and energy" k , the f (y)
� 1;� those for impurity states with spin � and

energy" f . The Coulomb interaction for two electrons at the impurity site is given
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by U and the two subsystems are coupled via an energy-dependent hybridization
V(" k).

The Hamiltonian in Eq. (3.3) can be written into a form which is more con-
venient for the derivation of the NRG equations:

H = " f

X

�

f y
� 1� f � 1� + Uf y

� 1" f � 1" f
y
� 1#f � 1#

+
X

�

Z 1

� 1
d" g(")ay

"� a"� +
X

�

Z 1

� 1
d" h(")

�
f y

� 1� a"� + ay
"� f � 1�

�
; (3.4)

where we introduced a one-dimensional energy representation for the conduction
band with band cut-o�s at � 1, dispersion g(") and hybridization h("). The
band operators ful�ll the standard fermionic commutation rules

�
ay

"� ; a" 0� 0

�
=

� (" � "0)� �� 0.
The Hamiltonian in Eq. (3.3) is equivalent to the Hamiltonian in Eq. (3.4)

when we selectg(" ) and h(") to satisfy the following condition:

@"(x)
@x

h("(x))2 = V("(x))2� (" (x)) =
1
�

�( x); (3.5)

where"(x) is the inverse ofg("), i.e.

" (g(x)) = x; (3.6)

and � (" ) is the density of states for the free conduction electrons (Bulla, Pruschke
and Hewson 1997).

As a �rst step of discretization, we divide a conduction bandinto N -intervals
f I ng,

Z 1

� 1
d" !

X

n

Z

I n

d"; (3.7)

with I n = [ "n ; "n+1 ] ; (n = 0; 1; :::; N � 1, "0 = � 1 and "N = 1) and replace the
operators of conduction electrons with the Fourier components in each interval
I n ,

a(y)
p�;n =

1
p

dn

Z

I n

d" a(y)
";� e� i 2p� j" j=dn ; (3.8)

with dn = j"n+1 � "n j and p = 0; 1; 2; 3; � � � . At the end, we drop all the non-zerop-
terms and write the Hamiltonian only with the zero-th Fourier components,a(y)

0�;n ,
in each interval. This, so calledp = 0 approximation, is the �rst approximation
in NRG.

Let us look into the hybridization and the kinetic term of theHamiltonian to
check the validity of the approximation. The hybridization term is given as

Hhyb =
X

n

Z

I n

d" hn f y
� 1� a"� + h:c:: (3.9)
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Assuming that h(") is constant in each intervalI n ,

h(" ) = hn = const: ; " 2 I n : (3.10)

makesHhyb in Eq. (3.9) consist of only the �p = 0� Fourier componentsf a0�;n g.

Hhyb =
X

n

hn f y
� 1�

Z

I n

d"a"� + h:c: (3.11)

=
X

n

X

p

hnp
dn

f y
� 1�

Z

I n

d"
X

q

aq�;n ei 2q� j" j=dn + h:c:

=
X

n

hn

p
dn f y

� 1� a0�;n + h:c::

The energy-dependence ofV(") and � (" ) is fully attributed to the inverse-
dispersion function"(x)(= g� 1(x)) such that

@"(x)
@x

=
1

h2
n

V("(x))2� (" (x)) ; (3.12)

with "(x) 2 ["n ; "n+1 ]. Thus there is no approximation up to this point.

The kinetic term of Hamiltonian with full Fourier components f a(y)
p�;n g is

Hkinetic =
X

�

X

n

Z

I n

d" gn (" )ay
"� a"�

=
X

�

X

n

1
dn

X

p;q

Z

I n

d" gn (" )ay
p�;n e� i 2p� j" j=dn aq�;n ei 2q� j" j=dn

=
X

�

X

n

1
dn

ay
0�;n a0�;n

Z

I n

d" gn (" )

+
X

�

X

n

1
dn

X

p6=0

ay
p�;n ap�

Z

I n

d" gn(" )

+
X

�

X

n

1
dn

X

p6=0

ay
p�;n a0�;n

Z

I n

d" gn (" )e� i 2p� j" j=dn

+
X

�

X

n

1
dn

X

q6=0

ay
0�;n aq�

Z

I n

d" gn(" )ei 2q� j" j=dn

+
X

�

X

n

1
dn

X

p6=0

X

k6=0

ay
p�;n ap+ k�;n

Z

I n

d" gn (" )ei 2k� j" j=dn (3.13)

Neglecting the last three terms in the above Hamiltonian reduces the full Hamil-
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tonian in Eq. (3.3) into a form:

H �= " f

X

�

f y
� 1� f � 1� + Uf y

� 1" f � 1" f y
� 1#f � 1#

+
X

�

X

n

� nay
0�;n a0�;n +

X

�

X

n

hn

p
dn (f y

� 1� a0�;n + ay
0�;n f � 1� )

+
X

�

X

n

X

p6=0

� nay
p�;n ap�;n ; (3.14)

with

h2
n =

1
�d n

Z

I n

d" �( " ); (3.15)

� n =

R" n +1

" n
d" " �( " )

R" n +1

" n
d" �( " )

;
Z

I n

d" =
Z " n +1

" n

d":

Disregarding the last term of Eq. (3.14) that is completely irrelevant to the others
keeps only thep = 0 Fourier components in the Hamiltonian:

H �= " f

X

�

f y
� 1� f � 1� + Uf y

� 1" f � 1" f y
� 1#f � 1#

+
X

�

X

n

� nay
0�;n a0�;n +

X

�

X

n

hn

p
dn (f y

� 1� a0�;n + ay
0�;n f � 1� )

= " f

X

�

f y
� 1� f � 1� + Uf y

� 1" f � 1" f y
� 1#f � 1#

+
X

�

X

n

� nay
0�;n a0� +

X

�

(f y
� 1� f 0� + f y

0� f � 1� );

(3.16)

with

f 0 =
1

p
� 0

X

n

hn

p
dna0�;n =

1
p

� 0

X

n

�hna0�;n ;

� 0 =
X

n

�h2
n : (3.17)

(3.18)

The validity of the approximation can be examined by comparing the coe�cients
of the p = 0 Fourier component to the otherp 6= 0 terms:

Ak;n �
gpq

n

g00
n

=

R
I n

d"g(")e� i 2�k j" j=dn

R
I n

d"g(")
(3.19)

with p � q = k 6= 0.
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Assuming a linear dispersiong(") / "1,

Ak;n =

R
I n

d" " e � i 2�k j" j=dn

R
I n

d" "

=

R" n +1

" n
d" " e � i 2�k j" j=dn

R" n +1

" n
d" "

=
e� i 2�k" n =dn

� i�k
"n+1 � "n

"n+1 + "n
: (3.20)

Thus, jAn;k j is proportional to the interval-length dn and inverse-proportional to
the frequency di�erencejp � qj and the mean-energy�"n :

jAn;k j = j
gpq

n

g00
n

j /
dn

�"n

1
jp � qj

; (3.21)

with dn = "n+1 � "n and �"n = ( "n+1 + "n )=2. The inverse-proportional factor
1=jp � qj makes slow-varying terms more dominant than fast-modulating ones.

Another observation is that jgpq
n =g00

n j is proportional to dn=�"n , which makes
the type of discretization as a crucial point. Let's assume that we discretize a
continuous band with a uniform mesh,

dn = D=N = const:; (3.22)

with the number of divisionsN and the band-width D. Now, jgpq
n =g00

n j becomes
in�nitely large as �"n approaches to zero andp = 0 approximation fails at " � 0.
The alternative way is to makejgpq

n =g00
n j energy-independent:

jgpq
n =g00

n j /
� "n

�"n

1
k

= const:; (3.23)

with � "n = dn . Eq. (3.23) lets the energy-mesh uniform in a logarithmic scale.

�(ln "n) = const: � ln � (3.24)

Here we introduce a control parameter� for discretization. In � ! 1 limit, the
Hamiltonian in Eq. (3.16) recovers the original Hamiltonian in Eq. (3.3) since

lim
� ! 1

jgpq
n =g00

n j = 0: (3.25)

According to the historical precedents, values of� are mostly 2 � 5, with which
one needs to divide a band[� D; D ] into about 40-sectors (2� 40 � 10� 6) or 20-
sectors (5� 20 � 10� 6) to reach the energy scaleT � D � 10� 6. Accordingly, the
size of Hamiltonian matrices becomes440 or 420.2

1 More general cases involve complicate integrand in Eq. (3.19) but we believe that the same
arguments as followings can be applied to the cases, too.

2 All these numbers refer to fermionic systems.
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NRG deals with those many electronic degrees of freedom in a certain se-
quence (iteratively). How do we distribute the huge number of electrons into a
sequence of diagonalization steps? How can one describe thecorrelations among
the electrons in di�erent steps? Section 3.2.2 is devoted toanswer the questions.

3.2.2 Iterative diagonalization of a semi-in�nite chain

Let us start from the Hamiltonian with p = 0 Fourier components only.

H = " f

X

�

f y
� 1� f � 1� + Uf y

� 1" f � 1" f y
� 1#f � 1# +

X

�

X

n

� nay
n� an�

+
p

� 0

X

�

(f y
� 1� f 0� + f y

0� f � 1� ); (3.26)

with

f 0� =
1

p
� 0

X

n

�hnan� ;

� 0 =
X

n

�h2
n : (3.27)

Now we drop the indexp (= 0) from the conduction operators (a(y)
0�;n ! a(y)

n� ).
The well-known Lanczos algorithm for converting matrices to a tridiagonal form
maps the Hamiltonian in Eq. (3.26) into a semi-in�nite chain.

H = " f

X

�

f y
� 1� f � 1� + Uf y

� 1" f � 1" f y
� 1#f � 1# +

p
� 0

X

�

(f y
� 1� f 0� + f y

0� f � 1� )

+
X

�

X

n

h
"n f y

n� f n� + tn (f y
n� f n+1 � + f y

n+1 � f n� )
i

(3.28)

where operatorsf (y)
n� (n = 1; 2; :::) are represented as a linear combination of

conduction operatorsa(y)
m� by a real orthogonal transformationU (UT U = UUT =

1; U� = U):
f n� =

X

m

Unm am� : (3.29)

The parameters of the semi-in�nite chain are calculated recursively with the
relations (Bulla, Lee, Tong and Vojta 2005),

"m =
X

n

� nU2
mn ;

t2
m =

X

n

[(� n � "m )Umn � tm� 1Um� 1n ]2 ; (3.30)

Um+1 n =
1
tm

[(� n � "m )Umn � tm� 1Um� 1n ] ;
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starting with the initial conditions,

U0n =
hnp
� 0

:

"0 =
X

n

� nU2
0n : (3.31)

U1n =
1
t0

(� n � "0)U0:

Before discussing the iterative diagonalization procedure, we mention the impor-
tant consequences of the mapping to a semi-in�nite chain.

i) The coe�cients f "n ; tng show an exponential decay for large n.

"n / � � n=2; tn / � � n=2; 3 (3.32)

ii) The annihilation(creation) operator of the n-th chain-site f (y)
n� can be ap-

proximated as a �nite sum ofa(y)
m� instead of the in�nite one.

f (y)
n� =

1X

m=0

Unm (a(y)
m� + ( � 1)nb(y)

m� )

�
fX

m= i

Unm (a(y)
m� + ( � 1)nb(y)

m� ) (3.33)

We will use the two results with discussing the details of thetruncation procedure.

Let us de�ne a �nite size of Hamiltonian from the semi-in�nit e chain in
Eq. (3.28)

HN = " f

X

�

f y
� 1� f � 1� + Uf y

� 1" f � 1" f y
� 1#f � 1# +

p
� 0

X

�

(f y
� 1� f 0� + f y

0� f � 1� )

+
X

�

"
NX

n=0

"n f y
n� f n� +

N � 1X

n=0

tn (f y
n� f n+1 � + f y

n+1 � f n� )

#

(3.34)

3 � � n= 2:Fermions, � � n :Bosons
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The semi-in�nite chain is solved iteratively by starting from H0 and successively
adding the next site.

H0 = H imp +
p

� 0

X

�

(f y
� 1� f 0� + f y

0� f � 1� ) + "0

X

�

f y
0� f 0�

H1 = H0 + t0

X

�

(f y
0� f 1� + f y

1� f 0� ) + "1

X

�

f y
1� f 1�

H2 = H1 + t1

X

�

(f y
1� f 2� + f y

2� f 1� ) + "2

X

�

f y
2� f 2� (3.35)

H3 = H2 + t2

X

�

(f y
2� f 3� + f y

3� f 2� ) + "3

X

�

f y
3� f 3�

:::

HN +1 = HN + tN

X

�

(f y
N� f N +1 � + f y

N +1 � f N� ) + "N +1

X

�

f y
N +1 � f N +1 �

To prevent the rapid growth of the Hilbert space, it is indispensable to discard
some of eigenstates before including an additional conduction site to the Hamil-
tonian. Let us assume that the Hamiltonian of theN � 1-th iterative step, HN � 1,
yields M of eigenstates,

HN � 1j� (N � 1)
n i = E (N � 1)

n j� (N � 1)
n i (3.36)

with n = 1; 2; ::::M .
The matrix representation of a new HamiltonianHN is based on the product

states
j (N )

nm i = j� (N � 1)
n i 
 j mi ; (n = 1; 2; :::; M; m = 1; 2; :::; l); (3.37)

where fj mij m = 1; 2; :::; lg corresponds to a basis for a new site. In fermionic
cases

j
 i = j0i ;

j "i = f y
N " j0i ;

j #i = f y
N #j0i ;

j "#i = f y
N " f y

N #j0i : (3.38)

The matrix elements of the new HamiltonianHN is

h (N )
n0m0jHN j (N )

nm i = hm0jmih� (N � 1)
n0 jHN � 1j� (N � 1)

n i + "N h� (N � 1)
n0 j� (N � 1)

n ihm0jf y
N� f N� jmi

+ tN � 1h� (N � 1)
n0 jf y

N � 1� j� (N � 1)
n� ihm0jf N� jmi

+ tN � 1h� (N � 1)
n0 jf N � 1� j� (N � 1)

n� ihm0jf y
N� jmi : (3.39)

with j (N � 1)
nm i = j� (N � 1)

n i 
 j mi and jmi 2 fj 
 i ; j "i ; j #i ; j "#ig .
In NRG, we truncate the matrix of Hamiltonian by keeping the �rst Ns � Ns

elements out of theM � M ones and discarding the remnants.
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The truncated Hamiltonian gives a valid result (low-lying spectrumsf E (N )
n g)

only if the o�-diagonal elements forjn � n0j > N s are negligibly small compared
to the diagonal ones:

h (N )
n0m0jHN j (N )

nm i � h  (N )
nm jHN j (N )

nm i (3.40)

for jn � n0j > N s. Equivalently,

tN � 1h�
(N � 1)
n0 jf y

N � 1� j� (N � 1)
n ihm0jf N� jmi � E (N � 1)

n + "N hmjf y
N f N jmi (3.41)

for jn � n0j > N s.
Now, we check the order of magnitude of each element in Eq. (3.41). The

�rst result in Eq. (3.32) tells us, for a givenN , tN � 1 and "N are same in order of
magnitude:

tN ; "N � � � N=2: (3.42)

Two new elements,hmjf y
N� f N� jmi and hm0jf (y)

N� jmi , are order of unity:

hmjf y
N� f N� jmi 2 f 0; 1; 2g; (3.43)

hm0jf N� jmi 2 f 0; 1g:

To make simple explanation, we replaceE (N � 1)
n to E (N � 1)

1 and check the in-
equality (3.41). SinceE (N � 1)

1 corresponds to the �rst excitation-energy of the
Hamiltonian HN � 1

4, its energy-scale has to be similar to"N � 1 and tN � 1 in order
of magnitude.

E (N � 1)
1 � � � N=2 (3.44)

From Eq. (3.42), Eq. (3.44) and Eq. (3.44), we can conclude that the inequal-
ity (3.41) is satis�ed (or truncation is allowed) if we can �nd an integerNs smaller
than M such that

h� (N � 1)
n0 jf y

N � 1;� j� (N � 1)
n i � 1; (3.45)

for Ns < jn � n0j < M . To �nd a proper Ns, we use the result in Eq. (3.33). The
�nite summation in Eq. (3.33) begins with m = i and stops at m = f , which
meansf N � 1;� involves the single-particle(hole) operators,am� (bm� ), with energy
� m smaller than � i and larger than � f .

� f < � m < � i for i < m < f (3.46)

Thus, the transition amplitude h� (N � 1)
n0 jf y

N � 1;� j� (N � 1)
n i becomes e�ectively zero

for
jE (N � 1)

n0 � E (N � 1)
n j > � (N � 1)

i (3.47)

4 To be precise,E (N � 1)
1 is the energy-di�erence between the ground state and the �rst excited

one.
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and the subspace of the full HamiltonianHN with energy 0 � E (N � 1)
n � � (N � 1)

i
can be e�ectively described by a truncated HamiltonianHN (Nsl � Nsl ) whereNs

is de�ned to satisfy
E (N � 1)

N s
� 2� i : (3.48)

The energy cuto� � (N � 1)
i of the operator f N � 1;� shows exponential decrease and

for large N (> 10),

� (N � 1)
i / � � N=2:5 (3.49)

If � is very close to1, the cut-o� does not change so much with iterations but stays
at the initial cut-o� (band width) D and there is very little room for truncation.
A large �( � 1) makes computation easy but we lose too much information with
logarithmic discretization (or p = 0 approximation).6 Optimal values of � can
be di�erent according to the kind of models and also to the type of physical
properties to be calculated. For examples, physics at the ground-state are usually
obtained with a large value of�( � 5) whereas relatively small�( � 2) is demanded
to investigate temperature-dependence of (thermo)dynamical quantities.

3.3 Flow diagrams and Fixed points

In analytic RG approach, the renormalization group is a mapping R of a Hamil-
tonian H (K ), which is speci�ed by a set of interaction parameters or couplings
K = ( K 1; K 2; :::) into another Hamiltonian of the same form with a new set of
coupling parametersK 0 = ( K 0

1; K 0
2; :::). This is expressed formally by

Rf H (K )g = H (K 0); (3.50)

or equivalently,
Rf K g = K 0: (3.51)

In applications to critical phenomena the new Hamiltonian is obtained by remov-
ing short range �uctuations to generate an e�ective Hamiltonian valid over larger
length scales. The transformation is usually characterized by a parameter, say
� , which speci�es the ratio of the new length or energy scale tothe old one. A
sequence of transformations,

K 0 = R� (K ); K 00= R� (K 0); K 000= R� (K 00); etc: (3.52)

generates a sequence of points or, where� is a continuous variable, atrajectory
in the parameter spaceK .

5 In actual calculations, truncation is controlled by keeping the number of states constant.
6 see Section 3.2.1
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In numerical renormalization group approach, RG-transformation corresponds
to a mapping of a iterative HamiltonianHN into HN +1

HN +1 = R(HN ) (3.53)

= HN + tN

X

�

(f y
N� f N +1 � + f y

N +1 � f N� ) + "N +1

X

�

f y
N +1 � f N +1 � :

Including truncation-procedures, which keep the dimension of the iterative Hamil-
tonian HN constant7, de�nes R as a mapping between the points in a space of
Ns � Ns - matrices.

A �xed point, one of the key concepts of the renormalization group, is a point
K � which is invariant under the RG-transformation.

R(K � ) = K � (3.54)

In the NRG method, a �xed point K � is an invariant Hamiltonian H � under the
transformation in Eq. (3.53) and the iterative HamiltonianHN converges into the
�xed point H � :8

H � = lim
N !1

HN : (3.55)

We write the �xed point Hamiltonian H � in terms of Ns � Ns matrix:

H � =
N sX

n=1

E �
n j �

n ih �
n j; (3.56)

where j �
n i and E �

n are the eigenstates and eigenvalues ofH � so that

H � j �
n i = E �

n j �
n i ; (n = 1; :::Ns): (3.57)

Using the eigenbasis in Eq. (3.57),HN can be written as

HN =
N sX

n=1

N sX

m=1

h(N )
nm j �

n ih �
m j: (3.58)

Inserting Eq. (3.56) and Eq. (3.58) to Eq. (3.55) gives:

lim
N !1

h(N )
nm = 0 for all n 6= m : (3.59)

In actual calculations, the eigenstates of̂H � in Eq. (3.56) is obtained itera-
tively and each of iteration yields a diagonalized Hamiltonian HN on the eigen-

7 dim[HN ]= Ns for every iteration
8 Precisely, the Eq. (3.53) is a de�nition for stable �xed poin ts only.
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basisfj  (N )
n ig .

H0 =
N sX

n=1

E (0)
n j (0)

n ih (0)
n j

H1 =
N sX

n=1

E (1)
n j (1)

n ih (1)
n j

:

:

:

HN =
N sX

n=1

E (N )
n j (N )

n ih (N )
n j

HN +1 =
N sX

n=1

E (N +1)
n j (N +1)

n ih (N +1)
n j (3.60)

whereHm j (m)
n i = E (m)

n j (m)
n i ; (m = 0; 1; :::; N + 1 and n = 1; :::; Ns).

The iterative Hamiltonian HN approaches to the �xed pointH � as the eigen-
states fj  (N )

n ig converges to constant statesfj  �
n ig :

lim
N !1

j (N )
n i = j �

n i ; (3.61)

for n = 1; :::; Ns.
Once the iterative Hamiltonian is very close to a �xed point,the mapping R

hardly a�ects the structure of Hamiltonian but changes the overall energy-scale
as � .9

A sequence of transformations gives

HN +1 = R� (HN ) = � H N + O(1=N)

HN +2 = R� (HN +1 ) = � 2 HN + O(1=N)

HN +3 = R� (HN +2 ) = � 3 HN + O(1=N)

::: (3.62)

If we de�ne an renormalized Hamiltonian �HN where overall energy scale is divided
by � N , ( �HN = HN � 1

� N )

�HN +1 = �HN + O(1=N)
�HN +2 = �HN + O(1=N)
�HN +3 = �HN + O(1=N)

::: (3.63)

9 In fermionic (bosonic) NRG, � = 1 =
p

� (1=� ).
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Figure 3.1: Many particle spectrums of Soft-Gap Anderson Model: The lowest
seven levels for given quantum numbersQ = 0 andS = 1=2. :f �E (N )

n j n = 1; 2; :::7g

Now, convergence offj  (N )
n ig directly gives convergence of renormalized eigen-

values �E (N )
n :

lim
N !1

�E (N )
n = const: � �E �

n ; (3.64)

where
�HN j (N )

n i = �E (N )
n j (N )

n i : (3.65)

Since it is more convenient to �nd �xed points with the renormalized Hamil-
tonian, �HN , we introduce the scale factor� into the numerical procedure and
obtain the eigenstates of �HN rather than that of HN . In a formal expression,
NRG transformation is written with �HN :

�HN +1 = R� ( �HN ) (3.66)

=
1
�

"

�HN + �tN

X

�

(f y
N� f N +1 � + f y

N +1 � f N� ) + �"N +1

X

�

f y
N +1 � f N +1 �

#

with �HN = HN =� N , �tN = tN =� N , �"N +1 = "N +1 =� N . Eq. (3.66) is obtained with
dividing both sides of Eq. (3.53) by� N +1 .

The NRG �ow-diagram shows many-particles spectrumsf �E (N )
n g (vertical axis)

as a function of the iteration numberN (horizontal axis). In Fig. 3.1, we observe
two �at regions, (N > 300 and 50 < N < 200), where f �E (N )

n g are almost inde-
pendent onN . For N > 300, f �E (N )

n g satis�es the condition in Eq. (3.64), �owing
(converging) to a �xed point, in particular, a stable �xed point. The other region
(50 < N < 200), showing another constant structure of many-particles levels,
also represents a �xed point but appears (survives) in the �nite range of energy-
scale. This is called an unstable �xed point as distinguished from the former
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case. Summarizing,

R( �HN ) = �HN + O(1=N) � K � for N > 300 (3.67)

R( �HN ) = �HN + O(1=N) � J � for 50 < N < 200 (3.68)

whereK � and J � are stable and unstable �xed points, respectively.
In most of RG approaches, �xed points themselves are important objects for

investigations. Furthermore, when a model Hamiltonian shows more than one
�xed point in the energy or parameter space, correlations among the �xed points
are the most crucial points to understand the static/dynamical mechanisms of
the model.
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4. SOFT-GAP ANDERSON MODEL

4.1 Introduction

The Hamiltonian of the soft-gap Anderson model is given by

H = " f

X

�

f y
� f � + Uf y

" f " f y
# f # +

X

k�

" kcy
k� ck� + V

X

k�

(f y
� ck� + cy

k� f � ): (4.1)

This model describes the coupling of electronic degrees of freedom at an impurity
site (operators f (y)

y to a fermionic bath (operatorsc(y)
k� ) via a hybridization V.

The f -electrons are subject to a local Coulomb repulsionU, while the fermionic
bath consists of a non-interacting conduction band with dispersion" k . The model
Eq. (4.1) has the same form as the single impurity Anderson model (Hewson 1993)
but for the soft-gap model we require that the hybridizationfunction

~�( ! ) = �V 2
X

k

� (! � " k) (4.2)

has a soft-gap at the Fermi level,

~�( ! ) = � j! jr ; (4.3)

with an exponent r > 0. This translates into a local conduction band density of
states � (! ) = � 0j! jr at low energies. The power-law density of states was �rst
introduced for the Kondo model (Witho� and Fradkin 1990). In contrast to the
usual Kondo model, where conduction-electrons with a non-zero density of states
at the Fermi energy form a Kondo-screening state forT ! 0, a gap vanishing
at the Fermi energy brings about a non-trivial zero temperature critical point at
a �nite coupling constant Jc and the Kondo e�ect occurs only forJ > J c. The
existence of the critical point was derived using a generalization of the �poor-
man's-scaling� method for the density of states given in Eq.(4.3).

JR = ( D 0=D)r J 0 � J + J (JCD r � r )�E=D (4.4)

In addition to the �xed points at J = 0 and 1 , there is a new infrared unstable
�xed point at

Jc = r=CD r (4.5)
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Figure 4.1: T = 0 phase diagram for the soft-gap Anderson model in the particle-
hole symmetric case (solid line,U = 10� 3, " f = � 0:5 � 10� 3, conduction band
cuto� at -1 and 1) and the p-h asymmetric case (dashed line," f = � 0:4� 10� 3); �
measures the hybridization strength~�( ! ) = � j! jr

with neglecting terms beyondJ 2. This result was con�rmed by a large degeneracy
technique (Witho� and Fradkin 1990). For J > J c, the Kondo temperatureT0

was found to vanish atJc like

T0 � j J � Jcj1=r (4.6)

Extensive NRG studies on the single-impurity Anderson model with power-law
density of states were devoted to describe the physical properties of the three
quantum phases, local-moment, strong coupling and quantumcritical phases. We
now brie�y describe the results (Chen, Jayaprakash and Krishna-Murthy 1992,
Gonzalez-Buxton and Ingersent 1998, Bulla, Pruschke and Hewson 1997, Bulla,
Glossop, Logan and Pruschke 2000).

Figure 4.1 shows a typical phase diagram for the soft-gap Anderson model. In
the particle-hole symmetric case (solid line) the criticalcoupling � c diverges at
r = 1

2, and no screening occurs forr > 1=2. No divergence occurs for particle-hole
asymmetry (dashed line).

Due to the power-law conduction band density of states, already the stable LM
and SC �xed points show non-trivial behavior. The LM phase has the properties
of a free spin1

2 with residual entropySimp = kB ln 2 and low-temperature impurity
susceptibility � imp = 1=(4kB T), but the leading corrections showr -dependent
power laws. The p-h symmetric SC �xed point has very unusual properties,
namely Simp = 2rk B ln 2, � imp = r=(8kB T) for 0 < r < 1

2. In contrast, the
p-h asymmetric SC �xed point simply displays a completely screened moment,
Simp = T � imp = 0: The impurity spectral function follows an ! r power law at
both the LM and the asymmetric SC �xed point, whereas it diverges as! � r at the
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symmetric SC �xed point [This �peak� can be viewed as a generalization of the
Kondo resonance in the standard case(r = 0), and scaling of this peak is observed
upon approaching the SC-LM phase boundary (Logan and Glossop 2000, Bulla,
Pruschke and Hewson 1997, Bulla et al. 2000).]

At the critical point, non-trivial behavior corresponding to a fractional mo-
ment can be observed:Simp = kB Cs(r ), � imp = C� (r )=(kB T) with Cs; C� being
universal functions ofr . The spectral functions at the quantum critical points
display an ! � r power law (for r < 1) with a remarkable �pinning� of the critical
exponent.

Apart from the static and dynamic observables described above, the NRG
provides information about the many-body excitation spectrum at each �xed
point. The non-trivial character of the quantum critical points are prominent in
this case, too. For the strong-coupling and local-moment �xed points, a detailed
understanding of the NRG levels is possible since the �xed point can be described
by non-interacting electrons. Intermediate-coupling �xed point at the quantum
critical points have a completely di�erent NRG level structure, i.e., smaller de-
generacies and non-equidistant levels. They cannot be castinto a free-particle
description.

In this chapter, we demonstrate that a complete understanding of the NRG
many-body spectrum of critical �xed points is actually possible, by utilizing renor-
malized perturbation theory around a non-interacting �xedpoint. In the soft-gap
Anderson model, this approach can be employed near certain values of the bath
exponent which can be identi�ed as critical dimensions. Using the knowledge
from perturbative RG calculations, which yield the relevant coupling constants
being parametrically small near the critical dimension, wecan construct the entire
quantum critical many-body spectrum from a free-Fermion model supplemented
by a small perturbation. In other words, we shall perform epsilon-expansions
to determine a complete many-body spectrum (instead of certain renormalized
couplings or observables). Conversely, our method allows us to identify relevant
degrees of freedom and their marginal couplings by carefully analyzing the NRG
spectra near critical dimensions of impurity quantum phasetransitions.

This chapter is organized as follows. In Section 4.2 we summarize the recent
results from perturbative RG for both the soft-gap Andersonand Kondo models.
In Section 4.3, we discuss (i) the numerical data for the structure of the quantum
critical points and (ii) the analytical description of these interacting �xed points
close to the upper (lower) critical dimensionr = 0 ( r = 1=2).

4.2 Results from perturbative RG

The Anderson model (4.1) is equivalent to a Kondo model when charge �uctua-
tions on the impurity site are negligible. The Hamiltonian for the soft-gap Kondo
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model can be written as

H = J ~S � ~s0 +
X

k�

" kcy
k� ck� (4.7)

where~s(0) =
P

kk 0�� 0 cy
k� ~� �� 0ck0� 0=2 is the conduction electron spin at the impurity

site r = 0, and the conduction electron density of states follows a power law
� (! ) = � 0j! jr as above.

4.2.1 RG near r=0

For small values of the density of states exponentr , the phase transition in the
pseudo-gap Kondo model can be accessed from the weak-coupling limit, using
a generalization of Anderson's poor man's scaling. Power counting about the
local-moment �xed point (LM) shows that dim[J ]= � r , i.e., the Kondo coupling
is marginal for r = 0. We introduce a renormalized dimensionless Kondo coupling
j according to

� 0J = � � r j (4.8)

where � plays the role of a UV cuto�. The �ow of the renormalized Kondo
coupling j is given by the beta function

� (j ) = rj � j 2 + O(j 3): (4.9)

For r > 0 there is a stable �xed point at j � = 0 corresponding to the local-
moment phase(LM). An unstable �xed point controlling the transition to the
strong-coupling phase, exists at

j � = r; (4.10)

and the critical properties can be determined in a double expansion in r and
j (Vojta and Kir �can 2003). The p-h asymmetry is irrelevant, i.e., a potential
scattering term E scales to zero according to� (e) = re (where � 0E = � � r e),
thus the above expansion captures the p-h symmetric critical �xed point (SCR).
As the dynamical exponent� , 1=� = r + O(r 2), diverges asr ! 0+ , r = 0 plays
the role of a lower-critical dimension of the transition under consideration.

4.2.2 RG near r=1/2

For r near 1=2 the p-h symmetric critical �xed point moves to strong Kondo
coupling, and the language of the p-h symmetric Anderson model becomes more
appropriate (Vojta and Fritz 2004). First, the conduction electrons can be inte-
grated out exactly, yielding a self-energy

P
f = V 2Gc0 for the f electrons, where

Gc0 is the bare conduction electron Green's function at the impurity location. In
the low-energy limit the f electron propagator is then given by

Gf (i! n )� 1 = i! n � iA 0sgn(! n)j! n jr (4.11)
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where thej! n jr self-energy term dominates forr < 1, and the prefactorA0 is

A0 =
�� 0V 2

cos�r
2

: (4.12)

Eq. (4.11) describes the physics of a non-interacting resonant level model with a
soft-gap density of states. Interestingly, the impurity spin is not fully screened
for r > 0, and the residual entropy is 2r ln 2. This precisely corresponds
to the symmetric strong-coupling (SC) phase of the soft-gapAnderson and
Kondo models (Gonzalez-Buxton and Ingersent 1998). Dimensional analysis,
using dim[f ] = (1 � r )=2 [where f represents the dressed Fermion according to
Eq. (4.11)], now shows that the interaction termU of the Anderson model scales
as dim[U] = 2r � 1, i.e., it is marginal at r = 1=2. This suggests a perturba-
tive expansion in U around the SC �xed point. We introduce a dimensionless
renormalized on-site interactionu via

U = � 2r � 1A2
0u: (4.13)

The beta function receives the lowest non-trivial contribution at two-loop order
and reads (Vojta and Fritz 2004)

� (u) = (1 � 2r )u �
3(� � 2 ln 4)

� 2
u3 + O(u5): (4.14)

For r < 1=2 a non-interacting stable �xed point is atu� = 0 - this is the symmetric
strong coupling �xed point; it becomes unstable forr > 1=2. Additionally, for
r < 1=2 there is a pair of critical �xed points (SCR, SCR0) located at u� 2 =
� 2(1 � 2r )=[3(� � 2 ln 4)], i.e.,

u� = � 4:22
p

(1=2 � r ): (4.15)

These �xed points describe the transition between an unscreened (spin or charge)
moment phase and the symmetric strong-coupling phase (Vojta and Fritz 2004).

Summarizing, both (4.9) and (4.14) capture the same critical SCR �xed point.
This �xed point can be accessed either by an expansion aroundthe weak-coupling
LM �xed point, i.e., around the decoupled impurity limit, va lid for r � 1, or
by an expansion around the strong-coupling SC �xed point, i.e., around a non-
interacting resonant-level (or Anderson) impurity, and this expansion is valid for
1=2 � r � 1.

4.3 Structure of the quantum critical points

In Fig. 4.2, the many-particle spectra of the three �xed points (SC: dot-dashed
lines, LM: dashed lines, and QCP: solid lines) of the symmetric soft-gap model
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Figure 4.2: Dependence of the many-particle spectra for the three �xed points of
the p-h symmetric soft-gap Anderson model on the exponentr : SC (black dot-dashed
lines), LM(blue dashed lines), and the (symmetric) quantumcritical point (red solid
lines). The data are shown for the subspaceQ = 1 andS = 0 only.

are plotted as function of the exponentr .1 The data are shown for an odd number
of sites only and we select the lowest-lying energy levels for the subspaceQ = 1
and S = 0.

As usual, the �xed-point structure of the strong coupling and local moment
phases can be easily constructed from the single-particle states of a free conduc-
tion electron chain. This is discussed in more detail later.Let us now turn to the
line of quantum critical points. What information can be extracted from Fig. 4.2
to understand the structure of these �xed points?

First we observe that the levels of the quantum critical points, EN;QCN (r ),
approach the levels of the LM (SC) �xed points in the limit r ! 0 (r ! 1=2):

lim
r ! 0

f EN;QCP (r )g = f EN;LM (r = 0) g (4.16)

lim
r ! 1=2

f EN;QCP (r )g = f EN;SC (r = 1=2)g (4.17)

wheref :::g denotes the whole set of many-particle states.
For r ! 0, each individual many-particle levelEN;QCP (r ) deviates linearly

from the levels of the LM �xed point, while the deviation from the SC levels is
proportional to p 1=2� r for r ! 1=2. This is illustrated in Fig. 4.3 where we plot
a selection of energy di�erences� E between levels of QCP and SC �xed points
close tor = 1=2. The inset shows the values of the exponents obtained from a
�t to the data points. For some levels, there are signi�cant deviations from the

1 For a similar �gure, see Fig. 13 in (Gonzalez-Buxton and Ingersent 1998)
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Figure 4.3: Di�erence � E between the energy levels of QCP and SC �xed points
close tor = 1=2 in a double-logarithmic plot. The inset shows the values of the
exponents obtained from a �t to the data points.

exponent1=2. This is because the correct exponent is only obtained in thelimit
r ! 1=2. (The QCP levels have been obtained only up tor = 0:4985.)

Note that the behavior of the many-particle levels close tor = 1=2 has direct
consequences for physical properties at the QCP; the critical exponent of the
local susceptibility at the QCP, for example, shows a square-root dependence on
1=2 � r close tor = 1=2; see (Gonzalez-Buxton and Ingersent 1998).

In both limits, r ! 0 and r ! 1=2, we observe that degeneracies due to the
combination of single-particle levels, present at the LM and SC �xed points, are
lifted at the quantum critical �xed points as soon as one is moving away from
r = 0 and r = 1=2, respectively. This already suggests that the quantum critical
point is interacting and cannot be constructed from non-interacting single-particle
states.

In the following sections we want to show how to connect this information
from NRG to the perturbative RG. We know that the critical �xe d point can be
accessed via two di�erent epsilon-expansions (Vojta and Kir�can 2003, Vojta and
Fritz 2004) near the two critical dimensions, and, combinedwith renormalized
perturbation theory, these expansions can be used to evaluate various observables
near criticality. Here, we will employ this concept to perform renormalized per-
turbation theory for the entire many-body spectrum at the critical �xed point.
To do so, we will start from the many-body spectrum of the one of the trivial
�xed points, i.e., LM near r = 0 and SC nearr = 1=2, and evaluate corrections
to it in lowest-order perturbation theory. This will be done within the NRG
concept working directly with the discrete many-body spectra corresponding to
a �nite NRG-chain (which is diagonalized numerically). As the relevant energy
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Figure 4.4: The spectrum of the LM �xed point is described by the impurityde-
coupled from the free conduction electron chain.

scale of the spectra decreases as� � n=2 along the NRG iteration, the strength of
the perturbation has to be scaled as well, as the goal is to capture a �xed point
of the NRG method. This scaling of the perturbation follows precisely from its
scaling dimension-the perturbation marginal at the value of r corresponding to
the critical dimension. With the proper scaling, the operator which we use to
capture the di�erence between the free-Fermion and critical �xed points becomes
exactly marginal.

4.3.1 Perturbation theory close to r = 0

Let us now describe in detail the analysis of the deviation ofthe QCP levels from
the LM levels close tor = 0. An e�ective description of the LM �xed point is
given by a �nite chain with the impurity decoupled from the conduction electron
part; (see Fig. A.1). The conduction electron part of the e�ective Hamiltonian is
given by

Hc;N =
N � 1X

�n =0

tn (cy
n� cn+1 � + cy

n+1 � cn� ): (4.18)

As usual, the structure of the �xed-point spectra depends onwhether the total
number of sites is even or odd. To simplify the discussion in the following, we
only consider a total odd number of sites. For the LM �xed point, this means
that the number of sites,N + 1, of the free conduction electron chain is even, so
N in Eq. (4.18) is odd.

The single-particle spectrum of the free chain with an even number of sites,
corresponding to the diagonalized Hamiltonian

�Hc;N =
X

�p

� p� y
p� � p� ; (4.19)

is sketched in Fig. 4.4. As we assume p-h symmetry, the positions of the single-
particle levels are symmetric with respect to 0 with

� p = � � � p; p = 1; 3; � � � ; N; (4.20)
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Figure 4.5: Single-particle spectrum of the free conduction electron chain
Eq. (A.12). The ground state is given by all the levels withp < 0 �lled.

and
X

p

�
p= NX

p= � N;p odd

: (4.21)

Note that an equally spaced spectrum of single-particle levels is only recovered
in the limit � ! 1; see Fig. 6 in (Bulla, Hewson and Zhang 1997) for the case
r = 0.

The RG analysis of Section 4.2 tells us that the critical �xedpoint is perturba-
tively accessible from the LM one using a Kondo-type coupling as perturbation.
We thus focus on the operator

H 0
N = � (r )f (N )~Simp � ~s0; (4.22)

with the goal to calculate the many-body spectrum of the critical �xed point via
perturbation theory in H 0

N for small r . The function � (r ) contains the �xed-
point value of the Kondo-type coupling, andf (N ) will be chosen such thatH 0

N

is exactly marginal, i.e., the e�ect ofH 0
N governs the scaling of the many-particle

spectrum itself. The scaling analysis of Section 4.2, Eq. (4.8), Eq. (4.10), suggests
a parametrization of the coupling as

� (r ) =
� � r

� 0
�r; (4.23)

where� 0, is the prefactor in the density of states, and� is a scale of order of the
bandwidth-such a factor is required here to make� a dimensionless parameter.
Thus, the strength of perturbation increases linearly withr at small r (where
� � r =� 0 = D + O(r ) for a featurelessj! jr density of states).

The qualitative in�uence of the operator ~Simp � ~s0 on the many-particle states
has been discussed in general in (Gonzalez-Buxton and Ingersent 1998) for �nite
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r and in (Wilson 1975) for r = 0. Whereas an anti-ferromagnetic exchange
coupling is marginally relevant in the gap-less case (r = 0), it turns out to be
irrelevant for �nite r ; see (Gonzalez-Buxton and Ingersent 1998). This is of course
consistent with the scaling analysis of Section 4.2: the operator (4.22) shows that
it decreases as� � Nr= 2� � N=2 = � � N (r +1) =2 with increasing N . Consequently, we
have to choose

f (N ) = � Nr= 2: (4.24)

This result also directly follows from dim[J]= � r : as the NRG discretization
yields a decrease of the running energy scale of� � N=2, the ~Simp � ~s0 term in
Eq. (4.22) scales as� � Nr= 2.

The function f (N ) is now simply chosen to compensate this e�ect using
Eq. (4.24) scales as� � Nr= 2. The function f (N ) is now simply chosen to compen-
sate this e�ect; using Eq. (4.24) the operatorH 0

N becomes exactly marginal.
Now we turn to a discussion of the many-body spectrum. The relevant ground

state of the e�ective model for the LM �xed point consists of the �lled impurity
level (with one electron with either spin" or #) and all the conduction electron
states with p < 0 �lled with both " and #, as shown in Fig. A.1. Let us now focus
on excitations with energy� 1+ � 2 measured with respect to the ground state. (For
more subspaces with di�erent excitation-energy, refer Appendix A.1.) Fig. 4.6
shows one such excitation; in this case, one electron with spin # is removed from
the p = � 3 level and one electron with spin# is added to thep = 1 level. The
impurity level is assumed to be �lled with an electron with spin " , so the resulting
state hasQ = 0 and Sz = +1 =2. In total, there are 32 states with excitation
energy� 1 + � 3. These states can be classi�ed using the quantum numbersQ, S,
and Sz.

Here we consider only the states with quantum numbersQ = 0, S = 1=2, and
Sz = 1=2 (with excitation energy � 1+ � 3) which form a four-dimensional subspace.
As the state shown in �gure 4.6 is not an eigenstate of the total spin S, we have
to form proper linear combinations to obtain a basis for thissubspace; this basis
can be written in the form

j 3i =
1

p
2

f y
" (� y

1" � � 3" + � y
1#� � 3#)j 0i

j 4i =
1

p
6

f y
" (� y

1" � � 3" � � y
1#� � 3#)j 0i +

2
p

6
f y

# � y
1" � � 3#j 0i (4.25)

j 5i =
1

p
2

f y
" (� y

3" � � 1" + � y
3#� � 1#)j 0i

j 6i =
1

p
6

f y
" (� y

3" � � 1" � � y
3#� � 1#)j 0i +

2
p

6
f y

# � y
3" � � 1#j 0i

where the statej 0i is given by the product of the ground state of the conduction
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electron chain and the empty impurity level:

j 0i = j0i imp 

� Y

p< 0

� y
p" �

y
p#j0i cond

�
: (4.26)

...
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Figure 4.6: One possible excitation with energy� 1+ � 3 and quantum numbersQ = 0
andSz = +1 =2.

The fourfold degeneracy of the subspace (Q = 0; S = 1=2; Sz = 1=2) of the
LM �xed point at energy � 1 + � 2 is partially split for �nite r in the spectrum
of the quantum critical �xed point. Let us now calculate the in�uence of the
perturbation H 0

N on the statesj 1i ; � � � ; j 4i , concentrating on the splitting of
the energy levels up to �rst order. Degenerate perturbationtheory requires the
calculation of the matrix

Wij = h i jH 0
N j j i ; i; j = 1; :::; 4; (4.27)

and a subsequent calculation of the eigenvalues off Wij g gives the level splitting.
Details of the calculation of the matrix elementsWij are given in Ap-

pendix A.2. The result is

f Wij g = � (r )f (N )

2

6
6
6
4

0
p

3
4 
 0 0

p
3

4 
 � 1
2 � 0 0

0 0 0
p

3
4 


0 0
p

3
4 
 � 1

2 �

3

7
7
7
5

; (4.28)

with 
 = [ j� 01j2 � j � 0� 3j2] and � = [ j� 01j2 + j� 0� 3j2]. The N -dependence of the
coe�cients � 0p [which relate the operatorsc0� and � p� , see Eq. (A.50)] is given
by

j� 0pj2 / � � Nr= 2� � N=2; (4.29)



42 4. Soft-Gap Anderson Model

; see also Sec. III A in Ref. (Gonzalez-Buxton and Ingersent 1998). Numerically
we �nd that


 = � 0:1478� � � Nr= 2� � N=2

� = 2:0249� � � Nr= 2� � N=2 ;

where the prefactors depend on the exponentr and the discretization parameter
� (the quoted values are forr = 0:01 and � = 2 :0). The matrix f Wij gr =0 :01 then
takes the form

f Wij gr =0 :01 = � (r = 0:01) � � N=2

�

2

6
6
4

0 � 0:064 0 0
� 0:064 � 1:013 0 0

0 0 0 � 0:064
0 0 � 0:064 � 1:013

3

7
7
5 : (4.30)

Diagonalization of this matrix gives the �rst-order corrections to the energy levels

� E1(r = 0:01) = � E3(r = 0:01)

= � (r = 0:01) � � N=2 � (� 1:0615)

� E2(r = 0:01) = � E4(r = 0:01)

= � (r = 0:01) � � N=2 � 0:0004 (4.31)

with

EN; QCP (r = 0:01; i ) = EN; LM (r = 0:01; i ) + � E i (r = 0:01) ; (4.32)

(i = 1; : : : 4). Apparently, the fourfold degeneracy of the subspace (Q = 0,
S = 1=2, Sz = 1=2) with energy � 1 + � 3 is split in two levels which are both
twofold degenerate.

We repeated this analysis for a couple of other subspaces anda list of the
resulting matricesf Wij g and the energy shifts� E is given in Appendix A.2.

Let us now proceed with the comparison of the perturbative results with the
structure of the quantum critical �xed point calculated from the NRG. For our
speci�c choice of the conduction band density of states, therelation (4.23) yields
� (r ) = � r D for small r (where � r � 1). Using the corresponding equations
for the energy shifts, in Appendix A.2, we observe that asingle parameter �
must be su�cient to describe the level shifts inall subspaces, provided that the
exponent r is small enough so that the perturbative calculations are still valid.
A numerical �t gives � � 1:03 for � = 2 :0, (the � -dependence of� is discussed
later, see Fig. 4.8).

Figure 4.7 summarizes the NRG results together with the perturbative anal-
ysis for exponentsr close to 0. A �ow diagram of the lowest lying energy levels is
shown in Fig. 4.7-(a) for a small value of the exponent,r = 0:03, so that the levels
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Figure 4.7: a) Flow diagram of the lowest lying energy levels forr = 0:03; dashed
lines: �ow to the LM �xed point; solid lines: �ow to the quantum critical �xed point.
b) The deviation of the QCP levels from the LM levels increases linearly withr . This
deviation together with the splitting of the energy levels can be explained by the
perturbative calculation (crosses) as described in the text.

of the QCP only slightly deviate from those of the LM �xed point. As discussed
above, the deviation of the QCP levels from the LM levels increases linearly with
r , see Fig. 4.7-(b). We indeed get a very good agreement between the perturba-
tive result (crosses) and the NRG-data (lines) for exponents up to r � 0:07. The
data shown here are for the subspaces (Q = 0, S = 1=2, Sz = 1=2) and energy2� 1

(the levels atEN � N=2 � 1, see Appendix A.2.1) and (Q = 0, S = 1=2, Sz = 1=2)
and energy� 1 + � 3 (the levels at EN � N=2 � 2, see the example discussed in this
section).

In the NRG, the continuum limit corresponds to the limit � ! 1, but due
to the drastically increasing numerical e�ort upon reducing � , results for the
continuum limit have to be obtained via extrapolation of NRGdata for � in,
for example, the range1:5 < � < 3:0. Figure 4.8 shows the numerical results
from the NRG calculation together with a linear �t to the data: � (�) = 0 :985 +
0:045(� � 1:0). Taking into account the increasing error bars for smaller values
of � , the extrapolated value� (� ! 1) = 0:985is in excellent agreement with the
result from the perturbative RG calculation, which is directly for the continuum
limit and gives � = 1:0.

4.3.2 Perturbation theory close to r = 1=2

To describe the deviation of the QCP levels from the SC levelsclose tor = 1=2,
we have to start from an e�ective description of the SC �xed point. This is
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Figure 4.8: Dependence of the coupling parameter� on the NRG-discretization
parameter� . The circles correspond to the NRG data and the solid line is alinear
�t to the data: � (�) = 0 :985 + 0:045(� � 1:0).
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Figure 4.9: The spectrum of the SC �xed point is described by the non-interacting
impurity coupled to the free conduction electron chain.

given by a �nite chain including the impurity site with the Coulomb repulsion
U = 0 at the impurity site and a hybridization �V between impurity and the �rst
conduction electron site, see Fig. 4.9.

Note that the SC �xed point can also be described by the limit�V ! 1 and
�nite U which means that impurity and �rst conduction electron siteare removed
from the chain. This reduces the number of sites of the chain by two and leads to
exactly the same level structure as including the impurity with U = 0. However,
the description with the impurity included (and U = 0) is more suitable for the
following analysis.

The corresponding e�ective Hamiltonian is that of a soft-gap Anderson model
on a �nite chain with N + 2 sites and" f = U = 0 (i.e., a p-h symmetric resonant
level model).

Hsc;N = �V
X

�

h
f y

� c0� + cy
0� f �

i
+ Hc;N ; (4.33)

with Hc;N as in Eq. (4.18).
As for the e�ective description of the LM �xed point, the e�ective Hamiltonian

is that of a free chain. Focussing, as above, on odd values ofN , the total number
of sites of this chain,N +2, is odd. The single-particle spectrum of the free chain
with an odd number of sites, corresponding to the diagonalized Hamiltonian

�Hsc;N =
X

�l

� l � y
l� � l� ; (4.34)

is sketched in Fig. 4.10.



4.3. Structure of the quantum critical points 45

...
...

l=-4

l=-2

l=2

l=4e

e

e

e-4

-2

2

4

=0 l=00e

Figure 4.10: Single-particle spectrum of the free conduction electron chain
Eq. (4.34). The ground state is fourfold degenerate with allthe levels withl < 0
�lled and the levell = 0 either empty, singly (" or #) or doubly occupied.

As we assume p-h symmetry, the positions of the single-particle levels are
symmetric with respect to0 with

� 0 = 0 ; � l = � � � l ; l = 2; 4; : : : ; (N + 1) ; (4.35)

and
X

l

�
l= N +1X

l= � (N +1) ; l even

: (4.36)

The ground state of the e�ective model for the SC �xed point isfourfold degen-
erate, with all levels with l < 0 �lled and the level l = 0 either empty, singly ("
or #) or doubly occupied.

According to Section 4.2 the proper perturbation to access the critical �xed
point from the SC one is an on-site repulsion, thus we choose

H 0
N = � (r ) �f (N )(nf " �

1
2

)(nf # �
1
2

); (4.37)

(nf � = f y
� f � ) with the strength of the perturbation parameterized as

� (r ) = � 2r � 1� 2
0
�V 4�

p
1=2 � r ; (4.38)

see Section 4.2. Note that� 2
0(r = 1=2) = 9=(2D 3) for a featureless power-

law density of states with bandwidth D. The N dependence of the operator
(nf " � 1

2)(nf # � 1
2) is given by � (r � 1=2)N � � N=2 = � (r � 1)N , so we have to choose

�f (N ) = � (1=2� r )N : (4.39)

This again follows from the scaling analysis of Section 4.2:the on-site repulsion
has scaling dimensiondim[U] = 2r � 1. Thus the (

P
� f y

� f � � 1)2 term in H 0
N in
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Eq. (4.37) scales as� N (r � 1=2) , and �f (N ) in Eq. (4.39) compensates this behavior
to make H 0

N exactly marginal.
The matrix Wij = h i jH 0

N j j i (i; j = 1; 2) is given by

f Wij g = � (r ) �f (N )j� f 2j4
�

2 � 2� + � 2 2
p

2�
2
p

2� 2 + � 2

�
; (4.40)

with � = j� f 0j2=j� f 2j2. The N-dependence of the coe�cientsj� f l j [which relate
the operatorsf � and � l� , see Eq. (A.73).] is given by

j� f l j2 / � (r � 1)N=2 ; (4.41)

Numerically we �nd that

j� f 2j2 = 0:1462� (D= �V)2� (r � 1)N=2

j� f 0j2 = 0:3720� (D= �V)2� (r � 1)N=2 ;

where the prefactors depend on the exponentr and the quoted value is forr =
0:499. The matrix f Wij gr =0 :499 then takes the form

f Wij gr =0 :499 = � (r = 0:499)(D= �V)4� � N=2

�
0:07 0:15
0:15 0:18

�
; (4.42)

Diagonalization of this matrix gives the �rst-order corrections to the energy levels

� E1(r = 0:499) = � (r = 0:499)(D= �V)4 � � N=2 � (� 0:036)

� E2(r = 0:499) = � (r = 0:499)(D= �V)4 � � N=2 � (0:290)

(4.43)

with

EN; QCP (r = 0:499; i ) = EN; SC(r = 0:499; i ) + � E i (r = 0:499) ; (4.44)

(i = 1; 2). We repeated this analysis for a couple of other subspaces and a list of
the resulting matricesf Wij g and the energy shifts� E is given in Appendix A.3.

The comparison of the perturbative results with the numerical results from
the NRG calculation is shown in Fig. 4.11-(b). As for the caser � 0 we observe
that a single parameter� is su�cient to describe the level shifts in all subspaces,
provided the exponentr is close enough tor = 1=2 so that the perturbative
calculations are valid. For� = 2 :0 we �nd � � 9:8 and the � ! 1 extrapolation
results in � (� ! 1) � 9:8 � 0:5 (the error bars are signi�cantly larger as for the
extrapolation of the coupling� ). The results from perturbative RG, Section 4.2,
speci�cally Eq. (4.13) and Eq. (4.14), yield� (r ) = � 2r � 1� 2

0
�V 4 2� 2u� . This gives

� = 83:3.
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Figure 4.11: a) Flow diagram of the lowest lying energy levels forr = 0:4985;
dashed lines: �ow to the SC �xed point; solid lines: �ow to thequantum critical
�xed point. b) The deviation of the QCP levels from the SC levels is proportional
to

p
1=2 � r . This deviation together with the splitting of the energy levels can be

explained by the perturbative calculation (crosses) as described in the text.

Similar to Fig. 4.7 above, we show in Fig. 4.11-(a) a �ow diagram for an
exponent very close to1=2, r = 0:4985, so that the levels of the QCP only
slightly deviate from those of the SC levels. As discussed above, this deviation
is proportional to

p
1=2 � r , see Fig. 4.11-(b). The data shown here are all for

subspaces with (Q = � 1, S = 0, Sz = 0); the unperturbed energiesE of these
subspaces are:

� E = 0: the levels atEN � N=2 � 0, see Appendix A.3.2,

� E = � 2: the levels atEN � N=2 � 0:8, see Appendix A.3.3,

� E = 2� 2: the levels at EN � N=2 � 1:6, see the example discussed in this
section,

� E = � 4: the levels atEN � N=2 � 1:8, see Appendix A.3.4,

� E = 3� 2: the levels atEN � N=2 � 2:4.

We again �nd a very good agreement between the perturbative results (crosses)
and the NRG data (lines).
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Figure 5.1: A double-well system in the �two-state� limit.

5. SPIN-BOSON MODEL

5.1 Introduction

The spin-boson model (Leggett et al. 1987) is a generic modeldescribing quantum
dissipation. The Hamiltonian is given by

H = �
�
2

� x +
"
2

� z +
X

i

! i a
y
i ai +

� z

2

X

i

� i (ai + ay
i ): (5.1)

Here the Pauli matrices� j describe a spin, i.e., a generic two-level systems, which
possesses a degree of freedom that can take only two values. As simple examples,
the spin projection in the case of a nucleus of spin1=2, the strangeness in the
case of a neutralK meson, or the polarization in the case of photon correspond
the intrinsic case.

A more common situation for the two-level system is that the system in ques-
tion has continuous degree of freedomq, for example, a geometrical coordinate,
with which a potential energy function V(q) is associated with two separate
minima, as illustrated in Fig. 5.1. Suppose that the barrierheight V0 is large
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compared to the quantities~! + and ~! � , where ~! + and ~! � are the separa-
tion of the �rst excited state (of each �isolated� well) from the ground state. If,
moreover, the bias (�detuning�) " between the ground states in the two wells
is small compared to! � , then the system could be e�ectively restricted to the
two-dimensional Hilbert space spanned by these two ground states.

Now we take into account the possibility of tunneling between two wells, with
the tunneling matrix elements~� for this process in the limit,

~� � ~! � � V0; (5.2)

so that the tunneling does not mix the states of this �ground�two dimensional
Hilbert space with the excited states of the system.

Then, the motion of the isolated two-state system in the two dimensional
Hilbert space can be described by

H imp = �
�
2

� x +
"
2

� z; (5.3)

where the � i (i = 1; 2; 3) are Pauli matrices, and the basis is chosen so that
the eigenstate of� z with eigenvalue+1 ( � 1) corresponds to the systems being
localized in the right(left) well.

The next term in Eq. (5.1) corresponds to the environment which consists of
in�nitely many harmonic oscillators,

Hbath =
X

i

! i a
y
i ai ; (5.4)

each of which couples to the two-state system through a term of the form

Hcoupling =
� z

2

X

i

� i (ai + ay
i ):

1 (5.5)

As an example, we consider a two-level system interacting with laser in the vac-
uum �eld. 2 A coupling of the form in Eq. (5.5) means that the light is sensitive
to the value of � z, in other words, that the light can observe the value of� z (i.e.,
whether the system is in the right or left well)

The laser itself cannot be considered as a bath as long as it makes a perfect
coherent photon with a single frequency! . However the spontaneous emission

1 In Eq. (5.3), Eq. (5.4) and Eq. (5.5), ~ is set to 1.
2 The spin-boson model has found applications in a wide variety of physical situa-

tions: (Leggett et al. 1987, Weiss 1999) mechanical friction, damping in electric circuits, decoher-
ence of quantum oscillations in qubits (Costi and McKenzie 2003, Khveshchenko 2004, Thorwart
and Hänggi 2002), impurity moments coupled to bulk magnetic�uctuations (Sachdev 1999, Cas-
tro Neto, Novais, Borda, Zaránd and A�eck 2003), atomic quantum dots coupled to a reservoir
of a super�uid Bose-Einstein condensate (Recati, Fedichev, Zwerger, von Delft and Zoller 2005),
and electron transfer in biological molecules (Garg, Onuchic and Ambegaokar 1985, Mühlbacher
and Egger 2003).
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into the vacuum �eld creates photons with random direction,polarization and the
energy so that the laser in the vacuum �eld should be considered as an incoherent
and dissipative bosonic bath of Eq. (5.4) rather than a coherent light source of a
simple harmonic oscillator! a ya.3

In that case, the complete information about the e�ect of thebath can be
encapsulated in a single spectral functionJ (! ), de�ned by the expression

J (! ) = �
X

i

� 2
i � (! � ! i ): (5.6)

It is highly non-trivial to predict the time-evolution of th e phase of the two-level
system,

P(t) = h� z(t)i ; (5.7)

in the presence of incoherent and dissipating mediaHbath .
The focus of the investigation on the spin-boson model, therefore, has been to

calculateP(t) for various types of baths, in particular, of whichJ (! ) is assumed
to have a simple power-law behavior. With the standard parametrization,

J (! ) = 2 ��! 1� s
c ! s; ; 0 < ! < ! c; s < � 1 (5.8)

where the dimensionless parameter� characterizes the dissipation strength, and
! c is a cuto� energy.

The cases = 1 is known as ohmic dissipation, where the spin-boson model has
a delocalized and a localized zero-temperature phase, separated by a Kosterlitz-
Thouless transition (for the unbiased case of" = 0). In the delocalized phase,
realized at a small dissipation strength� (� < 1), the ground state is non-
degenerate and represents a (damped) tunneling particle. For large� (� > 1), the
dissipation leads to a localization of the particle in one ofthe two � z-eigenstates,
thus the ground state is doubly degenerate.P(t) shows rather subtle changes
according to the dissipation strength� and temperature.4

For the sub-ohmic case(0 < s < 1), it was found that the system is localized
at zero temperature in the well it started in. The NRG approach, however, for the
spin-boson model found that there are also quantum phase transitions and the
transition line shows quantum critical behaviors (Bulla etal. 2003). Following
sections are devoted exactly to these issues.

5.2 Quantum phase transitions in the sub-ohmic
Spin-Boson model

Precedent works on the sub-ohmic spin-boson model, in most of which � =! c ! 0
limit is assumed, report that a particle in the two-level system is localized in the

3 As an example of the latter case, a single-impurity Andersonmodel with a linear coupling to
a local phonon model was studied in (Hewson and Meyer 2002, Meyer, Hewson and Bulla 2002).

4 For details, see e.g., (Leggett et al. 1987).
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Figure 5.2: (a) Phase diagram for the transition between delocalized(� < � c) and
localized phases(� > � c) of the spin-boson model 5.1 for bias" = 0 and various
values of� , deduced from the NRG �ow. (b)� dependence of the critical coupling
� c for various values of the bath exponents. For s close to1 the asymptotic regimes
is reached only for very small� . NRG parameters here are� = 2 ; Nb = 8, and
Ns = 100.

well it started in for any nonzero coupling to the bath. However the argument for
localization becomes subtle when the two limits(�! c)=! c ! 0 and � =! c ! 0 are
considered simultaneously. In the case, the relative scaleof �! c to � might be
important but comparison of the bare energy scale is not su�cient to explain the
low temperature behavior, for which more knowledge is required on how the two
parameters� and � are renormalized with decreasing temperature and which
one is dominant in the zero temperature limit.

The NRG calculation has been performed to answer these questions and found
a continuous (2nd order) transition with associated critical behavior for the range
0 < s < 1.

In this approach, the frequency range of the bath spectral function [0; ! c] is
divided into intervals

�
! c� � (n+1) ; ! c� � n

�
, n = 0; 1; 2; :::; with � the NRG dis-
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cretization parameter. The continuous spectral function within these intervals
is approximated by a single bosonic state and the resulting discretized model is
then mapped onto a semi-in�nite chain with the Hamiltonian

H = �
�
2

� x +
"
2

� z +

r
� 0

�
� z

2
(b0 + by

0) +
1X

n=0

"nby
nbn

+
1X

n=0

tn (by
nbn+1 + by

n+1 bn ); (5.9)

with

� 0 =
Z ! c

0
d!J (! ) = 2 ��! 1� s

c

Z ! c

0
d! ! s: (5.10)

Figure 5.2-(a) shows the zero temperature phase diagram, where the phase bound-
aries are determined from the NRG �ow for �xed NRG parameters� = 2 , Nb = 8,
and Ns = 100 (Bulla et al. 2003). As displayed in Fig. 5.2-(b), the critical cou-
pling � c closely follows a power law as a function of the bare tunnel splitting,
� c / � x for small �( << ! c), with an s-dependent exponentx. The data are
consistent with x = 1 � s.

The character of each �xed point is described by the two renormalized pa-
rameters � r and � r .5 At the localized and delocalized �xed points, one of the
two parameters is far dominant to the other and the system is driven by the for-
mer one only. The delocalized �xed point can be e�ectively described by putting
� r 6= 0 and � r = 0 in the Hamiltonian (5.9). The localized phase is the other way
around (� r = 0 and � r 6= 0) . At the quantum critical points, all renormalized
parameters� r and � r are similar in the order of magnitude so that none of them
are to be disregarded.

We describe the physics of the three �xed points through the NRG �ow-
diagram and the thermodynamic quantities in the following sections.

5.2.1 Localized/Delocalized �xed points

At the localized �xed points (� r 6= 0 and � r = 0),6 the dynamics of the two-
level system, oscillations(or tunneling) between two levels, is suppressed by the
bosonic bath with strong energy-dissipation. The e�ectiveHamiltonian is

HL =

r
� 0

�
� z

2
(b0 + by

0) +
1X

n=0

"nby
nbn +

1X

n=0

tn (by
nbn+1 + by

n+1 bn ); (5.11)

5 We consider the case of zero-bias" = 0 .
6 In the language of the (perturbative) renormalized group (Leggett et al. 1987, Anderson,

Yuval and Hamann 1970) the localized phase corresponds to the line of �xed points, parameter-
ized by � although the �xed-point value � does not in�uence the eigenenergies of the many-body
Hamiltonian, but only its eigenstates.
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Figure 5.3: Flow diagram of the lowest lying many-particle energies calculated
with the star-NRG for the sub-Ohmic case(s = 0:8; � = 0 :001), using displaced
oscillators as optimized basis. The critical value is� c = 0:125. The NRG parameters
areNs = 60, Nb = 6, and � = 2

which yields the same structure of the NRG-spectrum as the one of the bosonic
bath except that there are additional two-fold degeneracies due to the two-level
system. According to the precedent works (Leggett et al. 1987), this is the only
stable �xed point in the sub-ohmic spin-boson model.

The NRG approach, however, found regions in the parameter-space where the
stable �xed point is replaced by the delocalized one (� r = 0 and � r 6= 0). The
e�ective Hamiltonian for the delocalized �xed point is

HD = �
�
2

� x +
1X

n=0

"nby
nbn +

1X

n=0

tn (by
nbn+1 + by

n+1 bn ): (5.12)

The delocalized �xed points appear for values ofs in the range 0 < s < 1 and
the coupling strength� < � c.

The structure of the low-lying spectrum at the delocalized �xed point is same
as that at the localized one apart from the absence of the two-fold degeneracy.
Figure 5.3 show the lowest lying many-particle energies calculated with the star-
NRG7 for the sub-ohmic case (s = 0:8; � = 0 :001), using displaced oscillators as
optimized basis. Solid and dashed lines corresponds to the result for � = 0:01 (<
� c : delocalized)and � = 0:15 (> � c : localized), from which we can see the

7 See the chapter II in Ref. (Bulla et al. 2005)
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Figure 5.4: Temperature dependence of the impurity contribution to theentropy,
Simp (T), in the sub-ohmic case(s = 0:8) for various values of� .

degeneracy of the localized �xed point is exactly twice as many as that of the
delocalized one.

Figure 5.4 shows temperature dependence of the impurity contribution to the
entropy Simp (T) for s = 0:8 and various values of� . Comparing the residual
entropy of the two di�erent cases,� = 0:1233(< � c :delocalized) and� = 0:1290
(> � c:localized), we observe theln 2 (� 0:69) di�erence as a consequence of the
double degeneracy at the localized �xed point.8

At high temperature, the impurity contribution to the entro py takes a value
of ln 2 regardless of the coupling strength� , due to the fact that, for temperature
T � � , both states of the two-level system contribute equally to the thermo-
dynamics. Therefore, the temperature-dependent entropySimp (T) undergoes the
ln 2 di�erences as the system �ows to the delocalized �xed point with Simp = 0.

Quite a striking feature of negative slope inSimp (T) (negative speci�c heat)
appears in the localized phase. The non-trivial e�ects becomes more prominent
as the system approaches to the critical point� = � c where the impurity contri-

8 The double degeneracy in the localized �xed points makes thepartition function ZL twice
larger than ZD . Thus, the di�erence in the impurity contribution of the ent ropy is given as

SL
imp = kB ln ZL (5.13)

= kB ln(2ZD )

= kB ln 2 + kB ln ZD

= kB ln 2 + SD
imp



56 5. Spin-Boson Model

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

T

-0.2

0

0.2

0.4

0.6

0.8

S
im

p

a=0.114
a=0.116
a=0.118
a=0.120
a=0.122

s=0.8. D=0.001

10
-12

10
-10

10
-8

10
-6

T

10
-8

10
-6

10
-4

10
-2

10
0

S
im

p

s=0.8
s=0.6
s=0.4

Figure 5.5: Temperature dependence of the impurity contribution to theentropy,
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bution to the entropy is quenched to a value less thanln 2 (Simp � 0:41 in the
Fig. 5.4). Furthermore, nice scaling behavior is observed in the crossover between
the quantum critical phase and the localized/delocalized phase. We discuss the
issues on the quantum criticality in a separate section.

5.2.2 Quantum critical �xed points

Figure 5.5 shows the temperature dependence of the impuritycontribution to the
entropy, Simp (T), in the sub-Ohmic case,s = 0:8, for various values of� below
the critical value � c � 0:125.9 For � close to� c, we observe a two stage quenching
of the entropy of the free moment (the quantum critical pointhas a nontrivial
zero-point entropy ofSqcp(T ! 0) � 0:6 for s = 0:8). The temperature scale (T � )
for the crossover to the delocalized �xed point increases with the distance from

9 The data in Fig.5.5 is calculated with the chain NRG. The results from the star-NRG
look similar. (They give, in particular the correct values Simp (T ! 0) = ln 2 if the �ow is to
the localized phase.) We observe, however, a low temperature behavior for Simp (T ) which is
di�erent from the correct form Simp (T ) / T s. The reason for this failure is presently not clear
but probably due to truncation errors.
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NRG parameters areNs = 100, Nb = 8, and � = 2 :0.

the critical point following the scaling relation (Bulla et al. 2005),

T � / � 1=j� � � c j: (5.14)

The low-temperature behavior ofSimp (T) for � < � c is given by Simp (T) / T s

which can be seen more clearly in the inset of Fig. 5.5 whereSimp (T) is plotted
for various values ofs. This behavior is in agreement with the calculations of
Ref. (Göhrlich and Weiss 1998), whereC(T) / T s was found for the slightly
asymmetric (� 6= 0) sub-Ohmic spin-boson model.

Now we look into the quenched entropy at the critical point� = � c.

Sqcp(T ! 0) � 0:6: (5.15)

The absolute value (� 0:6) is still questionable in a sense that the value itself
changes with the numerical conditions such asNs and � . Nevertheless, we believe
that the residual entropy at the critical point is di�erent f rom the one at the
localized and delocalized �xed point, since the structure of the low-lying spectrum
at the quantum critical point is clearly distinguished fromthe other two cases.

Figure 5.6 shows the low-lying spectra corresponding to thecurve �� = 0:122�
in Fig. 5.5. We see three stages of plateau in the spectra: thelocalized �xed
point (3 < N < 8),10 the quantum critical �xed point ( 12 < N < 22) and

10 As brie�y mentioned in the previous section, the vicinity to the localized �xed point for
early iterations (which results in the high-temperature value Simp (T ) � ln 2) does not im-
ply localization. However, the structure of the low-lying spectrum and all the results out of
the spectrum happen to be same as the ones in the localized case so that we use the same
terminology for the case, too.
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Figure 5.7: Dependence of the many-particle spectra for the two �xed points of the
spin-boson model on the exponents: D:delocalized �xed points(solid lines without
symbol) and the quantum critical points(solid lines with circles).

the delocalized �xed point(N > 30), which result in the three steps atln 2; 0:6
and zero in Simp (T). The quantum critical �xed point has obviously di�erent
structure from the others.

In Fig. 5.7, the many-particle spectra of the two �xed points, delocalized and
quantum critical ones are plotted as functions of the exponent s. At s = 0 limit,
many-particle levels of the quantum critical �xed point (solid lines with circles)
coincide with the ones of the delocalized �xed point (solid lines without symbols).
In the other limit, s = 1, the many-particle levels of the quantum critical point
approaches toward the same delocalized �xed points in pairs. Thus, we can
conclude that the levels of the quantum critical points,EN;QCP (s), approach the
levels of the delocalized (localized) �xed points in the limit s ! 0 (s ! 1).

lim
s! 0

f EN;QCP (s)g = f EN;D (s = 0) g; (5.16)

lim
s! 1

f EN;QCP (s)g = f EN;L (s = 1) g:

The structure of the quantum critical �xed points shows continuous change from
the delocalized �xed points (s = 0) to the localized �xed points (s = 1) with
increasing s. Accordingly, the residual entropy at the quantum critical �xed
point Scrit also has a continuous change fromSimp = 0 (delocalized) toSimp = ln 2
(localized) leading to the quenched entropy (Scrit < ln 2) in between.

To search out the origin of the suppressed entropy at the critical point might
require a similar analysis as we did for the soft-gap Anderson model: �nd proper
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marginal operators at the quantum critical points and show how the subsystem
(two-level system) �uctuates via the marginal interactionwith the bath.

In the vicinity of the critical dimensions s = 0 and s = 1, the e�ects of
marginal interaction is pretty weak such that the many-particle spectrum at
the quantum critical points is perturbatively accessible within a single-particle
picture. The explicit formation of the many-particle states will give intuitive
knowledge on the quantum �uctuations represented by the quenched entropy
Scrit < ln 2.
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6. BOSONIC SINGLE-IMPURITY ANDERSON MODEL

6.1 Introduction

The focus of this work is the physics of a bosonic impurity state coupled to a
non-interacting bosonic environment modeled by the Hamiltonian

H = "0byb+
1
2

Ubyb(byb� 1) +
X

k

" kby
kbk +

X

k

Vk(by
kb+ bybk): (6.1)

The energy of the impurity level (with operatorsb(y) ) is given by"0; the parameter
U is the local Coulomb repulsion acting on the bosons at the impurity site. The
impurity couples to a bosonic bath via the hybridizationVk , with the bath degrees
of freedom given by the operatorsb(y)

k with energy " k .
Similar to other quantum impurity models, the in�uence of the bath on the

impurity is completely speci�ed by the bath spectral function

�( ! ) = �
X

k

V 2
k � (! � " k): (6.2)

Here we assume that�( ! ) can be parameterized by a power-law for frequencies
up to a cuto� ! c. (We set ! c = 1 in the calculations.)

�( ! ) = 2 ��! 1� s
c ! s; 0 < ! < ! c: (6.3)

The parameter � is the dimensionless coupling constant for the impurity-bath
interaction.

We term the system de�ned by Eq. (6.1) the �bosonic single-impurity Ander-
son model� (bsiAm), in analogy to the standard (fermionic) siAm (Hewson 1993),
which has a very similar structure except that all fermionicoperators are replaced
by bosonic ones. Furthermore, we do not consider internal degrees of freedom of
the bosons, such as the spin (an essential ingredient in the fermionic siAm).

Our main interest of the bsiAm is the low-temperature behavior of Bose-
Einstein condensation (BEC) and, possibly, quantum phase transitions from BEC
to other phases. We raise several questions related to the issues, concerning the
model in Eq. (6.1).

Q-1. Does BEC appear as a possible ground state of the bsiAm?
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Q-2. Is the NRG able to capture features of BEC such as the criticaltemperature
Tc and the BEC-gap� gap?

Q-3. What are the e�ects of an impurity that involves correlations among the
particles? Does it generate a new phase suppressing the BEC?

The NRG considers a non-interacting bosonic bath (gas) as a grand canonical
system with a �xed chemical potential� = 0, where the bosonic bath itself shows
BEC exactly at zero temperature.1 However the BEC of ideal Bose gas (with
�xed chemical potential � = 0) at zero temperature is not captured within the
NRG approach since the contribution of the state at" = 0 2 is neglected during
the logarithmic discretization of the bosonic bath.

Although it looks a very critical defect that the NRG misses the ground
state property of the reservoir, we can get around the drawback by bringing the
impurity quantum phase transition into focus of interest. From the viewpoint
of the impurity quantum phase transitions, the existence ofa state " = � =
0 becomes essential only if it takes a signi�cant role to change the impurity
contribution at the ground state. Here we examine the importance of the" = 0
state in each phase.3

S-1. The Mott phase: As we will discuss in the later section, the low temperature
behavior (the low lying spectrum) of the Mott phase can be understood as
the one of ideal Bose gas in the presence of a frozen impurity.The existence
of the " = � = 0 state and the resulting BEC transition at T = 0 do not
a�ect the con�guration at the impurity-site since the impur ity is completely
decoupled from the continuum states of the bath.

S-2. The BEC phase: A system with negative chemical potential� < 0 enters
the BEC phase below �nite (non-zero) temperatureT � where the ground
state with a condensate wave function is separated from the other excited
ones by the BEC gap� g. Condensation occurs exactly at the state sitting
at the chemical potential" = � < 0 and the e�ect of " = 0 state is negligible.

S-3. The quantum critical phase: One of the non-trivial cases would be an in-
teracting system with zero chemical potential� = 0, possibly a system at
the critical point. In this case, the e�ect of the state at " = � = 0 might
be signi�cant at all excited states including the ground state.

The �rst two statements tell that the properties of the Mott and the BEC phase
are accessible to the NRG in spite of the drawback of discretization. Most of

1 Details are discussed in the appendix C.
2 In other words, the state sitting at the chemical potential � = 0 .
3 Here we brie�y mention the contents of quantum phase transitions such as the Mott, BEC

and the quantum critical phases without touching the details. Each phase will be treated in
the separate sections.
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Figure 6.1: Zero-temperature phase diagram of the bosonic siAm for bathexponent
s = 0:6 and �xed impurity Coulomb interactionU = 0:5. The di�erent symbols
denote the phase boundaries between Mott phases and the BEC phase. The Mott
phases are labeled by their occupationnimp for � = 0. Only the Mott phases with
nimp � 4 are shown. The NRG parameters are� = 2 :0, Nb = 10, andNs = 100.

this chapter is devoted to the issues of the two phases. It is also expected that
the NRG calculation gives the correct descriptions of the transition between the
Mott and BEC phase but the physics at the phase boundary, represented by the
non-trivial quantum critical �xed points, might be sensitive to the missing states
at " = � = 0.

6.2 Quantum phase transitions in the bosonic
single-impurity Anderson model

On the contrary to the non-interacting BEC phase atT = 0, the BEC phase with
�nite critical temperature T � is observed in the NRG �ow diagram, which shows
the BEC gap (� gap) opening at N � = � ln T � . Interestingly, we found quantum
phase transitions between phases withTc = 0 (Mott phase) and with Tc 6= 0
(BEC phase). In the former case (Mott phase), the impurity isindependent of
the bath and the non-interacting bath itself shows a BEC (ideal Bose gas) phase
at T = 0 (T > 0). We call it as a Mott phase following the convention of the Bose-
Hubbard Model (Bruder and Schön 1993, Kampf and Zimanyi 1993, Rokhsar and
Kotliar 1991, Krauth, Ca�arel and Bouchaud 1992, Freericksand Monien 1993).4

4 Mott phases in the two models, bosonic single-impurity Anderson model and Bose-Hubbard
model, imply di�erent physical situations. For examples, a Mott phase in Bose-Hubbard model
is an insulating phase whereas it corresponds to an ideal gasphase in bosonic single-impurity
Anderson model. Nevertheless, we use the same terminology in a sense that, in both cases, the
Coulomb repulsion U stabilizes a localized state at the impurity site (bosonic single-impurity
Anderson model) or at each local site (Bose-Hubbard model).
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In the latter case (BEC phase), atT < T c, all the existing particles (bosons)
form a condensate cloud (wave-function), being separated from continuum states
of the bath with a gap � gap.

The full phase diagram Fig. 6.1, showing the Mott, BEC phase and the phase
boundary between them, is calculated with the bosonic NRG (Bulla et al. 2005),
where the Hamiltonian Eq. (6.1) is mapped onto a semi-in�nite chain,

H = "0byb+
1
2

Ubyb(byb� 1) + V(by�b0 + �by
0b) +

1X

n=0

"n
�by

n
�bn +

1X

n=0

tn (�by
n
�bn+1 + �by

n+1
�bn ):

(6.4)
Here the impurity couples to the �rst site of the chain via the hybridization
V =

p
2�= (1 + s). The bath degrees of freedom are in the form of a tight-binding

chain with operators �b(y)
n , on-site energies"n , and hopping matrix elementstn ,

which both fall o� exponentially: tn ; "n / � � n .
The technical details are same as in the spin-boson model except that we

use the total particle-numberN tot as a conserved quantity in the Hamiltonian
Eq. (6.1).5 In actual calculations,N tot is limited to the maximum value N max

tot so
that the grand canonical ensemble consists of a set of canonical ensemble systems
with N tot = 0; 1; 2; :::; N max

tot . The maximum numberN max
tot is chosen to be large

enough to avoid the arti�cial e�ects on the low-lying spectrum.
The T = 0 phase diagram in Fig. 6.16 is calculated for �xed U = 0:5 with

the parameter space spanned by the dimensionless coupling constant � and the
impurity energy "0. We chooses = 0:6 as the exponent of the power-law in�( ! ).
(The s-dependence of the phase diagram is discussed in Fig. 6.10 below.) The
phase diagram is characterized by a sequence of lobes, whichwe label by the
occupation at the ground statengr . The Mott phases are separated from the
BEC phase by lines of quantum critical points, which terminate (for s = 0:6) at
a �nite value of � , except for the ngr = 0 phase, where the boundary extends
up to in�nite � . These transition can be viewed as the impurity analogue of the
Mott transition in the lattice model, since it is the local Coulomb repulsion that
prevents the formation of the BEC state.

6.2.1 BEC phase

A grand canonical system in the BEC phase, showing a�nity forin�nitely many
particles, is characterized by the negative chemical potential � < 0. In the bosonic
single-impurity model, the negative chemical potential appears in several ways of
creating an attractive site into the reservoir.

5 For details, see Appendix D.
6 Precisely, it is a phase diagram at in�nitesimal temperature T > 0. At zero temperature,

the entire region is covered by BEC phase. See Appendix C.
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Figure 6.2: Flow diagram of the lowest lying many-particle levelsEN versus iteration
numberN for parameterss = 0:4, � = 0:007, U = 0:5, and "0 = � 0:91383437.
There exists a gap� g in the BEC phase (N > 53) between the ground state and the
�rst excited state. See the inset whereEN (instead ofEN � N ) is plotted versusN .

1. An isolated (� = 0) impurity with "0 < 0 and U = 0 creates a delta-peak
at ! peak = "0 in the spectral density shifting the chemical potential to the
peak position� = ! peak = "0. A �nite coupling ( � ) between the impurity
and the bath will push the peak position! peak further down to the negative
frequency (� = ! peak < " 0).7

2. A similar situation can occur even for a positive"0 if the coupling � is large
enough to generate a peak at! peak < 0.

3. The same arguments on the spectral density and the negative ! peak hold for
an impurity with the �nite U except that non-zero coupling� is necessary
to get over the Coulomb repulsionU and form a condensate state with
in�nitely many particles.

A sharp peak in the spectral densityA(! ) at ! = ! peak < 0 is a good indication of
BEC. Equivalently, the many particle spectra, which are more convenient objects
for the NRG approach, also manifest the condensation with the appearance of
gap � g between the ground state and the �rst excited one.

See the inset of Fig. 6.2 where the many-particle energyf EN g is plotted as
a function of the iteration number N . We focus on the BEC phase starting at
N � 53.

The ground state is lying at zero of the vertical axis and the �rst excited state
corresponds to the horizontal line atEN � 9 � 10� 18 for N > 55. There is a gap
opening (� g � 9 � 10� 18) at N � 53.

7 See Fig. 6.3.
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Figure 6.3: Left: The size of BEC gap� g versus the logarithmic discretization
parameter� . Data are shown for the bath exponents = 0:6 and the zero Coulomb
repulsionU = 0. The coupling strength� and the on-site energy"0 are given for
each case di�erently. (� = 0:128 and "0 = 0:3 for circle, � = 0:0 and "0 = � 0:01
for square.) The intersection atx = 0 determines the value of� g(� ! 1): 0:036
(circle) and0:01(square). Right: The spectral densityA(! ) for parameterss = 0:6,
U = 0, � = 0:128 and " = 0:3 (corresponding to the data with circles in the left).
The coupling� creates two peaks out of the continuum. The distance from zero to
the position of the left peakj! peakj � 0:036 coincides with the size of gap in the
NRG spectrum in the limit of� ! 1.

The many-particle levels in Fig. 6.2 show the states with quantum numbers
N tot = 0; 1; 2; :::, and N max

tot (= 19) 8. In the ground state, all N max
tot particles are

occupied at a state with energy! = � � g � � 9 � 10� 18 whereas the �rst excited
state hasN max

tot � 1 particles at ! = � � g � � 9 � 10� 18 and the remaining one
particle is excited to the lowest single-particle state! = � (N )

0 .9 Thus the energy
di�erence between the ground state and the �rst excited states is

�E = ( � (N max
tot � 1)� g + � (N )

0 ) � (� N max
tot � g) = � g + � (N )

0 : (6.5)

The � (N )
0 becomes much smaller than� g � 9 � 10� 18 for large enoughN (larger

than sixty in Fig. 6.2)10 so that we neglect it from Eq. (6.5):

�E � � g: (6.6)

8 The e�ect of N max
tot on the size of gap� g is less than 0.1% forN max

tot � 19.
9 � 0;N is the lowest eigenvalues(eigenstates) of a free chainHN .

HN =
N � 1X

n =0

"n
�by

n
�bn +

NX

n =0

tn (�by
n
�bn +1 + �bn

�by
n +1 ) =

N +1X

n =1

� (N )
n ay

n an

10 � (N )
0 � � � N = 2 � N with � = 2 .
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Figure 6.4: Flow diagram of the lowest lying many-particle levelsEN � N � 1 versus
iteration numberN for parameterss = 0:4, � = 0:007, U = 0:5, and two values of
"0 = � 1:3 and2:0.

For non-interacting systems (U = 0), the spectral densityA(! ) and the posi-
tion of the peak in the negative region make reasonable predictions of the size of
the BEC gap � g. The isolated and uncorrelated impurity with negative energy
"0, ("0 < 0, U = 0 and � = 0) generates a delta-function of the impurity spectral
density A(! ) = � (! � "0) and the size of gap is purely determined by the on-site
energy"0 independent of the bath (Fig. 6.3-Left :� = 0:0):

� g(� ! 1) = j"0j: (6.7)

However the impurity coupled to a bath with the �nite coupling � causes the
redistribution of the total spectral weight and the position of the peak (! peak)
depends on the properties of the bath (� and s). Accordingly, the BEC gap � g,
corresponding to the distance from the peak to zero, also contains the detailed
informations of the bath including the e�ect of discretization as well. The position
of the peak in the impurity spectral density conforms with the size of the BEC
gap shown in the NRG spectrum in the limit of� ! 1 (Fig. 6.3):

� g(� ! 1) = j! peakj: (6.8)

The spectral densityA(! ) of the system withU 6= 0 has not been calculated yet
but we expect that Eq. (6.8) is valid for the case, too.

6.2.2 Mott phase

The low-lying spectrum of the Mott phase (the �at-region in Fig. 6.4) is described
by the Hamiltonian of the free semi-in�nite chain,

Hbath =
1X

n=0

"n
�by

n
�bn +

1X

n=0

tn (�by
n
�bn+1 + �by

n+1
�bn ): (6.9)
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Figure 6.5: Single-particle spectrum of the non-interacting Hamiltonian Hbath;N

and the occupation of the ground, �rst,..., and the fourth excited states (EN =
0; � 1;N ; 2� 1;N ; 3� 1;N and � 2;N ). For "0 = 2:0 (� 1:3), the total number of par-
ticles at the ground, �rst, second, third and the fourth excited state areN tot =
0; 1; 2; 3 (3; 4; 5; 6) and1 (4).

Fig. 6.4 shows two sets of energy-�ows taken from two di�erent lobes of the Mott
phases in Fig. 6.1 ("0 = � 1:3 and 2:0 for �xed � = 0:007and U = 0:5). Di�erent
structure in the early stage of iterations (N < 20) is a consequence of valence
�uctuations at the impurity site. Both sets of many-particle spectra seem to �ow
into the same non-interacting �xed point Hbath but distinction is drawn by the
assigned quantum numbers for the two cases.

For "0 = 2:0, the quantum number of the ground state, �rst, second, third
and the fourth excited one areN tot = 0; 1; 2; 3 and 1 whereas all the numbers are
increased by three (N tot = 3; 4; 5; 6, and 4) for "0 = � 1:3. The three additional
particles (bosons) in the latter case, consistently showing up in the higher states,
all turn out to occupy the zero single-particle level. We discuss the details with
the single-particle eigenvalues of the non-interacting Hamiltonian Hbath;N ,

Hbath;N =
N � 1X

n=0

"n
�by

n
�bn +

NX

n=0

tn (�by
n
�bn+1 + �bn

�by
n+1 ) =

N +1X

n=1

� n;N ay
nan : (6.10)

The eigenvalues of the lowest �ve many-particle states are given as E0;N =
0; E1;N = � 1;N E2;N = 2� 1;N ; E3;N = 3� 1;N and E4;N = � 2;N . Fig. 6.5 de-
picts the con�gurations of the �ve states: (a) "0 � 2:0 and (b) "0 = � 1:3. The
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Figure 6.6: Left: The energy for an isolated impurity as a function ofnimp . The
minimum point of the parabola is given by(� " 0

U + 1
2; U

2 ( " 0
U � 1

2)2) and the actual
occupation for energy minimum is determined by the nearest (non-negative) integer
nimp; 0. The nimp; 0 is zero for a positive"0 regardless of the position of the minimum
point. Right: The occupation at the minimum pointnimp; 0 shows discontinuous jump
for each integer value of� "0=U, where two values ofnimp; 0 give equal minimum-
energy. Between the integer points, the minimum point is determined by the single
integernimp; 0.

many-particle states with same energy have same number of particles at � i;N 6= 0
so that the di�erence in N tot is attributed to h0jn̂tot j0i such as

h0jn̂tot j0i = 0 for "0 = 2:0;

h0jn̂tot j0i = 3 for "0 = � 1:3 (6.11)

with n̂tot = byb+
P

i
�by

i
�bi .11

Two values of"0 = 2:0 and � 1:3 were selected to represent the two di�erent
Mott phases labeled by0 and 3 in Fig. 6.1. The similar arguments apply to the
other Mott phases with di�erent labels 1; 2; 4; 5;... and so forth, and each phase
is distinguished by the types of occupation atj0i (zero's single-particle level).12

We use the zero-mode occupancyh0jn̂tot j0i to label the di�erent Mott phases
and the next few pages are devoted to explain the properties of h0jn̂tot j0i . A
remarkable point of the Mott phase is that the particles atj0i are excluded from
thermal excitations being con�ned to the zero single-particle levelj0i . The reason
is very obvious for the system with zero-coupling� = 0, namely, a system with an
isolated impurity. Let us focus on the impurity-part H imp . Since the Hamiltonian
is quadratic to nimp = byb, there exist certain occupationsnimp; 0 that cause the
minimum energy of the impurity. The minimum point (nimp; 0) is determined
by "0 and U as shown in Fig. 6.6. The values of� "0=U = 0:5 determines the

11 See the Hamiltonian in Eq. (6.4).
12 The phases labeled by1; 2; 4; 5 have one, two, four and �ve bosons atj0i .



70 6. Bosonic Single-Impurity Anderson Model

occupation at the minimum point by nimp; 0 = 1 and the corresponding minimum
energy(ground state energy) byE imp; 0 = � U=2. The energy-costU=2 is charged
for the transition from the ground state to the lowest exciteonesE imp; 1 = E imp; 2 =
0 with nimp = nimp; 0 � 1.

Now, we consider the states of the bathHbath;N together with H imp . The
zero-coupling� = 0 makesH imp and Hbath;N commute each other so that the
eigenenergy (eigenfunction) of the full system is a simple sum (product) of the
eigenenergy (eigenfunction) ofH imp and Hbath;N :

E tot;nm = E imp;n + Ebath;m ; j	 tot;nm i = j n i 
 j � m i ; (6.12)

with

H imp j n i = E imp;n j n i ; H imp = "0byb+
1
2

Ubyb(byb� 1);

Hbath j� m i = Ebath;m j� m i ; Hbath;N =
N +1X

n=1

� n;N ay
nan : (6.13)

The ground state of the full systemH = H imp + Hbath is given as

E tot; 0 = E imp; 0 = � U=2; j	 tot; 00i = byj
 imp i 
 j 
 bath i ; (6.14)

where the impurity is occupied with a single boson13 and the bath is empty. The
lowest excited states are

E tot; 1 = � U=2 + � 1;N ; j	 tot; 01i = ay
1j	 tot; 00i ;

E tot; 2 = � U=2 + 2� 1;N ; j	 tot; 02i = ( ay
1)

2
j	 tot; 00i ;

E tot; 3 = � U=2 + 3� 1;N ; j	 tot; 03i = ( ay
1)

3
j	 tot; 00i ;

E tot; 4 = � U=2 + � 2;N ; j	 tot; 04i = ay
2j	 tot; 00i ;

� � � (6.15)

The many-particle levels with energy less than zero show theuniform occupancy
at the impurity-site,

nimp = h	 tot; 00jbybj	 tot; 00i = 1; (6.16)

for the parameterization� "0=U = 0:5. Changing the value of� "0=U, we found
discontinuous steps ofnimp

14:

nimp = nimp; 0 = 0; � "0=U < 0;

nimp = nimp; 0 = 1; 0 < � "0=U < 1;

nimp = nimp; 0 = 2; 1 < � "0=U < 2;

nimp = nimp; 0 = 3; 2 < � "0=U < 3;

nimp = nimp; 0 = 4; 3 < � "0=U < 4;

� � � (6.17)
13 The ground state of the isolated impurity system with � "0=U = 0 :5.
14 See Fig. 6.7.
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Figure 6.7: Impurity occupationnimp as a function of"0 for temperatureT = 0,
s = 0:4, U = 0:5, and various values of� . The sharp steps for the decoupled impurity
� = 0 are rounded for any �nite� . Symbols (dashed lines) correspond to data points
within the Mott(BEC) phase.

The second casenimp; 0 = 3 in Eq. (6.20) corresponds to the one that is illustrated
in Fig. 6.5-(b) where three bosons are con�ned to the zero-level j0i .15 Thus
�trapping� the particles at zero-mode (zero single-particle levelj0i ) occurs exactly
at the impurity-site if the coupling to the bath � is zero:

nimp; 0 = h0jn̂tot j0i = 3; (6.18)

for � = 0 and 2 < � "0=U < 3.
For a �nite � , H imp no more commutes toHbath and the eigenstates of the full

system are now linear combinations ofj n i 
 j � m i for various n and m:16

j� tot;l i =
X

nm

ul;nm j n i 
 j � m i : (6.19)

The total number of particles ntot has to be conserved and, for a ground state,
we found that

ntot; 0 = 0; � " 0
U < 0;

ntot; 0 = 1; 0 < � " 0
U < 1;

ntot; 0 = 2; 1 < � " 0
U < 2;

ntot; 0 = 3; 2 < � " 0
U < 3;

ntot; 0 = 4; 3 < � " 0
U < 4;

� � � (6.20)

15 See Eq. (6.11).
16 Compare this with Eq. (6.12).
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Figure 6.8: Flow diagram of the lowest lying many-particle levelsEN versus iteration
numberN for parameterss = 0:4, � = 0:007, U = 0:5, and two values of"0 very
close to the quantum phase transition between the Mott phasewith nimp = 2 and
the BEC phase. Both the quantum critical point and the Mott phase appear as �xed
points in this scheme whereas in the BEC phase, a gap� g appears between the
ground state and the �rst excited state, see the inset whereEN (instead ofEN � N )
is plotted versusN .

with ntot; 0 = h� tot; 0jn̂tot j� tot; 0i .
The excited states are written in the same way as in Eq. (6.15)by replacing

the ground statej	 tot; 00i in Eq. (6.14) to j� tot; 0i in Eq. (6.19).

E tot; 1 = E tot; 0 + � 1;N ; j� tot; 1i = ay
1j� tot; 0i ;

E tot; 2 = E tot; 0 + 2� 1;N ; j� tot; 2i = ( ay
1)

2
j� tot; 0i ;

E tot; 3 = E tot; 0 + 3� 1;N ; j� tot; 3i = ( ay
1)

3
j� tot; 0i ;

E tot; 4 = E tot; 0 + � 2;N ; j� tot; 4i = ay
2j� tot; 0i ; (6.21)

� � �

Thus the only e�ect of the coupling� is in the energy and the wavefunction of the
ground state. The ground state energy is always de�ned as zero in NRG approach
so that the many-particle spectrum does not change with the value of� . However
the wavefunction j� tot; 0i , a mixed state between the impurity and the bath, has
some dependences on the coupling� . Since the impurity occupationn̂imp = byb
no more commutes to the full HamiltonianH = H imp + Hbath , calculation of the
average impurity-occupation at the ground state yields a fractional number for a
non-zero coupling� 6= 0. Fig. 6.7 shows the dependence of

nimp (T = 0) = h� tot; 0jn̂imp j� tot; 0i (6.22)

on "0 for s = 0:4, U = 0:5, and various values of� . Di�erent Mott phases and
the transitions among them are very distinctive in the step-function of the nimp -
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Figure 6.9: The crossover scale from the quantum critical phase to the BEC/Mott
phase. Upon variation of"0 close to the critical value"0;c, the crossover scaleT �

vanishes with a power-law at the transition point,T � / j "0 � "0;cj � with a non-trivial
exponent� .

curve for � = 0. However, for �nite � , the sharp steps and the well-developed
plateaus disappear so that it is hard to �nd out the evidencesof transitions and
the di�erent phases within the nimp -curve. Nevertheless we checked the value of
ntot; 0 in Eq. (6.19) for each data point in Fig. 6.7 and clari�ed the corresponding
phase. For� = 0:007and � = 0:014, there are three Mott phases (symbols) with
ntot; 0 = 0; 1 and 2, which are intercepted by fragments of BEC-phases identi�ed
with ntot; 0 = N max

tot (dashed lines). For� = 0:028, only two Mott phases with
ntot = 0 and 1 appear and the rest region is covered by BEC-phase.17

The ground state occupationntot; 0 shows discontinuous change or even singu-
lar behavior at the phase-boundary between Mott phases and BEC phases. On
the contrary, the impurity contribution nimp always shows continuous increase
even when the curves cross the BEC phase.18

6.2.3 Quantum critical phase

The �ow diagram in Fig. 6.8 shows the lowest lying many-particle levels for
parameterss = 0:4, � = 0:007, U = 0:5, and two values of"0 very close to the
quantum critical point.19 The NRG spectrum of the BEC phase (dashed lines
:N � 53) has been already discussed in Section 6.2.1 with the same spectrum
in Fig. 6.2. A slight change of"0 from � 0:91383437to � 0:91383436results in a
new set of low lying states (solid lines). Both sets of energystates show identical

17 Compare the data with the phase-diagrams in Fig. 6.1.
18 The N max

tot -dependence ofnimp (T = 0) is checked with increasingN max
tot . The error is less

than 0.01% for N max
tot & 19.

19 "0 = � 0:91383436: solid lines, "0 = � 0:91383437: dashed lines
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Figure 6.10: Zero-temperature phase diagram of the bosonic siAm as in Fig.6.1,
but now for di�erent values of the bath exponents. For increasing values ofs, the
areas occupied by the Mott phases signi�cantly change theirshapes, and fors = 0:8
it appears that each Mott phase extends up to arbitrarily large values of� .

structure in the earlier iterations (N . 40) but turn into the di�erent phases of
the Mott (solid lines) and the BEC phase (dashed lines) around N � 50. The non-
interacting �xed point in the Mott phase has been analyzed inSection 6.2.2 and
the BEC gap between the ground state and the �rst excited one in Section 6.2.1.
The intermediate �xed point showing up in the earlier stage of iterations has
di�erent structure from the non-interacting �xed point: th e density of states is
higher and the level-spacing is even. More quantitative analysis of the quantum
critical �xed points has to be done in near future.

Another interesting point is the crossover scale from the quantum critical
phase to the BEC and Mott phase. Numerically we �nd that upon variation of
"0 close to its critical value"0;c, the crossover scale vanishes with a power-law at
the transitions,

T � / j "0 � "0;cj � ; (6.23)

on both sides of the transition, with a non-trivial exponent� . Preliminary results
suggest that� = 1=s holds for 0 < s < 1.

6.3 E�ects of the bath exponent in T = 0 phase diagrams

The precise shape of the boundaries in the phase diagram in Fig. 6.1 depends
on the form of �( ! ) for all frequencies. Here we stick to the power-law form
Eq. (6.3) and present the dependence of the phase diagram on the bath exponent
s in Fig. 6.10. We observe that upon increasing the value ofs, the areas occupied
by the Mott phases extend to larger values of� and signi�cantly change their
shape. A qualitative change is observed for large exponents = 0:8 and s = 1:0.



6.3. E�ects of the bath exponent inT = 0 phase diagrams 75

The Mott phases appear to extend up to arbitrarily large values of � and the
BEC phase which separates the Mott phases is completely absent.

The cases = 0 (constant bath density of states) turns out to be di�cult to
access numerically. An extrapolation of the phase boundaries for values ofs in
the range 0:1; � � � ; 0:4 to s = 0 is inconclusive, but the Mott phase is at least
signi�cantly suppressed in this limit.
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7. SUMMARY

The NRG, originally developed for the solution of the Kondo problem, proved
the power of a non-perturbative method in other impurity models by successfully
describing the physics of quantum phase transitions and quantum critical points
of the models.

The focus of investigating the impurity quantum phase transitions is rather
di�erent from the ones in lattice models. For example, the physics of spatial
correlations, one of the most important features that describes the criticality of
lattice systems, has no counterpart in impurity systems, where quantum critical-
ity is involved in the local physics at the impurity site suchas the local magnetic
susceptibility

� loc =
�

@2F imp

@h2

�

h=0

: (7.1)

Here h is the local magnetic �eld. The temporal correlations is important in
any case but, in particular for the impurity models, the local dynamics of the
impurity spin, � z, would be a matter of interest. i.e.:

C(� ) = h� z(� )� z(0)i : (7.2)

The global dynamics can also attract our attentions if the impurity contribution of
the thermodynamic quantities ofSimp (T) and � imp (T) show non-trivial prefactors
that frequently indicate the fractional charges or spin momentums at the critical
points.

The quantum phase transition in the soft-gap Anderson model, found in the
early nineties (Witho� and Fradkin 1990), was studied in many di�erent contexts
and here we added a complete understanding of the NRG many-body spectrum of
critical �xed points by utilizing renormalized perturbati on theory around a non-
interacting �xed point. The non-trivial level structure wi th reduced degeneracies
and non-equidistant levels was reconstructed by adding theperturbative correc-
tions of the marginal interactions in the vicinity of the critical dimensions,r = 0
and r = 1=2. We found that the impurity spin in the quantum critical phase is
�uctuating in arbitrary small temperature T, which gives a clue to the non-trivial
Curie-Weiss constantCimp

1 di�erent from the free-impurity value S(S + 1) =3.
A new extension of the NRG method to the spin-boson model broadened our

viewpoints from a �xed exponents = 1 to the range of exponents0 < s � 1 and,

1 lim T ! 0 � imp (T ) = Cimp =T:
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as the most important outcome, we found second order transitions dividing the
parameter space into the localized and the delocalized phases, where the two-
level system stays either at the two-fold degenerate eigenstates of �̂ z (localized)
or the single lowest eigenstate of̂� x (delocalized). The two-fold degeneracy in
the localized phase and the lifting in the delocalized phaseare manifested in
the residual value ofSimp by the ln 2 di�erence. In the quantum critical phase,
the residual entropy is quenched to a value between0 and ln 2, implying that
the subsystem is �uctuating for arbitrarily small temperature T. The origin of
the quantum �uctuation could be clari�ed with analysing the structure of the
quantum critical �xed points. We expect that, in the vicinit y of the critical
dimensionss = 0 and s = 1, the many-particle spectrum at the quantum critical
points is perturbatively accessible within a single-particle picture.

A model with a bosonic impurity state coupled to a non-interacting bosonic
surrounding, what is called, the bosonic single-impurity Anderson model, was
studied with the NRG and it turned out that there exist quantum phase tran-
sitions and quantum critical points separating the BEC phase from the Mott
phases. The terminology was obtained in analogy to the Bose-Hubbard model
regarding the connection of the bosonic single-impurity Anderson model with the
Bose-Hubbard model via DMFT (Dynamic Mean-Field Theory). The physics of
the two cases, however, is quite di�erent and the distinct description2 is neces-
sary to prevent the possible confusion. TheT = 0 phase diagram of the bosonic
single-impurity Anderson model for various�=U and "0=U shows apparent sim-
ilarity as the one for the Bose-Hubbard model depicted in thetwo-dimensional
plane of t=U and �=U .3 The character of the Mott phase is pretty clear in a
sense that the many-particle spectrum is simply understoodas the one of the
non-interacting bath. The low-lying spectrum of the BEC phase is rather sen-
sitive to the computational errors that are originated fromdiscretization and
truncation processes. However the size of the gap� g itself is quite reliable even
in that condition and, for simple cases, we con�rmed that thecontinuum limit,
� ! 1, shows good agreements with the exact value. The current results strongly
indicate that the BEC gap � g vanishes at the transition from the BEC phase
to the Mott phase and the system shows quantum critical behavior near to the
transition point. Details about the quantum critical phasesuch as the size of
the gapj� gj and the structure of the quantum critical point are under investiga-
tion. Furthermore, it is very desirable to calculate the dynamical quantities of the
given impurity model and make a self-consistent connectionto the Bose-Hubbard
model via DMFT (Metzner and Vollhardt 1989, Georges, Kotliar, Krauth and
Rozenberg 1996, Bulla 1999, Bulla, Costi and Vollhardt 2001).

2 We regard a phase as a BEC state only if the critical temperature T � is �nite (to be precise,
the crossover temperatureT � ), the Mott phases do not guarantee the integer occupation atthe
local (impurity) site, and so forth.

3 t:hopping parameter, � :chemical potential and U:Coulomb repulsion.
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A. FIXED-POINTS ANALYSIS: SOFT-GAP ANDERSON
MODEL

The low-lying spectra at the local-moment and strong coupling �xed points are
the eigenstates of the non-interacting HamiltonianHc;N ,

Hc;N =
N � 1X

�n =0

tn (cy
n� cn+1 � + cy

n+1 � cn+1 � ); (A.1)

which is written in a diagonal form,

�Hc;N =
X

�p

� p� y
p� � p� : (A.2)

The energy of the many-particle levels in the two cases is understood with the
single-particle spectrumf � pg.

On the contrary, the spectrum at the quantum critical �xed point is not
captured within the single-particle picture ofHc;N since the marginal interaction
Ô raises electronic correlations among particles. However,the e�ect of marginal
interaction vanishes in the limit of r ! 0 and r ! 1=2 and the perturbative
corrections to the eigenstates ofHc;N give the correct structure of the quantum
critical �xed point. For a non-degenerate case, the �rst order correction is

� E (1)
i = h (0)

i jÔj (0)
i i ; (A.3)

wherej (0)
i i and E (0)

i are the eigenstate and the eigenvalue ofHc;N , respectively.1

As a �rst step to calculate Eq. (A.3), we obtain the explicit form of the non-
interacting eigenstatesj (0)

i i in terms of the single-particle operatorsf � (y)
p� g and

the vacuum �eld j0i .

j (0)
i i =

X

f np ;nqg

Anp ;nq

Y

pq

(� y
p" )

np (� y
q#)

nq j0i : (A.4)

The occupationf np; nqg and the corresponding coe�cientsAnp ;nq are determined
to yield the quantum numbers (charge and spin) of the given state. In Ap-
pendix A.1, we perform the calculation for various quantum states.

1 Ĥ c;N j (0)
i i = E (0)

i j (0)
i i .
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In the next step, we write the marginal operatorÔ in terms of f � (y)
p;� g. Near to

the critical dimension r = 0, the marginal interaction is given by a Kondo-type
coupling,

Ĵ = ~Simp � ~s0 =
1
2

S+
imp cy

0#c0" +
1
2

S�
imp cy

0" c0#

+
1
2

Sz
imp

�
cy

0" c0" � cy
0#c0#

�
: (A.5)

Since the electronic operatorc(y)
0� is expressed with the operators� (y)

p� :

c0� =
X

p

� 0p� p� ; cy
0� =

X

p

� �
0p� y

p� ; (A.6)

the interaction Ĵ is expressed with linear sums of the quadratic excitations� y
p� � q�

for various momentums and spins:

Ĵ = ~Simp � ~s0 =
1
2

S+
imp

 
X

pq

� �
0p� 0q�

y
p#� q"

!

+
1
2

S�
imp

 
X

pq

� �
0p� 0q�

y
p" � q#

!

+
1
2

Sz
imp

 
X

pq

� �
0p� 0q�

y
p" � q" �

X

pq

� �
0p� 0q�

y
p#� q#

!

: (A.7)

In the vicinity of r = 1=2, the Coulomb repulsion,

Û = ( n̂" �
1
2

)(n̂# �
1
2

); (A.8)

is applied to the �rst site of the conduction chain so that theterms like

n̂" n̂# = cy
0" c0" cy

0#c0#;

n̂" = cy
0" c0" ;

n̂# = cy
0#c0#; (A.9)

create the one-particle,� y
p" � q#, or the two-particle excitations, � y

p" � q#�
y
r " � s#, in the

marginal operatorsÛ:

Û =

 
X

pq

� �
0p� 0q�

y
p" � q" �

1
2

!  
X

rs

� �
0r � 0s�

y
r #� s# �

1
2

!

: (A.10)

The �rst order correction of h (0)
i jĴ j (0)

i i and h (0)
i jÛj (0)

i i can be calculated
if we know the coe�cients Anp ;nq and � 0p for all indices p and q. The detailed
calculations will be given in Appendix A.2 and A.3.
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Figure A.1: Single-particle spectrum of the free conduction electron chain
Eq. (A.12). The ground state is given by all the levels withp < 0 �lled.

A.1 Local moment �xed points

The conduction-electron part of the iterative Hamiltonian(N th step) is given by

Hc;N =
N � 1X

�n =0

tn (cy
n� cn+1 � + cy

n+1 � cn+1 � ): (A.11)

The Hc;N can be written in a diagonal form,

�Hc;N =
X

�p

� p� y
p� � p� (A.12)

where� p is the single-particle spectrum ofHc;N . Since the single-particle spectrum
depends on whether the total number of sites is even or odd, wediscuss two cases
separately.

If N + 1 (the total number of free-electronic sites) is even, the single-particle
spectrum of the free chain is as sketched in Fig. A.1. As we assume particle-hole
symmetry, the positions of the single-particle levels are symmetric with respect
to 0 with

� p = � � � p; p = 1; 3; � � � ; N; (A.13)

and
X

p

�
p= NX

p= � N; p odd

(A.14)

Note that an equally spaced spectrum of single-particle levels is only recovered
in the limit � ! 1 for the caser = 0.2 Figure A.1 shows the ground-state

2 See Fig. 6 in (Bulla, Hewson and Zhang 1997).
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Figure A.2: Single-particle spectrum of the free conduction electron chain for odd-
number of free-sites. The ground state is fourfold degenerate with all the levels with
p < 0 �lled and the levelp = 0 either empty, singly (" or #) or doubly occupied.

con�guration (half-�lling). The states of the lowest excitations are easily obtained
by creating a few particles and holes from the ground state. In terms of the single-
particle operators in Eq. (A.12),3

j 1� i = � y
1� � � 1� j 0i ; E = 2� 1 (A.15)

j 2� i = � y
3� � � 1� j 0i ; E = � 1 + � 3

j 30i = � y
1� � � 1� � y

1� � � 1� j 0i ; E = 4� 1 (� 6= � )

� � �

with
j 0i =

Y

p< 0

� y
p" �

y
p#j0i : (A.16)

The spin-indices are determined by the quantum numbers of the states and we
will discuss them later on.

If N + 1 is odd, the single-particle spectrum of the free chain is as sketched
in Fig. A.2. As in the previous case, the positions of the single-particle levels are
symmetric with respect to0 with

� 0 = 0; � p = � � � p; p = 2; 4; � � � ; N; (A.17)

3 All the bracket states in Eq. (A.15) and Eq. (A.19) consist of only the conduction-electrons
(j n i = j n i cond ). The eigenstates of the full system are expressed in products with the ones
of impurities. For example, j i tot = aj 1" i cond 
 j #i imp + bj 1# i cond 
 j "i imp + � � � . The
coe�cients a and b are determined according to the quantum numbers ofj i tot .
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and
X

p

�
p= NX

p= � N; p odd

: (A.18)

In this case, the ground state of the e�ective model for an odd-number of free
sites is fourfold degenerate, with all levels withp < 0 �lled and the level p = 0
either empty, singly (" or #) or doubly occupied. Possible lowest excitations are

j 1i = � y
0" � � 2" j 0i ; E = � 2 (A.19)

j 2i = � y
0" � � 2" �

y
0#� � 2#j 0i ; E = 2� 2

j 3i = � y
0" � � 4" j 0i ; E = � 4

� � �

with
j 0i =

Y

p< 0

� y
p" �

y
p#j0i : (A.20)

Comparing the two equations, Eq. (A.19) and Eq. (A.15), we �nd the di�erences
in the many-particle spectrum depending on the parity ofN + 1. This even-odd
e�ect, which is originated from discretization of a continuous band, seems to
make it di�cult to de�ne �xed points since the RG-mapping ( R ) in Eq. (3.53)
changes parity ofHN in every iteration. However the original Hamiltonian in
Eq. (3.3) conserves total charge and parity so that any transitions are forbidden
between states with di�erent parity. Therefore we can choose one subset of eigen-
states with even (or odd) parity and, regardless of the choice, investigate general
properties of the model. The many-particles spectrums collected in every other
iterative step belong to the same parity-group and quickly �ow into the �xed
point of the conduction band.

In the following section, we obtain the explicit form of the many-particle states
for several sets off Q; S; Szg. We focus on the case ofN + 1 = even.

A.1.1 Q = 0, S = 1=2 and Sz = 1=2

The local-moment �xed point is described with an e�ective Hamiltonian,

HLM = lim
U!1

H imp +
X

�p

� p� y
p� � p� (A.21)

with
H imp = " f

X

�

f y
� 1� f � 1� + Uf y

� 1" f � 1" f y
� 1#f � 1#: (A.22)

In�nitely large Coulomb repulsion U prohibits a double-occupied and empty state
from the impurity-site and leaves a single electron with spin-up or spin-down on
it, which makesQimp = 0, Simp = 1=2 and Simp

z = � 1=2.

j i imp = f y
� j0i imp ; (� = " or #) (A.23)
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The ground state of the local moment �xed point is a product ofj i imp and the
half-�lled ground state of the free chain, depicted in Fig. A.1:

j gr i = f y
� j 0i ; (A.24)

with
j 0i = j0i imp 


� Y

p< 0

� y
p" �

y
p#j0i cond

�
: (A.25)

Since the charge of the ground state is zero, all excitationswith Q = 0 should
create the same number of particles and holes from the groundstate. Considering
the excitations with a single-pair of particle and hole,

j i = f y
� � y

p� � q� j 0i ; E = � p � � q (A.26)

with p > 0, q < 0, � p > 0 and � q < 0.
Spin-indices� , � and � are determined by givenS and Sz. Taking account

of all possible con�gurations of the three-spin system, we have a8-dimensional
space with a set of basis:

j + 1=2; +1=2; +1=2i = f y
" � y

p" � q#j 0i ; (A.27)

j + 1=2; +1=2; � 1=2i = f y
" � y

p" � q" j 0i ;

j + 1=2; � 1=2; +1=2i = f y
" � y

p#� q#j 0i ;

j + 1=2; � 1=2; � 1=2i = f y
" � y

p#� q" j 0i ;

j � 1=2; +1=2; +1=2i = f y
# � y

p" � q#j 0i ;

j � 1=2; +1=2; � 1=2i = f y
# � y

p" � q" j 0i ;

j � 1=2; � 1=2; +1=2i = f y
# � y

p#� q#j 0i ;

j � 1=2; � 1=2; � 1=2i = f y
# � y

p#� q" j 0i :

Using the representation of total spinStot , we can separate the space into two
pieces:Stot = 3=2 and Stot = 1=2. We focus on the subspace forStot = 1=2 and
Stot

z = 1=2, which is spanned with a basis,

j� 1i =
1

p
2

f y
" (� y

p" � q" + � y
p#� q#)j 0i

j� 2i =
1

p
6

f y
" (� y

p" � q" � � y
p#� q#)j 0i +

2
p

6
f y

# � y
p" � q#j 0i (A.28)

Figure A.3 shows a �ow diagram of soft-gap Anderson model with r = 0:35,
� = 0 :4754� 10� 3, and U = � 2" f = 10� 3. Data are collected for quantum
numbers Q = 0 and S = 1=2. For � < � c, many-particle levels �ow into the
local moment �xed point.
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Figure A.3: Flow diagram of the lowest lying excitations for the local moment
�xed points of the particle-hole symmetric soft-gap Anderson model (r = 0:35, � =
0:4754� 10� 3 andU = � 2" f = 10� 3). (Q; S) = (0 ; 1=2).

Diagonalizing the single-particle Hamiltonian for the conduction-band
[Eq. (A.11)] yields one-particle eigenvalues,� 1 = 0:55 and � 3 = 1:50, which cor-
respond to the level-spacing in Fig. A.3.

E1 = � 1 � � � 1 = 2� 1 � 1:1

E2 = � 3 � � � 1 = � 1 � � � 3 = � 3 + � 1 � 2:05: (A.29)

The �rst two levels with E = E1 � 1:1 are degenerate for the spin degrees of
freedom and the eigenstates are

j 1i =
1

p
2

f y
" (� y

1" � � 1" + � y
1#� � 1#)j 0i ;

j 2i =
1

p
6

f y
" (� y

1" � � 1" � � y
1#� � 1#)j 0i +

2
p

6
f y

# � y
1" � � 1#j 0i : (A.30)

The degeneracy is doubled in the case ofE = E2 � 2:05, where the positions
of a particle and a hole creates di�erent states without any energy-cost [(p; q) =
(1; � 3) ! (3; � 1)]. The eigenstates are

j 3i =
1

p
2

f y
" (� y

1" � � 3" + � y
1#� � 3#)j 0i ;

j 4i =
1

p
6

f y
" (� y

1" � � 3" � � y
1#� � 3#)j 0i +

2
p

6
f y

# � y
1" � � 3#j 0i ; (A.31)

j 5i =
1

p
2

f y
" (� y

3" � � 1" + � y
3#� � 1#)j 0i ;

j 6i =
1

p
6

f y
" (� y

3" � � 1" � � y
3#� � 1#)j 0i +

2
p

6
f y

# � y
3" � � 1#j 0i :
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Figure A.4: Flow diagram of the lowest lying excitations for the local moment �xed
points of the particle-hole symmetric soft-gap Anderson model: r = 0:01, � << � c,
U = � 2" f = 10� 3, and(Q; S) = ( � 1; 0).

Other higher excitations involving only single pair of a particle and a hole can
be understood in similar manners. The alternative way to proceed to the higher
levels is to create more particle-hole pairs from the groundstate.

j� i 2� ph = � y
p� � q� �

y
p0� � q0� j 0i ; E = � p � � q + � p0 � � q0 (A.32)

j� i 3� ph = � y
p� � q� �

y
p0� � q0� � y

p00� � q00� j 0i ; E = � p � � q + � p0 � � q0 + � p00 � � q00

� � �

More number ofp� h pairs demand more e�orts to obtain the eigenstates, which
has the Clebsch-Gordan coe�cients for higher spinsStot = 3=2; 2; � � � .

A.1.2 Q = � 1 and S = 0

There is no change at the impurity-site, and the negative charge Q = � 1 is
attributed to the conduction-electron part,

j� 1i = � p� f y
� j 0i ;

j� 2i = � p� � y
p0� 0� q0� 0f y

� j 0i ; (A.33)

j� 3i = � p� � y
p0� 0� q0� 0� y

p00� 00� q00� 00f y
� j 0i ;

� � �

with
j 0i = j0i imp 


� Y

p< 0

� y
p" �

y
p#j0i cond

�
: (A.34)
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Concerning the simplest case ofj� 1i , the singlet state is given as:

j i =
1

p
2

(� p" f
y
" + � p#f

y
#)j 0i ; (A.35)

with which the lowest two levels in Fig. A.4 are written as:

j 1i =
1

p
2

(� � 1" f
y
" + � � 1#f

y
#)j 0i ; (A.36)

j 2i =
1

p
2

(� � 2" f
y
" + � � 2#f

y
#)j 0i :

The eigenenergy of the two levels areE1 = 1:10 and E2 = 2:05, which agree
with the corresponding single-particle eigenenergy,j� � 1j = 1:10 and j� � 2j = 2:05,
respectively. The third level involves two holes and one electron in the conduction-
electrons part and the excitation-energy isE3 = � 1 � 2� � 1 = 3� 1:

j� i = f y
� � y

1� � � 1" � � 1#j 0i : (A.37)

Since h 0j� y
� 1#�

y
� 1" S

tot � � 1" � � 1#j 0i = 0, two particles f y
� and � y

1� form a single
state as in Eq. (A.35) to makeStot = 0:

j 3i =
1

p
2

(� y
1" f

y
# + � y

1#f
y
" )� � 1" � � 1#j 0i : (A.38)

The highest three levels in Fig. A.4 are degenerate atE = 2� 1+ � 2. The degeneracy
is resolved with a 4-spins picture, wheref y

� , � y
p� , � q� , and � r� are considered as

ordinary particles with spin-1=2. There are two ways of distributing the holes
(� q� and � r� ) and the particle (� y

p� ) in the single-particle levels:

j� 1i = f y
� � y

3� � � 1" � � 1#j 0i ;

j� 2i = f y
� � y

1� � � 1� � � 3� j 0i : (A.39)

The �rst state, j� 1i , is similar to the case withE = 3� 1 in Eq. (A.37) so that the
eigenstate forStot = 0 is

j 4i =
1

p
2

(� y
3" f

y
# + � y

3#f
y
" )� � 1" � � 1#j 0i : (A.40)

To determine the spins of the the second state (j� 2i ), we calculate the Clebsh-
Gordan coe�cients cS;Sz

���� , de�ned as

jS; Szi ���� =
X

�;�;�;�

cS;Sz
���� j�; �; �; � i : (A.41)

Using the expression of a three-spins state:

jS; Sz i ��� =
X

�;�;�

cS;Sz
��� j�; �; � i ; (A.42)
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a four-spin singlet statej0; 0i ���� is written as

j0; 0i ���� =
1

p
2

(f y
" j1=2; � 1=2i ��� � f y

# j1=2; +1=2i ��� ): (A.43)

The coe�cients c1=2;� 1=2
��� are same as in Eq. (A.28):

j1=2; +1=2i ���
1 =

1
p

2
� y

1" (�
y
� 1" � � 3" + � y

� 1#� � 3#)j 0i ;

j1=2; � 1=2i ���
1 =

1
p

2
� y

1#(�
y
� 1" � � 3" + � y

� 1#� � 3#)j 0i ; (A.44)

j1=2; +1=2i ���
2 =

1
p

6
� y

1" (�
y
� 1" � � 3" � � y

� 1#� � 3#)j 0i +
2

p
6

� y
1#�

y
� 1" � � 3#j 0i ;

j1=2; � 1=2i ���
2 =

1
p

6
� y

1#(�
y
� 1" � � 3" � � y

� 1#� � 3#)j 0i +
2

p
6

� y
1" �

y
� 1#� � 3" j 0i :

Inserting Eq. (A.44) into Eq. (A.43), we obtain

j0; 0i ����
1 =

1
2

(f y
" � y

1# � f y
# � y

1" )( � y
� 1" � � 3" + � y

� 1#� � 3#)j 0i

j0; 0i ����
2 =

1

2
p

3
(f y

" � y
1# � f y

# � y
1" )( � y

� 1" � � 3" � � y
� 1#� � 3#)j 0i

+
1

p
3

(f y
" � y

1" �
y
� 1#� � 3" � f y

# � y
1#� y

� 1" � � 3#)j 0i : (A.45)

Three-fold degeneracy atE = � 1 + � 3 is now explained with Eq. (A.45) and
Eq. (A.40):

j 4i =
1

p
2

(� y
3" f

y
# + � y

3#f y
" )� � 1" � � 1#j 0i ;

j 5i =
1
2

(f y
" � y

1# � f y
# � y

1" )( � y
� 1" � � 3" + � y

� 1#� � 3#)j 0i ; (A.46)

j 6i =
1

2
p

3
(f y

" � y
1# � f y

# � y
1" )( � y

� 1" � � 3" � � y
� 1#� � 3#)j 0i

+
1

p
3

(f y
" � y

1" � y
� 1#� � 3" � f y

# � y
1#�

y
� 1" � � 3#)j 0i :

A.2 Details of the Perturbative Analysis around the Local
Moment Fixed Point

In this Appendix, we want to give more details for the derivation of the matrix
Wij in Eq. (4.28) which determines the splitting of the fourfolddegeneracy of the
subspace (Q = 0, S = 1=2, Sz = 1=2) of the LM �xed point at energy � 1 + � 3.
We focus on the matrix elementW12:

W12 = h 1jH 0
N j 2i = � (r )f (N ) h 1j ~Simp � ~s0j 2i :
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The strategy for the calculations can be extended to the other matrix elements
and the other subspaces, for which we add the perturbative results at the end of
this appendix without derivation. The operator ~Simp � ~s0 is decomposed into four
parts:

~Simp � ~s0 =
1
2

S+
imp cy

0#c0" +
1
2

S�
imp cy

0" c0#

+
1
2

Sz
imp

�
cy

0" c0" � cy
0#c0#

�
; (A.47)

so that W12 can be written as

W12 = � (r )f (N )
1
2

[I + II + III � IV] ;

with
I = h 1jS+

imp cy
0#c0" j 2i ;

and the other terms accordingly. With the de�nitions of j 1i and j 2i of
Eq. (4.26) we have:

I =
1

p
2

h 0j
�

� y
� 3" � 1" + � y

� 3#� 1#

�
f " S+

imp cy
0#c0"

�
�

1
p

6
f y

"

�
� y

1" � � 3" � � y
1#� � 3#

�
+

2
p

6
f y

# � y
1" � � 3#

�
j 0i :

(A.48)

With S+
imp = f y

" f # we immediately see that the terms containingf " S+
imp f y

" drop
out. The remaining impurity operators,f " S+

imp f y
# , give unity when acting onj 0i ,

so one arrives at
I =

1
p

3
[Ia + Ib] ;

with

Ia = h 0j� y
� 3" � 1" c

y
0#c0" � y

1" � � 3#j 0i

Ib = h 0j� y
� 3#� 1#c

y
0#c0" � y

1" � � 3#j 0i : (A.49)

To analyze Ia and Ib, the operatorsc(y)
0� have to be expressed in terms of the

operators� (y)
p� :

c0� =
X

p0

� 0p0� p0� ; cy
0� =

X

p

� �
0p� y

p� ; (A.50)

with the sums overp and p0 de�ned in Eq. (4.21). This gives

Ia =
X

pp0

� �
0p� 0p0h 0j�

y
� 3" � 1" �

y
p#� p0" �

y
1" � � 3#j 0i : (A.51)
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The only non-zero matrix element of Eq. (A.51) is forp = p0 = � 3:

Ia = � �
0� 3� 0� 3h 0j�

y
� 3" � 1" �

y
� 3#� � 3" �

y
1" � � 3#j 0i

= �j � 0� 3j2 : (A.52)

Similarly, the term Ib gives

Ib =
X

pp0

� �
0p� 0p0h 0j�

y
� 3#� 1#�

y
p#� p0" � y

1" � � 3#j 0i

= j� 01j2 ; (A.53)

so that, in total,

I =
1

p
3

�
�j � 0� 3j2 + j� 01j2

�
: (A.54)

The next term II = h 1jS�
imp cy

0" c0#j 2i gives zero due to the combination of im-
purity operators: f " f

y
# f " : : : with f " from h 1j and f y

# f " = S�
imp .

The third term III = h 1jSz
imp cy

0" c0" j 2i gives

III =
1

p
12

h 0j
�

� y
� 3" � 1" + � y

� 3#� 1#

�
f " Sz

imp cy
0" c0" f

y
"

�
�

� y
1" � � 3" � � y

1#� � 3#

�
j 0i ;

where the term with (2=
p

6)f y
# � y

1" � � 3# from j 2i has already been dropped. So we
are left with four terms

III =
1

p
12

[IIIa � IIIb + IIIc � IIId] ; (A.55)

with

IIIa = h 0j� y
� 3" � 1" f " Sz

imp cy
0" c0" f y

" � y
1" � � 3" j 0i ;

IIIb = h 0j� y
� 3" � 1" f " Sz

imp cy
0" c0" f y

" � y
1#� � 3#j 0i ;

IIIc = h 0j� y
� 3#� 1#f " Sz

imp cy
0" c0" f y

" � y
1" � � 3" j 0i ;

IIId = h 0j� y
� 3#� 1#f " Sz

imp cy
0" c0" f y

" � y
1#� � 3#j 0i :

(A.56)

Following similar arguments as above one obtains

IIIa =
1
2

X

p

0
j� 0pj2 ; (A.57)

where thep in
P

p
0 takes the values

p = 1; � 1; � 5; � 7; : : : � N:
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Then we obtain:
IIIb = IIIc = 0 ; (A.58)

and
IIId =

1
2

X

p

00
j� 0pj2 ; (A.59)

where thep in
P

p
00takes the values

p = � 1; � 3; � 5; � 7; : : : � N :

This gives for the third term

III =
1

p
12

[IIIa � IIId]

=
1

4
p

3

"
X

p

0
j� 0pj2 �

X

p

00
j� 0pj2

#

=
1

4
p

3

�
j� 01j2 � j � 0� 3j2

�
: (A.60)

The calculation of IV proceeds very similarly to III and one obtains

III = � IV ; (A.61)

so that we �nally arrive at

W12 = � (r )f (N )
1
2

�
j� 01j2 � j � 0� 3j2

�
�

1
p

3
+ 0 + 2

1

4
p

3

�

= � (r )f (N )
1
4

p
3

�
j� 01j2 � j � 0� 3j2

�
: (A.62)

We performed a similar analysis for a couple of other subspaces. Here we list
the results from the perturbative analysis for three more subspaces together with
the corresponding basis states.

A.2.1 Q = 0, S = 1=2, Sz = 1=2, E = 2� 1

This subspace has the same quantum numbersQ, S, and Sz as the one discussed
above, so that the details of the calculation are very similar. The di�erences
originate from the position of particles and holes in the single-particle spectrum,
which reduces the dimensionality of the subspace from four to two.

The corresponding basis can be written as

j 1i =
1

p
2

f y
" (� y

1" � � 1" + � y
1#� � 1#)j 0i ;

j 2i =
�

1
p

6
f y

" (� y
1" � � 1" � � y

1#� � 1#) +
2

p
6

f y
# � y

1" � � 1#

�
j 0i :

(A.63)
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The �rst-order corrections are given by the 2� 2 matrix

f Wij g = � (r )f (N )

"
0

p
3

4 

p

3
4 
 � 1

2 �

#

; (A.64)

with 
 = j� 01j2 � j � 0� 1j2 and � = j� 01j2 + j� 0� 1j2. Due to the particle-hole
symmetry of the conduction band we havej� 01j = j� 0� 1j; therefore, the o�-
diagonal matrix elements vanish and the e�ect of the perturbation is simply a
negative energy-shift only for the statej 2i :

f Wij g = � (r )f (N )
�

0 0
0 �j � 01j2

�
: (A.65)

This e�ect can be seen in the energy splitting of the �rst two low-lying excitations
in Fig. 4.7.

A.2.2 Q = � 1, S = 0, E = � � � 1

There is only one con�guration for this combination of quantum numbers and
excitation energy:

j i =
1

p
2

(f y
" � � 1" + f y

# � � 1#)j 0i : (A.66)

The �rst-order perturbation keeps the state in this one-dimensional subspace and
the energy correction is given by

� E = h jH 0
N j i = �

3
4

� (r )f (N )j� 0� 1j2 : (A.67)

A.2.3 Q = � 1, S = 0, E = � � � 3

The di�erence to the previous case is the position of the holein the single-particle
spectrum. The state is now given by

j i =
1

p
2

(f y
" � � 3" + f y

# � � 3#)j 0i ; (A.68)

with the energy correction

� E = h jH 0
N j i = �

3
4

� (r )f (N )j� 0� 3j2 : (A.69)

A.3 Details of the Perturbative Analysis around the
Strong Coupling Fixed Point

The main di�erence in the calculation of the matrix elementsf Wij g for this case
is due to the structure of the perturbation [see Eq. (A.10)].Furthermore, the
ground state of the SC �xed point is fourfold degenerate and the perturbation
partially splits this degeneracy, as discussed in the following.
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A.3.1 Q = 0, S = 1=2, Sz = 1=2, E = 0

This is one of the four degenerate ground states at the SC �xedpoint:

j 1i = � y
0" j 0i ; (A.70)

with j 0i de�ned in Eq. (A.25). The perturbative correction is given by

h 1jH 0
N j 1i =

1
2

� (r ) �f (N )(1 � j � f 0j4); (A.71)

which corresponds to the energy shift of the ground state:

� E1 =
1
2

� (r ) �f (N )(1 � j � f 0j4) : (A.72)

The coe�cients � f l are de�ned by the relation between the operatorsf (y)
� and

� (y)
l� :

f � =
X

l0

� f l 0� l0� ; f y
� =

X

l

� �
f l � y

l� : (A.73)

A.3.2 Q = � 1, S = 0, E = 0

This state is also a ground state in theU = 0 case:

j 2i = j 0i : (A.74)

The calculation of the �rst-order correction for j 2i gives

h 2jH 0
N j 2i =

1
2

� (r ) �f (N )(1 + j� f 0j4) : (A.75)

This means that the ground state including the e�ect of the perturbation is given
by j 1i in Eq. (A.70) and the state j 2i appears as an excited state. For a
comparison with the energy levels shown in the NRG �ow diagrams, where the
ground state energy is set to zero in each iteration, we subtract the perturbative
correction of the ground state (� E1) from the energies of all other excited states.
Subtracting this energy shift from Eq. (A.75) gives the net energy correction for
the j 2i state:

� E2 = � (r ) �f (N )j� f 0j4 : (A.76)
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A.3.3 Q = � 1, S = 0, E = � 2

The state corresponding to this subspace is given by

j 3i =
1

p
2

(� y
0" � � 2" + � y

0#� � 2#)j 0i : (A.77)

The �rst-order correction reads

h 3jH 0
N j 3i = � (r ) �f (N )

�
1
2

(1 � j � f 0j4) + 3 j� f 0j2j� f � 2j2
�

: (A.78)

Subtracting the energy correction for the ground state results in

� E3 = 3� (r ) �f (N )j� f 0j2j� f � 2j2 : (A.79)

A.3.4 Q = � 1, S = 0, E = � 4

Similarly for the state

j 4i =
1

p
2

(� y
0" � � 4" + � y

0#� � 4#)j 0i ; (A.80)

the �rst-order correction is given by

h 4jH 0
N j 4i = � (r ) �f (N )

�
1
2

(1 � j � f 0j4) + 3 j� f 0j2j� f � 4j2
�

;

and subtracting the energy correction for the ground state results in

� E4 = 3� (r ) �f (N )j� f 0j2j� f � 4j2 : (A.81)
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B. THERMODYNAMICS IN THE OHMIC SPIN-BOSON
MODEL

In this section, we describe how thermodynamic quantities can be extracted from
the �ow of many-particle levels EN (r ), which are calculated with the bosonic
NRG. Starting from the EN (r ) there is no di�erence (from a technical point
of view) between the fermionic and the bosonic case [for the fermionic cases
see, for example, Refs. (Krishna-murthy, Wilson and Wilkins 1975, Oliveira and
Oliveira 1994)]. Nevertheless, for completeness we include a brief discussion of
the technical details here. We show results for the impuritycontribution to the
entropy and the speci�c heat in the Ohmic case. The Ohmic casehas been
studied in detail in Refs. (Costi 1998, Costi and Zarand 1999) [for earlier work
on thermodynamic properties see Refs. (Leggett et al. 1987,Göhrlich and Weiss
1998, Sassetti and Weiss 1990)]. The agreement with the results from Refs. (Costi
1998, Costi and Zarand 1999) is excellent, which again con�rms the reliability of
the bosonic NRG for the investigation of quantum impurity models involving a
bosonic bath. Consider the spectrum of many-particle energiesE i of a discretized
version of the spin-boson model. The grand canonical partition function, Z =
Tr e� � (H � �N ) , reduces to

Z =
X

i

e� �E i ; (B.1)

as the chemical potential� is set to zero [we are interested in gap-less spectral
function J (! )]. Free energyF and entropy S are then given by

F = � T ln Z and S = �
@F
@T

: (B.2)

(We set kB = 1.) The impurity contribution to the entropy is

Simp = S � S0 (B.3)

whereS is the entropy of the full system andS0 the entropy of the system without
impurity.

Before we discuss the full temperature dependence ofSimp (T), let us focus
on the value of Simp at the localized and delocalized �xed points:Simp;L and
Simp;D : It is well known that Simp;L = ln 2 and Simp;D = 0 (Costi 1998, Costi
and Zarand 1999), but it might not be obvious that these values can be directly
extracted from the many-particle spectra at the �xed points.
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Figure B.1: Temperature dependence of the impurity contribution to theentropy,
Simp (T), for � =1/3, s = 1 (Ohmic case), and various values of� .

In Section 5.2.1, we already showed that the �xed point spectrum of the delo-
calized �xed point is the same as the one of a free bosonic chain, which is nothing
else but the system without impurity. This implies that for the delocalized �xed
point

E i = E i; 0 + � E; (B.4)

with E i (E i; 0) the many-particle energies of the system with (without) impurity
and � E a constant shift independent ofi . It is clear that this equation does not
hold for all levels, it is only valid for energies su�ciently below the crossover scale
to the �xed point.

Equation (B.4) directly leads to the proof of Simp;D = 0: we have ZD =
exp [� � E ] Z 0, and from this FL = � T ln 2 + F0 + � E and SL = ln 2 + S0,
corresponding toSimp;L = 2. From this discussion it follows thatSimp;L = ln 2
and Simp;D = 0 independent of the exponents in the spectral function J (! ).

For any �nite � and � , the valuesSimp;L = ln 2 and Simp;D = 0 are strictly
valid only in the limit T ! 0. Note that a proper de�nition of these zero-point
entropies requires the correct order of limits: the thermodynamic limit has to be
taken before the limit T ! 0. With the order of limits reversed, the zero-point
entropy would be equal toln dg, with dg the degeneracy of the ground state.
Although this happens to give the same values forSimp;L and Simp;D in the case
studied here, this equivalence is not generally valid. Thiscan be seen, for example,
in the NRG calculations for the single-impurity Anderson model (Krishna-murthy
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Figure B.2: (a) Scaling curves of the impurity contribution to the entropy, Simp (T),
for s = 1 (Ohmic case), and various of� ; (b) Scaling curves of the impurity contri-
bution to the speci�c heatCimp (T)=(T=T� ), for the same parameters as in (a).

et al. 1980) where the degeneracy of the ground state oscillates between 1 for even
and 4 for odd iterations when the system approaches the �xed point of a screened
spin, which hasSimp = 0. Also, any non-trivial quantum critical �xed point is
expected to have a residual entropy which is notln dg with integer dg.

In the bosonic NRG, we do not have access to the full spectrum of many-
particle energiesE i as used in Eq. B.1. Instead, the iterative procedure re-
sults in a sequence of many-particle energiesEN (r ) with iterative number N and
r = 1; :::Ns. According to the discussion in Refs. (Wilson 1975, Krishna-murthy
et al. 1980), each of the sets of many-particle energies is assumed to be a good
description of the system for a certain temperatureTN with

TN = x! c� � N ; (B.5)

with x a dimensionless constant of the order of 1, chosen such thatTN lies within
the spectrumEN (r ).

For each iteration stepN , the partition function is calculated for the temper-
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ature TN :
ZN =

X

r

e� EN (r )=TN : (B.6)

In addition, the internal energy at iteration step N for the temperature TN is
calculated as

EN =
1

ZN

X

r

EN (r )e� EN (r )=TN : (B.7)

This is the information we have for the numerical calculation of thermodynamic
properties.

One possibility to proceed is to calculate the free energyFN = � TN ln ZN for
each iteration step, and from this the entropyS = � @F=@Tvia a discrete di�er-
entiation. This procedure has been shown to give good results in the fermionic
case [see, for example, Ref. (Bulla and Hewson 1997)]. It requires, however, a
precise calculation of the di�erence of the ground state energies between subse-
quent steps; this appears to introduce some errors in the calculations within the
bosonic NRG.

Therefore, we use an alternative approach in which the entropy SN at iteration
step N for the temperature TN is calculated via

SN =
EN

TN
+ ln ZN : (B.8)

This approach avoids the discrete di�erentiation, and doesnot require the knowl-
edge of the ground state energies.

Let us now discuss the results for entropy and speci�c heat calculated with
the bosonic NRG using the method just described. Figure B.1 shows the tem-
perature dependence of the impurity contribution to the entropy, Simp (T), for
� = 1=3; s = 1 (Ohmic case), and various values of� . We observe a
crossover from the high-temperature valueSimp = ln 2 to the low-temperature
value Simp = 0 at a crossover scaleT � , which is same as the one introduced
in Section 5.2.2. The crossover scale decreases with decreasing � in agreement
with Eq. (5.14). Note the similarity, which is simply due to the relation between
Simp (T) and the �ow of the many-particle levels.

As brie�y mentioned in Section 5.2.1, the vicinity to the localized �xed point
for early iterations, which results in the high-temperature valueSimp (T) � ln 2,
does not imply localization. The value ofSimp (T) for high temperatures is due
to the fact that for temperatures T � � both states of the two-state system
contribute equally to the thermodynamics. Note also the similarity to Simp (T)
in the Kondo model: there the high-temperature phase is thatof a local moment
with both spin " and # con�gurations contributing to the entropy (a temperature
dependence ofSimp (T) as Fig. B.1 might therefore appear more natural in the
Kondo model but, of course, it is also valid here).

The scaling behavior ofSimp for �xed � = 1=3 and various� is obvious and
is shown in Fig. B.2-(a) together with the scaling curves for� = 1=5; 1=4; and
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1=2. The agreement with the exact results from the Bethe ansatz calculations in
Ref. (Costi and Zarand 1999) is very good [see Fig. 7-(a) in Ref. (Costi 1999)],
in particular for the � dependence of the scaling curves.

The temperature dependence of the speci�c heat,Cimp (T), is calculated via
Cimp (T)=T = @Simp (T)=@T. Here we cannot avoid the discrete di�erentiation
of Simp (T). The scaling ofSimp (T ) implies a scaling ofCimp (T)=T as shown in
Fig.B.2-(b). This �gure is also very similar to previous calculations [see Fig. 2
in Ref. (Costi 1998) from the NRG via mapping to the anisotropic Kondo model
and Fig. 7-(b) in Ref. (Costi and Zarand 1999) using the BetheAnsatz], and
we �nd the same characteristic features here: a linear speci�c heat / T for
low temperatures, a peak inC=T at T � T � for small dissipation � < 0:3 in
contrast to the monotonous decrease ofC=T for large dissipation� > 0:3, and a
characteristic crossing point of all theC=T scaling curves.

Similar to the NRG calculations in Ref. (Costi 1998), the thermodynamic
quantities can only be calculated on a discrete mesh of temperatures given by
Eq. (B.5). This strongly limits the resolution of the peak inC=T for � < 0:3, in
contrast to the Bethe Ansatz calculations of Ref. (Costi andZarand 1999).
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C. BEC OF AN IDEAL BOSONIC GAS WITH A ZERO
CHEMICAL POTENTIAL

In usual contexts, theoretical description of BEC in a non-interacting bosonic
gas is taken account on canonical systems, where the total number of particles
N is �xed and the chemical potential � is determined as a function ofN and
temperature T using a relation below:

N =
X

i

1
e� (" i � � ) � 1

: (C.1)

The critical temperature Tc, below which BEC occurs, is de�ned to satisfy con-
dition:

� (Tc; N ) = 0 ; (C.2)

so that, for T � Tc,
n(" i = 0)
n(" i > 0)

! 1 (C.3)

with n(" i ) = 1 =f e� (" i � � ) � 1g.
In NRG, a non-interacting bosonic bath (gas) is considered as a grand canoni-

cal system where the chemical potential� is zero and the total number of particles
N is in�nite. In such a case, we cannot use a chemical potentialas a criterion of
BEC because it is �xed to zero always. Instead, the ratio of the mean occupation
in Eq. (C.3) is directly used to distinguish BEC phase from the others.

Let us assume that a set of single particle states,

Sbec � f " i ji = 0; 1; :::; m � 1g; (C.4)

is used to construct a BEC (many-particles) state. In general, m can be any
�nite number. Now BEC for a grand canonical system with� = 0 is de�ned as1:

n(" i 2 Sbec)
n(" i =2 Sbec)

! 1 : (C.5)

At T = 0, it is obvious that the ground state has all existing particles at the level
of " = 0 and the other states with" > 0 are empty. Thus Eq. (C.5) is satis�ed
with a subsetSbec:

Sbec = f "0j"0 = 0g: (C.6)

1 See (Leggett 2001)
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For a �nite temperature T 6= 0, the mean occupationni for a single particle level
" i diverges as" i approaches zero:

lim
" i ! 0

n(" i ) = lim
" i ! 0

1
e� (" i � � ) � 1

= 1 (C.7)

with � = 0. Now we prove that, atT > 0, there are in�nitely many " i that satisfy
Eq. (C.7). (In other words, m, the dimension ofSbec, is in�nite.) Let us take an
arbitrary large integer N . For an arbitrarily large number N , there exists a small
energy" � such that

" � = kB T ln(1 + 1=N); (C.8)

and any single particle state" i smaller than " � has a mean occupation number
n(" i ) larger than N ; i.e.,

n(" i ) > n (" � ) =
1

eln(1+1 =N )
� 1 = N; (C.9)

for 0 < " i < " � . The fact that the dimension ofSbec, m, is in�nite violates the
de�nition of BEC in Eq. (C.5). Thus BEC of a non-interacting bosonic system
is restricted within zero temperature.



105

D. DETAILS ABOUT THE ITERATIVE
DIAGONALIZATION IN THE BOSONIC
SINGLE-IMPURITY ANDERSON MODEL

Let jQ; r i N denote the eigenstates ofHN that have chargeQ. One now constructs
from each of the statesjQ; r i N the following states:

jQ; r ; 0i = jQ; r i N

jQ; r ; 1i = by
N jQ; r i N

jQ; r ; 2i =
(by

N )2

p
2!

jQ; r i N (D.1)

jQ; r ; 3i =
(by

N )3

p
3!

jQ; r i N

:::

Using these states, we can form the following basis states ofHN +1 that are also
eigenstates ofQN +1 = QN + by

N bN .

jQ; r; 0i = j0; r ; Qi

jQ; r; 1i = j1; r ; Q � 1i

jQ; r; 2i = j2; r ; Q � 2i

:::

jQ; r; Qi = jQ; r ; 0i : (D.2)

Now we write the recursive Hamiltonian in the form

HN +1 = � HN + HNI ; (D.3)

with

HNI = � N +1 "N +1 by
N +1 bN +1 + � N +1 tN (by

N bN +1 + by
N +1 bN ): (D.4)
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The states in Eq. (D.2) are eigenstates ofHN .

HN jQ; r; 0i = EN (0; r )jQ; r; 0i

HN jQ; r; 1i = EN (1; r )jQ; r; 1i

HN jQ; r; 2i = EN (2; r )jQ; r; 2i (D.5)

:

:

:

HN jQ; r; Qi = EN (Q; r )jQ; r; Qi :

Now we obtain the matrix elements ofHNI between the states in Eq. (D.2). It is
straightforward to demonstrate that the only non-vanishing matrix elements of
HNI are given by

hQ; r 0; mjHNI jQ; r; mi = "N (Q � m) � r 0r

hQ; r 0; m + 1jHNI jQ; r; mi = tN

p
Q � m N hm + 1; r 0jjby

N jjm; r i N

hQ; r 0; mjHNI jQ; r; m + 1i = tN

p
Q � m N hm; r 0jjby

N jjm + 1; r i N ; (D.6)

wherehjjb(y)
N jji are the invariant matrix elements.

In obtaining Eq. (D.6), we have made use of the following results, which
follows from Eq (D.2) and Eq. (D.2):

hQ + 1; r; mjjby
N +1 jjQ; r; mi =

p
Q � m + 1: (D.7)

From Eq. (D.6) and Eq. (D.6), it is clear that, starting with t he knowledge of the
energy levelsEN (Q; r ) and the matrix elementshm + 1; r 0jjby

N � 1jjm; r i , we can
set up the matrix of HN +1 .

The actual iteration upon entering the stage(N +1) would proceed as follows.
We �rst start with the lowest allowed value of QN +1 (= 0) , and then increase it
in steps of1. Within a given Q-subspace, we construct the matrix

H (rm; r 0m0) � h Q; r; mjHN +1 jQ; r 0; m0i : (D.8)

Diagonalization of this matrix gives a set of eigenstates

jQ; ! i N +1 =
X

m;r

UQ(! ; rm)jQ; r; mi (D.9)

whereUQ will be an orthogonal matrix. The diagonalization means no more than
the knowledge ofEN +1 (Q; ! ) and UQ(! ; rm). After completing the diagonaliza-
tion for one Q, we proceed up, increasingQ in steps of 1. In order to go to
the next iteration we need to calculateN +1 hQ + 1; ! 0jjby

N +1 jjQ; ! i N +1 . Using the
results in Eq. (D.7), it is easy to verify that

N +1 hQ + 1; ! 0jjby
N +1 jjQ; ! i N +1 =

X

m<Q

X

r

UQ+1 (! 0; rm)UQ(! ; rm)
p

Q � m:

(D.10)
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