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A HAMILTONIAN VERSION OF A RESULT OF
GROMOLL AND GROVE

by Urs FRAUENFELDER,
Christian LANGE & Stefan SUHR (*)

Abstract. — The theorem that if all geodesics of a Riemannian two-sphere are
closed they are also simple closed is generalized to real Hamiltonian structures on
RP 3. For reversible Finsler 2-spheres all of whose geodesics are closed this implies
that the lengths of all geodesics coincide.
Résumé. — On généralise aux structures hamiltoniennes réelles sur RP 3 le

théorème qui dit que, dans une 2-sphère riemannienne dont les géodésiques sont
toutes fermées, toute géodésique est simplement fermée. Cela implique que, dans
une 2-sphère finslerienne réversible dont les géodésiques sont toutes fermées, elles
ont toutes la même longueur.

1. Introduction

In [10] Poincaré advertised the study of geodesics as a first step in the
exploration of Hamiltonian systems like the ones appearing in celestial me-
chanics. A fascinating object in the study of geodesics are manifolds all of
whose geodesics are closed, see [1]. This leads to the question which results
on closed geodesics are Riemannian phenomena or belong to the realm of
Hamiltonian dynamics. For example in [5] it was shown how the classical
result of Bott and Samelson fits into a contact geometric set-up.

Keywords: Zoll contact forms, Hamiltonian structures, rigidity.
2010 Mathematics Subject Classification: 53D35, 53D25.
(*) Urs Frauenfelder would like to thank the Ecole Normale Supérieure for its hospitality
during the visit while this research was carried out.
The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)
/ ERC Grant Agreement 307062.
The second and third author are partially supported by the SFB/TRR 191 - Symplectic
Structures in Geometry, Algebra and Dynamics.



410 Urs FRAUENFELDER, Christian LANGE & Stefan SUHR

The Theorem of Gromoll and Grove [7] asserts that if a Riemannian
metric on the two-dimensional sphere S2 has the property that all geodesics
are closed, then each geodesic is simple closed and therefore all geodesics
have a common minimal period.
The geodesic equation is a second order ODE. Each second order ODE

can be transformed into a first order ODE. This allows one to interpret the
geodesic equation as a first order Hamiltonian flow equation on the unit
cotangent bundle of the underlying manifold. In the case of S2 the unit
cotangent bundle S∗S2 is diffeomorphic to the real projective space RP 3.
In physics the underlying manifold is referred to as the configuration space
while its cotangent space is denoted as the phase space.
The phase space is a symplectic manifold. The symplectic geometer is in-

terested in applying arbitrary symplectic transformations to this symplectic
manifold since under these transformations the symplectic dynamics trans-
forms canonically and can sometimes be brought to a form which makes it
more tractible to explicit solutions. But under arbitrary symplectic trans-
formations the bundle structure of the cotangent bundle is not preserved.
Therefore the question if a closed characteristic of the Hamiltonian flow is
simple or not does not make sense to the symplectic geometer. However,
in the case that all characteristics are closed, the question if the Hamilton-
ian flow admits a common minimal period, can even be understood by a
symplectic geometer.
Unfortunately, in general this is bloody wrong. Here is an example. Let

p and q be two relatively prime integers. Identify the three-dimensional
sphere S3 with {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} and consider the circle
action on S3 given by

eit∗ (z1, z2) = (eiptz1, e
iqtz2).

This circle action commutes with the antipodal involution z 7→ −z on S3

and hence induces a circle action on RP 3 = S3/Z2. The minimal period
of the orbit through [(1, 0)] is π

p , the minimal period of the orbit through
[(0, 1)] is πq , while the minimal period of an orbit through a point [(z1, z2)] ∈
RP 3 with z1 6= 0 and z2 6= 0 is π in the case p and q are both odd and 2π if
one of them is even. It is worth noting that this example corresponds to the
Katok examples as was pointed out by Harris and Paternain [8]. This means
that the Theorem of Gromoll and Grove already fails for nonreversible
Finsler metrics.
Geodesic flows of a Riemannian or a reversible Finsler metric have the

following properties which distinguish them from other Hamiltonian flows:
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(1) The geodesic flow is invariant under time reversal, i.e., a geodesic
traversed backwards is again a geodesic.

(2) The geodesic flow is a Reeb flow, i.e., it is the flow of a Reeb vector
field of a contact structure.

In this note we explain how under a suitable generalization of property (1)
for geodesics the Theorem of Gromoll and Grove about the common mini-
mal period generalizes to hold for general Hamiltonian systems all of whose
trajectories are closed on energy hypersurfaces having the same topology as
the ones studied by Gromoll and Grove, namely RP 3. Here we do not need
to assume that our Hamiltonian flow is a Reeb flow. Instead, we explain,
invoking a deep result of Epstein [4], that in this set-up the Hamiltonian
flow will be stable.
The proof of Gromoll and Grove hinges on the Theorem of Lusternik and

Schnirelmann on the existence of three simple closed geodesics and the the-
ory of Seifert on three-dimensional fibred spaces. As explained above there
is no analogue of the Theorem of Lusternik and Schnirelmann for Hamil-
tonian flows because the notion of simpleness does not generalize to the
symplectic set-up. However, the tangent curve of a smooth regular simple
curve (i.e. an embedding) S1 → S2 is a noncontractible curve in TS2 \ S2.
We will show that the noncontractibility of all orbits follows without fur-
ther assumptions. The analogue in the Riemannian case is proven in [9].
Here we employ the same method.

2. Real Hamiltonian manifolds

Assume that Σ = Σ2n+1 is a closed connected oriented manifold of di-
mension 2n+ 1. A Hamiltonian structure on Σ is a two form

ω ∈ Ω2(Σ)

satisfying the following two conditions:
(1) ω is closed, i.e., dω = 0,
(2) ker(ω) defines a one-dimensional distribution on TΣ.

We refer to the pair (Σ, ω) as a Hamiltonian manifold. A Hamiltonian
manifold is the odd dimensional analogon of a symplectic manifold. In the
study of Hamiltonian dynamics Hamiltonian manifolds naturally arise as
energy hypersurfaces, i.e., level sets of a smooth function on a symplectic
manifold. The characteristic foliation, namely the leaves of the kernel of ω,
correspond to the trajectories of the Hamiltonian flow on a fixed energy
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level. People studying Hamiltonian manifolds are relaxed people: They do
not care about the parametrization of the leaves but only about the foliation
itself.

Because we assume our manifold Σ to be oriented we actually obtain an
orientation of the leaves. Indeed, note that for each x ∈ Σ the two form
ωx is nondegenerate on TxΣ/ ker(ωx), hence is a symplectic form on this
vector space and therefore defines an orientation on it.

Definition 2.1. — A real Hamiltonian manifold is a triple (Σ, ω, ρ),
where (Σ, ω) is a Hamiltonian manifold and ρ ∈ Diff(Σ) is a smooth invo-
lution on Σ, i.e., ρ2 = idΣ satisfying the following two conditions:

(1) ρ∗ω = −ω,
(2) ρ reverses the orientation on ker(ω).

If L denotes the set of leaves of the foliation on Σ induced from ker(ω),
then the first condition guarantees that ρ induces an involution on the set
of leaves

ρ∗ : L → L .

Here is an example of a real Hamiltonian manifold. For a closed Riemannian
manifold (N, g) let

Σ = S∗N = {(q, p) ∈ T ∗N : ‖p‖gq = 1}

be its unit cotangent bundle with Hamiltonian structure obtained by re-
stricting the differential of the Liouville one-from to S∗N . Then a real
structure is given by

ρ : S∗N → S∗N, (q, p) 7→ (q,−p).

Note that the same construction works for reversible Finsler metrics but
fails for nonreversible Finsler metrics since in this case the unit cotangent
bundle is not invariant under ρ anymore. In this example the leaves of the
foliation correspond to oriented geodesics and the involution reverses the
orientation of the geodesic. In particular, no leaf is fixed. This is a more
general phenomenon as the following lemma shows.

Lemma 2.2. — Suppose that (Σ, ω, ρ) is a real Hamiltonian manifold
with the property that

Fix(ρ) = ∅,

i.e., there are no fixed points of the involution ρ on Σ. Then the induced
involution ρ∗ on the set of leaves L is free.
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Proof. — We argue by contradiction and assume that there exists a leaf
L ∈ L such that

ρ∗(L) = L.

Hence if x ∈ L it holds that
ρ(x) ∈ L.

Because ρ has no fixed points by assumption we must have

x 6= ρ(x).

The leaf L is either diffeomorphic to a circle or to the real line. Hence we
can choose

I ⊂ L
diffeomorphic to a closed interval such that

∂I = {x, ρ(x)}.

Note that since ρ is an involution it interchanges the boundary points of I.
Because ρ reverses the orientation of L we conclude that

ρ(I) = I.

However, because ρ interchanges the boundary points of the closed interval
I we conclude by the intermediate value theorem that there exists y ∈ I
such that

ρ(y) = y

contradicting the assumption that Fix(ρ) = ∅. This contradiction concludes
the proof of the lemma. �

3. Stability

Assume that (Σ, ω) is a Hamiltonian manifold of dimension 2n + 1. A
one-form λ ∈ Ω1(Σ) is called a stabilizing one-form, see [2, 3], if it satisfies
the following two conditions

(1) λ∧ωn > 0, i.e., λ∧ωn is a volume form on the oriented manifold Σ,
(2) ker(ω) ⊂ ker(dλ).

We abbreviate by
Λ(Σ, ω) ⊂ Ω1(Σ)

the maybe empty subset of all stabilizing one-forms of (Σ, ω). Note that
Λ(Σ, ω) is a convex cone, i.e., if λ1, λ2 ∈ Λ(Σ, ω) and r1, r2 > 0, then
r1λ1 + r2λ2 ∈ Λ(Σ, ω). We refer to Λ(Σ, ω) as the stable cone of (Σ, ω).

TOME 69 (2019), FASCICULE 1
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Definition 3.1. — A Hamiltonian manifold (Σ, ω) is called stable, if
Λ(Σ, ω) 6= ∅, i.e., there exists a stabilizing one-form.

Now suppose that (Σ, ω, ρ) is a real Hamiltonian manifold. We say that
a stabilizing one-form λ ∈ Λ(Σ, ω) is real if it satisfies

ρ∗λ = −λ.

To produce real stabilizing one-forms we first show that the cone Λ(Σ, ω)
is invariant under the involution λ 7→ −ρ∗λ of Ω1(Σ).

Lemma 3.2. — Suppose that λ ∈ Λ(Σ, ω). Then

−ρ∗λ ∈ Λ(Σ, ω).

Proof. — We know that kerω is oriented by the assumptions that Σ is
oriented and that ω is a Hamiltonian structure. The involution ρ switches
the orientation of kerω, so the sign of ρ∗λ|kerω is the opposite of λ|kerω.
From ρ∗ω = −ω we conclude

(−1)n+1ρ∗(λ ∧ ωn) > 0.

Thus we have

(−ρ∗λ) ∧ ωn = (−1)n+1ρ∗(λ ∧ ωn) > 0,

and the first condition for a stablizing one-form is satisfied by −ρ∗λ.
Combining ker(ρ∗ω) = kerω with kerω ⊂ ker dλ implies

kerω = ker ρ∗ω ⊂ ker ρ∗dλ = ker d(−ρ∗λ).

Therefore −ρ∗λ is a stabilizing one-form. �

In view of the convex cone property of Λ(Σ, ω) the lemma enables us to
construct real stabilizing one-forms out of a stabilizing one-form.

Corollary 3.3. — Suppose that the real Hamiltonian manifold (Σ,ω,ρ)
is stable. Then it admits a real stabilizing one-form.

Proof. — Let λ be a stabilizing one-form. By Lemma 3.2 it follows that
−ρ∗λ is again a stabilizing one-form. Because Λ(Σ, ω) is a convex cone it
follows that

λρ := λ− ρ∗λ
is again a stabilizing one-form. Because ρ is an involution we have

ρ∗λρ = −λρ.

Therefore λρ is a real stabilizing one-form. �
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4. Periodic Hamiltonian manifolds

Definition 4.1. — A Hamiltonian manifold (Σ, ω) is called periodic if
all leaves are circles.

Theorem 4.2. — Assume that (Σ, ω) is a 3-dimensional periodic Hamil-
tonian manifold. Then it is stable.

Proof. — For every Hamiltonian structure on an orientable manifold one
can orient the characteristic distribution. Therefore by choosing a nowhere
vanishing vector field tangent to the characteristic distribution one finds
that the characteristic foliation consists of orbits of a R-action on Σ.
According to the main theorem in [4] if (Σ, ω) is periodic on the 3-

manifold Σ then the R-action is orbit equivalent to an S1-action. We choose
a Riemannian metric g with respect to which this S1-action is isometric.
Let X be a unit vector field with respect to g on Σ generating kerω. Then
by the Theorem of Wadsley in the version of [3, Theorem 2.3] the form

λ := iXg

is a stabilizing one-form. �

Corollary 4.3. — Under the assumptions of Theorem 4.2 there exists
a smooth circle action on Σ without fixed points such that the orbits of the
circle action correspond to the leaves of the characteristic foliation of (Σ, ω).

5. The main result and proof

Theorem 5.1. — Suppose that (ω, ρ) is a periodic real Hamiltonian
structure on RP 3 with Fix(ρ) = ∅. Then there exists a free circle action on
RP 3 with the property that the leaves of (RP 3, ω) correspond to the orbits
of the circle action. In particular, all leaves are noncontractible.

Corollary 5.2. — Let (S2, F ) be a reversible Finsler 2-sphere such
that all geodesics are closed. Then all geodesics give rise to noncontractible
orbits on the unit tangent bundle of S2 and have the same length.

Remark 5.3. — If, in the situation of the corollary, there exists at least
one simple closed geodesic, then a connectedness argument shows that in
fact all geodesics are simple closed (cf. [7]). The existence of such a simple
closed geodesic on any Finsler 2-sphere is not known in general but expected
to hold.
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In his fundamental monograph [12] Seifert studies effective circle actions
on closed three-dimensional manifolds without fixed points. For a mod-
ern account of Seifert’s theory see for example the paper by Scott [11].
If the three-dimensional manifold is orientable the quotient orbifold is an
orientable surface with finitely many cone points. For a surface S and a
finite collection of positive integers p1, . . . , p` bigger than two we denote
the surface with ` cone points of order p1, . . . , p` by S(p1, . . . , p`).

Theorem 5.4 (Seifert). — Suppose that S1 acts smoothly on RP 3 with-
out fixed points. Then RP 3/S1 is an orbifold of one of the following types

S2, S2(p), S2(p, q).

In the third case it holds that

gcd(p, q) ∈ {1, 2},

i.e., p and q are either relatively prime or decompose as p = 2p′ and q = 2q′
with p′ and q′ relatively prime.

Proof of Theorem 5.4. — For the fibration S1 → RP 3 → RP 3/S1 we
obtain an exact sequence of homotopy groups

π1(S1)→ π1(RP 3)→ πorb
1 (RP 3/S1)→ π0(S1)

see [11, Lemma 3.2]. Hence we have an exact sequence

Z→ Z2 → πorb
1 (RP 3/S1)→ {1}

implying that the fundamental group of the orbifold RP 3/S1 is either trivial
or Z2. Closed two-dimensional orbifolds of trivial fundamental group or
fundamental group Z2 are the three examples in the list above as we explain
in the appendix. This finishes the proof of the theorem. �

Corollary 5.5. — Suppose that (ω, ρ) is a real Hamiltonian structure
on RP 3 with the property that Fix(ρ) = ∅. Then the space of leaves L is
diffeomorphic to S2 and all orbits are noncontractible.

Theorem 5.1 follows directly from the corollary.
Proof of Corollary 5.5. — By Corollary 4.3 there exists a circle action

on RP 3 without fixed points such that the space of leaves is

L = RP 3/S1.

Because the involution ρ has no fixed points by assumption, Lemma 2.2
tells us that the induced involution ρ∗ on the space of leaves L is free.
In particular, the number of cone points of a given multiplicity is even.
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Therefore by Theorem 5.4 the space of leaves belongs to one of the following
orbifolds

S2, S2(p, p)
where in the later case we have

gcd(p, p) ∈ {1, 2}

implying that
p = 2.

By [6, Example 4.18] there does not exist an effective S1-action without
fixed points on the lens space L(2, 1) with orbit space S2(2, 2) (cf. [9,
Lemma 3.6]). Here the lens space L(r, 1) is defined as S3/Zr where the
Zr-action is generated by multiplication with e 2π

r i. This excludes the orb-
ifold S2(2, 2) as the orbit space since RP 3 ∼= L(2, 1). Using the homotopy
exact sequence

π1(S1)→ π1(RP 3)→ π1(S2) = 0
we see that all orbits are noncontractible. This finishes the proof of the
corollary. �

Appendix. The orbifold fundamental group

Assume that Σ is an orientable closed 3-dimensional manifold on which
the circle S1 acts effectively and without fixed points. Then the quotient
S := Σ/S1 is an orbifold, namely a closed orientable surface with finitely
many cone points (say ` many) of multiplicity pi for 1 6 i 6 `. Suppose
that the genus of the surface S is g. Its fundamental group as a topological
space has the presentation

π1(S) =
〈
a1, b1, . . . , ag, bg

∣∣ a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g

〉
.

Its orbifold fundamental group is defined as

πorb
1 (S) = 〈a1, b1, . . . , ag, bg, x1, . . . , x`∣∣ xp1

1 , . . . , x
p`
` , a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g x1 · · ·xp
〉
.

The usefulness of the orbifold fundamental group for us lies in the fact that
one has a surjective group homomorphism

π1(Σ)� πorb
1 (S)

as was proved by Seifert in [12, Chapter 10]. This comes from the homotopy
exact sequence

π1(S1)→ π1(Σ)→ πorb
1 (S)→ π0(S1),
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see for example [11, Chapter 3]. The existence of this surjective group
homomorphism gives us interesting information on the types of exceptional
fibers the action of S1 on Σ can have.

Suppose in the following that the fundamental group of Σ is finite. In
view of the surjective group homomorphism the orbifold fundamental group
of S is finite as well. In particular, topologically S has to be a sphere and
its orbifold fundamental group has the presentation

πorb
1 (S) = 〈x1, . . . , x` | xp1

1 , . . . , x
p`
` , x1 · · ·xp〉 .

It turns out that this group is finite only if there are either less than three
cone points or three cone points and the orbifold is of the form

S2(2, 2, n), S2(2, 3, 3), S2(2, 3, 4) or S2(2, 3, 5)

for n > 2. For a beautiful geometric interpretation why this holds true we
invite the reader to consult directly Chapter 10 in Seifert’s paper [12]. In the
case where there is just one cone point, the orbifold is a teardrop, and its
fundamental group is trivial. If there are two cone points the fundamental
group is

πorb
1 (S2(p, q)) ∼= Zk

where k = gcd(p, q) is the greatest common divisor of the integers p and q.
The fundamental group of S2(2, 2, n) is the dihedral group of order 2n while
the fundamental groups S2(2, 3, 3), S2(2, 3, 4) and S2(2, 3, 5) correspond to
the symmetry groups of the platonic solids. In particular, we see that if the
orbifold fundamental group of S is trivial or Z2, then the orbifold belongs
to one of the examples listed in Theorem 5.4.
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