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1. OVERVIEW

The thesis presents the results of the Numerical Renormaditon Group (NRG)
approach to three impurity models centered on the issues @hpurity quantum
phase transitions.

We start from introducing general concepts of quantum phastansitions
and address the relevant physical questions of the impuritynodels (Chapter 2).
Chapter 3 consists of the technical details of the NRG, whekge discuss how the
NRG tracks down possible xed points that govern the univeral behavior of the
system at low temperature.

All the three impurity models studied show second order quausim phase tran-
sitions and quantum critical points but the levels of undetsinding of each case,
particularly to the issues of quantum phase transitions, @& quite di erent for
historical reasons. The soft-gap Anderson model (Witho aah Fradkin 1990) is
one of the most well-established cases in the contexts of ianjty quantum phase
transitions and various analytic and numerical methods exained the physical
properties of the quantum critical phase as well as the stabphases on both sides
of the transition point. Our contribution is made to the former case by analyzing
the NRG many-particle spectrum of critical xed points, with which we can see
how the impurity contribution of the thermodynamic quantities have fractional
degrees of freedom of charge and spin.

The quantum phase transition of the spin-boson model has anlg his-
tory (Leggett, Chakravarty, Dorsey, Fisher, Garg and Zwergr 1987) but most of
achievements were reached for the ohmic dissipationin the ohmic case, a de-
localized and a localized phase are separated by a KosterdiEhouless transition
at the critical coupling = 1.? The new development of the NRG treating the
bosonic degrees of freedom broadened the range of the par@mspace to include
the sub-ohmic case and, as a result, second order phase titmss were found
for the bath exponent0 < s < 1 (Bulla, Tong and Vojta 2003) as we discuss in
Chapter 5.

The bosonic single-impurity Anderson model (bsiAm) is a vgmew model and
there is no precedent work on it. Nonetheless, the NRG apprdato the bsiAm
shows that the zero temperature phase diagrams are full ofténesting physics
such as the enhancement or the suppression of the Bose-E#nstcondensation by
the impurity and the existence of quantum critical points. The works presented

1 The s =1 case wheres is the exponent of the bath spectral function.
2 for the unbiased case of = 0.



2 1. Overview

in Chapter 6 indicate the possibility that the quantum phasetransition of the
Bose-Hubbard model originates from the physics at the localtes so that the
self-consistent treatments of the local and the global prapties, for example,
dynamical mean eld theory, allow to solve the problem.

Appendice A and D show the details of the calculations that & abridged
in the main sections. Appendix B describes the thermodynans in the ohmic
spin-boson model calculated with the NRG method, which pr@s the success of
the NRG approach to the spin-boson model by showing a good agment to the
precedent result (Costi 1998). Appendix C is about the BEC dadn ideal bosonic
gas with a xed (zero) chemical potential, which is frequery mentioned in the
Chapter 6 of the bosonic single-impurity Anderson model.



2. INTRODUCTION TO QUANTUM PHASE
TRANSITIONS

This chapter aims to cover the basic ideas of quantum phaseatrsitions that are
frequently used in the main body of the thesis (Chapter 4, 5,na 6).

We start to giving the de nitions of the scaling limit and universality from the
viewpoint of classical phase transitions with an example dfie one dimensional
Ising model and introduce universal functions that represg the physics in the
vicinity of the critical points as a function of two large (maroscopic) lengthsL
(system size) and (correlation length).!

We bring those concepts de ned in the classical cases intoapium systems
to develop a universal critical theory for quantum phase tnasitions. Again the
physical properties near to the critical points are charaetrized by the universal
scaling function, of which the argument is the dimensionlesratio of two small
energy scalesT (temperature) and (an energy gap between the ground state
and the rst excitation), instead of the classical counterprts L and . We take
the two-point correlation,

C(x;t) h ~*(x;1)"*(0; 0)i; (2.1)

as an example to discuss the shape of the universal scalingdtion in the critical
phase (Section 1.2).

Finally, we enter the subject of the thesis, impurity quantin phase transitions,
in Section 1.3, where we mention the speci c issues of imptyrimodels, such
as the impurity contribution of the physical observables ath the local response
functions at the impurity site. The universal critical theay for the impurity
model is distinguished from the one for the lattice system ia few respects. For
examples, the feature of spatial correlations, one of the puartant issues of the
criticality of lattice systems, is absent (or disregarded)n impurity systems and
the quantum critical behavior reveals not in the response ta uniform global eld
H but rather in that to a local eld h coupled solely to the impurity. All the
arguments concerning the response to the magnetic eld aréevgn for a situation
where the impurity has a single SU(2) spir$ of sizeS and the conduction band
is considered as a spinful bath.

1 To be precise,L and are not treated independently but form a single argument as he
dimensionless ratioL = .



4 2. Introduction to Quantum Phase Transitions

2.1 The scaling limit and universality

The scaling limit of an observable is de ned as its value wheall corrections
involving the ratio of microscopic lengths, such as the latte spacinga, to large
macroscopic ones of the correlation length, the observation scale , and the
system size

L Ma; (2.2)

are neglected. To take a concrete form of the scaling limit,eardiscuss the manner
in which the parameterK of the Ising chainH,

H| = K i iZ+1: (23)

must be treated. The partition function and the two-point spn correlation are
exactly evaluated from the original solution of Ising (Isig 1925) as discussed
in (Sachdev 1999) and here we skip over the detail steps just write down the
results. The partition function calculated within the periodic boundary condition
is given as

X ¥

Z = expK [ 5)= Y+ 3, (2.4)

f zgi=1
with ; = 2coshK and , = 2sinhK. The two-point spin correlation has the
exact form of

X

. 1
hifi = v exp( Hy) 7 ¢
ffg
M j+ij i+ M j+ij i
- 1 2 2 1.
= M M : (2.5)
1 2

Introducing the concept of correlation length, , from the Eq. (2.5) in the limit of
an in nite chain (M !'1 ) allows a simple form to the two-point spin correlation:

h? % =(tanh K) (2.6)

It is useful for the following discussion to label the spinsat by the site indexi,

but by a physical length coordinate . So if we imagine that the spins are placed
on a lattice of spacinga, the () { where

= ja: (2.7)
With this notation, we can write Eq. (2.6) as

h?() *0)i=¢e I=; (2.8)
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where the correlation length, , is given by
} = a%lln cothK: (2.9)

The notion of the correlation length given above helps us write a universal criti-
cal theory of the Ising chainH, in the scaling limit, where the detail informations
of the nite-size system (M, K and a) are absorbed into the macroscopic lengths
and L with replacements ofM = L =aand K = Incoth %(a=) and, nally,
take the limit a! Oat xed ,L and .
We rst describe the results for the free energy. The quanttwith the nite
scaling limit should clearly be the free energy density :

F InZ=Ma

1 L
Eo L—In Zcoshz— ; (2.10)

whereEg = K=a is the ground state energy per unit length of the chain.
In a similar manner, we can take the scaling limit of the cortation function in
Eq. (2.5). We obtain

el = 4+ L D=

h*() *(0)i = Troi= ; (2.11)

The assertion ofuniversality is that the results of the scaling limit are not sen-
sitive to the microscopic details. This can be seen as the foal consequence
of the physically reasonable requirement that correlatianat the scale of large
should not depend upon the details of the interactions on thecale of the lattice
spacinga.

We can make the assertion more precise by introducing the amapt of auniversal
scaling function We write Eq. (2.10) in the form

F=&+§—ALX (2.12)

where ¢ is the universal scaling function, whose explicit value cahe easily
deduced by comparing with Eg. (2.10). Notice that the argunm of ¢ is simply
the dimensionless ratios that can be made out of the large(imr@scopic) lengths
at our disposal: L and . The prefactor, 1=L , in front of ¢ is necessary
because the free energy density has dimensions of inverseyib.

In a similar manner, we can introduce a universal scaling fation of the two-point
correlation function. We have

hA) O = (i) 213)

where is again a function of all the independent dimensionless cbmations of
large lengths and the exact form of is obtained by comparison with Eq. (2.11).
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2.2 Quantum phase transitions and quantum critical
points

Quantum phase transitions can be identi ed with any point ofnon-analyticity in
the ground state energy and the types of non-analyticity dide quantum phase
transitions into the rst and the second order. As in the clasical cases, only
second order transitions show critical behaviors near to ¢éhtransition points and
our focus shall be on the case.

A point of non-analyticity in the ground state energy and thedistance from
the point in the parameter space is quanti ed by an energy gap between the
ground state and the lowest excitation vanishing at the crital point. Consider
a Hamiltonian H (g) that varies as a function of a dimensionless couplirg

H(g) = Ho+ gH; (2.14)

whereH, and H; are not commutable in general. In most cases, we nd that, as
g approaches the critical valueg., ( g) vanishes as

(9/ig oj; (2.15)

with a critical exponent z . The value of the critical exponentz is universal,
that is, it is independent of most of the microscopic detail®f H(g). In the
vicinity of the quantum critical point (g @), the physical properties such as a
free energy densitk = T InZ and the dynamic two-point correlations of the
order parameter”?,

C(x;t) h ~2(x;t)"*(0; 0)i (2.16)

are characterized by the universal scaling function of theirdensionless ratio of
the small energy scales and T.?

As an example, we discuss the second order quantum phase sition of the
Ising chain in a transverse eld,

X
Hi@= 3 (@) 218)

|
following the calculations in (Sachdev 1999). The exact gjte-particle spectrum
is given as
"(9)=2J(1+ ¢* 2gcosk)*?; (2.19)

2 This is the analog of the large length scales of the classicadroblem, while the universal
behavior at large length scales (and L ) in the classical system maps onto the physics at small
energy scales ( and T) in the quantum system.

1 1
= ST= (2.17)
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with which the Hamiltonian in Eq. (2.18) is written in a diagonal form of

X
Hi(@) =  "«(@( i« 172) (2.20)
k

The diagonal form in Eq. (2.20) is obtained using the two coeguent transfor-
mations of the Jordan-Wigner transformatior and the Bogolioubov transforma-
tion.”

The ground state, jOi, of H,(g) has no fermions and therefore satis es

«JOi = 0 for all k. The excited states are created by occupying the single-

particle states; they can clearly be classi ed by the total umber of occupied
states and an-particle state has the form { } ::: J jOi, with all the k; distinct.
The energy gap between the ground state and the rst excitedne occurs at
k =0 and equals

(9=2J1 o9): (2.21)

Therefore the modelH, (g) exhibits a quantum phase transition at the critical
couplingg = 1, which separates an ordered state witd, symmetry broken @

1) from a quantum paramagnetic state where the symmetry remas unbroken
(g 1). The state atg = 1 is critical and there is a universal continuum quantum
eld theory that describes the critical properties in its vicinity.

We shall now obtain the critical theory for the model in Eqg. (218). We de ne
the continuum Fermi eld

(%)= P (2.22)
that satis es
f(x); Yx%g= (x x%: (2.23)

To expressH, (g) in terms of and the expansions in spatial gradients yields the
continuum Hg,

Z
_ c @’ @
He = Eo+ dx é( y@( @Q+ oo+ (2.24)

where the ellipses represent terms with higher gradientspn@d E, is an uninterest-
ing additive constant. The coupling constant inHg are

=2 J1 g); c=2Ja (2.25)

Notice that at the critical point g=1, we have =0 , and we have > 0in the
magnetically ordered phase and < 0 in the quantum paramagnet.

3 To map the Hamiltonian H, (g) with spin-1/2 degrees of freedom into a quadratic ones with
the spinless Fermi operators
“ To transform the quadratic Hamiltonian into a form whose number is conserved.
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The subsequent scaling analysis of the continuum Hamiltaam He is per-
formed in a Lagrangean path integral representation of theythamics ofHg:
yA Z 7
Z= D D Yexp( d dxL,) (2.26)
0

with the Lagrangean densityL |,

L, = yg+ E( y@ @)24. y - (2.27)
@ 2 @x @
The fact that the action L, as a universal critical theory of the modeH,, has
to remain invariant under scaling transformations, wherelamodes of the eld
with momenta between and e ' are integrated out to yield an overall additive
constant to the free energyf = T InZ, determines the rescaling behaviors of

the elements in the Lagrangean densitl, :

X~ = Xe
0 — e zl;
0 — g=2.
° = ¢ (2.28)

Accordingly, the scaling dimension of each element is givais’

dim[x] = 1
dm[] = z
dim[] = 1 =2
dim[] = 1 : (2.29)

The temperatureT, is just an inverse time, therefore has a dimension,
dim[T]=z=1; (2.30)

for the given modelH,. The parameterz is the dynamical critical exponentand
determines the relative rescaling factors of space and tim&he present modeH,
hasz =1 as it is related to classical problem that is fully isotropidn D spatial
dimensions.

The scaling dimension of the order parametéY” is quite di cult to determine
since it is not a simple local function of the Fermi eld and here we present
the result only.

dim[*?] = 1=8: (2.31)

Armed with the knowledge of the scaling dimensions, we can fpmportant gen-
eral constraints on the structure of universal scaling foreifor various observables.

5 0= ()Ml
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As an example of such considerations, let us consider the lgog form satis ed
by the two-point correlation C(x;t) de ned in Eq. (2.16):

c(x;t)y = zT* ,(T—:;Tt; ?): (2.32)

A prefactor, consisting of an overall non-critical normatation constantZ and
T, shows consistency of the scaling dimension of ti&x;t).° A dimensionless
universal scaling function | has three arguments; time and spatial coordinates
x and t and the energy gap are combined with a power ofT to make the
net scaling dimension®’. The properties of the two points correlation depends
completely on the ratio of two energy scale, that of th& = 0 energy gap to
temperature: =T. There are two lowT regimes withT | j; the magnetically
ordered side for > 0 and the quantum paramagnetic ground state for < O.
Then there is a novel continuum highf regime, T | |, where the physics
is controlled primarily by the quantum critical point = 0 and its thermal
excitations and is described by the associated continuum apotum eld theory.
Here we focus on the last regime and show the structure of theasing function
in it.

At the quantum critical point (T =0, =0 , g = ¢), we can deduce the
form of the correlation by a simple scaling analysis. As thergund state is scale
invariant at this point, the only scale that can appear in theequal-time correlation
is the spatial separationx; from the scaling dimensiom“ in Eqg. (2.31), we then
know that the correlation must have the form

1

SR T

(2.33)
at T =0, =0 . We can also include time-dependent correlations at thisuel
without much additional work. We know the continuum theory @.27) is Lorentz
invariant, and so we can easily extend (2.33) to the imaginartime result

1

Cti ) Erezgye

(2.34)

atT =0, =0 . This result can also be understood by the mapping to the clas
sical D = 2 Ising model, where correlations are isotropic with alD dimensions,
and so the long-distance correlations depend only upon theuélidean distance
between two points.

We extend the result (2.34) toT > 0 by the transformation

c ix! %sin %(c ix) (2.35)

Sdim [C(x;t)] = dim [h ,(x;t) ,(0;0)i]=1=4with dim [T]= z = 1 for the given modelH; .
" the velocity c is invariant under the scaling transformation, i.e. dim[c]=0.
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which makes a very general connection betweatl T =0 and T > 0 two-point
correlation of the continuum theoryL, (Cardy 1984). Applying the mapping in
Eq. (2.35) to the Eq. (2.34) allow us to obtain the correlatin at T > O:

1
[sin(T ( ix=c))sin( T ( + ix=c))]*®

C(x; ) T+ (2.36)
atT =0.

As expected, this result is of the scaling form in Eq. (2.32)f avhich the last
argument is zero. Itis the leading result everywhere in theoatinuum high-T (i.e.
guantum critical) region. Notice that this result has been btained in imaginary
time. Normally, such results are not always useful in undaending the long
real-time dynamics atT > 0 because the analytic continuation is ill-posed.

2.3 Impurity quantum phase transitions

We give an overview of the quantum phase transitions in impity models (Bulla
and Vojta 2003, Vojta 2006, A eck 2005), of which the detailel contexts cover
the rest of the thesis.

All our impurity models have the general form,

H=Hp+ Himp; (2.37)

whereHy, contains the bulk degrees of freedoimand Hiy, contains the impurity
degrees of freedom, e.g., one or more quantum spins, togethéeh their coupling
to the bath, which typically is local in space.

The physical properties relevant to the impurity quantum plase transition are
classi ed to two categories; one is the impurity contributbn to the total system
and the other is the local quantity at the impurity site.

In the former case, a physical observabla is de ned to be the change in
the total measured value ofA brought about by adding a single impurity to the
system. Each such contribution can be computed from an exmson of the form

hAiim, = hAi hAI |
Tr(Ae M) Tro(Ae M) (2.38)

where Try means a trace taken over an impurity-free system.
For example, the impurity contributions to the entropy and the speci c heat
are obtained as (Krishna-murthy, Wilkins and Wilson 1980)

; _ @imp .
S|mp - @T )
) _ @Fimp .
Cip = T o7 (2.39)

8 The bulk systems generically are interacting but, under cetain circumstances the self-
interaction is irrelevant and can be discarded from the out®t.
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Here,Fiyp is the di erence between the total Helmholtz free energy ohe system
with and without the impurity:

z
Fip = TINZimp =Tln ?"; (2.40)

with
Z=Tre ", Zo=Tre "o (2.41)

In general, zero-temperature impurity critical points carshow a non-trivial resid-
ual entropy [contrary to bulk quantum critical points wherethe entropy usually
vanishes with a power lawS(T) / TY]. The stable phases usually have the im-
purity entropy of the form Sy, (T ! 0) = In g where g is the integer ground
state degeneracy, e.gg = 1 for a Kondo-screened impurity andy = 2S + 1 for
an unscreened spin of siz8. At a second-order transition,g can take fractional
values (Andrei and Destri 1984, Bolech and Andrei 2002, Gaslez-Buxton and
Ingersent 1998).

Another quantity of interest is the impurity contribution t o the zero- eld
magnetic susceptibility, given by

) _ @Fimp
imp —
@H H=h=0
where the uniform and local magnetic eld,H and h, enter the Hamiltonian H

in Eq. (2.37) through an additional term (Ingersent and Si 202) °,
" #

X H X
Hmag = (H + h)S* + > c ‘c (2.43)
k

(2.42)

For an unscreened impurity spin of sizeS, we expect i, (T ! 0) = S(S+
1)=(3T) in the low-temperature limit - note that this unscreened morant will be
spatially speared out due to the residual coupling to the bat A fully screened
moment will be characterized byT i,, = 0 (Gonzalez-Buxton and Ingersent
1998, Vojta 2006). In the presence of global SU(2) symmetrihe susceptibility
imp does not acquire an anomalous dimension at criticality, inonitrast to jo¢
below, because it is a response function associated to thengerved quantity
St (Sachdev 1997). Thus we expect a Curie law
lllm0 imp (T) = %; (2.44)
where the prefactorGy, is in general a non-trivial universal constant di erent
from the free-impurity value S(S+1) =3. Apparently, Eq. (2.44) can be interpreted

9S?andc, ? o represent the spin of the impurity and the conduction electrons, respec-
tively.
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as the Curie response of a fractional e ective spin (SachdeBuragohain and
Vojta 1999) - examples are e.g. found in the pseudo-gap Konamdel and in the
Bose Kondo model (Vojta 2006).

An important example of the local quantities, i.e., the stat local sus-
ceptibility o, naturally comes up from the eld-dependent Hamiltonian
Hmag (Ingersent and Si 2002).

| — @Fimp .
@~ H=h=0

(2.45)

In an unscreened phase we have,. / 1=T asT ! 0. This Curie law de nes
a residual local momentm,. at T = 0, which is the fraction of the total, free
uctuating, moment of size S, which is remained localized at the impurity site:

lim  10c(T) = (2.46)
A decoupled impurity hasmZ, = Gy, = S(S + 1)=3, but a nite coupling to
the bath implies m2. < Gn,. The quantity my,. turns out to be a suitable
order parameter (Ingersent and Si 2002) for the phase tratisns between an un-
screened and screened spin: at a second-order transitionahishes continuously
ast! O . Here,t = (r r¢)=r. is the dimensionless measure of the distance
to the criticality in terms of coupling constants, witht > 0 (t < 0) placing the
system into the (un)screened phase. Thug, .. is not pinned to the value of
S(S+1)=3fort< O(in contrast to T inp).

An important observation from the above analysis on the impity and local
susceptibility is that the quantum critical behavior reveds itself, not in the re-
sponse to a uniform magnetic eldH, but rather in that to a local magnetic eld
h coupled solely to the impurity.

Given that the local eld h act as a scaling variable, a scaling ansatz for the
impurity part of the free energy takes the form,

Fimp = T £(9T ¥ ;hT ®); (2.47)

where the coupling coe cients g measures the distance to criticality atg = g
and h is the local eld. is the correlation length exponent which describes the
vanishing energy scale *°:

Iig @i (2.48)
With the local magnetization M. = hS,i = @ imp =@hand the correspond-
ing susceptibility 1o,c = @Fimp=(@J* we can de ne critical exponents as

10 The energy gap between the ground state and the rst excitaton
1 Note that there is no independent dynnamical exponent z for he present impurity models,
formally z=1. See Eg. (2.15).
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usual (Ingersent and Si 2002, Vojta 2006):

Mioc(@ <ge; T=0;h! 0) / (o O ;
c(@>9T=0) / (9 ) ;
Mioc(9= G T=0) / j hj*";
oc(@=0:T) /1 T %5
(3= G T=0;1) / j!j Ysgn(): (2.49)

The last equation describes the dynamical scaling of the lcsusceptibility.

In the absence of a dangerously irrelevant variable, thereeaonly two inde-
pendent exponents. The scaling form in Eq. (2.47) allows tceedve hyper-scaling
relations:

1 x 1+x

= 2+ = = :

2X 1 x

Furthermore, hyper-scaling also implieg = y. This is equivalent to so-called=T
scaling in the dynamical behavior-for instance, the localyshamic susceptibility

will obey the full scaling form (Sachdev 1999),

(2.50)

B, .
R

which describes critical local-moment uctuations, and tle local static suscepti
bility follows

XnT)= : (2.51)

B T

00 - 2 .

oc(T) = |1 2 9 & (2.52)
Here, = 1 x is a universal anomalous exponent, and ., are universal

crossover functions (for the specic critical xed point), whereasB;., are non-
universal prefactors.
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3. NUMERICAL RENORMALIZATION GROUP
APPROACH

3.1 Kondo problem and invention of NRG

Wilson originally developed the numerical renormalizatio group method (NRG)
for the solution of the Kondo problem (Wilson 1975). The hisiry of this prob-
lem (Hewson 1993) goes back to the 1930's when a resistancaimim was
found at very low temperatures in seemingly pure metals (dedds, de Bor and
van den Berg 1934). This minimum, and the strong increase ofi¢ resistance

(T) upon further lowering of the temperature, has been later fowl to be caused
by magnetic impurities (such as iron). Kondo successfullyxplained the resis-
tance minimum within a perturbative calculation for the s-d (or Kondo) model
(Kondo 1964), a model for magnetic impurities in metals. Hosver, Kondo's re-
sult implies a divergence of (T) for T ! 0, in contrast to the saturation found
experimentally. The numerical renormalization group metbd, where the concept
of poor man's scaling (Anderson 1970) is adopted into the nwarical diagonaliza-
tion procedure, succeeded to obtain many-particles speatwith extremely high
energy-resolution and to explain the nite value of resistace (T) for T ! 0.
The detailed strategy is discussed in the following section

3.2 Summary of the Basic Techniques

The fact that a proper description of T ! 0 limit is achieved only after ther-
modynamic limit (N !'1 ) is taken into account makes it di cult for the usual
numerical approaches on impurity models to pursue th& ! 0 limit. For ex-
ample, substituting a continuous band with a nite set of digrete states yields
a nite size of mesh " in energy-space, with which one can describe thermody-
namics of the continuous system only for the temperatur@ larger than ". In
this sense, a given temperatur@ makes a criterion for discretization,

T (3.1)

Assuming that an impurity couples to an electronic bath witha band-width
D, the number of degrees of freedom of the discretized systei)(is roughly

estimated as D >
N/ — ?: (3.2)
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Brute-force technique holds good untit 10 3D(N  10%) and discarding some
of electronic states, so callettuncation, is indispensable to proceed calculations
into a lower temperature.

Let us assume that we reduce the system-size frafh N to N=2 N=2 by
discarding the high-energy states, which are not stirred bthermal- uctuations
in given temperatureT. We can invest the surplus degrees of freedom into the
low-lying spectrums and improve the energy-resolution irhe small energy-scale.
With the additional elements, the new Hamiltonian produce®N of many-particle
states which are more concentrated on the low energy-scatenpared to the pre-
vious case. The critical point is how to include extra degreaf freedoms for low
energy-scale in the existing spectrum. In general, addingew conduction elec-
trons can break the symmetry of the previous system so thatlahe eigenstates
are mixed up to construct a new set of eigenstates. Now, sexerrors can occur
if we lose some of the eigenstates of the previous system wiitlincation. To get
around the trouble, Wilson introduced two sophisticated sps into the numerical
renormalization group method:

logarithmic discretization
iterative diagonalization of a semi-in nite chain

The rst one is to discretize the energy-space with a logatimic mesh and select
a discrete set of electronic degrees of freedom for numekidegonalization. The
reason why the mesh is logarithmic is discussed in Sectio2.3.. The second step
is to add new degrees of freedom without touching the electric con gurations
at the impurity-site. In these schemes, we can proceed thesrations avoiding
arti cial e ects due to truncation and obtain the many-part icles spectra with an
arbitrary ne mesh ", which makes it possible to simulate the thermodynamics
of a continuous system for an arbitrary low temperaturel’ with a discretized
band.

3.2.1 Logarithmic discretization

The Hamiltonian of the conventional single-impurity Andeson model (Wilson
1975, Hewson 1993) is given by

X
H = "f fylf 1 + Ufyluf 1"fy1#f 1#
X X
GG+ V()P e Fgfg (3.3)
k k

where thecl((y) denote standard annihilation (creation) operators for bath states

with spin  and energy"y, the f (yl); those for impurity states with spin  and
energy"s. The Coulomb interaction for two electrons at the impurity ste is given
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by U and the two subsystems are coupled via an energy-dependepbhdization
V(")
The Hamiltonian in Eq. (3.3) can be written into a form which s more con-

venient for the derivation of the NRG equations:
X

H = "f fylf 1+ Ufyl--f 1"fy1#f 1#

X Z1 X Z1
+ d'gMa a + d'h(") f¥;a +a'f ; ;(3.4)

1 1
where we introduced a one-dimensional energy representattifor the conduction
band with band cut-os at 1, dispersiong(") and hybridization h("). The
band operators ful ll the standard fermionic commutation wles a ;aoo0 =

" ") o
The Hamiltonian in Eqg. (3.3) is equivalent to the Hamiltonian in Eq. (3.4)
when we selecg(") and h(") to satisfy the following condition:

@Cx) n — n n — 1 .
@h( ()%= V() (") = = ( x); (3.5)
where" (x) is the inverse ofg("), i.e.

"(9(x)) = x; (3.6)

and (") is the density of states for the free conduction electrons (#a, Pruschke
and Hewson 1997).
As a rst step of discretization, we divide a conduction bandnto N -intervals

flng,

d" ! d"; (3.7)

with I, =["n;"+1]; (n=0;1L:25N 1, "= 1and"y =1) and replace the
operators of conduction electrons with the Fourier componés in each interval
I nsy l Z
(Y?n = p? d" a.(.;y)e 12p "j=th . (3.8)
n In

with d, = j"h+1 "njandp=0;1;2;3; . Atthe end, we drop all the non-zerq-
terms and write the Hamiltonian only with the zero-th Fourie components,agy;)n ,
in each interval. This, so calledo = 0 approximation, is the rst approximation
in NRG.
Let us look into the hybridization and the kinetic term of the Hamiltonian to
check the validity of the approximation. The hybridizationterm is given as
X
Hpyb = d"h,fY, a + hic (3.9

n In
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Assuming that h(") is constant in each intervall ,,
h(")= h, = const: ; "2 |,: (3.10)

makesHyy, in Eq. (3.9) consist of only the p=0 Fourier componentsfag ., g.
thb = hnf y]_ d'a- + h:c: (311)

= p—fY, d"  ag, €21 4+ he
< pp n q
= hy dnfY, agn + hic:

n

The energy-dependence o¥ (") and (") is fully attributed to the inverse-
dispersion function"(x)(= g (x)) such that

@x _ 1

By = VO C00); (3.12)

with "(X) 2 ["n;"n+1]- Thus there is no approximation up to this point.

The kinetic term of Hamiltonian with full Fourier componentsfaE)y;)n gis

X x £
Hiinetc = d" gn(")aY a
n In 7
X X oaX "o (M e 129 'Sty &2d 'i=h
= d_ d" gn( )ap;n € g :n e
n g It
X X 1
= d_ag;n aO;n | d" gn(")
n N n
X X 1X z
+ d_ a%;n 2N d" gn(")
n n p60 'Z”
X X 1 X o0 iizd
¥ dn CHE d" gn(")e P 1T
n n p60 7 In
X X 1 X i2q i"izd
+ d_ a%)/;n aq d gn(")eI a4 1=
n n 60 In 7
X X 1 X X ok i
+ a a%;n Ap+k;n d" g (") T (3.13)
n " pso k60 In

Neglecting the last three terms in the above Hamiltonian ragtes the full Hamil-
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tonian in Eq. (3.3) into a form:

X
H = "f fylf 1 + Ufyluf 1"fy1#f 1#
X X X X p
+ @b, Boin + hy do(f”; @0 + @, f 1)
X X' X "
+ n@ .0 8pin s (3.14)
n péo
with
1 Z
hy = " ("); (3.15)
n In
" Z Z.
g n+1
n = R1n+1 n (II )’ d" = d":
TTa(Y

Disregarding the last term of Eq. (3.14) that is completelyrrelevant to the others
keeps only thep = 0 Fourier components in the Hamiltonian:

X
H = "f fylf 1 + Ufyluf 1"fy1#f 1#
X X X X p__
+ @ 8o + hy da(fYy @ + @, f 1)
X " n
= "f fylf 1+ Ufyluf 1"fy1#f 1#
X X X
+ na%;nao-l_ (fylf0'+'f(§lf 1);
n
(3.16)
with
1 X p__ X
fo = P= h, dnao;n = Pp= hnao;n;
0 0 n
X
0o = h2: (3.17)
n
(3.18)

The validity of the approximation can be examined by companig the coe cients
of the p = 0 Fourier component to the otherp 6 0 terms:

R s
gﬁq | d"[g(")e i2Kk j"j=dn
0, d90)

In

Ak:n (3-19)

with p q=k60.
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Assuming a linear dispersiom(") / "*,

R L
du n e i2k j"j=dn
Ak’n = In R

I'n

"n+1 g e i2kj'j=d
‘n R

[— n
" n+l non
T
e i2K" n=dn n 1 "

n+ n
= . : 3.20
i k un+1 + ||n ( )

Thus, jAn] is proportional to the interval-length d, and inverse-proportional to
the frequency di erencejp ¢ and the mean-energy,:

. . _.ghd o dy 1

Ankl = =l ——; 3.21

JAnk] = ] ROJ TR (3.21)
with d, = "hs1 "nh and ", = ("h+1 + "n)=2. The inverse-proportional factor

15p g makes slow-varying terms more dominant than fast-modulatg ones.

Another observation is that jgP9=¢’%j is proportional to d,=",, which makes
the type of discretization as a crucial point. Let's assumehtat we discretize a
continuous band with a uniform mesh,

d, = D=N = const;; (3.22)

with the number of divisionsN and the band-width D. Now, jgt=cf°j becomes
in nitely large as ", approaches to zero ang = 0 approximation fails at™ 0.
The alternative way is to makejgP=¢f°j energy-independent:

. . "nl
jgPo=f%/ " . = const; (3.23)
n
with ", = d,. Eq. (3.23) lets the energy-mesh uniform in a logarithmic ate.
(In ",)= const: In (3.24)
Here we introduce a control parameter for discretization. In ! 1 limit, the

Hamiltonian in Eq. (3.16) recovers the original Hamiltonia in Eg. (3.3) since
Ii'ml jgPo=¢°j = 0: (3.25)

According to the historical precedents, values of are mostly2 5, with which
one needs to divide a band D;D] into about 40-sectors @ “° 10 ©) or 20
sectors 6 ° 10 ©) to reach the energy scald D 10 ©. Accordingly, the
size of Hamiltonian matrices become4*© or 4?02

1 More general cases involve complicate integrand in Eq. (39) but we believe that the same
arguments as followings can be applied to the cases, too.
2 All these numbers refer to fermionic systems.
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NRG deals with those many electronic degrees of freedom in artain se-
guence (iteratively). How do we distribute the huge number foelectrons into a
sequence of diagonalization steps? How can one describedbeelations among
the electrons in di erent steps? Section 3.2.2 is devoted #mswer the questions.

3.2.2 lterative diagonalization of a semi-in nite chain

Let us start from the Hamiltonian with p=0 Fourier components only.

X X X
H = " TR R VL ST Y R BEPE 3 Bn
X n
N p_o (FY, fo + 0 1) (3.26)
with
1 X
fO = ﬁi hnan )
X O
- h2: (3.27)

n

Now we drop the indexp (= 0) from the conduction operators agy3n ! aﬁy)).
The well-known Lanczos algorithm for converting matricesat a tridiagonal form
maps the Hamiltonian in Eq. (3.26) into a semi-in nite chain

X
H o= " £ f 4 +UPYLf pfVf s P o (FY fo +F0F 1)
X X h [
+ WY o () faen + T2 o) (3.28)

n

where operatorsf ) (n = 1;2;::) are represented as a linear combination of
conduction operatorsaf%’) by a real orthogonal transformationU (UTU = UUT =
fn = Umam : (3.29)
m

The parameters of the semi-in nite chain are calculated recsively with the
relations (Bulla, Lee, Tong and Vojta 2005),

"m = nUrfm ;
2 X1 n 2
tm = [( n m)Umn tm lUm 1n] ; (3-30)

n

1
t [( n "m)Umn tm 1Um 1n];
m

(e
3
T
AN
)

]
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starting with the initial conditions,

h
Un = pL_:
X 0
"o = NUES (3.31)
n
Un = ti(n "0)Uo:
0

Before discussing the iterative diagonalization procedey we mention the impor-
tant consequences of the mapping to a semi-in nite chain.

i) The coe cients f",;t,g show an exponential decay for large n.

"ol Mt 2 (3.32)

i) The annihilation(creation) operator of the n-th chain-site £ can be ap-
proximated as a nite sum ofal) instead of the in nite one.

b3
fY = U (8 + (1))
m=0
Unn (@5 +( 1)"6)) (3.33)

We will use the two results with discussing the details of theuncation procedure.

Let us de ne a nite size of Hamiltonian from the semi-in nite chain in
Eq. (3.28)

X D X
HN = "f fylf 1 + Ufyluf 1"fy1#f 1#+ _0 (fyl fo +fgf 1)
" #
X X X 1
+ TR CEE N S (R0 PYCTIE S ROVER PN (3.34)
n=0 n=0

3 M2-Fermions, ":Bosons
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The semi-in nite chain is solved iteratively by starting from Hy and successively
adding the next site.

p_X X
Ho = Himp+ o (Y fo +f5f 1)+"0 fJfo
X X
H1 = H0+t0 (fgfl +f])_/f0)+"1 f])_/fl
X X
Ho = Hy+ty (f{f, +fJf)+" fJf, (3.35)
X
H3 = H2+t2 (f%/fg +f:¥f2)+"3 f?):fg
Hyea = Ha+tn (FY fnva +f340 fn )+ "Na fla fne

To prevent the rapid growth of the Hilbert space, it is indisgnsable to discard
some of eigenstates before including an additional condigot site to the Hamil-
tonian. Let us assume that the Hamiltonian of theN  1-th iterative step, Hy 1,
yields M of eigenstates,

Hy 4 VW Di= N D) (N D (3.36)

n
with n=1;2;::::M.
The matrix representation of a new HamiltonianHy is based on the product
states
= ™ Yij omi; (n=1;205M; m=1;200); (3.37)
wherefimijm = 1;2;:::;1g corresponds to a basis for a new site. In fermionic
cases

j o= joi;
i = fY.joi;
j# = f),o0i;
jU#o= fr.f).joi: (3.38)
The matrix elements of the new HamiltonianHy is
h SedHnd Wi = mmimih § PjHy o & Y+ vh & 25 & Yibmiey fy jmi
+ ty h @ ViYL § O VihmGfy jmi
+ ty 1h & Djfn 1§ N YibmGfY jmi: (3.39)
withj & Yi=j N Y j miandjmi2f i;j"i;j#i;j" "#g.

In NRG, we truncate the matrix of Hamiltonian by keeping the rst Ng  Ng
elements out of theM M ones and discarding the remnants.
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The truncated Hamiltonian gives a valid result (low-lying pectrumsf Er(]N)g)
only if the o -diagonal elements forjn n9 > N ¢ are negligibly small compared
to the diagonal ones:

h fadHN] i h o iHN i (3.40)
for jn  n9 > N. Equivalently,
ty h & DY N DinmGfy jmi EN D4t hmjfdfyjmi (3.41)

forjin n§y>Ns.

Now, we check the order of magnitude of each element in Eq.43). The
rst result in Eq. (3.32) tells us, for a givenN, ty 1 and "y are same in order of
magnitude:

tN ; "N N=2: (342)

Two new elementsfmjf{ fy jmi and km‘]fﬁ,y)jmi, are order of unity:

it} fy jmi 2 f 0;1;2g; (3.43)
tmYfy jmi 2 f 0;1g:

To make simple explanation, we replac&{" » to EN P and check the in-
equality (3.41). SinceEf\l 2 corresponds to the rst excitation-energy of the
Hamiltonian Hy %, its energy-scale has to be similar tby ; andty 1 in order
of magnitude.

ShEE (3.44)

From Eq. (3.42), Eq. (3.44) and Eg. (3.44), we can conclude dh the inequal-
ity (3.41) is satis ed (or truncation is allowed) if we can nd an integerNs smaller
than M such that

h Vi L ™Y g (3.45)
for Ns< jn n§Y<M . To nd a proper N, we use the result in Eq. (3.33). The
nite summation in Eqg. (3.33) begins with m = i and stops atm = f, which

meansfy 1. involves the single-particle(hole) operatorsa,, (b ), with energy
m Ssmaller than ; and larger than ;.

t< m< ; for i<m<f (3.46)
Thus, the transition amplitude h & Yjf} .. j & i becomes e ectively zero
for

ES DENM B> MY (3.47)

“ To be precise,E§N Y is the energy-di erence between the ground state and the rg excited
one.
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and the subspace of the full HamiltoniarH with energy O N Y (N1

|
can be e ectively described by a truncated HamiltoniarHy (NsI  Ngl) whereNg
is de ned to satisfy

Eq Y25 (3.48)

(N 1)
|

The energy cuto
for large N (> 10),

of the operatorfy ;. shows exponential decrease and

NDyp Ne2s (3.49)

If isvery close taol, the cut-o does not change so much with iterations but stays
at the initial cut-o (band width) D and there is very little room for truncation.
Alarge (1) makes computation easy but we lose too much information with
logarithmic discretization (or p = 0 approximation).® Optimal values of can
be di erent according to the kind of models and also to the typ of physical
properties to be calculated. For examples, physics at the@mnd-state are usually
obtained with a large value of(  5) whereas relatively small(  2) is demanded
to investigate temperature-dependence of (thermo)dynagal quantities.

3.3 Flow diagrams and Fixed points

In analytic RG approach, the renormalization group is a mappg R of a Hamil-
tonian H (K ), which is speci ed by a set of interaction parameters or colipgs
K = (Kjy;Ky; ) into another Hamiltonian of the same form with a new set of
coupling parametersK %= (K9, K9;:::). This is expressed formally by

RfH(K )g= H(K9; (3.50)

or equivalently,
RfK g= K© (3.51)

In applications to critical phenomena the new Hamiltoniang obtained by remov-
ing short range uctuations to generate an e ective Hamiltmian valid over larger
length scales. The transformation is usually characterideby a parameter, say

, Which speci es the ratio of the new length or energy scale the old one. A
sequence of transformations,

K=R (K); K®= R (K9; K R (K%9; etc: (3.52)

generates a sequence of points or, wheres a continuous variable, arajectory
in the parameter space .

% In actual calculations, truncation is controlled by keeping the number of states constant.
6 see Section 3.2.1
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In numerical renormalization group approach, RG-transfanation corresponds
to a mapping of a iterative HamiltonianHy into Hy 1

Hn+t = R(Hn) X X (3.53)

Ha +tn (F) fner +F00 )+ "na flar Fnes

Including truncation-procedures, which keep the dimensanoof the iterative Hamil-
tonian Hy constant’, de nes R as a mapping between the points in a space of
Ns Ng - matrices.

A xed point, one of the key concepts of the renormalization igup, is a point
K which is invariant under the RG-transformation.

R(K )= K (3.54)

In the NRG method, a xed point K is an invariant Hamiltonian H under the
transformation in Eqg. (3.53) and the iterative HamiltonianHy converges into the
xed point H :°

H = Ilim Hy: (3.55)

N1

We write the xed point Hamiltonian H interms of Ng Ng matrix:

s
H = E,.h i (3.56)

n=1
wherej i and E,, are the eigenstates and eigenvalues ldf so that
Hj .,i=E.,; (n=1;:Ng): (3.57)
Using the eigenbasis in Eq. (3.57Ky can be written as
Ws s
Hy = h(Nj ih (3.58)

n=1 m=1
Inserting Eq. (3.56) and Eg. (3.58) to Eq. (3.55) gives:

lim hN) =0 foralln 6 m: (3.59)

N1

In actual calculations, the eigenstates off in Eq. (3.56) is obtained itera-
tively and each of iteration yields a diagonalized Hamiltoan Hy on the eigen-

" dim[Hn ]= Ns for every iteration
8 Precisely, the Eq. (3.53) is a de nition for stable xed points only.
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basisfi Vig.

X 0); (0); 0);
Ho = O] Pin O]

XI 1); 1); 1);
Ho= ) Pin O

n

n=1

Hy = EMj Mih V]
n=1

HN+1 - Er(1N+l)j r(1N+l) Ih £N+1)j (360)
n=1

whereHnmj ™i=EMj Mi; m=0;L::N+1 andn=1;::Ny).
The iterative Hamiltonian Hy approaches to the xed pointH as the eigen-
statesfj SN)ig converges to constant state§ | ig:

Jim j Wi=j i (3.61)
forn=1;::; Ns.

Once the iterative Hamiltonian is very close to a xed point,the mapping R
hardly a ects the structure of Hamiltonian but changes the werall energy-scale
as .°

A sequence of transformations gives

Hnsi = R (Hy) = Hy+ O(=N)
Hns2 = R (Hys1)= 2 Hy + O(1=N)
Hnss = R (Hyns2)= 3 Hy + O(1=N)

(3.62)

If we de ne an renormalized HamiltonianHy where overall energy scale is divided
by M, (Hv=Hn &)

HN+1 = HN + O(1=N)
Hnee = Hy + O(1=N)
Hn+s = Hy + O(1=N)

(3.63)

9 In fermionic (bosonic) NRG, = 1"~ (1=
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Figure 3.1: Many particle spectrums of Soft-Gap Anderson Model: Thedbw
seven levels for given quantum numb@rs 0 andS =1=2. :fEM) jn=1:2::7g

Now, convergence ofj ,ﬁN)ig directly gives convergence of renormalized eigen-

values Er(]N):

: (N) — : :
NIl!gn E,’ = constt E,.; (3.64)

where
(N)j- (3.65)

n

Huj V1= EQV)

n

Since it is more convenient to nd xed points with the renormalized Hamil-
tonian, Hy, we introduce the scale factor into the numerical procedure and
obtain the eigenstates oHy rather than that of Hy. In a formal expression,
NRG transformation is written with Hy:

R ||(HN) (3£6)

HN+1

1
= = Hy+tn  (F§ fve #10a fn )+ " Tl T

with Hy = Hy= N, thn = In= N, "N+L = "N+ = N, Eq (366) is obtained with
dividing both sides of Eq. (3.53) by N*1.

The NRG ow-diagram shows many-particles spectrumBEr(]N )g (vertical axis)
as a function of the iteration numberN (horizontal axis). In Fig. 3.1, we observe
two at regions, (N > 300and 50< N < 200, where f E,(]N)g are almost inde-
pendent onN. For N > 300 fE,(]N)g satis es the condition in Eq. (3.64), owing
(converging) to a xed point, in particular, a stable xed point. The other region
(50 < N < 200, showing another constant structure of many-particles iels,
also represents a xed point but appears (survives) in the ite range of energy-
scale. This is called an unstable xed point as distinguisloefrom the former
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case. Summarizing,

R(Hy) = Hy + O(1=N) K for N > 300 (3.67)
R(Hy)= Hy + O(1=N) J  for50< N < 200 (3.68)

whereK andJ are stable and unstable xed points, respectively.

In most of RG approaches, xed points themselves are impoméobjects for
investigations. Furthermore, when a model Hamiltonian shves more than one
xed point in the energy or parameter space, correlations aomg the xed points
are the most crucial points to understand the static/dynamtal mechanisms of
the model.
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3. Numerical Renormalization Group Approach
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4. SOFT-GAP ANDERSON MODEL

4.1 Introduction

The Hamiltonian of the soft-gap Anderson model is given by
X X X
H =" fYf + UfXf.flf,+ "o & +V  (flo +cf)  (4.1)
k k

This model describes the coupling of electronic degrees @egdom at an impurity
site (operatorsfy(y) to a fermionic bath (operatorscl((y)) via a hybridization V.
The f -electrons are subject to a local Coulomb repulsiod, while the fermionic
bath consists of a non-interacting conduction band with djgersion"y. The model
EqQ. (4.1) has the same form as the single impurity Anderson rdel (Hewson 1993)
but for the soft-gap model we require that the hybridizationfunction

X
tH=Vv2 (" (4.2)

k

has a soft-gap at the Fermi level,
thH= jti5 (4.3)

with an exponentr > 0. This translates into a local conduction band density of
states (! ) = oj!j" at low energies. The power-law density of states was rst
introduced for the Kondo model (Witho and Fradkin 1990). In contrast to the
usual Kondo model, where conduction-electrons with a nore density of states
at the Fermi energy form a Kondo-screening state fof ! 0, a gap vanishing
at the Fermi energy brings about a non-trivial zero temperatre critical point at

a nite coupling constant J. and the Kondo e ect occurs only forJ > J.. The
existence of the critical point was derived using a generadition of the poor-
man's-scaling method for the density of states given in Edq4.3).

Jr = (D%ED)J° J+JWUCD" r)E=D (4.4)

In addition to the xed points at J =0 and 1 , there is a new infrared unstable
xed point at

Jo = r=CD' (4.5)
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Figure 4.1: T =0 phase diagram for the soft-gap Anderson model in the particl
hole symmetric case (solid ling, = 10 3, "; = 05 10 3, conduction band
cuto at -1 and 1) and the p-h asymmetric case (dashed lines 0:4 10 3);
measures the hybridization strength! )= j! |’

with neglecting terms beyondl ?. This result was con rmed by a large degeneracy
technique (Witho and Fradkin 1990). For J > J ., the Kondo temperature Ty
was found to vanish atJ. like

To jJ JgF (4.6)

Extensive NRG studies on the single-impurity Anderson modevith power-law
density of states were devoted to describe the physical pregies of the three
guantum phases, local-moment, strong coupling and quantuanitical phases. We
now brie y describe the results (Chen, Jayaprakash and Krsa-Murthy 1992,
Gonzalez-Buxton and Ingersent 1998, Bulla, Pruschke and Wson 1997, Bulla,
Glossop, Logan and Pruschke 2000).

Figure 4.1 shows a typical phase diagram for the soft-gap Aedson model. In
the particle-hole symmetric case (solid line) the criticatoupling . diverges at
r= % and no screening occurs far> 1=2. No divergence occurs for particle-hole
asymmetry (dashed line).

Due to the power-law conduction band density of states, alaely the stable LM
and SC xed points show non-trivial behavior. The LM phase hathe properties
of a free spin% with residual entropy Sinp = kg In 2 and low-temperature impurity
susceptibility im, = 1=(4kgT), but the leading corrections show -dependent
power laws. The p-h symmetric SC xed point has very unusual rpperties,
namely Smp = 2rkg In2, imp = r=(8kgT) for 0 < r < % In contrast, the
p-h asymmetric SC xed point simply displays a completely seened moment,
Simp = T imp = 0: The impurity spectral function follows an! " power law at
both the LM and the asymmetric SC xed point, whereas it diveges ad " at the
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symmetric SC xed point [This peak can be viewed as a gendrzation of the
Kondo resonance in the standard cage = 0), and scaling of this peak is observed
upon approaching the SC-LM phase boundary (Logan and Glogs&000, Bulla,
Pruschke and Hewson 1997, Bulla et al. 2000).]

At the critical point, non-trivial behavior corresponding to a fractional mo-
ment can be observedSi, = ksCs(r), imp = C (r)=(ksT) with Cs;C being
universal functions ofr. The spectral functions at the quantum critical points
display an! " power law (forr < 1) with a remarkable pinning of the critical
exponent.

Apart from the static and dynamic observables described abe, the NRG
provides information about the many-body excitation spectm at each xed
point. The non-trivial character of the quantum critical paints are prominent in
this case, too. For the strong-coupling and local-moment ed points, a detailed
understanding of the NRG levels is possible since the xed b can be described
by non-interacting electrons. Intermediate-coupling xe point at the quantum
critical points have a completely di erent NRG level strucure, i.e., smaller de-
generacies and non-equidistant levels. They cannot be casto a free-particle
description.

In this chapter, we demonstrate that a complete understandg of the NRG
many-body spectrum of critical xed points is actually pos#le, by utilizing renor-
malized perturbation theory around a non-interacting xedpoint. In the soft-gap
Anderson model, this approach can be employed near certaialwes of the bath
exponent which can be identi ed as critical dimensions. Usg the knowledge
from perturbative RG calculations, which yield the relevah coupling constants
being parametrically small near the critical dimension, wean construct the entire
guantum critical many-body spectrum from a free-Fermion mael supplemented
by a small perturbation. In other words, we shall perform ep®n-expansions
to determine a complete many-body spectrum (instead of caih renormalized
couplings or observables). Conversely, our method allows to identify relevant
degrees of freedom and their marginal couplings by carefulinalyzing the NRG
spectra near critical dimensions of impurity quantum phas&ansitions.

This chapter is organized as follows. In Section 4.2 we sumrmnz& the recent
results from perturbative RG for both the soft-gap Andersorand Kondo models.
In Section 4.3, we discuss (i) the numerical data for the stature of the quantum
critical points and (ii) the analytical description of thes interacting xed points
close to the upper (lower) critical dimensionr =0 (r = 1=2).

4.2 Results from perturbative RG

The Anderson model (4.1) is equivalent to a Kondo model wherarge uctua-
tions on the impurity site are negligible. The Hamiltonian ér the soft-gap Kondo
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model can be written as
X
H=JS g+ "kci C« 4.7)
k

P . . . . .
whereg(0) = .0 oG ~ otk 0=2is the conduction electron spin at the impurity
site r = 0, and the conduction electron density of states follows a pew law

()= o' as above.

4.2.1 RG near r=0

For small values of the density of states exponemt, the phase transition in the
pseudo-gap Kondo model can be accessed from the weak-cagplimit, using
a generalization of Anderson’'s poor man's scaling. Poweruwting about the
local-moment xed point (LM) shows that dim[J]= r, i.e., the Kondo coupling
is marginal forr = 0. We introduce a renormalized dimensionless Kondo coupling
j according to

oJ = ] (4.8)

where plays the role of a UV cuto. The ow of the renormalized Kondo
coupling j is given by the beta function

()=r j*+0(°: (4.9)

For r > O there is a stable xed point atj = 0 corresponding to the local-
moment phase(LM). An unstable xed point controlling the transition to the
strong-coupling phase, exists at

j =1 (4.10)

and the critical properties can be determined in a double egpsion inr and
j (Vojta and Kir can 2003). The p-h asymmetry is irrelevant, i.e., a potential

scattering term E scales to zero according to(e) = re (where ¢E = 'e),
thus the above expansion captures the p-h symmetric crititaxed point (SCR).
As the dynamical exponent , 1= = r + O(r?), diverges ag ! 0", r =0 plays

the role of a lower-critical dimension of the transition undr consideration.

42.2 RG near r=1/2

For r near 1=2 the p-h symmetric critical xed point moves to strong Kondo
coupling, and the language of the p-h symmetric Anderson meldbecomes more
appropriate (Vojta and Fritz 2004). Firstythe conduction dectrons can be inte-
grated out exactly, yielding a self-energy ; = V2G for the f electrons, where
G is the bare conduction electron Green's function at the impity location. In
the low-energy limit thef electron propagator is then given by

Gi(il n) *= iy iAgsgn(! n)j! nj' (4.11)
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where thej! ,j" self-energy term dominates for < 1, and the prefactorAy is

V2,

Ag = :
0 cos%

(4.12)

EqQ. (4.11) describes the physics of a non-interacting resot level model with a
soft-gap density of states. Interestingly, the impurity sm is not fully screened
for r > 0, and the residual entropy is2rin2. This precisely corresponds
to the symmetric strong-coupling (SC) phase of the soft-gapnderson and
Kondo models (Gonzalez-Buxton and Ingersent 1998). Dimeosal analysis,
using dimf] = (1 r)=2 [wheref represents the dressed Fermion according to
Eq. (4.11)], now shows that the interaction termU of the Anderson model scales
as dimU] = 2r 1, i.e., itis marginal at r = 1=2. This suggests a perturba-
tive expansion inU around the SC xed point. We introduce a dimensionless
renormalized on-site interactionu via

U= 2 A3u: (4.13)

The beta function receives the lowest non-trivial contribtion at two-loop order
and reads (Vojta and Fritz 2004)

(=@ 2r)u ud+ O(u®): (4.14)

3( 2In4)
2
Forr < 1=2a non-interacting stable xed pointisatu = 0 - this is the symmetric
strong coupling xed point; it becomes unstable for > 1=2. Additionally, for
r < 1=2 there is a pair of critical xed points (SCR, SCF) located at u ? =
20 2r)93(  2In4)],i.e.,

u = 4:22p 1=2 r): (4.15)

These xed points describe the transition between an unsaaed (spin or charge)
moment phase and the symmetric strong-coupling phase (Vajiand Fritz 2004).

Summarizing, both (4.9) and (4.14) capture the same critit&CR xed point.
This xed point can be accessed either by an expansion arouttte weak-coupling
LM xed point, i.e., around the decoupled impurity limit, valid for r 1, or
by an expansion around the strong-coupling SC xed point, €., around a non-
interacting resonant-level (or Anderson) impurity, and ths expansion is valid for
1=2 r 1

4.3 Structure of the quantum critical points

In Fig. 4.2, the many-particle spectra of the three xed poits (SC: dot-dashed
lines, LM: dashed lines, and QCP: solid lines) of the symmétrsoft-gap model
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Figure 4.2: Dependence of the many-particle spectra for the three xeittp of
the p-h symmetric soft-gap Anderson model on the expane8€C (black dot-dashed
lines), LM(blue dashed lines), and the (symmetric) quantuitical point (red solid
lines). The data are shown for the subspe 1 andS =0 only.

are plotted as function of the exponent. The data are shown for an odd number
of sites only and we select the lowest-lying energy levels tbhe subspaceQ =1
andS=0.

As usual, the xed-point structure of the strong coupling an local moment
phases can be easily constructed from the single-particlates of a free conduc-
tion electron chain. This is discussed in more detail latel_et us now turn to the
line of quantum critical points. What information can be extacted from Fig. 4.2
to understand the structure of these xed points?

First we observe that the levels of the quantum critical poits, En.qocn (1),
approach the levels of the LM (SC) xed points in the limitr ' 0 (r ! 1=2):

imfEn;ace ()9 fEnum (r=0)g (4.16)
r'"qlzf Enger ()9 = fEn;sc(r =1=2)g (4.17)

wheref :::g denotes the whole set of many-patrticle states.

For r ! 0, each individual many-particle levelEn.qcp (r) deviates linearly
from the levels of the LM xed point, while the deviation fromthe SC levels is
proportional to P1=2 rforr! 1=2. Thisis illustrated in Fig. 4.3 where we plot
a selection of energy di erences E between levels of QCP and SC xed points
close tor = 1=2. The inset shows the values of the exponents obtained from a
t to the data points. For some levels, there are signi cant eviations from the

! For a similar gure, see Fig. 13 in (Gonzalez-Buxton and Ingesent 1998)
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Figure 4.3: Dierence E between the energy levels of QCP and SC xed points
close tor = 1=2 in a double-logarithmic plot. The inset shows the valueshef t
exponents obtained from a t to the data points.

exponent1=2. This is because the correct exponent is only obtained in tHinit
r! 1=2. (The QCP levels have been obtained only up to = 0:4985)

Note that the behavior of the many-particle levels close to = 1=2 has direct
consequences for physical properties at the QCP; the criicexponent of the
local susceptibility at the QCP, for example, shows a squareot dependence on
1=2 r close tor = 1=2; see (Gonzalez-Buxton and Ingersent 1998).

In both limits, r! Oandr ! 1=2, we observe that degeneracies due to the
combination of single-particle levels, present at the LM ahSC xed points, are
lifted at the quantum critical xed points as soon as one is mang away from
r =0 andr = 1=2, respectively. This already suggests that the quantum cial
point is interacting and cannot be constructed from non-irgracting single-particle
states.

In the following sections we want to show how to connect thisxformation
from NRG to the perturbative RG. We know that the critical xe d point can be
accessed via two di erent epsilon-expansions (Vojta and Kian 2003, Vojta and
Fritz 2004) near the two critical dimensions, and, combinedavith renormalized
perturbation theory, these expansions can be used to evataavarious observables
near criticality. Here, we will employ this concept to perfon renormalized per-
turbation theory for the entire many-body spectrum at the citical xed point.
To do so, we will start from the many-body spectrum of the onefdhe trivial
xed points, i.e., LM near r =0 and SC nearr = 1=2, and evaluate corrections
to it in lowest-order perturbation theory. This will be done within the NRG
concept working directly with the discrete many-body speca corresponding to
a nite NRG-chain (which is diagonalized numerically). As te relevant energy
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free conduction electron chain

decoupled impurity

Figure 4.4: The spectrum of the LM xed point is described by the impudéy
coupled from the free conduction electron chain.

scale of the spectra decreases as"=? along the NRG iteration, the strength of
the perturbation has to be scaled as well, as the goal is to dape a xed point

of the NRG method. This scaling of the perturbation follows pecisely from its
scaling dimension-the perturbation marginal at the value for corresponding to
the critical dimension. With the proper scaling, the operatr which we use to
capture the di erence between the free-Fermion and critidaxed points becomes
exactly marginal.

4.3.1 Perturbation theory closeto r =0

Let us now describe in detail the analysis of the deviation tfie QCP levels from
the LM levels close tor = 0. An e ective description of the LM xed point is

given by a nite chain with the impurity decoupled from the canduction electron
part; (see Fig. A.1). The conduction electron part of the e etive Hamiltonian is

given by
D( 1

Hen = th(Ch Cos1 + Qlup G ) (4.18)
n =0

As usual, the structure of the xed-point spectra depends owhether the total
number of sites is even or odd. To simplify the discussion irné following, we
only consider a totalodd number of sites. For the LM xed point, this means
that the number of sites,N + 1, of the free conduction electron chain is even, so
N in Eqg. (4.18) is odd.

The single-particle spectrum of the free chain with an evenumber of sites,
corresponding to the diagonalized Hamiltonian

Hen = p g p (4.19)
is sketched in Fig. 4.4. As we assume p-h symmetry, the posits of the single-
particle levels are symmetric with respect to 0 with

p= o P=1:3 N (4.20)
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Figure 4.5: Single-particle spectrum of the free conduction electrdwairc
Eq. (A.12). The ground state is given by all the levels \pith 0 lled.

and
X XN
(4.21)

p p= N;p odd
Note that an equally spaced spectrum of single-particle lels is only recovered
in the limit ! 1; see Fig. 6 in (Bulla, Hewson and Zhang 1997) for the case
r=0.
The RG analysis of Section 4.2 tells us that the critical xedoint is perturba-
tively accessible from the LM one using a Kondo-type couplinas perturbation.
We thus focus on the operator

HR = (Of (N)Simp =o; (4.22)

with the goal to calculate the many-body spectrum of the crital xed point via
perturbation theory in HQ for small r. The function (r) contains the xed-
point value of the Kondo-type coupling, andf (N) will be chosen such thatH §
is exactly marginal, i.e., the e ect ofH governs the scaling of the many-patrticle
spectrum itself. The scaling analysis of Section 4.2, Eq..8, Eqg. (4.10), suggests
a parametrization of the coupling as

r

(r)=

r (4.23)
0
where o, is the prefactor in the density of states, and is a scale of order of the
bandwidth-such a factor is required here to make a dimensionless parameter.
Thus, the strength of perturbation increases linearly withr at small r (where
'= 3= D+ O(r) for a featurelesg! | density of states).
The qualitative in uence of the operatorS;,,, S on the many-particle states
has been discussed in general in (Gonzalez-Buxton and Inggmt 1998) for nite
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r and in (Wilson 1975) forr = 0. Whereas an anti-ferromagnetic exchange
coupling is marginally relevant in the gap-less case € 0), it turns out to be
irrelevant for nite r; see (Gonzalez-Buxton and Ingersent 1998). This is of coars
consistent with the scaling analysis of Section 4.2: the aor (4.22) shows that
it decreases as N'=2 N2 = N(*1)=2 with increasing N. Consequently, we
have to choose

f(N)= N=2 (4.24)

This result also directly follows from dim[JF r: as the NRG discretization
yields a decrease of the running energy scale of =2, the Sy, < term in
Eg. (4.22) scales as N2,

The function f (N) is now simply chosen to compensate this e ect using
EqQ. (4.24) scales as N2, The function f (N) is now simply chosen to compen-
sate this e ect; using Eq. (4.24) the operatoH? becomes exactly marginal.

Now we turn to a discussion of the many-body spectrum. The elant ground
state of the e ective model for the LM xed point consists of hie lled impurity
level (with one electron with either spin” or #) and all the conduction electron
states with p < 0 lled with both " and#, as shown in Fig. A.1. Let us now focus
on excitations with energy 1+ , measured with respect to the ground state. (For
more subspaces with di erent excitation-energy, refer Apgndix A.1.) Fig. 4.6
shows one such excitation; in this case, one electron withiisp# is removed from
the p= 3 level and one electron with spir¥ is added to thep = 1 level. The
impurity level is assumed to be lled with an electron with sjin ", so the resulting
state hasQ = 0 and S, = +1 =2. In total, there are 32 states with excitation
energy 1 + 3. These states can be classi ed using the quantum numbe@ S,
and S,.

Here we consider only the states with quantum numbe®@ =0, S=1=2, and
S, = 1=2 (with excitation energy ;+ 3) which form a four-dimensional subspace.
As the state shown in gure 4.6 is not an eigenstate of the totapin S, we have
to form proper linear combinations to obtain a basis for thisubspace; this basis
can be written in the form

.. 1 ..

] 3l = p_zf.}’( i’ 3+ {# )] o

o 1y y y . 2 gy o

j 4l = p—éf..( o3 1w 3] ol t p—éf# 1 34 o (4.25)
. 1 ..

J sl = p—éf--y( él 1t él# )] ol

o 2 ..
)] ol + P—éfﬁl %’ 14 ol

%:)‘<

. 1
jd = Pt w

where the state] (i is given by the product of the ground state of the conduction
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electron chain and the empty impurity level:

Y
j 0i = JO| imp g ?3/#]0| cond - (4-26)
p<0

;
|

Figure 4.6: One possible excitation with energy 3 and quantum numbei® =0
andsS, = +1 =2.

The fourfold degeneracy of the subspac®(= 0;S = 1=2;S, = 1=2) of the
LM xed point at energy 1+ , is partially split for nite r in the spectrum
of the quantum critical xed point. Let us now calculate the n uence of the
perturbation HY on the statesj ii; ;j 4i, concentrating on the splitting of
the energy levels up to rst order. Degenerate perturbatiotheory requires the

calculation of the matrix
Wi = hijHRj jis B =104 (4.27)

and a subsequent calculation of the eigenvaluesfdlV; g gives the level splitting.

Details of the calculation of the matrix elementsW; are given in Ap-
pendix A.2. The result is

2 p_ 3
0 73 0 0
p_
_3 1 0 0
fWijg= (n)f (N)E 4 2 Ps ; (4.28)
0 0 0 =
p§ 1
o 0 7 3

with =[] 01> | o aj’land =1]j o2+ ] o 3j?]. The N-dependence of the
coe cients o, [which relate the operatorsc, and , , see Eq. (A.50)] is given
by

joopi?l N2 (4.29)
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; see also Sec. Ill A in Ref. (Gonzalez-Buxton and Ingerser®98). Numerically
we nd that

0:1478 N2 N2
= 2:0249 N2 N2y

where the prefactors depend on the exponentand the discretization parameter
(the quoted values are for = 0:01and =2 :0). The matrix fW; g,_,.,, then
takes the form

fWij gr:0201 = (r = 001) N=2
0 0:064 0 0
0:064 1:013 0 0 Z _
g 0 0 0 0:064 (4.30)
0 0 0:064 1:013

Diagonalization of this matrix gives the rst-order corredions to the energy levels

E.(r=0:01) = E3(r=0:01)
= (r=0:01) ™2 ( 1:.0615)
Eo(r =0:01) =  E4(r =0:01)
= (r=0:01) ™2 0:0004 (4.31)
with
EN;QCP(r :OOl,l): EN;LM (r :OO].,|)+ E|(r 2001) , (432)

(i = 1;:::4). Apparently, the fourfold degeneracy of the subspaceQ(= 0,
S =1=2'S, = 1=2) with energy 1 + 3 is split in two levels which are both
twofold degenerate.

We repeated this analysis for a couple of other subspaces aadist of the
resulting matricesf Wj; g and the energy shifts E is given in Appendix A.2.

Let us now proceed with the comparison of the perturbative seilts with the
structure of the quantum critical xed point calculated from the NRG. For our
speci ¢ choice of the conduction band density of states, thelation (4.23) yields

(r) = rD for smallr (where ' 1). Using the corresponding equations
for the energy shifts, in Appendix A.2, we observe that @ingle parameter
must be su cient to describe the level shifts inall subspaces, provided that the
exponentr is small enough so that the perturbative calculations are it valid.
A numerical t gives 1.03for =2 :0, (the -dependence of is discussed
later, see Fig. 4.8).

Figure 4.7 summarizes the NRG results together with the partbative anal-
ysis for exponents close to 0. A ow diagram of the lowest lying energy levels is
shown in Fig. 4.7-(a) for a small value of the exponent,= 0:03, so that the levels
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Figure 4.7: a) Flow diagram of the lowest lying energry levels fer0:03; dashed
lines: ow to the LM xed point; solid lines: ow to the quantu critical xed point.
b) The deviation of the QCP levels from the LM levels incelisearly withr. This
deviation together with the splitting of the energy leveds de explained by the
perturbative calculation (crosses) as described in thie tex

of the QCP only slightly deviate from those of the LM xed poirt. As discussed
above, the deviation of the QCP levels from the LM levels ineases linearly with
r, see Fig. 4.7-(b). We indeed get a very good agreement betwdbe perturba-
tive result (crosses) and the NRG-data (lines) for exponesitup tor  0:07. The
data shown here are for the subspace® 0, S =1=2, S, = 1=2) and energy2 ;
(the levels atEy N2 1, see Appendix A.2.1) andQ=0,S=1=2S,=1=2)
and energy ; + 3 (the levels atEy N2 2, see the example discussed in this
section).

In the NRG, the continuum limit corresponds to the limit ! 1, but due
to the drastically increasing numerical e ort upon reducig , results for the
continuum limit have to be obtained via extrapolation of NRGdata for in,
for example, the rangel:5 < < 3:0. Figure 4.8 shows the numerical results
from the NRG calculation together with a linear t to the data: ()=0 :985+
0:045(  1:0). Taking into account the increasing error bars for smalleralues
of ,the extrapolated value ( ! 1)=0:985is in excellent agreement with the
result from the perturbative RG calculation, which is diredy for the continuum
limit and gives =1:0.

4.3.2 Perturbation theory closeto r=1=2

To describe the deviation of the QCP levels from the SC levetdose tor = 1=2,
we have to start from an e ective description of the SC xed poit. This is
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Figure 4.8: Dependence of the coupling parameteon the NRG-discretization
parameter . The circles correspond to the NRG data and the solid linelirsear
tto the data: ()=0 :985+0:045( 1.0).
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Figure 4.9: The spectrum of the SC xed point is described by the norrauting
impurity coupled to the free conduction electron chain.

given by a nite chain including the impurity site with the Coulomb repulsion
U =0 at the impurity site and a hybridization V between impurity and the rst
conduction electron site, see Fig. 4.9.

Note that the SC xed point can also be described by the limitv 1 and
nite U which means that impurity and rst conduction electron siteare removed
from the chain. This reduces the number of sites of the chairyliwo and leads to
exactly the same level structure as including the impurity ¥th U = 0. However,
the description with the impurity included (and U = 0) is more suitable for the
following analysis.

The corresponding e ective Hamiltonian is that of a soft-gp Anderson model
on a nite chain with N +2 sites and"s = U =0 (i.e., a p-h symmetric resonant
level model).

X h [
Heen = V f¥c + ) f + Hen; (4.33)

with Hqn as in Eq. (4.18).
As for the e ective description of the LM xed point, the e ective Hamiltonian
is that of a free chain. Focussing, as above, on odd valued\bfthe total number
of sites of this chain,N +2, is odd. The single-particle spectrum of the free chain
with an odd number of sites, corresponding to the diagonaéd Hamiltonian
X
Hsen = I |y | s (4.34)
|

is sketched in Fig. 4.10.
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=4

€,=0 =0

Figure 4.10: Single-particle spectrum of the free conduction electrbairc
Eq. (4.34). The ground state is fourfold degenerate withttadl levels with < 0
lled and the level = 0 either empty, singly"(or #) or doubly occupied.

As we assume p-h symmetry, the positions of the single-paife levels are
symmetric with respect to0 with

0=0 ; = o 1=2;4;::;(N+1) ; (4.35)
and
X I=X\l+1
(4.36)

| I= (N+1); | even

The ground state of the e ective model for the SC xed point isfourfold degen-
erate, with all levels with| < 0O lled and the level | = 0 either empty, singly ('
or #) or doubly occupied.

According to Section 4.2 the proper perturbation to acces$é critical xed
point from the SC one is an on-site repulsion, thus we choose

HE = OF N e ) (4.37)

(ny = fYf ) with the strength of the perturbation parameterized as

p
(= #1av* 1=2 r; (4.38)

see Section 4.2. Note that3(r = 1=2) = 9=(2D?%) for a featureless power-
law density of states with bandwidthD. The N dependence of the operator
(= 3)(ngy  3)isgivenby (¢ =N N=2=(r DN 50 we have to choose

f(N)= (=2 DN, (4.39)

This again follows from the scaling analysis of S%ption 4.the on-site repulsion
has scaling dimensioim[U] =2r 1. Thusthe ( f¥f  1)>termin HY in
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Eq. (4.37) scales asN(" % andf (N) in Eq. (4.39) compensates this behavior
to make HY exactly marginal.
The matrix Wi = h jHRj ;i (i;j =1;2)is given by

p_
W= OFN o 2 B 22, & a0
with =] {0j>5 12j2. The N-dependence of the coe cient§ j j [which relate
the operatorsf and | , see Eq. (A.73).] is given by
joajdl (ouN=zy (4.41)
Numerically we nd that

0:1462 (D=V)? ( DN=2
0:3720 (D=V)? (" DN=2.

j 2

i tol?

where the prefactors depend on the exponentand the quoted value is for =
0:499 The matrix fW; g._,.,oo then takes the form

0:07 Q15

fWi 020400 = (r =0:499)0=V)* "2 015 Q18

(4.42)

Diagonalization of this matrix gives the rst-order corredions to the energy levels

E.(r =0:499)
E,(r = 0:499)

(r =0:499)D=V)* N2 ( 0:036)
(r =0:499)D=V)* N2 (0:290)

(4.43)
with
EN;QCP (r =0:499 I) = EN;Sc(r =0:499 I) + Ei(r = 0499) , (444)

(i=1;2). We repeated this analysis for a couple of other subspacewdaa list of
the resulting matricesf Wj; g and the energy shifts E is given in Appendix A.3.
The comparison of the perturbative results with the numerial results from
the NRG calculation is shown in Fig. 4.11-(b). As for the case 0 we observe
that a single parameter is su cient to describe the level shifts in all subspaces,
provided the exponentr is close enough ta = 1=2 so that the perturbative
calculations are valid. For =2 :0we nd 9:8and the ! 1 extrapolation
resultsin (! 1) 9:8 0.5 (the error bars are signi cantly larger as for the
extrapolation of the coupling ). The results from perturbative RG, Section 4.2,
speci cally Eq. (4.13) and Eq. (4.14), yield (r) = 2 1 2v42 2u . This gives
=83:3.
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Figure 4.11. a) Flow diagram of the lowest lying enrergy levelsrfer 0:4985
dashed lines: ow to the SC xed point; solid lines: ow to theantum critical
xeg point. b) The deviation of the QCP levels from the SC leve proportional
1=2 r. This deviation together with the splitting of the energydks can be
explalned by the perturbative calculation (crosses) asritbes! in the text.

Similar to Fig. 4.7 above, we show in Fig. 4.11-(a) a ow diagim for an
exponent very close tol=2, r = 0:4985 so that the levels of the QCP only
slightly deviate frqgn those of the SC levels. As discussed @k, this deviation
is proportional to  1=2 r, see Fig. 4.11-(b). The data shown here are all for
subspaces withQ = 1, S =0, S, = 0); the unperturbed energiesE of these
subspaces are:

E =0: the levels atEy N2 0, see Appendix A.3.2,
E = ,: the levels atEy N2 0.8, see Appendix A.3.3,

E =2, the levels atEy N2  1:6, see the example discussed in this
section,

E = 4 the levels atEy N2 1:8, see Appendix A.3.4,
E =3 ,: the levels atEy N2 24,

We again nd a very good agreement between the perturbativeesults (crosses)
and the NRG data (lines).
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V(q)

Figure 5.1: A double-well system in the two-state limit.

5. SPIN-BOSON MODEL

5.1 Introduction

The spin-boson model (Leggett et al. 1987) is a generic modeiscribing quantum
dissipation. The Hamiltonian is given by
" X
H= — ,+ - ,+ !ia,-ya;+§Z

(a + a): (5.1)

Here the Pauli matrices ; describe a spin, i.e., a generic two-level systems, which
possesses a degree of freedom that can take only two values.sinple examples,
the spin projection in the case of a nucleus of spib=2, the strangeness in the
case of a neutraK meson, or the polarization in the case of photon correspond
the intrinsic case.

A more common situation for the two-level system is that theystem in ques-
tion has continuous degree of freedom for example, a geometrical coordinate,
with which a potential energy function V(qg) is associated with two separate
minima, as illustrated in Fig. 5.1. Suppose that the barrietheight \; is large
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compared to the quantities~! ., and ~! , where~! . and ~! are the separa-
tion of the rst excited state (of each isolated well) fromthe ground state. If,
moreover, the bias (detuning)" between the ground states in the two wells
is small compared to! , then the system could be e ectively restricted to the
two-dimensional Hilbert space spanned by these two grounthtes.

Now we take into account the possibility of tunneling betwaetwo wells, with
the tunneling matrix elements~ for this process in the limit,

~ - Vo: (5.2)

so that the tunneling does not mix the states of this groundtwo dimensional
Hilbert space with the excited states of the system.

Then, the motion of the isolated two-state system in the two idhensional
Hilbert space can be described by

Himp = > xt 5z (5.3)
where the ; (i = 1;2;3) are Pauli matrices, and the basis is chosen so that
the eigenstate of , with eigenvalue+1 ( 1) corresponds to the systems being
localized in the right(left) well.

The next term in Eq. (5.1) corresponds to the environment with consists of
in nitely many harmonic oscillators,
X
Hpath = liaa;; (5.4)
i
each of which couples to the two-state system through a ternf the form
X
Hcoupling = ?Z i(a + aiy):l (5.5)
i
As an example, we consider a two-level system interactingttvilaser in the vac-
uum eld.? A coupling of the form in Eq. (5.5) means that the light is serisve
to the value of ,, in other words, that the light can observe the value of, (i.e.,
whether the system is in the right or left well)
The laser itself cannot be considered as a bath as long as it kea a perfect
coherent photon with a single frequency . However the spontaneous emission

YIn Eq. (5.3), Eq. (5.4) and Eq. (5.5), ~ is set to 1.

2 The spin-boson model has found applications in a wide varigt of physical situa-
tions: (Leggett et al. 1987, Weiss 1999) mechanical frictin, damping in electric circuits, decoher-
ence of quantum oscillations in qubits (Costi and McKenzie P03, Khveshchenko 2004, Thorwart
and Hanggi 2002), impurity moments coupled to bulk magnetic uctuations (Sachdev 1999, Cas-
tro Neto, Novais, Borda, Zarand and A eck 2003), atomic quantum dots coupled to a reservoir
of a super uid Bose-Einstein condensate (Recati, FedicheyZwerger, von Delft and Zoller 2005),
and electron transfer in biological molecules (Garg, Onuclt and Ambegaokar 1985, Miihlbacher
and Egger 2003).
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into the vacuum eld creates photons with random directionpolarization and the
energy so that the laser in the vacuum eld should be consided as an incoherent
and dissipative bosonic bath of Eq. (5.4) rather than a cohent light source of a
simple harmonic oscillator! a Ya.®
In that case, the complete information about the e ect of thebath can be
encapsulated in a single spectral functiod(! ), de ned by the expression
X
()= 2 (L) (5.6)
|
It is highly non-trivial to predict the time-evolution of th e phase of the two-level
system,
P(t) = h ,(t)i; (5.7)

in the presence of incoherent and dissipating medtdygh -

The focus of the investigation on the spin-boson model, thefiore, has been to
calculate P(t) for various types of baths, in particular, of whichJ (! ) is assumed
to have a simple power-law behavior. With the standard paraetrization,

J()=21 lsrs so<i<!l o s< 1 (5.8)

where the dimensionless parameter characterizes the dissipation strength, and
I . is a cuto energy.

The cases = 1 is known as ohmic dissipation, where the spin-boson modelsha
a delocalized and a localized zero-temperature phase, sepad by a Kosterlitz-
Thouless transition (for the unbiased case df = 0). In the delocalized phase,
realized at a small dissipation strength ( < 1), the ground state is non-
degenerate and represents a (damped) tunneling particleoHarge ( > 1), the
dissipation leads to a localization of the particle in one dhe two ,-eigenstates,
thus the ground state is doubly degenerateP (t) shows rather subtle changes
according to the dissipation strength and temperature?

For the sub-ohmic casd0 < s < 1), it was found that the system is localized
at zero temperature in the well it started in. The NRG approal, however, for the
spin-boson model found that there are also quantum phase trsitions and the
transition line shows quantum critical behaviors (Bulla etal. 2003). Following
sections are devoted exactly to these issues.

5.2 Quantum phase transitions in the sub-ohmic
Spin-Boson model

Precedent works on the sub-ohmic spin-boson model, in mogtwehich =!.! 0
limit is assumed, report that a particle in the two-level sygem is localized in the

3 As an example of the latter case, a single-impurity Andersonrmodel with a linear coupling to
a local phonon model was studied in (Hewson and Meyer 2002, Mer, Hewson and Bulla 2002).
“ For details, see e.g., (Leggett et al. 1987).
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Figure 5.2: (a) Phase diagram for the transition between delocalized .) and
localized phasés> ) of the spin-boson model 5.1 for bidas= 0 and various
values of , deduced from the NRG ow. (b) dependence of the critical coupling

¢ for various values of the bath exponentFor s close tol the asymptotic regimes
is reached only for very small. NRG parameters here are= 2 ;N, = 8, and
Ns = 100.

well it started in for any nonzero coupling to the bath. Howesr the argument for
localization becomes subtle when the two limitg! )=!.! Oand =!.! Oare
considered simultaneously. In the case, the relative scalé ! . to  might be
important but comparison of the bare energy scale is not suient to explain the
low temperature behavior, for which more knowledge is reqaeid on how the two
parameters and are renormalized with decreasing temperature and which
one is dominant in the zero temperature limit.

The NRG calculation has been performed to answer these quest and found
a continuous (2nd order) transition with associated critial behavior for the range
O<s< 1

In this approach, the frequency range of the bath spectral fiction [0;! (] is
divided into intervals !, ®™D:1. " n=0;12:; with the NRG dis-
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cretization parameter. The continuous spectral function w#hin these intervals
is approximated by a single bosonic state and the resultingstretized model is
then mapped onto a semi-in nite chain with the Hamiltonian

r_
0

S
(b + 1)+ "abib

H= 330 =3 _
n=0
e
+ tn (B hes + By bn); (5.9)
n=0
with Z,, Z,,
0= dJ()y=21 rts drt s (5.10)
0 0

Figure 5.2-(a) shows the zero temperature phase diagram, &k the phase bound-
aries are determined from the NRG ow for xed NRG parameters=2 , N, =8,
and Ng = 100 (Bulla et al. 2003). As displayed in Fig. 5.2-(b), the criti@l cou-
pling . closely follows a power law as a function of the bare tunnel lgpng,

o/ X forsmall ( <<! (), with an s-dependent exponentx. The data are
consistent withx =1 s.

The character of each xed point is described by the two renaralized pa-
rameters , and ,.° At the localized and delocalized xed points, one of the
two parameters is far dominant to the other and the system isrtven by the for-
mer one only. The delocalized xed point can be e ectively deeribed by putting

+ 60 and , =0 in the Hamiltonian (5.9). The localized phase is the other wa
around( , =0 and , 6 0). At the quantum critical points, all renormalized
parameters , and , are similar in the order of magnitude so that none of them
are to be disregarded.

We describe the physics of the three xed points through the RG ow-
diagram and the thermodynamic quantities in the following ections.

5.2.1 Localized/Delocalized xed points

At the localized xed points ( ; 6 0 and , = 0),° the dynamics of the two-
level system, oscillations(or tunneling) between two lel® is suppressed by the

bosonic bath with strong energy-dissipation. The e ectivdHamiltonian is
"= X X
H = ——(h+k)+ "nlln + ta(hbhses + By by); (5.11)

_z
2 n=0 n=0

> We consider the case of zero-bias=0.

5 In the language of the (perturbative) renormalized group (Leggett et al. 1987, Anderson,
Yuval and Hamann 1970) the localized phase corresponds to eline of xed points, parameter-
ized by although the xed-pointvalue does notin uence the eigenenergies of the many-body
Hamiltonian, but only its eigenstates.
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Figure 5.3: Flow diagram of the lowest lying many-particle energiesutzed
with the star-NRG for the sub-Ohmic casef 0:8; = 0 :001), using displaced
oscillators as optimized basis. The critical value;is 0:125 The NRG parameters
areNg =60, N, =6, and =2

which yields the same structure of the NRG-spectrum as the erof the bosonic
bath except that there are additional two-fold degeneracsedue to the two-level
system. According to the precedent works (Leggett et al. 19§ this is the only
stable xed point in the sub-ohmic spin-boson model.

The NRG approach, however, found regions in the parametepace where the
stable xed point is replaced by the delocalized one ¢ =0 and , 6 0). The
e ective Hamiltonian for the delocalized xed point is

X X
Hp = x "nldln + tn(Bbhe1 + Bl bn): (5.12)

n=0 n=0

The delocalized xed points appear for values of in the range0 < s < 1 and
the coupling strength < .

The structure of the low-lying spectrum at the delocalized xed point is same
as that at the localized one apart from the absence of the twiold degeneracy.
Figure 5.3 show the lowest lying many-particle energies calated with the star-
NRG’ for the sub-ohmic caseg=0:8; =0 :001), using displaced oscillators as
optimized basis. Solid and dashed lines corresponds to thesult for =0:01 (<

¢ . delocalized)and = 0:15 (> . : localized) from which we can see the

” See the chapter Il in Ref. (Bulla et al. 2005)
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Figure 5.4: Temperature dependence of the impurity contribution to éméropy,
Simp (T), in the sub-ohmic casgs = 0:8) for various values of.

degeneracy of the localized xed point is exactly twice as mg as that of the
delocalized one.

Figure 5.4 shows temperature dependence of the impurity dabution to the
entropy Sinp (T) for s = 0:8 and various values of . Comparing the residual
entropy of the two di erent cases, =0:1233(< . :delocalized) and =0:1290
(> c:localized), we observe thén2 ( 0:69) di erence as a consequence of the
double degeneracy at the localized xed poirit.

At high temperature, the impurity contribution to the entro py takes a value
of In 2 regardless of the coupling strength, due to the fact that, for temperature
T , both states of the two-level system contribute equally tohe thermo-
dynamics. Therefore, the temperature-dependent entro, (T) undergoes the
In2 di erences as the system ows to the delocalized xed point #wh S;,, = 0.

Quite a striking feature of negative slope iS5, (T) (negative speci c heat)
appears in the localized phase. The non-trivial e ects beotes more prominent
as the system approaches to the critical point = . where the impurity contri-

® The double degeneracy in the localized xed points makes theartition function Z, twice
larger than Zp . Thus, the di erence in the impurity contribution of the ent ropy is given as

L
Simp

ks InZ, (5.13)
= kg In(ZZD)

= kgln2+ kg InZp

= ke In2+Sf,



56 5. Spin-Boson Model
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Figure 5.5: Temperature dependence of the impurity contribution to éméropy,

Simp (T), in the sub-Ohmic case for various values ainds = 0:8 (main panel)

and various values &f (inset). The coupling is below . so that the ow is to

the delocalized phase for all parameters in this gure. d.wé&h symbols in the
inset are data from the bosonic NRG and solid lines are tsnaisg a power-law,
Simp (T) 1 T=.

bution to the entropy is quenched to a value less tham2 (S,  0:41in the
Fig. 5.4). Furthermore, nice scaling behavior is observed the crossover between
the quantum critical phase and the localized/delocalizedmase. We discuss the
issues on the quantum criticality in a separate section.

5.2.2 Quantum critical xed points

Figure 5.5 shows the temperature dependence of the impuritgntribution to the
entropy, Simp (T), in the sub-Ohmic cases = 0:8, for various values of below
the critical value . 0:125° For close to ., we observe a two stage quenching
of the entropy of the free moment (the quantum critical pointhas a nontrivial
zero-point entropy ofSyeo(T ! 0)  0:6 for s = 0:8). The temperature scale T )
for the crossover to the delocalized xed point increases thithe distance from

9 The data in Fig.5.5 is calculated with the chain NRG. The resuts from the star-NRG
look similar. (They give, in particular the correct values Simp (T ! 0) =In2 if the ow is to
the localized phase.) We observe, however, a low temperatarbehavior for Siyp (T) which is
di erent from the correct form Simp (T) / T3. The reason for this failure is presently not clear
but probably due to truncation errors.
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Figure 5.6: Flow diagram of the lowest lying many particle energiesilzdéd with
the chain-NRG for the sub-Ohmic case<0:8, =0 :00land =0:122. The
NRG parameters afds = 100, N, =8, and =2 :0.

the critical point following the scaling relation (Bulla et al. 2005),
T/ ¥ (5.14)

The low-temperature behavior ofSin, (T) for < ¢ is given by Siy, (T) / T°
which can be seen more clearly in the inset of Fig. 5.5 wheg,, (T) is plotted
for various values ofs. This behavior is in agreement with the calculations of
Ref. (Gohrlich and Weiss 1998), wher€(T) / T° was found for the slightly
asymmetric ( 6 0) sub-Ohmic spin-boson model.

Now we look into the quenched entropy at the critical point = ..

Seep(T! 0) O (5.15)

The absolute value ( 0:6) is still questionable in a sense that the value itself
changes with the numerical conditions such d$s and . Nevertheless, we believe
that the residual entropy at the critical point is di erent f rom the one at the
localized and delocalized xed point, since the structurefahe low-lying spectrum
at the quantum critical point is clearly distinguished fromthe other two cases.
Figure 5.6 shows the low-lying spectra corresponding to tloeirve  =0:122
in Fig. 5.5. We see three stages of plateau in the spectra: thmcalized xed
point (3 < N < 8),'Y the quantum critical xed point (12 < N < 22) and

10 As brie y mentioned in the previous section, the vicinity to the localized xed point for
early iterations (which results in the high-temperature value Simp (T) In2) does not im-
ply localization. However, the structure of the low-lying spectrum and all the results out of
the spectrum happen to be same as the ones in the localized @aso that we use the same
terminology for the case, too.
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Figure 5.7: Dependence of the many-particle spectra for the two xedtsaf the
spin-boson model on the exponentD:delocalized xed points(solid lines without
symbol) and the quantum critical points(solid lines witttles).

the delocalized xed point(N > 30), which result in the three steps atln 2; 0:6
and zero inSimp (T). The quantum critical xed point has obviously di erent
structure from the others.

In Fig. 5.7, the many-patrticle spectra of the two xed points delocalized and
guantum critical ones are plotted as functions of the expones. At s =0 limit,
many-patrticle levels of the quantum critical xed point (sdid lines with circles)
coincide with the ones of the delocalized xed point (solidries without symbols).
In the other limit, s =1, the many-particle levels of the quantum critical point
approaches toward the same delocalized xed points in pairsThus, we can
conclude that the levels of the quantum critical pointsEn.ocp (S), approach the
levels of the delocalized (localized) xed points in the limh s! 0 (s! 1).

fEnp (s=0)g; (5.16)
fEnL(S=1)g

imfEnqce (5)9

imfEnoce (S)9

The structure of the quantum critical xed points shows coninuous change from
the delocalized xed points § = 0) to the localized xed points (s = 1) with
increasings. Accordingly, the residual entropy at the quantum critical xed
point S¢it also has a continuous change fro®,, = 0 (delocalized) toS;,, =1n2
(localized) leading to the quenched entropyS.it < In2) in between.

To search out the origin of the suppressed entropy at the citial point might
require a similar analysis as we did for the soft-gap Andensenodel: nd proper
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marginal operators at the quantum critical points and show bw the subsystem
(two-level system) uctuates via the marginal interactionwith the bath.

In the vicinity of the critical dimensions s = 0 and s = 1, the e ects of
marginal interaction is pretty weak such that the many-paricle spectrum at
the quantum critical points is perturbatively accessible vwthin a single-particle
picture. The explicit formation of the many-particle states will give intuitive
knowledge on the quantum uctuations represented by the quehed entropy
Serit < In2.
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6. BOSONIC SINGLE-IMPURITY ANDERSON MODEL

6.1 Introduction

The focus of this work is the physics of a bosonic impurity sta coupled to a
non-interacting bosonic environment modeled by the Hamidnian

X X
H = "obb+ %Uldb(b‘/b 1)+ "Who+  Vi(b+ bh):  (6.1)
k k

The energy of the impurity level (with operatorsd®) is given by"o; the parameter
U is the local Coulomb repulsion acting on the bosons at the iropty site. The
impurity couples to a bosonic bath via the hybridizationV, with the bath degrees
of freedom given by the operatori;f(y) with energy "y.

Similar to other quantum impurity models, the in uence of the bath on the
impurity is completely speci ed by the bath spectral functon

X
()= V& M) (6.2)
k

Here we assume that( ! ) can be parameterized by a power-law for frequencies
uptoacuto !. (We set!.=1 inthe calculations.)

(1)=21 1s1s0<i<! (6.3)

The parameter is the dimensionless coupling constant for the impurity-kda
interaction.

We term the system de ned by Eq. (6.1) the bosonic single-ipurity Ander-
son model (bsiAm), in analogy to the standard (fermionic)is\m (Hewson 1993),
which has a very similar structure except that all fermioni@perators are replaced
by bosonic ones. Furthermore, we do not consider internal giees of freedom of
the bosons, such as the spin (an essential ingredient in thermionic siAm).

Our main interest of the bsiAm is the low-temperature behaar of Bose-
Einstein condensation (BEC) and, possibly, quantum phaseansitions from BEC
to other phases. We raise several questions related to theuss, concerning the
model in Eq. (6.1).

Q-1. Does BEC appear as a possible ground state of the bsiAm?



62 6. Bosonic Single-Impurity Anderson Model

Q-2. Isthe NRG able to capture features of BEC such as the criticéémperature
T. and the BEC-gap gap?

Q-3. What are the e ects of an impurity that involves correlations among the
particles? Does it generate a new phase suppressing the BEC?

The NRG considers a non-interacting bosonic bath (gas) as aagd canonical

system with a xed chemical potential = 0, where the bosonic bath itself shows
BEC exactly at zero temperature: However the BEC of ideal Bose gas (with
xed chemical potential = 0) at zero temperature is not captured within the

NRG approach since the contribution of the state at = 07 is neglected during

the logarithmic discretization of the bosonic bath.

Although it looks a very critical defect that the NRG misses he ground
state property of the reservoir, we can get around the drawbk by bringing the
impurity quantum phase transition into focus of interest. Fom the viewpoint
of the impurity quantum phase transitions, the existence oa state” = =
0 becomes essential only if it takes a signi cant role to chaegthe impurity
contribution at the ground state. Here we examine the impoé&nce of the" =0
state in each phase.

S-1. The Mott phase As we will discuss in the later section, the low temperature
behavior (the low lying spectrum) of the Mott phase can be uretstood as
the one of ideal Bose gas in the presence of a frozen impurifjne existence
of the" = = 0 state and the resulting BEC transition atT = 0 do not
a ect the con guration at the impurity-site since the impur ity is completely
decoupled from the continuum states of the bath.

S-2. The BEC phase A system with negative chemical potential < 0 enters
the BEC phase below nite (non-zero) temperaturel where the ground
state with a condensate wave function is separated from theher excited
ones by the BEC gap 4. Condensation occurs exactly at the state sitting
at the chemical potential" = < 0andthe e ect of" = 0 state is negligible.

S-3. The quantum critical phase One of the non-trivial cases would be an in-
teracting system with zero chemical potential = 0, possibly a system at
the critical point. In this case, the e ect of the state at” = = 0 might
be signi cant at all excited states including the ground stte.

The rst two statements tell that the properties of the Mott and the BEC phase
are accessible to the NRG in spite of the drawback of discregition. Most of

! Details are discussed in the appendix C.

2 In other words, the state sitting at the chemical potential =0.

3 Here we brie y mention the contents of quantum phase transiions such as the Mott, BEC
and the quantum critical phases without touching the details. Each phase will be treated in
the separate sections.
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Figure 6.1: Zero-temperature phase diagram of the bosonic siAm for éxgtlonent
s = 0:6 and xed impurity Coulomb interactiod = 0:5. The di erent symbols
denote the phase boundaries between Mott phases and the B&se.p The Mott
phases are labeled by their occupatigr, for = 0. Only the Mott phases with
Nimp 4 are shown. The NRG parameters are2 :0, N, = 10, andNg = 100.

this chapter is devoted to the issues of the two phases. It idsa expected that
the NRG calculation gives the correct descriptions of the &nsition between the
Mott and BEC phase but the physics at the phase boundary, repsented by the
non-trivial quantum critical xed points, might be sensitive to the missing states
at"= =0.

6.2 Quantum phase transitions in the bosonic
single-impurity Anderson model

On the contrary to the non-interacting BEC phase afl = 0, the BEC phase with
nite critical temperature T is observed in the NRG ow diagram, which shows
the BEC gap ( gap) Opening atN = InT . Interestingly, we found quantum
phase transitions between phases witfi, = 0 (Mott phase) and with T, 6 0
(BEC phase). In the former case (Mott phase), the impurity isndependent of
the bath and the non-interacting bath itself shows a BEC (idal Bose gas) phase
atT =0 (T > 0). We call it as a Mott phase following the convention of the Bge-
Hubbard Model (Bruder and Schon 1993, Kampf and Zimanyi 199Rokhsar and
Kotliar 1991, Krauth, Ca arel and Bouchaud 1992, Freericksand Monien 1993Y.

4 Mott phases in the two models, bosonic single-impurity Andeson model and Bose-Hubbard
model, imply di erent physical situations. For examples, a Mott phase in Bose-Hubbard model
is an insulating phase whereas it corresponds to an ideal ggshase in bosonic single-impurity
Anderson model. Nevertheless, we use the same terminology a sense that, in both cases, the
Coulomb repulsion U stabilizes a localized state at the impurity site (bosonic sngle-impurity
Anderson model) or at each local site (Bose-Hubbard model).
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In the latter case (BEC phase), atT < T, all the existing particles (bosons)
form a condensate cloud (wave-function), being separategm continuum states
of the bath with a gap gap.

The full phase diagram Fig. 6.1, showing the Mott, BEC phasena the phase
boundary between them, is calculated with the bosonic NRG (Bla et al. 2005),
where the Hamiltonian Eq. (6.1) is mapped onto a semi-in ng chain,

% »
H = "obb+ %UHb(be D+ VOt B+ Bt (b + B by):

n=0 n=0
(6.4)
Herenthe impurity couples to the rst site of the chain via the hybridization
V =  2=(1+ s). The bath degrees of freedom are in the form of a tight-bindn

chain with operators B, on-site energies',, and hopping matrix elementst,,
which both fall o exponentially: t,;", / n.

The technical details are same as in the spin-boson model egt that we
use the total particle-numberNy,; as a conserved quantity in the Hamiltonian
Eq. (6.1).° In actual calculations, Ny is limited to the maximum value N7 so
that the grand canonical ensemble consists of a set of cammaliensemble systems
with Nyt = 0;1;2; 3 Ng&. The maximum number NZ? is chosen to be large
enough to avoid the arti cial e ects on the low-lying spectum.

The T = 0 phase diagram in Fig. 6.1 is calculated for xed U = 0:5 with
the parameter space spanned by the dimensionless couplimmstant and the
impurity energy "o. We chooses = 0:6 as the exponent of the power-law in( !).
(The s-dependence of the phase diagram is discussed in Fig. 6.1Wweg The
phase diagram is characterized by a sequence of lobes, whiah label by the
occupation at the ground stateng,. The Mott phases are separated from the
BEC phase by lines of quantum critical points, which terminge (for s = 0:6) at
a nite value of , except for thenyg = O phase, where the boundary extends
up to in nite . These transition can be viewed as the impurity analogue of¢
Mott transition in the lattice model, since it is the local Caulomb repulsion that
prevents the formation of the BEC state.

6.2.1 BEC phase

A grand canonical system in the BEC phase, showing a nity forin nitely many
particles, is characterized by the negative chemical poteal < 0. Inthe bosonic
single-impurity model, the negative chemical potential gpears in several ways of
creating an attractive site into the reservoir.

° For details, see Appendix D.
5 Precisely, it is a phase diagram at in nitesimal temperature T > 0. At zero temperature,
the entire region is covered by BEC phase. See Appendix C.
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80 100

Figure 6.2: Flow diagram of the lowest lying many-patrticle letg|sversus iteration
numberN for parameterss = 0:4, =0:007, U =05, and"y = 0:91383437
There exists a gap ¢4 in the BEC phaseN > 53) between the ground state and the
rst excited state. See the inset whelg, (instead ofEy N) is plotted versudN .

1. Anisolated ( = 0) impurity with "g < 0 and U = 0 creates a delta-peak
at ! yeak = "o in the spectral density shifting the chemical potential to he

peak position = ! . = "o. A nite coupling ( ) between the impurity
and the bath will push the peak position! .. further down to the negative
frequency ( = ! peak <" 0).’

2. A similar situation can occur even for a positivé, if the coupling is large
enough to generate a peak dtpeak < O.

3. The same arguments on the spectral density and the negaiv,e.« hold for
an impurity with the nite U except that non-zero coupling is necessary
to get over the Coulomb repulsionU and form a condensate state with
in nitely many particles.

A sharp peak in the spectral densitA(! ) at! = ! ,cac < Ois a good indication of
BEC. Equivalently, the many particle spectra, which are mag convenient objects
for the NRG approach, also manifest the condensation with thappearance of
gap 4 between the ground state and the rst excited one.

See the inset of Fig. 6.2 where the many-particle enerd¥ey g is plotted as
a function of the iteration number N. We focus on the BEC phase starting at
N 53

The ground state is lying at zero of the vertical axis and therst excited state
corresponds to the horizontal line aEy 9 10 8 for N > 55, There is a gap
opening( 4 9 10 ¥ atN 53

’ See Fig. 6.3.
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Figure 6.3: Left: The size of BEC gap 4 versus the logarithmic discretization
parameter . Data are shown for the bath exponet 0:6 and the zero Coulomb
repulsiond = 0. The coupling strength and the on-site energyy are given for
each case dierently. (=0:128and"y = 0:3for circle, =0:0and"g= 001
for square.) The intersection at = O determines the value ofy( ! 1): 0:036
(circle) and0:01(square). Right: The spectral densiy(! ) for parameters = 0:6,
U=0, =0:128and" = 0:3 (corresponding to the data with circles in the left).
The coupling creates two peaks out of the continuum. The distance froro #er
the position of the left peak ,eaj  0:036 coincides with the size of gap in the
NRG spectrum in the limit of ! 1.

The many-patrticle levels in Fig. 6.2 show the states with queium numbers
Nyt = 0;1;2;:::, and NJ@ (= 19)°. In the ground state, all N7 particles are
occupied at a state with energy = g 9 10 *® whereas the rst excited
state hasNZ® 1 particles at! = 9 10 *® and the remaining one
particle is excited to the lowest single-particle staté = ((,N).9 Thus the energy
di erence between the ground state and the rst excited stags is

E=( (NP> 1) g+ ) ( Np™ = 4+ & (6.5)

The (()N) becomes much smaller than ; 9 10 *8 for large enoughN (larger
than sixty in Fig. 6.2)*° so that we neglect it from Eqg. (6.5):

E g (6.6)

® The e ect of N{i®* on the size of gap ¢ is less than 0.1% forN3& 19,
9 o is the lowest eigenvalues(eigenstates) of a free chaty .

K 1 X K+l
Hn = "M‘Qha+ tn(k%h"l+1+h1q¥+1)= r(1N)a¥an

n=0 n=0 n=1

10N N=2 Nwith =2 .
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Figure 6.4: Flow diagram of the lowest lying many-particle legls N ! versus
iteration numbemN for parameters = 0:4, =0:007, U = 0:5, and two values of
"o= 1.3 and20.

For non-interacting systems U = 0), the spectral densityA(! ) and the posi-
tion of the peak in the negative region make reasonable pretions of the size of
the BEC gap 4. The isolated and uncorrelated impurity with negative enegy
"0, ("0< 0,U=0and =0) generates a delta-function of the impurity spectral
density A(! )= (! ") and the size of gap is purely determined by the on-site
energy" independent of the bath (Fig. 6.3-Left : = 0:0):

ol ! 1)=j"i: (6.7)

However the impurity coupled to a bath with the nite coupling causes the
redistribution of the total spectral weight and the position of the peak ( eax)

depends on the properties of the bath (and s). Accordingly, the BEC gap g,

corresponding to the distance from the peak to zero, also ¢aims the detailed
informations of the bath including the e ect of discretizaton as well. The position
of the peak in the impurity spectral density conforms with tke size of the BEC
gap shown in the NRG spectrum in the limit of ! 1 (Fig. 6.3):

9( ! 1) = j! peakj: (68)

The spectral densityA(! ) of the system withU 6 0 has not been calculated yet
but we expect that Eq. (6.8) is valid for the case, too.

6.2.2 Mott phase

The low-lying spectrum of the Mott phase (the at-region in Fg. 6.4) is described
by the Hamiltonian of the free semi-in nite chain,

b3 b3
Hbath = "nd.bn + tn(d.bwl + l:¥;+1 b1) (69)
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Figure 6.5: Single-particle spectrum of the non-interacting HamikonH paim.n
and the occupation of the ground, rst,..., and the fourthcagd states Ey =
0, 1n; 21n: 31y and ayn). For g = 2:0 ( 1:3), the total number of par-
ticles at the ground, rst, second, third and the fourth dé®&di state areNy; =
0;1,2;3(3,4,5;,6) and1 (4).

Fig. 6.4 shows two sets of energy- ows taken from two di er@robes of the Mott
phases in Fig. 6.1'(oc= 1:3and20for xed =0:007andU =0:5). Dierent
structure in the early stage of iterations N < 20) is a consequence of valence
uctuations at the impurity site. Both sets of many-patrticle spectra seem to ow
into the same non-interacting xed point Hpay but distinction is drawn by the
assigned quantum numbers for the two cases.

For "o = 2:0, the quantum number of the ground state, rst, second, third
and the fourth excited one areN; = 0; 1; 2; 3 and 1 whereas all the numbers are
increased by three Ny = 3;4;5;6, and 4) for "o = 1:3. The three additional
particles (bosons) in the latter case, consistently showgrup in the higher states,
all turn out to occupy the zero single-particle level. We duss the details with
the single-particle eigenvalues of the non-interacting Hailtonian Hph:n

X 1 b\ X+l
Hpath:n = ", + ta (b + h‘ld:+1) = n:N &% an: (6.10)

n=0 n=0 n=1
The eigenvalues of the lowest ve many-particle states areivgn as Eon =
O, El;N = 1IN E2;N =2 LN E3;N =3 LN and E4;N = 2N- Flg 6.5 de-
picts the con gurations of the ve states: (a)"y 20and (b) "o = 1.3. The
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Eimp A

n imp,0
l

Figure 6.6: Left: The energy for an isolated impurity as a functiomgf,. The
minimum point of the parabola is given by ¢ + 3;5(%  3)? and the actual
occupation for energy minimum is determined by the nearest-(egative) integer
Nimp; 0- The Nimp: 0 IS zero for a positive, regardless of the position of the minimum
point. Right: The occupation at the minimum poimt,,. o shows discontinuous jump
for each integer value of"y=U, where two values dfimp. o give equal minimum-
energy. Between the integer points, the minimum point iemeined by the single
integerNimp; o.

many-particle states with same energy have same number ofrpeles at . 60
so that the di erence in Ny is attributed to h0jhjOi such as

mjﬁtothI = O for "o = 2:0;
mjﬁtothI 3 for "o = 1:3 (611)

with Ay = b+ P Mol

Two values of"g = 2:0and 1.3 were selected to represent the two di erent
Mott phases labeled by0 and 3 in Fig. 6.1. The similar arguments apply to the
other Mott phases with di erent labels 1; 2; 4;5;... and so forth, and each phase
is distinguished by the types of occupation aj0i (zero's single-patrticle level)?
We use the zero-mode occupandyjn:jOi to label the di erent Mott phases
and the next few pages are devoted to explain the propertie$ 0jNjOi. A
remarkable point of the Mott phase is that the particles af0i are excluded from
thermal excitations being con ned to the zero single-partie leveljOi. The reason
is very obvious for the system with zero-coupling = 0, namely, a system with an
isolated impurity. Let us focus on the impurity-part Hi,, . Since the Hamiltonian
is quadratic to njn, = b'b, there exist certain occupationqim,. o that cause the
minimum energy of the impurity. The minimum point (Nimp;0) is determined
by "o and U as shown in Fig. 6.6. The values of "o=U = 0:5 determines the

1 See the Hamiltonian in Eq. (6.4).
2 The phases labeled byl; 2; 4; 5 have one, two, four and ve bosons atj0i.
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occupation at the minimum point by nimp;. 0 = 1 and the corresponding minimum
energy(ground state energy) byEinp,.0 = U=2. The energy-costU=2 is charged
for the transition from the ground state to the lowest excit®nesEinp. 1 = Eimp;2 =
O with Nimp = Nimp;0 1.

Now, we consider the states of the bathdpan.n together with Hi,,. The
zero-coupling = 0 makesHin, and Hpan:n cOommute each other so that the
eigenenergy (eigenfunction) of the full system is a simplem (product) of the
eigenenergy (eigenfunction) oflimp, and Hpat:n :

Etot;nm = Eimp;n + Ebath;m; J tot;nmi :j ni J mi; (6-12)
with
o o " 1
X+l
Hoathj mi = Ebpathom] mi; Hpan = n;N axan: (6.13)
n=1
The ground state of the full systemH = Hin, + Hpan iS given as
Etoto = Eimp:o = U=2, | torool = of impi I panl; (6.14)

where the impurity is occupied with a single bosadn and the bath is empty. The
lowest excited states are

Ewot1 = U=+ 1N | toroal = a{j tot; 00l ;
. ) 2. .
Ewt2 = U=2+2 1N ] toro2 = (a)ll) J totool;
. ) 3. .
Ewts = U=2+3 LNy ) toto3l = (a{) ] tot;00!;
Etota = U=2+ un; J tot; oal = a)zl] tot; 0ol ;

(6.15)

The many-particle levels with energy less than zero show tlhmiform occupancy
at the impurity-site,

Nimp = h tot;OOjbyu tot;OOi =1, (6.16)
for the parameterization "o=U = 0:5. Changing the value of ",=U, we found
discontinuous steps ofijnp *:

Nimp = Nimp;o = 0; "o=U <0

Nimp = Nimpo=1; 0< "p=U <1,
Nimp = Nimpo=2; 1< "o=U <2
Nimp = Nimp;o = 3, 2< "o=U<3;
Nimp = Nimpo=4; 3< "o=U <4

(6.17)

2 The ground state of the isolated impurity system with "¢=U = 0:5.
4 See Fig. 6.7.
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Figure 6.7: Impurity occupatiom;n, as a function of'y for temperatureT = 0,
s=0:4, U =0:5, and various values of The sharp steps for the decoupled impurity

= 0 are rounded for any nite . Symbols (dashed lines) correspond to data points
within the Mott(BEC) phase.

The second casaiy, o = 3 in Eq. (6.20) corresponds to the one that is illustrated
in Fig. 6.5-(b) where three bosons are con ned to the zerove j0i.'® Thus
trapping the particles at zero-mode (zero single-partie levelj0i) occurs exactly
at the impurity-site if the coupling to the bath is zero:

Nimp: 0 = hOj et JOI = 3; (6.18)

for =0and2< "y=U < 3.
Fora nite , Hin, no more commutes tdH,an and the eigenstates of the full
system are now linear combinations df ,i j i for variousn and m:*°
X
] tot;li = Ul;nmj S T (6.19)

nm

The total number of particles ny,; has to be conserved and, for a ground state,
we found that

"_0 .
U < O'
Niot; 0 0< UO <1

Noo = 0;
=1;

Noto =2; 1< L< 2
=3;
=4;:

U

2< U0<3;

3< U0<4;

ntot; 0
r]tot; 0
(6.20)

> See Eq. (6.11).
6 Compare this with Eq. (6.12).
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Figure 6.8: Flow diagram of the lowest lying many-patrticle letg|sversus iteration
numberN for parameters = 0:4, = 0:007, U = 0:5, and two values of, very
close to the quantum phase transition between the Mott pivaise ni,, = 2 and
the BEC phase. Both the quantum critical point and the Motapé appear as xed
points in this scheme whereas in the BEC phase, a gapppears between the
ground state and the rst excited state, see the inset whgge(instead ofEy M)

is plotted versu\ .

With N0 = N tot;0)Atot] ot 0 -
The excited states are written in the same way as in Eg. (6.1By replacing
the ground statej .00l IN EQ. (6.14) t0] o0l in EQ. (6.19).

Etwt1 = Ettot 1n; J tot;li = a{] tot;Oi;

Etot2 = Ewto+2 1n5 | tor2l = (asll)zj tot; 0l ;

Etwts = Ewto+3 1n; J tot;3i = (a{)sj tot;Oi ;

Ewtsa = Ewtot 2n: ] togal = aﬁj tot; 0l 5 (6.21)

Thus the only e ect of the coupling is in the energy and the wavefunction of the
ground state. The ground state energy is always de ned as pein NRG approach

so that the many-particle spectrum does not change with thealue of . However

the wavefunctionj . ol, @ mixed state between the impurity and the bath, has
some dependences on the coupling Since the impurity occupationfiim, = b'b

no more commutes to the full HamiltonianH = Hjy,, + Hpan, calculation of the

average impurity-occupation at the ground state yields a &ctional number for a

non-zero coupling 6 0. Fig. 6.7 shows the dependence of

Nimp (T=0)= h (o thimpj tot; 0 (6.22)

on "o for s =0:4, U = 0:5, and various values of . Di erent Mott phases and
the transitions among them are very distinctive in the stegunction of the njy, -
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Figure 6.9: The crossover scale from the quantum critical phase to thé/Blatt
phase. Upon variation df close to the critical valug,., the crossover scalé
vanishes with a power-law at the transition poiht,/j "o "o Wwith a non-trivial
exponent .

curve for = 0. However, for nite , the sharp steps and the well-developed
plateaus disappear so that it is hard to nd out the evidencesf transitions and
the di erent phases within the nj, -curve. Nevertheless we checked the value of
Nt o IN EQ. (6.19) for each data point in Fig. 6.7 and clari ed the orresponding
phase. For =0:007and = 0:014 there are three Mott phases (symbols) with
Neto = 0;1 and 2, which are intercepted by fragments of BEC-phases identice
with N = NI (dashed lines). For = 0:028 only two Mott phases with
Nt = 0 and 1 appear and the rest region is covered by BEC-phase.

The ground state occupatiomy,. o Shows discontinuous change or even singu-
lar behavior at the phase-boundary between Mott phases andE® phases. On
the contrary, the impurity contribution ni,, always shows continuous increase
even when the curves cross the BEC phase.

6.2.3 Quantum critical phase

The ow diagram in Fig. 6.8 shows the lowest lying many-partile levels for
parameterss = 0:4, = 0:007, U = 0:5, and two values of", very close to the
quantum critical point.*® The NRG spectrum of the BEC phase (dashed lines
‘N 53) has been already discussed in Section 6.2.1 with the samedpum
in Fig. 6.2. A slight change of', from 0:91383437%10 0:9138343@&esults in a
new set of low lying states (solid lines). Both sets of energyates show identical

17 Compare the data with the phase-diagrams in Fig. 6.1.

% The NI -dependence ohimp (T = 0) is checked with increasingN 52 . The error is less
than 0.01% for NJ2* & 19

9, = 091383436 solid lines,"y = 0:91383437 dashed lines
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Figure 6.10: Zero-temperature phase diagram of the bosonic siAm as i6.Ejg
but now for di erent values of the bath exponest For increasing values ef the
areas occupied by the Mott phases signi cantly change 8i&ipes, and fa = 0:8
it appears that each Mott phase extends up to arbitrarilgdavalues of .

structure in the earlier iterations (N . 40) but turn into the di erent phases of

the Mott (solid lines) and the BEC phase (dashed lines) arowhN  50. The non-

interacting xed point in the Mott phase has been analyzed irSection 6.2.2 and
the BEC gap between the ground state and the rst excited oneniSection 6.2.1.
The intermediate xed point showing up in the earlier stage biterations has
di erent structure from the non-interacting xed point: th e density of states is
higher and the level-spacing is even. More quantitative aheis of the quantum
critical xed points has to be done in near future.

Another interesting point is the crossover scale from the qutum critical
phase to the BEC and Mott phase. Numerically we nd that upon wariation of
"o close to its critical value" .., the crossover scale vanishes with a power-law at
the transitions,

T /)" "od; (6.23)

on both sides of the transition, with a non-trivial exponent . Preliminary results
suggest that =1=sholds forO<s< 1.

6.3 E ects of the bath exponentin T =0 phase diagrams

The precise shape of the boundaries in the phase diagram ingF6.1 depends
on the form of ( !) for all frequencies. Here we stick to the power-law form
Eq. (6.3) and present the dependence of the phase diagram twe thath exponent
sin Fig. 6.10. We observe that upon increasing the value sf the areas occupied
by the Mott phases extend to larger values of and signi cantly change their
shape. A qualitative change is observed for large exponent 0:8 and s = 1:0.
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The Mott phases appear to extend up to arbitrarily large vales of and the
BEC phase which separates the Mott phases is completely abse

The cases = 0 (constant bath density of states) turns out to be di cult to
access numerically. An extrapolation of the phase boundas for values ofs in
the range0:1; ;0:4to s = 0 is inconclusive, but the Mott phase is at least
signi cantly suppressed in this limit.
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7. SUMMARY

The NRG, originally developed for the solution of the Kondo mblem, proved
the power of a non-perturbative method in other impurity moels by successfully
describing the physics of quantum phase transitions and gotm critical points
of the models.

The focus of investigating the impurity quantum phase transions is rather
di erent from the ones in lattice models. For example, the pysics of spatial
correlations, one of the most important features that desitres the criticality of
lattice systems, has no counterpart in impurity systems, wére quantum critical-
ity is involved in the local physics at the impurity site suchas the local magnetic

susceptibility oF
imp

loc — @H - .
Here h is the local magnetic eld. The temporal correlations is imprtant in

any case but, in particular for the impurity models, the lochdynamics of the
impurity spin, %, would be a matter of interest. i.e.:

C()=h?*() *0i: (7.2)

The global dynamics can also attract our attentions if the irpurity contribution of
the thermodynamic quantities ofSin, (T) and imp (T) show non-trivial prefactors
that frequently indicate the fractional charges or spin momntums at the critical
points.

The quantum phase transition in the soft-gap Anderson modefound in the
early nineties (Witho and Fradkin 1990), was studied in mary di erent contexts
and here we added a complete understanding of the NRG manydyospectrum of
critical xed points by utilizing renormalized perturbati on theory around a non-
interacting xed point. The non-trivial level structure wi th reduced degeneracies
and non-equidistant levels was reconstructed by adding thgerturbative correc-
tions of the marginal interactions in the vicinity of the critical dimensions,r = 0
andr = 1=2. We found that the impurity spin in the quantum critical phase is
uctuating in arbitrary small temperature T, which gives a clue to the non-trivial
Curie-Weiss constantGy, * di erent from the free-impurity value S(S + 1) =3.

A new extension of the NRG method to the spin-boson model brdaned our
viewpoints from a xed exponents = 1 to the range of exponent9<s 1and,

(7.1)

Himty o imp (T) = Gmp =T
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as the most important outcome, we found second order trangins dividing the
parameter space into the localized and the delocalized pleas where the two-
level system stays either at the two-fold degenerate eigéates of ~, (localized)
or the single lowest eigenstate of, (delocalized). The two-fold degeneracy in
the localized phase and the lifting in the delocalized phasse manifested in
the residual value ofSy,, by the In2 dierence. In the quantum critical phase,
the residual entropy is quenched to a value betweeh and In 2, implying that
the subsystem is uctuating for arbitrarily small temperature T. The origin of
the quantum uctuation could be clari ed with analysing the structure of the
guantum critical xed points. We expect that, in the vicinity of the critical
dimensionss =0 and s = 1, the many-particle spectrum at the quantum critical
points is perturbatively accessible within a single-partie picture.

A model with a bosonic impurity state coupled to a non-interating bosonic
surrounding, what is called, the bosonic single-impurity Aderson model, was
studied with the NRG and it turned out that there exist quantum phase tran-
sitions and quantum critical points separating the BEC phas from the Mott
phases. The terminology was obtained in analogy to the Bostibbard model
regarding the connection of the bosonic single-impurity Aderson model with the
Bose-Hubbard model via DMFT (Dynamic Mean-Field Theory). e physics of
the two cases, however, is quite di erent and the distinct decription” is neces-
sary to prevent the possible confusion. Th& = 0 phase diagram of the bosonic
single-impurity Anderson model for various=U and ",=U shows apparent sim-
ilarity as the one for the Bose-Hubbard model depicted in thevo-dimensional
plane oft=U and =U .> The character of the Mott phase is pretty clear in a
sense that the many-particle spectrum is simply understoods the one of the
non-interacting bath. The low-lying spectrum of the BEC phae is rather sen-
sitive to the computational errors that are originated fromdiscretization and
truncation processes. However the size of the gap, itself is quite reliable even
in that condition and, for simple cases, we con rmed that thecontinuum limit,

I 1, shows good agreements with the exact value. The current v#ts strongly
indicate that the BEC gap 4 vanishes at the transition from the BEC phase
to the Mott phase and the system shows quantum critical behaw near to the
transition point. Details about the quantum critical phase such as the size of
the gapj 4j and the structure of the quantum critical point are under inestiga-
tion. Furthermore, it is very desirable to calculate the dymmical quantities of the
given impurity model and make a self-consistent connectido the Bose-Hubbard
model via DMFT (Metzner and Vollhardt 1989, Georges, Kotlia Krauth and
Rozenberg 1996, Bulla 1999, Bulla, Costi and Vollhardt 2001

2 We regard a phase as a BEC state only if the critical temperatue T is nite (to be precise,
the crossover temperatureT ), the Mott phases do not guarantee the integer occupation athe
local (impurity) site, and so forth.

% t:hopping parameter, :chemical potential and U:Coulomb repulsion.



APPENDIX






81

A. FIXED-POINTS ANALYSIS: SOFT-GAP ANDERSON
MODEL

The low-lying spectra at the local-moment and strong coupig xed points are
the eigenstates of the non-interacting HamiltoniarH .y,

b( 1
Hen = ta(Ch Cos1r + Grug Cosr ) (A.1)
n =0

which is written in a diagonal form,

X
Hen = p
p

T

b (A.2)

The energy of the many-particle levels in the two cases is uaidtood with the
single-particle spectrumf ,g.

On the contrary, the spectrum at the quantum critical xed pant is not
captured within the single-particle picture ofH.n since the marginal interaction
O raises electronic correlations among particles. Howevéhge e ect of marginal
interaction vanishes in the limit ofr ! Oandr ! 1=2 and the perturbative
corrections to the eigenstates ofl..y give the correct structure of the quantum
critical xed point. For a non-degenerate case, the rst orér correction is

EY =h 96 ?i; (A.3)
wherej i(o)i and Ei(o) are the eigenstate and the eigenvalue bf..\ , respectively*

As a rst step to calculate Eq. (A.3), we obtain the explicit form of the non-
interacting eigenstates i(o)i in terms of the single-particle operatorg ,f)y)g and
the vacuum eld jOi.

. (O). x Y Y \n Y \Ng:iM; -
J it = Anging  ( p") P q#) 0 (A.4)
fnp;ngg pq

The occupationf ny; ngg and the corresponding coe cientsA,, ., are determined
to yield the quantum numbers (charge and spin) of the given ate. In Ap-
pendix A.1, we perform the calculation for various quantumtates.
"Benj Qi=EO) O
’ I I -
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In the next step, we write the marginal operatoi® in terms of f (y)g Near to
the critical dimensionr = 0, the marginal interaction is given by a Kondo-type
coupling,

‘j\: Simp S = |mpc)(/)#co |mpcé Cox
*5 S.%np CoCo CpuCor (A.5)

Since the electronic operatory) is expressed with the operators”:

X X
C = op p ; CE; = op g ; (A6)
p p

the interaction J' is expressed with linear sums of the quadratic excitationg
for various momentums and spins:
! !

1 X 1 X
J= Smp S = ZS;np op Oq g# g t ésimp op 0q ;y) o
Pq Pq |
1 X X '
+ Zslfnp op Og ;)3/" q op Og .X# @ - (A.7)
pq pq

In the vicinity of r = 1=2, the Coulomb repulsion,

L (A8)

_ 1
0= e 3

is applied to the rst site of the conduction chain so that theterms like

Aty = o Clycon
0= o
Ny = Cé#CO#; (A.9)

create the one-particle, g q Or the two-particle excitations, g g 1o st iN the

marginal operatorsQ:
| |

X 1' X 1
0 = op Oq [))l q" 2 or Os ?l# s# > . (A.10)
pg rs
The rst order correction of h @jfj @i andh @j0j @i can be calculated

if we know the coe cients A .,, and ¢ for all indices p and g. The detailed
calculations will be given in Appendix A.2 and A.3.
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e, ———— p=3
€ p=1
0

Figure A.1l. Single-particle spectrum of the free conduction electrowairc
Eq. (A.12). The ground state is given by all the levels \pith 0 lled.

A.1 Local moment xed points

The conduction-electron part of the iterative Hamiltonian(N™ step) is given by

b( 1
Hen = tn(C% Che1 T Qs;+1 Cn+1 ): (A.11)
n =0

The H..n can be written in a diagonal form,

Hen = p F))l p (A.12)

where ,, is the single-particle spectrum oHn . Since the single-particle spectrum
depends on whether the total number of sites is even or odd, @iscuss two cases
separately.

If N +1 (the total number of free-electronic sites) is even, the gipre-particle
spectrum of the free chain is as sketched in Fig. A.1. As we as® particle-hole
symmetry, the positions of the single-particle levels areysimetric with respect
to 0 with

p=  p P=1;3  N; (A.13)
and
X KN
(A.14)

p p= N; p odd

Note that an equally spaced spectrum of single-particle lels is only recovered
in the limit I 1 for the caser = 0.> Figure A.1 shows the ground-state

2 See Fig. 6 in (Bulla, Hewson and Zhang 1997).
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€, =4

e, =2
€,=0 =0

e, % [=-2

e, % I=-4

Figure A.2: Single-particle spectrum of the free conduction electtaaircfor odd-
number of free-sites. The ground state is fourfold degémevdh all the levels with
p < 0 lled and the levep = 0 either empty, singly"(or #) or doubly occupied.

con guration (half- lling). The states of the lowest excitations are easily obtained
by creating a few particles and holes from the ground staten kerms of the single-
particle operators in Eq. (A.12)}

jli = ])f 1j oi;E=21 (A15)
j 21 = %l 1) ol E= 1+ 3
j 30l = i/ 1{ 1] oy E=41( 6 )
with %
j ol = g.. g#jOi: (A.16)

p<0

The spin-indices are determined by the quantum numbers of ¢hstates and we
will discuss them later on.

If N +1 is odd, the single-particle spectrum of the free chain is akeiched
in Fig. A.2. As in the previous case, the positions of the sifgparticle levels are
symmetric with respect to0 with

0=0; = o P=2:4 'N; (A.17)

3 All the bracket states in Eq. (A.15) and Eq. (A.19) consist of only the conduction-electrons
(j ni =] ni®n). The eigenstates of the full system are expressed in prodtg with the ones
of impurities. For example, j i® = aj i j# ™ + b guicond jri M 4+ . The
coe cients a and b are determined according to the quantum numbers of i®©!.
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and
X XN
(A.18)

p p= N; p odd
In this case, the ground state of the e ective model for an oddumber of free
sites is fourfold degenerate, with all levels witlp < O lled and the level p=0
either empty, singly (" or #) or doubly occupied. Possible lowest excitations are

jid = & 2o E= (A.19)
joa = 5 23 24 ol E=2,
j sl = é/-- ) ol E= 4
with %
j ol = %’.. g#jOi: (A.20)
p<0

Comparing the two equations, Eq. (A.19) and Eq. (A.15), we d the di erences
in the many-particle spectrum depending on the parity oN + 1. This even-odd
e ect, which is originated from discretization of a continwus band, seems to
make it di cult to de ne xed points since the RG-mapping ( R) in Eg. (3.53)
changes parity ofHy in every iteration. However the original Hamiltonian in
Eq. (3.3) conserves total charge and parity so that any traitsons are forbidden
between states with di erent parity. Therefore we can cho@sone subset of eigen-
states with even (or odd) parity and, regardless of the chag investigate general
properties of the model. The many-particles spectrums cetited in every other
iterative step belong to the same parity-group and quickly ow into the xed
point of the conduction band.

In the following section, we obtain the explicit form of the nany-particle states
for several sets of Q; S; S,g. We focus on the case dfl +1 = even

All Q=0,S=1=2and §,=1=2

The local-moment xed point is described with an e ective Haniltonian,
X
Hm = lIJl!lqn Himp + pb P (A.21)
P
with X
Himp = "¢ fY, f 1 + UfY L pfYLf o (A.22)

In nitely large Coulomb repulsion U prohibits a double-occupied and empty state
from the impurity-site and leaves a single electron with spiup or spin-down on
it, which makesQ™ =0, S™ =1=2and §"° = 1=2.

j Timp = fYj0iimp; (=" or#) (A.23)
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The ground state of the local moment xed point is a product of iin, and the
half- lled ground state of the free chain, depicted in Fig. Al:

jogri = 1Y o (A.24)
with Y
j Oi = jOI imp F))/" F))/#JOI cond : (A'25)
p<0

Since the charge of the ground state is zero, all excitatiomgith Q = 0 should
create the same number of particles and holes from the grousthte. Considering
the excitations with a single-pair of particle and hole,
jio= Y gl o E= p g (A.26)
with p>0,9<0, ,>0and 4< 0.
Spin-indices , and are determined by givenS and S,. Taking account

of all possible con gurations of the three-spin system, weake a8-dimensional
space with a set of basis:

j+1=2+1=2;+1=20 = Y ) i ol (A.27)
j*1=2,+1=2; 1=2i = ) L ] oi;
j+1=2 1=2,+1=20 = {7 2. i oi;
j*1=2 1=2; 1=2i = {7 2. ¢j oi;
jo1=2+1=2,+1=2i = ) @ oi;

p
joo1=2+1=2; 1=2i = £ ) ¢ oi;
j 1=2 1=2;+1=2i = f) ;’# el ol
joo1=2 122 1=20 = f) 2. g oi:
Using the representation of total spinS™, we can separate the space into two

pieces:S* = 3=2 and S' = 1=2. We focus on the subspace f&#" = 1=2 and
St = 1=2, which is spanned with a basis,

. 1 o
J 4l p—éf..”( gt gl ol

. 1 - 2 .

J 2l p_éfy( g q g# q#)J ol + p_éf;/ g g ol (A-28)

Figure A.3 shows a ow diagram of soft-gap Anderson model vhitr = 0:35,
=0 4754 103 andU = 2'¢ = 10 3. Data are collected for quantum

numbersQ =0 and S = 1=2. For < , many-particle levels ow into the

local moment xed point.
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Figure A.3: Flow diagram of the lowest lying excitations for the locahrant
xed points of the particle-hole symmetric soft-gap Andersnodel ( = 0:35, =
0:4754 10 3*andU= 2"t =10 3). (Q;S)=(0;1=2).

Diagonalizing the single-particle Hamiltonian for the coduction-band
[EQ. (A.11)] yields one-particle eigenvalues,; = 0:55and 3 = 1:50, which cor-
respond to the level-spacing in Fig. A.3.

E, = 1 1=2 1:1
E2 = 3 1= 1 3= 3+ 4 2:05: (A29)

The rst two levels with E = E; 1.1 are degenerate for the spin degrees of
freedom and the eigenstates are

o 1 i o
j 40 = p_zf.?’( vt Y w) ool

o 1 o 2 o

] 2l P—éf LGOI % ) ol t P—Efﬁl oo ol (A.30)

The degeneracy is doubled in the case & = E, 2:05 where the positions
of a particle and a hole creates di erent states without any reergy-cost [p; g =

(2; 3)! (3; 1)]. The eigenstates are

o 1 i o
= RS et b Wl
2
1 i o+ B2 | o
j a4l = p—éf--y( Iow 1 o) oot p_éfti[ roal ol (A-31)
o 1 i o
j si = p—zfy( %/ 1t :)5/# 1#)] ol

o 1 o 2 o
j el = p_éf,}’( Por % ) o|+9—6f¢)¢/ ¥ 1 ol
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WF 15

. . | . | .
0 100 200 300 40

Figure A.4: Flow diagram of the lowest lying excitations for the locaimant xed
points of the particle-hole symmetric soft-gap Andersodeho = 0:01, <<
U= 2" =10 3 and(Q;S)=( 1,;0).

Other higher excitations involving only single pair of a péicle and a hole can
be understood in similar manners. The alternative way to preed to the higher
levels is to create more particle-hole pairs from the grourstate.

j T2 pn g g ol E= p gF o (A.32)

T T

i y y N —
J 13 pn q po o poo go] ol; E= p gt po @t poo qoo

More number ofp h pairs demand more e orts to obtain the eigenstates, which
has the Clebsch-Gordan coe cients for higher spin§* = 3=2; 2;

Al2 Q= 1land S=0

There is no change at the impurity-site, and the negative clhge Q = 1 is
attributed to the conduction-electron part,

joao= p fY ol;
j2 = o oo’ o (A.33)
j 3i = p goo o 0 goooo qoooof yj oi;
with Y
j ol = jOiimp g g#jOi cond - (A.34)

p<0
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Concerning the simplest case 9f ;i, the singlet state is given as:
o 1 o
)= P—é( of ok )i ol (A.35)
with which the lowest two levels in Fig. A.4 are written as:

. 1 .
] 1l = P—é( i+ Wt )i ool (A.36)

o 1 o
J 2l \9—2( »f7+ o ))j i

The eigenenergy of the two levels arg; = 1:10 and E, = 2:05, which agree
with the corresponding single-particle eigenenergy, 1j = 1:10andj ,j =2:05,
respectively. The third level involves two holes and one elkeon in the conduction-
electrons part and the excitation-energy i€3= ; 2 =3 1.

j i=fY ])f 1 1#j oi: (A37)

Sinceh of Y, ¥ .S 1+ 14 ol = 0, two particles f¥Y and { form a single
state as in Eg. (A.35) to makeS™ =0:

o 1 o
] 3l = P—é( LRI+ 18D ol (A.38)

The highest three levels in Fig. A.4 are degenerate Bt=2 ;+ ,. The degeneracy
is resolved with a 4-spins picture, wher¢¥, ¥, o, and , are considered as
ordinary particles with spin-1=2. There are two ways of distributing the holes
(¢ and ;) and the particle ( § ) in the single-particle levels:

ja o= Y1 1w o
j2i = fy])f 1 3j oi: (A39)
The rst state, j i, is similar to the case withE =3 ; in Eq. (A.37) so that the
eigenstate forS =0 is

1 o
ja=ps(afar sl o ol (A.40)

To determine the spins of the the second statg (;i), we calculate the Clebsh-
Gordan coe cients ¢c>* , de ned as

X
iS;S,i = Sy i (A.41)

Using the expression of a three-spins state:

X
iSisi = S0 (A.42)
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a four-spin singlet statej0; Oi IS written as
JO; Oi = pl—z(f Yj1=2; 1=2i flj1=2;+1=2i ): (A.43)

1=2; 1=2

The coe cients ¢ are same as in Eq. (A.28):

. : 1 .
=ze1=2iy = B (T et Ty )l ol
. . 1 o
j1=2; 1=2i, = 19—z (Y e+ Y 3w ol (A.44)
1, , 2,
11=2+1=2, = p_é (7w w sl ol t p_é 1 1+ 34 ol
. : 1 . 2 .
11=2; 1=21, = p_é WV e Y )i oo ¥ p_é t 7 ool
Inserting Eq. (A.44) into Eq. (A.43), we obtain
. 1 -
10; 014 = é(f"y v TL 07 et Y s o
. 1 ..
JO; O|2 = Ep_g fy ;)Ll# ftil ])f)( y1" 3" yl# 3#)J ol
1 .
+\9—:—%(f"y Ve 1LY sl ool (A.45)

Three-fold degeneracy alE = ; + 3 is now explained with Eq. (A.45) and
Eq. (A.40):

.. 1 ..

joa o= p—é( I+ LI o ol

- 1 -

] sl = é(f"y P M) (R OTRNETE S PP (A.46)
.. 1 o

el = Efyé(fy i# fg i)( y1" 3" yl# 30] ol

1 o
+p_§(fy :)L/ y]_# 3" f;;/ :)L/# yl" 3#)] ol:

A.2 Details of the Perturbative Analysis around the Local
Moment Fixed Point

In this Appendix, we want to give more details for the derivabn of the matrix
Wi in Eq. (4.28) which determines the splitting of the fourfolddegeneracy of the
subspace Q =0, S =1=2, S, = 1=2) of the LM xed point at energy ; + 3.
We focus on the matrix elemeniW;,:

Wi =h qjHRj 2i = (NDF(N)h 1jSimp Soj 2i :
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The strategy for the calculations can be extended to the othematrix elements

and the other subspaces, for which we add the perturbativeselts at the end of
this appendix without derivation. The operatorS;,, § is decomposed into four
parts:

Smp % = %Si?np%#%--+ %SimpCé--Co#
oSy GO Ghow | (A47)
so that W4, can be written as
Wy, = (r)f(N)%[|+II+III V] ;

with

I = h jSip @iCorl 2l
and the other terms accordingly. With the de nitions of j ;i and j ,i of
Eq. (4.26) we have:

1 . +
| = p—zh o et Yy F0Sh, e

1 2 o
P—éf"y vos 1s s t P—éfﬁl s ool
(A.48)
With S;np = fJf4 we immediately see that the terms containing - S;npf..y drop

out. The remaining impurity operators,f- S;npfg, give unity when acting onj i,
SO one arrives at

| = pl—_[la+lb] ;
3
with
la = hoj Y3 Qo 3+ 34 o
b = h o Y5 14CCor 3+ 34 ol : (A.49)

To analyze la and Ib, the operatorscgy)

)

have to be expressed in terms of the

operators p”: X X
C = o i G = o p (A.50)
po p
with the sums overp and p®de ned in Eq. (4.21). This gives
X
la= op op°N o] Ty v g# o 10 34 ol (A.51)

pp°
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The only non-zero matrix element of Eq. (A.51) is fop= p°= 3

la = 030 3h Oj y3" 1" y3# 3" ])f S#j Oi
= j o34 (A.52)
Similarly, the term Ib gives
X
b = op 0pN o] Yo 10 S# p" s o
pp°
= ood?; (A.53)
so that, in total,
1 . . .
I = 93 [T T (A.54)
The next term Il = h 1jSimp c}/) Cosj 21 gives zero due to the combination of im-
purity operators: f.f f.::: with f. from h jj and fJf- = S .
The third term Il = h 1jSE, cf.coj 2i gives

1 .
I = p?zh o) y3" 1+ y3# 1# fSlzmpCé/Cofy

y y i o
1" 3" 1# 3# J ol

where the term with (2:p 6)fY J. s fromj ,i has already been dropped. So we
are left with four terms

e plT_Z[IIIa Nb+1lic  1d] ; (A.55)

with
Ma = hoj¥y pfSdhcef? L s ol ;
lllc = h oj y3# 1#f " Slzmp C}; Cofy % 3J oi ;
INd = h oj y3# 1#f " Slzmp Cz)/ Cofy X# 3#J oi .

(A.56)
Following similar arguments as above one obtains
1X o
llla = 5 opi? ; (A.57)
p

. P
where thep in po takes the values

p=1; 1, 5 7::: N:
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Then we obtain:
lNb=1llc=0 ; (A.58)
and 1X o
ld = > ] opl” (A.59)
p

P
where thepin = “takes the values
p= 1, 3 5 7;::: N:

This gives for the third term

" = 91: la  1lid]
12., 4
1 Xo o, Xoo
= ZP—:—)’ ] op) ] op)
p P
= — : A.60
Zp_i% J o] o3 ( )
The calculation of IV proceeds very similarly to Il and one btains
= 1V ; (A.61)
so that we nally arrive at
1 1 1
Wi, = (NDF(N)S j odf?® | 2 p=+0+2-p—
12 ()()210111 0 3 PE ZPE
., .
= (Of(N)z 3] N (A.62)

We performed a similar analysis for a couple of other subsgasc Here we list
the results from the perturbative analysis for three more dfaspaces together with
the corresponding basis states.

A21 Q=0,S=1=2 §5,=1=2,E=2 4

This subspace has the same quantum numbe@s S, and S, as the one discussed
above, so that the details of the calculation are very simita The di erences
originate from the position of particles and holes in the sgle-particle spectrum,
which reduces the dimensionality of the subspace from foun two.

The corresponding basis can be written as

o 1 i o
j 4 = p—éf.."( ot e 1w ool

o 1 2 .
j o p—éf--y( o 1y 1)t p—éf#{ I ol

(A.63)
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The rst-order corrections are given by the 2 2 matrix#
P

; (A.64)

wl

fWjg= (r)f(N)

o
4>|<»| o

»|
NI~

with =] o01j2 | o 1g?2and = j ¢1j>+ j o 1j°>. Due to the particle-hole
symmetry of the conduction band we havg o) = | o 1j; therefore, the o -
diagonal matrix elements vanish and the e ect of the perturtion is simply a
negative energy-shift only for the statg »i:

0 0
0 j ol?

This e ect can be seen in the energy splitting of the rst two bw-lying excitations
in Fig. 4.7.

fwWijg=(Nf(N) (A.65)

A22 Q= 1,S=0,E= 1

There is only one con guration for this combination of quamim numbers and
excitation energy:

. 1 .
ji= 19—2(1‘..y v+ ) 1) o (A.66)

The rst-order perturbation keeps the state in this one-dinensional subspace and
the energy correction is given by

0 3 : .
E=hjHRj i= 2 (NF(N)j o 4j*: (A.67)

A23 Q= 1,S=0,E-= 3

The di erence to the previous case is the position of the hola the single-particle
spectrum. The state is now given by

. 1 o
] = P—é(f--y s+ T s ol ; (A.68)
with the energy correction
E=hjHRj i= Z (DF(N)j o 4% (A.69)

A.3 Details of the Perturbative Analysis around the
Strong Coupling Fixed Point

The main di erence in the calculation of the matrix elements W; g for this case
is due to the structure of the perturbation [see Eq. (A.10)].Furthermore, the
ground state of the SC xed point is fourfold degenerate andhe perturbation
partially splits this degeneracy, as discussed in the folling.
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A31 Q=0,S=1=2,S5,=1=2,E=0
This is one of the four degenerate ground states at the SC xqubint:
joai= & ool (A.70)
with | (i de ned in Eq. (A.25). The perturbative correction is given ly
- O. . 1 . .4 .
h qjHN] 1i = > (NF(N)A ] 1d”); (A.71)
which corresponds to the energy shift of the ground state:

E1= 5 (I | 1ol (a.72)

The coe cients y are de ned by the relation between the operators$ ™ and
).
I -

f = f10 10 fy= fl |y: (A73)

A32 Q= 1 S=0,E=0

This state is also a ground state in théJ = 0 case:
j 2 =] ol : (A.74)
The calculation of the rst-order correction forj ,i gives
n MG 2= 5 OFN+ ] ol (A75)

This means that the ground state including the e ect of the pdurbation is given
by j i1 in Eq. (A.70) and the state ] ,i appears as an excited state. For a
comparison with the energy levels shown in the NRG ow diagras, where the
ground state energy is set to zero in each iteration, we subtt the perturbative
correction of the ground state ( E;) from the energies of all other excited states.
Subtracting this energy shift from Eq. (A.75) gives the net mergy correction for
thej ,i state:

Ez= (NF(N) roj*: (A.76)
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A33 Q= 1, S=0,E=,

The state corresponding to this subspace is given by
J 6= ps(d ot b )il (AT7)
The rst-order correction reads
haHS s = OFN) A1 o9+3) o o2 1 (AT9)
Subtracting the energy correction for the ground state re#ts in

E3=3 (NF(N)j roi% ¢ 2°: (A.79)

A34 Q= 1,S=0,E= 4

Similarly for the state
A= ps(d et b W) o (A.80)
the rst-order correction is given by
h A = OFN) ST ) +3

and subtracting the energy correction for the ground stateesults in

Ea=3 (Nf(N)j roi%j ¢ 4i°: (A.81)
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B. THERMODYNAMICS IN THE OHMIC SPIN-BOSON
MODEL

In this section, we describe how thermodynamic quantitiesaa be extracted from
the ow of many-particle levels Ey (r), which are calculated with the bosonic
NRG. Starting from the Ey(r) there is no dierence (from a technical point
of view) between the fermionic and the bosonic case [for thermionic cases
see, for example, Refs. (Krishna-murthy, Wilson and Wilkis 1975, Oliveira and
Oliveira 1994)]. Nevertheless, for completeness we inotud brief discussion of
the technical details here. We show results for the impuritgontribution to the
entropy and the specic heat in the Ohmic case. The Ohmic cadeas been
studied in detail in Refs. (Costi 1998, Costi and Zarand 199%for earlier work
on thermodynamic properties see Refs. (Leggett et al. 19830hrlich and Weiss
1998, Sassetti and Weiss 1990)]. The agreement with the riesdirom Refs. (Costi
1998, Costi and Zarand 1999) is excellent, which again coms the reliability of
the bosonic NRG for the investigation of quantum impurity malels involving a
bosonic bath. Consider the spectrum of many-particle eneeg E; of a discretized
version of the spin-boson model. The grand canonical paitn function, Z =
Tre ™ N) reduces to X

Z = e Bi; (B.1)

as the chemical potential is set to zero [we are interested in gap-less spectral
function J(! )]. Free energyF and entropy S are then given by

F= TInZ andS = %:. (B.2)
(We setkg =1.) The impurity contribution to the entropy is
Smp =S o (B.3)

whereS is the entropy of the full system andS, the entropy of the system without
impurity.

Before we discuss the full temperature dependence &f,, (T), let us focus
on the value ofSi,,, at the localized and delocalized xed points:Simy,. and
Simpp - It is well known that Sy, = In2 and Spp,p = 0 (Costi 1998, Costi
and Zarand 1999), but it might not be obvious that these valug can be directly
extracted from the many-particle spectra at the xed points
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0.8 ‘

Simp(T)

Figure B.1: Temperature dependence of the impurity contribution to ¢méropy,
Simp (T), for =1/3, s=1 (Ohmic case), and various values of

In Section 5.2.1, we already showed that the xed point speaim of the delo-
calized xed point is the same as the one of a free bosonic amaivhich is nothing
else but the system without impurity. This implies that for the delocalized xed
point

E, = Ei;0+ E; (B4)

with E; (E;.o) the many-particle energies of the system with (without) inpurity
and E a constant shift independent of. It is clear that this equation does not
hold for all levels, it is only valid for energies su ciently below the crossover scale
to the xed point.

Equation (B.4) directly leads to the proof of Sy,pp = 0: we haveZp =
exp[ E]Zo, and fromthisF. = TIn2+ Fp+ E and S, = In2+ S,
corresponding toSimp,. = 2. From this discussion it follows thatSy,. = In2
and Simp:p = 0 independent of the exponens in the spectral functionJ(!).

For any nite and , the valuesSiyp. =1In2 and Sinpp = 0 are strictly
valid only in the limit T ! 0. Note that a proper de nition of these zero-point
entropies requires the correct order of limits: the thermoghamic limit has to be
taken before the limit T ! 0. With the order of limits reversed, the zero-point
entropy would be equal tolndg, with dy the degeneracy of the ground state.
Although this happens to give the same values &, and Siy,.p in the case
studied here, this equivalence is not generally valid. Thisan be seen, for example,
in the NRG calculations for the single-impurity Anderson mdel (Krishna-murthy
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Figure B.2: (a) Scaling curves of the impurity contribution to the eqyoSi,, (T),
for s =1 (Ohmic case), and various of (b) Scaling curves of the impurity contri-
bution to the speci ¢ heaCiy, (T)=(T=T ), for the same parameters as in (a).

et al. 1980) where the degeneracy of the ground state osdiia between 1 for even
and 4 for odd iterations when the system approaches the xedmt of a screened
spin, which hasSi,, = 0. Also, any non-trivial quantum critical xed point is
expected to have a residual entropy which is ndh dy with integer dy.

In the bosonic NRG, we do not have access to the full spectruni many-
particle energiesk; as used in Eq. B.1. Instead, the iterative procedure re-
sults in a sequence of many-particle energi&s, (r) with iterative number N and
r = 1;:::Ng. According to the discussion in Refs. (Wilson 1975, Krishraurthy
et al. 1980), each of the sets of many-particle energies isawed to be a good
description of the system for a certain temperaturdy with

TN = x! c N; (B5)
with x a dimensionless constant of the order of 1, chosen such tAat lies within

the spectrumEy (r).
For each iteration stepN, the partition function is calculated for the temper-
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ature Ty : X
Zy = e EnOFh (B.6)
r
In addition, the internal energy at iteration step N for the temperature Ty is
calculated as X
1 _
En = =—  En(r)e Ev(O=Tn: (B.7)
Zn

r
This is the information we have for the numerical calculatio of thermodynamic
properties.

One possibility to proceed is to calculate the free enerdyy = Ty InZy for
each iteration step, and from this the entropyS = @F=@}ia a discrete di er-
entiation. This procedure has been shown to give good resin the fermionic
case [see, for example, Ref. (Bulla and Hewson 1997)]. It uegs, however, a
precise calculation of the di erence of the ground state ergies between subse-
guent steps; this appears to introduce some errors in the calations within the
bosonic NRG.

Therefore, we use an alternative approach in which the enfpg Sy at iteration
step N for the temperature Ty is calculated via

Sy = E—N+|n YANE (B8)
Tn
This approach avoids the discrete di erentiation, and doersot require the knowl-
edge of the ground state energies.

Let us now discuss the results for entropy and speci ¢ heat lcalated with
the bosonic NRG using the method just described. Figure B.hews the tem-
perature dependence of the impurity contribution to the embpy, Sim, (T), for

= 1=3; s = 1 (Ohmic case), and various values of . We observe a
crossover from the high-temperature valu&,, = In2 to the low-temperature
value Si,, = 0 at a crossover scaldl , which is same as the one introduced
in Section 5.2.2. The crossover scale decreases with desirep  in agreement
with Eq. (5.14). Note the similarity, which is simply due to the relation between
Simp (T) and the ow of the many-particle levels.

As brie y mentioned in Section 5.2.1, the vicinity to the lo@lized xed point
for early iterations, which results in the high-temperatue value Si,, (T) In2,
does not imply localization. The value ofSi, (T) for high temperatures is due
to the fact that for temperatures T both states of the two-state system
contribute equally to the thermodynamics. Note also the siftarity to Simp (T)
in the Kondo model: there the high-temperature phase is thaif a local moment
with both spin " and# con gurations contributing to the entropy (a temperature
dependence o, (T) as Fig. B.1 might therefore appear more natural in the
Kondo model but, of course, it is also valid here).

The scaling behavior ofS;,, for xed = 1=3 and various is obvious and
is shown in Fig. B.2-(a) together with the scaling curves for = 1=5;1=4; and
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1=2. The agreement with the exact results from the Bethe ansatafculations in
Ref. (Costi and Zarand 1999) is very good [see Fig. 7-(a) in R¢Costi 1999)],
in particular for the  dependence of the scaling curves.

The temperature dependence of the speci c heaGiy, (T), is calculated via
Cimp (T)=T = @& (T)=@T Here we cannot avoid the discrete di erentiation
of Sinp (T). The scaling of Sy (1) implies a scaling ofCi, (T)=T as shown in
Fig.B.2-(b). This gure is also very similar to previous catulations [see Fig. 2
in Ref. (Costi 1998) from the NRG via mapping to the anisotrojg Kondo model
and Fig. 7-(b) in Ref. (Costi and Zarand 1999) using the Bethénsatz], and
we nd the same characteristic features here: a linear spexiheat / T for
low temperatures, a peak inC=T at T T for small dissipation < 0:3 in
contrast to the monotonous decrease @=T for large dissipation > 0:3, and a
characteristic crossing point of all theC=T scaling curves.

Similar to the NRG calculations in Ref. (Costi 1998), the themodynamic
guantities can only be calculated on a discrete mesh of temptures given by
Eq. (B.5). This strongly limits the resolution of the peak inC=T for < 0:3, in
contrast to the Bethe Ansatz calculations of Ref. (Costi andarand 1999).
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C. BEC OF AN IDEAL BOSONIC GAS WITH A ZERO
CHEMICAL POTENTIAL

In usual contexts, theoretical description of BEC in a nonrteracting bosonic
gas is taken account on canonical systems, where the totalmier of particles
N is xed and the chemical potential is determined as a function ofN and
temperature T using a relation below:

N = —_— (C.2)

The critical temperature T, below which BEC occurs, is de ned to satisfy con-
dition:

(Te;N) =0; (C.2)
so that, forT T,
n("i =0)
)] 11 (C.3)

with n("j))=1=fe (i ) 1g.

In NRG, a non-interacting bosonic bath (gas) is consideredsa grand canoni-
cal system where the chemical potential is zero and the total number of particles
N is in nite. In such a case, we cannot use a chemical potentiak a criterion of
BEC because it is xed to zero always. Instead, the ratio of #ta mean occupation
in Eq. (C.3) is directly used to distinguish BEC phase from th others.

Let us assume that a set of single particle states,

Spec f "iji=0;1;:5m  1g; (C.4)

is used to construct a BEC (many-particles) state. In genetam can be any
nite number. Now BEC for a grand canonical system with =0 is de ned as:

n("i 2 Sbec)

n("i 2 Sbec) b (C'S)

At T =0, itis obvious that the ground state has all existing particts at the level
of " = 0 and the other states with" > 0 are empty. Thus Eq. (C.5) is satis ed
with a subset Sy

Spbec = F"0]"0 = 00: (C.6)

! See (Leggett 2001)
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For a nite temperature T 6 0, the mean occupatiom; for a single particle level
"i diverges as'; approaches zero:

. o 1 :

mnCo=tm cem =1 €D
with =0. Now we prove that, atT > O, there are in nitely many "; that satisfy
Eq. (C.7). (In other words, m, the dimension ofS,, IS in nite.) Let us take an
arbitrary large integer N. For an arbitrarily large number N, there exists a small
energy" such that

" = kgTIn(1+1=N); (C.8)

and any single particle state"; smaller than" has a mean occupation number
n(";) larger than N; i.e.,

n")>n(")= Wll:m 1=N; (C.9)

for0<"; <" . The fact that the dimension of S,e, M, is in nite violates the
de nition of BEC in Eq. (C.5). Thus BEC of a non-interacting bosonic system
is restricted within zero temperature.
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D. DETAILS ABOUT THE ITERATIVE
DIAGONALIZATION IN THE BOSONIC
SINGLE-IMPURITY ANDERSON MODEL

Let jQ; riy denote the eigenstates dfly that have chargeQ. One now constructs
from each of the stategQ);riy the following states:

jQ;r;0f = jQ;rin

jQr;li = BjQ;rin
2

jQir;2 = %J’Q;rm (D.1)
3

jQir; 3 = %jQ;riN

Using these states, we can form the following basis stateshbf .; that are also
eigenstates oQn+1 = Qn + B by.

jQ;r;0i = joO;r; Qi

jQnrli = jLr;Q 1

jQn2 = j2r;Q 2

jQrnQi = jQ;r;0i: (D.2)
Now we write the recursive Hamiltonian in the form

Hn+ = Hn + Hyos (D.3)

with

Hni = N+1"N+1d<|+1b\l+1+ N+1tN(tK|b\l+1+d<|+1b\l): (D.4)
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The states in Eq. (D.2) are eigenstates dfly .

HnjQ;r 0 = En(0;r)jQ;r; Oi
HyjQin i = En(L;n)jQsr; i
HnjQirm 20 = En(2;1)jQsr 2 (D.5)
HnjQ; Qi = En(Q;nN)jQ;r; Qi

Now we obtain the matrix elements oHy, between the states in Eq. (D.2). Itis
straightforward to demonstrate that the only non-vanishig matrix elements of
Hy) are given by

hQ;r® mjHy, jQ;r;mi = "NFgQ m) ro
Q;rém+1jHy jQ;r;mi = ty_ Q mNrm"‘lir(ijdnjjm;”N
hQ;r®mjHy jQ;rm+1i = ty Q myhm;rijbjjm+1;riy; (D.6)

where hjjq(\,y)jji are the invariant matrix elements.
In obtaining Eqg. (D.6), we have made use of the following reks, which
follows from Eq (D.2) and Eq. (D.2):

p__
Q+1;rmjbl,,jiQrmi=" Q m+1: (D.7)
From Eq. (D.6) and Eg. (D.6), it is clear that, starting with t he knowledge of the
energy levelsEy (Q;r) and the matrix elementshm + 1;r9jb{, ,jjm;ri, we can
set up the matrix of Hy 41 .
The actual iteration upon entering the stag€N +1) would proceed as follows.

We rst start with the lowest allowed value of Qy+1 (= 0), and then increase it
in steps ofl. Within a given Q-subspace, we construct the matrix

Hrm;rm% h Q:rmjHy.1jQ;r®mi: (D.8)
Diagonalization of this matrix gives a set of eigenstates
jQ;lin+ = Ug(!;rm)jQ;r;mi (D.9)

m;r
whereUq will be an orthogonal matrix. The diagonalization means no ore than
the knowledge ofEn .1 (Q;!) and Ug(! ;rm). After completing the diagonaliza-
tion for one Q, we proceed up, increasin@ in steps ofl. In order to go to
the next iteration we need to calculatey.; Q +1;! §jk,,jiQ;! in+1. Using the
results in Eq. (D.7), it is easy to ve;ify t)?at

o P
nePQ+ 151 B, iQ; N = Ugst (! Srm)Ug(! 5rm) Q  m
m<Q r

(D.10)
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