Einleitung

Die zunehmende Bedrohung durch Terroranschläge in Europa beschäftigt derzeit unsere Gesellschaft. So investiert der Freistaat Bayern 30 Mio. € in neue Schutzmaßnahmen für mehr als 40.000 Polizeibeamte (Bayerisches Innenministerium, 09.06.2017). Auch aus medizinischer Sicht ist eine adäquate Vorbereitung auf mögliche terroristische Anschläge unabdingbar, da sie sowohl durch die Anzahl der Schwerstverletzten als auch durch die zu erwartenden Verletzungsmuster das Spektrum der Notfallmedizin neu definieren könnten. Bereits heute ist der Tod durch Verbluten die häufigste, potenziell vermeidbare Todesursache traumatisierter Patienten im militärischen und zivilen Bereich [1-3]. Einer von 10 Traumapatienten weltweit versterbt, davon immerhin 30% durch eine Blutung [4]. Hauptziel der Therapie bei lebensbedrohlichen, traumatisch bedingten Blutungen ist die Aufrechterhaltung der myokardialen und zerebralen Oxygenierung. Das gilt gleichermaßen für internistische Krankheitsbilder, wie z.B. dem nichttraumatischen Herztod [5], der neben traumatischen Gefäßverletzungen einen Kernbereich der Notfallmedizin darstellt.

Historie der aortalen Ballon-Okklusion

Während REBOA im klinisch-operativen Alltag von Gefäßchirurgen mittlerweile Routine ist, wird diese Technik bei der Versorgung polytraumatisierter Patienten momentan v. a. in USA, Japan und Großbritannien als Alternative zur Thorakotomie und offenen-chirurgischen Aortenrekonstruktion eingesetzt. Bisher ist die Möglichkeit der aortalen Ballon-Okklusion hauptsächlich durch die großvolumigen Schleusen limitiert. Veränderte Devices mit integrierter Druckmessung und kleinerem Durchmesser ver-
sprechen eine vereinfachte Anwendbarkeit und möglicherweise eine Erweiterung des Behandlungsspektrums.

REBOA bei der Schockraumversorgung traumatisierter Patienten

Die Überlebensraten nach Notfallthorakotomie liegen bei unter 10 % [15]. Dabei ist unklar, ob dieses schlechte Ergebnis auf das zugrunde liegende Trauma, auf die Invasivität der Notfallthorakotomie selbst oder aber darauf zurückzuführen ist, dass die Indikationsstellung aufgrund der Komplexität und Invasivität des Eingriffs erst als Ultima Ratio bei drohendem oder bereits eingetretenem Herzstillstand und somit möglicherweise zu spät erfolgt.

Nichtkomprimierbare Blutungen des Körperstamms sind eine der Haupttodursachen traumatisierter Patienten

REBOA im militärischen Bereich

Seit über 15 Jahren beteiligen sich Streitkräfte der NATO an fortgesetzten Kampfhandlungen weltweit. Dies hat zu über 7000 gefallenen und über 50.000 verwundeten NATO-Soldaten geführt, was eine intensive Aufarbeitung der Verwundungen und Todesfälle ausgelöst hat [1, 20]. Nahezu 25 % aller Todesfälle konnten als potenziell überlebar identifiziert werden, wovon über 90 % durch eine Hämorrhagie bedingt waren. Die Verletzungen waren zu über 66 % am Körperstamm, zu 20 % in der sog. junktionalen Zone (Leiste, Axilla, Hals) und lediglich in 13 % an den Extremitäten lokalisiert. In einer retrospektiven Aufarbeitung der Todesfälle der U.S. Streitkräfte von 2001 bis 2011 verstarben fast 90 % der 4396 gefallenen Soldaten vor Erreichen einer medizinischen Behandlungseinrichtung. Ursächlich waren dabei neben dem Verletzungs muster eine nicht vorhandene Blutungskontrolle sowie lange Transportzeiten im Einsatzgebiet [1].

Mit der Zielsetzung, eine temporäre, möglichst bereits prähospital durchführbare Möglichkeit zur temporären Blutungskontrolle zu besitzen, wurden verschiedene Forschungsvorhaben etabliert. Dies beinhaltete auch die Reevaluation des REBOA-Verfahrens im militärischen Bereich.

Primär kann mittels REBOA, gleich wie im zivilen Bereich, die Exanguination über die Heparinisierung verzögert werden, sofern die Blutungsquelle distal des Ballons lokalisiert ist. Dies schließt thora kale Verletzungen weitestgehend aus, würde aber trotzdem noch auf 18 % aller relevant verwundeten Soldaten zutreffen [21]. Die vielversprechenden Ergebnisse zu REBOA aus tierexperimentellen

Vergleichbare Kurse werden in anderen Nationen wie den USA durchgeführt, dazu zählen Kurse wie der BEST-Kurs (BEST Basic Endovascular Skills for Trauma Course) oder der ESTARS-Kurs (ESTARS Endovascular Skills for Trauma and Resuscitative Surgery). In mehreren Untersuchungen konnte dargestellt werden, dass die geschulten Verfahren leicht und schnell unabhängig von der fachlichen Ausrichtung des Militärrandes zu erlernen sind [23, 24].

Evidenz zu REBOA bei traumatischen Gefäßverletzungen

M. Wortmann · K. Elias · S. Zerwes · D. Böckler · A. Hyhlik-Dürr

REBOA (Resuscitative Endovascular Balloon Occlusion of the Aorta). Brauchen wir das wirklich?

Zusammenfassung

Schlüsselwörter
REBOA · „Damage Control Resuscitation“ · Nichtkomprimierbare Blutung · Ballon-Okklusion aorta · Blutung aorta

REBOA (Resuscitative Endovascular Balloon Occlusion of the Aorta). Do we really need it?

Abstract

Background. Non-compressible torso hemorrhage (NCH) continues to be one of the major causes of death, both in military and civilian trauma patients.

Objective. Explanation of the REBOA (Resuscitative Endovascular Balloon Occlusion of the Aorta) technique, potential fields of application, potential complications, relevance in daily emergency medicine.

Material and method. Description of previous areas of REBOA application, evaluation of current trauma surgical literature, discussion regarding the practical utilization.

Results. During the REBOA procedure, a transfemoral balloon catheter is placed into the aorta to establish inflow control and maintain blood pressure until permanent hemostasis is achieved. The current trauma surgical literature shows that REBOA is successfully able to improve both the systolic blood pressure and the mean arterial pressure, and reduce the heart rate in most of the cases. However, there is still no valid evidence for a reduction in hemorrhage-associated mortality.

Conclusions. Due to potential vascular complications of REBOA, endovascular expertise is indispensable; in addition, given the small numbers of cases, both the initial and continued training are important. Nevertheless, REBOA represents a potentially life-saving tool that should be part of the armamentarium of any large trauma center.

Keywords
REBOA - "Damage Control Resuscitation" · Non-compressible hemorrhage · Balloon-occlusion aorta · Aortic bleeding

bei traumatisierten Patienten stützt sich v. a. auf Fallserien und wenige Fall-Kontroll-Studien aus Japan, Großbritannien und den USA. Einen Überblick über einige bislang publizierte Fallserien gibt Tab. 1.

In einem systematischen Review unter Einschluss von 857 Patienten aus 41 publizierten Arbeiten über den Einsatz von REBOA bei unterschiedlichen Indikationen (Trauma, rAAA, gastrointestinalen Blutungen und Operationen im Beckenbereich) konnte zwar durch die aortale Ballon-Blockade ein Anstieg des systolischen Blutdrucks um mehr als 50 mm Hg nachgewiesen werden. Dies führte jedoch zu keiner Reduktion der Mortalität [38]. Abe et al. konnten jedoch in einer retrospektiven Analyse des nationalen Traumaregisters in Japan einen Überlebensvorteil für die Patienten mit REBOA im Vergleich zu den Patienten mit einer offen chirurgischen Aortenklammerung zeigen (Überlebenswahrscheinlichkeit bei REBOA 0,43 ± 0,36 vs. 0,27 ± 0,3 bei Notfallthorakotomie; p < 0,01; [34]). Im Gegensatz dazu war REBOA in einer mittels Propensity-Score-Methode durchgeführten Fall-Kontroll-Studie sogar mit einer erhöhten Letalität assoziiert. Es ist jedoch nicht auszuschließen, dass dies negativer Ergebnis durch die Verwendung des REBOA-Manövers bei Patienten mit infauster Prognose zustande kommt [32]. In der durch die Association for Surgery of Trauma in den USA durchgeführte Registerstudie AORTA („Aortic Occlusion for Resuscitation in Trauma and Acute Care Surgery“) wurden 114 Patienten mit einer Indikation zu einer Okklusion der Aorta prospektiv erfasst, von denen 68 eine Notfallthorakotomie und 46 REBOA erhielten. In 67% der Fälle verbesserte sich die hämodynamische Situation des Patienten durch REBOA. Die Komplikationsrate lag bei 6%, wobei keine Major-Komplikation auftrat. In Bezug auf die Mortalität gab es keinen signifikanten Unterschied zwischen beiden Verfahren bei einer reduzierten pulmonalen Komplikationsrate in der REBOA Gruppe [35].

REBOA führt in den meisten Fällen zu einer Verbesserung des systolischen Blutdrucks

Ungeklärt und perspektivisch insbesondere für den prähospitalen Einsatz wichtig ist die Dauer der tolerablen Ischämie distal des Okklusionspunkts sowie die Problematik der supraphysiologischen Perfusionsdrücke zentral der Okklusion. Tierexperimentelle Untersuchungen geben Hinweise, dass Okklusionszeiten supramaximaler von bis zu 60 min ohne Überlebensnachteil möglich sind. Valide klinische Daten liegen dazu noch nicht vor [30]. Um die Dauer der maximal tolerablen Aortenokklusion zu verlängern, werden Untersuchungen bezüglich „partial REBOA“ (p-REBOA) mit einer partiellen Inflation eines Okklusionskatheters und einer permissiven Restperfusion durchgeführt. Dadurch könnte die zentrale Hyperperfusion reduziert und die periphere Ischämietoleranz verlängert werden. Zu dieser Einsatzzmöglichkeit liegen Fallberichte sowie tierexperimentelle Untersuchungen vor, die positive Ergebnisse zeigen. Die Steuerung dieser partiellen Okklusion ist aufgrund einer Vielzahl variabler Komponenten wie veränderter Blut-
drucksituation, Gefäßtonus, Cardiac Output und Volumenstatus jedoch sehr schwierig und variabel [39].

Indikation zur innerklinischen Verwendung von REBOA

Die am weitesten verbreitete Indikation für REBOA ist ein posttraumatischer, therapierefraktärer, hämorrhagischer Schock aufgrund einer gesicherten oder vermuteten, nichtkomprimierbaren Blutung im Bereich des Abdomens oder des Beckens. Dies schließt sowohl stumpfe als auch penetrierende Traumata ein [31]. Eine thorakale Verletzung sollte voreilig mit einer Thorakotomie angegangen werden, da hier die direkte Möglichkeit zur Beseitigung der Blutungsursache besteht und stellt somit in den meisten Fällen eine Kontraindikation für REBOA dar [31, 40]. Ungefähr 1% aller Traumapatienten könnten somit von REBOA profitieren [32, 34]. In Deutschland ist im Durchschnitt pro Jahr von 2 Patienten mit einer Indikation zum Einsatz von REBOA in einem überregionalen Traumazentrum auszugehen (Kulla, Elias et al., Auswertung des TraumaRegister DGU 2016, vorläufige Daten).

Auch bei Patienten, die aufgrund des hämorrhagischen Schocks reanimationspflichtig werden, kann in Abhängigkeit von der Zeitdauer der Reanimation und des Traumas der Einsatz von REBOA evaluiert werden, da dies in 60% der Fälle zu ROSC („return of spontaneous circulation“) führt, wobei die Mortalität aber mit ca. 90% weiterhin extrem hoch ist [36].

Auch der Einsatz von REBOA im Rahmen der Reanimation bei nichttraumatisch bedingten Herz-Kreislauf-Stillständen wird momentan diskutiert [5]. In diesen Fällen könnte REBOA theoretisch ebenfalls zur Verbesserung der kardialen und zerebralen Perfusion während der laufenden kardiopulmonalen Reanimation führen und somit zu einer Verbes-

Prähospitaler Einsatz von REBOA

Technik

In den meisten Arbeiten erfolgt eine duplexsonographisch gesteuerte Punction der A. femoralis communis als Gefäßzugang. Bedingt durch die schlechte Kreislaufsituation der Patienten ist jedoch in ca. 50 % aller Fälle eine offene-chirurgische Freilegung des Gefäßes notwendig [30, 31, 41]. Eine Punction der A. femoralis communis nach anatomischen Landmarken und unter palpatordesor Kon trolle sollte nur im Ausnahmefall durchgeführt werden, da hierdurch das Risiko für Zugangskomplikationen wie Blutungen oder Verletzung des Gefäßes steigt [33].

Aufgrund des schlechten Blutdrucks ist eine perkutane Punction oftmals nicht sicher möglich

Eine chirurgische Freilegung ist in vielen Fällen notwendig, da aufgrund des niedrigen Blutdrucks und einer möglichen Gefäßspasamik eine perkutane Punction selbst mit Hilfe von Ultraschall nicht immer sicher möglich ist.

Eine Übersicht über die einzelnen Schritte gibt □ Abb. 2.

Sowohl der Ballon selbst als auch die Schleuse müssen gegen eine mögliche Dislokation geschützt werden, da insbesondere der Ballon bei steigendem arteriellem Blutdruck durch die Pulsationen nach distal gedrückt wird. Aufgrund der möglichen katastrophalen Folgen einer Dislokation der Schleuse und des Ballons wird zusätzlich zu einer Fixierung der kontinuierliche Kontrolle durch einen endovaskulär geschulten Arzt empfohlen [41].

Die notwendige Zeitdauer für die komplette REBOA-Technik liegt in publizierten Serien zwischen wenigen Minuten unter Simulationsbedingungen bis zu 20 min unter realen Bedingungen [31, 33].

Nach der ersten operativen Versorgung im Sinne der „damage control surgery“ und der hämodynamischen Stabilisierung des Patienten wird der Ballon in enger Abstimmung mit den Kollegen der Anästhesie unter kontinuierlicher Kontrolle der Kreislaufsituation durch einen endovaskulär geschulten Arzt langsam dargestellt. Abhängig von der Dauer und Positionierung des Blockballons kann es durch die Reperfusion der Viszeralorga-
ne und der unteren Extremitäten zu ei-

dem Einschwemmen reaktiver Metabo-
lite im Sinne des Reperfusionssyndroms

commen. Dies kann eine zeitweise erneu-
tete Ballon-Blockade zur Aufrechterhal-
tung eines suffizienten Blutdrucks not-
wendig machen. Zudem kann es nach De-
flation des Ballons erneut zu Blutungen

commen, die einer chirurgischen Ver-
sorgung bedürfen. Ob in diesem Kon-
text eine intermittierende Deflation des
Ballon-Katheters oder eine partielle In-
flation mit permissiver Restperfusion zur
Verbesserung der Organperfusion wäh-
der der Ballon-Blockade einen protek-
tiven Einfluss hat, muss weiter evaluiert
werden [13, 51].

Sobald der Ballon-Katheter nicht
mehr benötigt wird, sollte dieser ent-
fernt werden. Die einliegende Schleuse
muss aufgrund des großen Außendurch-
messers chirurgisch entfernt werden.

Material

Die wohl am weitesten verbreiteten und
in Deutschland verfügbaren Katheter zur
endovaskulären Blockade der Aorta sind
der Coda-Ballon der Firma Cook (Cook
Medical, Indiana, USA) und der Reliant-
Ballon der Firma Medtronic (Medtronic
Vascular, Kalifornien, USA). Beide Kat-
heter sind primär für den Einsatz bei
endovaskulären Eingriffen an der Aorta
gedacht, sind aber auch für die Blockade
großer arterieller Gefäße zugelassen. Sie
benötigen einen Führungsdraht zur Po-
sitionierung sowie eine 12-Fr- (Reliant-
Balloon) bzw. eine 14-Fr-Schleuse (Co-
da-Ballon) als Zugangsweg. Eine Über-
icht über das gesamte Material, das zur
Durchführung eines REBOA-Manövers
notwendig ist, gibt **Tab. 2**.

Neue Devices für REBOA

Die Firma Prytime Medical Devices (Co-
norado, USA) bietet in Amerika einen
speziellen REBOA-Katheter an, der in-
zwischen in über 80 Traumazentren ver-
wendet wird. Der ER-REBOA-Katheter
can ohne Drahtführung positioniert
werden und benötigt nur eine 7-Fr-Zu-
gangsschleuse (**Abb. 3a**) . Im Vergleich
zur Verwendung der bisher gängigen
Blockballs, die eine 12-Fr-Schleuse
und einen Führungsdraht benötigen, ist
somit sowohl das Zugangstrauma geringer
als auch das Risiko einer akzidentellen
Gefäßverletzung durch den Einsatz des
Führungsdrahts obsolet. Zusätzlicher
Vorteil sind die Längenmarkierungen
auf dem Schaft des Ballons, die die
dokrte Positionierung und die Lage-
kontrolle des in situ befindlichen Ballons
vereinfachen. Der Katheter ist durch die
FDA (Food and Drug Administration)
in den USA zugelassen. Eine Einfüh-
rung dieses Devices ist laut Angaben
des Herstellers auf dem europäischen
Markt für 2018 geplant. In Japan steht
mit dem Rescue Balloon der Firma To-
kie Medical Products (Senko Medical
Instrument, Tokyo, Japan) ebenfalls ein
Ballon-Katheter zur Verfügung, der über
eine 7-Fr-Schleuse platziert werden kann
(**Abb. 3b**) .

Speziell für REBOA entwickelte Kathet-
er könnten in Zukunft die Durchführung
deutlich erleichtern.

Komplikationen und Komplikationsmanagement

REBOA stellt lediglich ein überbrücken-
des und unterstützendes Verfahren dar
und ersetzt somit nicht die definitive Ver-
sorgung. Bei Patienten mit starken abdo-
minellen Blutungen führt jede Verzöge-
rung bis zum Beginn der Laparotomie
ten zu einem Anstieg der Mortalität um 1 %
[52], so dass bei der Implementierung von
REBOA darauf geachtet werden sollte,
dass die definitive chirurgische Versor-
gung nicht verzögert wird. Weitere mög-
liche Komplikationen sind in **Tab. 3** zu-
 sammengefasst.

Im Rahmen der explorativen Laparo-
tomie sollte, nach Versorgung der tra-
uma-bedingten Blutungen und Organver-
letzungen, der in der Aorta einliegende
Ballon deflatiert und weitere Blutungs-
quellen sorgfältig ausgeschlossen wer-
den. Zudem besteht die Möglichkeit zur
Kontrolle der Organperfusion sowie der
Ausschluss thrombembolischer Kompli-
kationen der Viszeralgefäße. Mögliche
schwerwiegende Komplikationen des
REBOA-Verfahrens können somit direkt ausgeschlossen bzw. behoben werden.

Im Rahmen der operativen Entfernung der Schleuse aus der Leistenarterie ist die Evaluierung der Perfusionssituation beider Beine obligat, damit ein möglicher embolischer oder thrombembolischer Verschluss der Beinengefäße erkannt und frühzeitig behandelt werden kann. Erfolgt dies nicht konsequent, kann durch eine entsprechende kritische Extremitätenschämie eine Amputation im Verlauf notwendig werden [33]. Für die Platzierung der aktuell verfügbaren Blockballons ist eine großumfassende Schleuse notwendig, die wiederrum nur über einen steifen Führungsdräht eingebracht werden kann. Da dieser während REBOA blind ohne Röntgenkontrolle vorgeschoben werden muss, besteht hier vor allem das potentielle Risiko einer Gefäß- oder Organverletzung.

Aufgrund der Vielzahl an möglichen Komplikationen ist eine gefäßchirurgische Expertise unabdingbar.

Die Komplikationsrate in der Literatur beträgt zwischen 0 % und 12 % [33, 35, 37], wobei Zugangs komplikationen im Vordergrund stehen. Allerdings wurden auch Major-Komplikationen wie Amputationen [33] und iatrogene Verletzungen der Aorta beschrieben [33, 54]. Somit ist eine gefäßchirurgische Expertise an Zentren, die REBOA selbst einsetzen oder Patienten versorgen, die extern eine Ballon-Okklusion in der Notfallsituation erhalten haben, dringend vonnöten.

Training und Schulung von REBOA

Einheitliche Empfehlungen zur Schulpfung von REBOA existieren aufgrund der bereits mehrfach angesprochenen bislang geringen Evidenzlage nicht.

Aufgrund der geringen Fallzahl sind sowohl anfängliche Schulungen und regelmäßige Übungen notwendig.

REBOA – brauchen wir das wirklich?

Vor dem Hintergrund der hier beschriebenen technischen und prozeduralen Details ist das Prinzip und Konzept des REBOA-Manövers aus Sicht des –

Ebenso kann der Einsatz von REBOA bei nicht traumatisch bedingten Reanimationssituationen aufgrund der fehlenden Evidenz nicht standardmäßig empfohlen werden, obwohl auch diese Patienten von der Optimierung der kardialen und zerebralen Perfusion durch REBOA profitieren könnten und bereits einzelne Einzelfallberichte diesbezüglich publiziert sind.

Fazit für die Praxis

- REBOA bezeichnet die endovaskuläre Ballon-Blockade der Aorta.
- Durch die Ballon-Blockade soll ein erhöhter zentraler Perfusionsdruck und, im Falle einer Blutung, eine Reduktion des Blutverlusts erreicht werden.
- Im militärischen Bereich und in einigen Ländern auch im zivilen Bereich wird REBOA bereits routinemäßig eingesetzt.
- Die Evidenzlage zu REBOA ist noch gering. Eine Reduktion der Mortalität durch REBOA konnte bislang aber nicht sicher belegt werden.
- Aufgrund der möglichen Komplikationen ist eine gefäßchirurgische Expertise unbedingt erforderlich.
- Neue, speziell für das REBOA-Manöver entwickelte Katheter werden die technische Durchführung der Ballon-Okklusion in Zukunft vereinfachen.
- Der prähospitale Einsatz kann derzeit in Deutschland nicht empfohlen werden.

Korrespondenzadresse

Prof. Dr. A. Hyhlik-Dür
Klinik für Gefäßchirurgie und endovaskuläre Chirurgie, Klinikum Augsburg
Stenglinstr 2, 86156 Augsburg, Deutschland
alexander.hyhlik-duerr@klinikum-augsburg.de

Einhaltung ethischer Richtlinien

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

