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1. INTRODUCTION

1 Introduction

Aim of the Protocure II' project is to improve the quality of medical guidelines.
Currently, medical guidelines are informal texts, written by an expert group,
based on available medical facts. It will come to no surprise, that anomalies may
remain in guidelines. These can be ambiguities in the text, modelling errors or
even wrong data. This is, where the Protocure II project offers tools and methods
to further improve the guideline quality. Foundation for these improvements is
a stepwise formalisation of the informal guideline text, such that knowledge
engineering and finally theoretical computer science methods can be applied.

This report focusses on the last step in the chain of methods, namely the verifi-
cation, that the formalised guideline adheres to correctness properties. For this,
it is necessary, that the guideline is already available in a formalised language.
Within Protocure II, we choose to model the guideline in the planing language
Asbru [5].

Before being able to verify properties over systems in a given non-standard
representation like Asbru, it is necessary to clearly define the semantics of such
a system. Although this task might be quite difficult, the task following that, to
include the defined semantics in a theorem prover or a model checker might be
even more challenging.

After the language definition and semantics of Asbru Light [3] had been revised
to match the needs of the Protocure II case study breast cancer, it was necessary
to implement it in KIV.

As Asbru has been integrated in KIV using an already implemented formalism,
namely parallel programs, the main difficulty was to find representations for
data structures that match Asbru on the one hand and at the same time go
along with general automation techniques already implemented in KIV. Result
of this strategy to rely as much as possible on already existing and well tried
parts of the KIV system was, that for the completion of this task virtually no
implementation effort in the KIV base system was necessary. This was possible,
because Asbru was specified in KIV instead of implemented.

For a verifier to be able to prove properties, it is also necessary to know about
techniques to apply when proving a sequent to be correct. Therefore some time
has been invested to elaborated proof techniques to cover all Asbru proof aspects,
ranging from simple user performed plans to hierarchies with several hierarchical
layers and dozens of contributing plans.

This document therefore intends to give the user a very short and pragmatic
introduction into the most important aspects of the implemented Asbru seman-
tic, afterwards describing the different techniques necessary to make use of the
interactive theorem prover KIV to prove properties.

! www.protocure.org
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2. ASBRU SEMANTICS

This technical report describes the Asbru implementation, proofs and techniques
current at the 03/06/2006. This implementation has been designated as version
2.1 which is not related to the version of the Asbru language.

2 Asbru semantics

The Asbru semantics are described in detail in [3]. The Implementation of the
semantic in the KIV system is described in [4]. We will therefore only give a
short introduction into the most important aspects of the Asbru semantic as
implemented in KIV and refer the interested reader to the more detailed papers.
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Fig. 1. State transitions of Asbru plans

Basis of the Asbru semantics is the concept of plans with a defined plan state
model. Asbru plans may advance through the plan state model in a way, defined
by the statechart depicted in Figure 1. All transitions within this statechart are
guarded, where the guards SC, RA and E describe external signals, which are sent
to the plan by its respective parent. Within this implementation the signals are
encapsulated in a data structure defined in the specification plan-com.

All the other guards are related to the evaluation of Asbru conditions which
define the behaviour of Asbru plans. Syntax and semantics of Asbru conditions
are defined in specification Abstract-Asbru-Condition, where a higher order
predicate is paired with two booleans, which model the flags overridable and
manual-activation as defined by the asbru semantics.

Six of those condition define the overall behaviour of an Asbru plan, that is, the
way it advances through the evaluation phase and the circumstances under which
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3. PROOF OBLIGATIONS

it terminates or suspends. Additional behaviour of the plan is described by the
plan type. This, along with a list of potential children fills in the blanks within
the activation phase in the statechart in Figure 1. There are further parameters
of an Asbru plan that describe the behaviour even more detailed. For example,
a flag retry specifies how a plan should react, given one of its children aborts.

Behaviour of Asbru plans is defined within the specification Asbru, where the
statechart of Figure 1 is implemented by parallel programs. This has been done
in a generic way, such that all Asbru plans use the same set of parallel pro-
grams for their evaluation. It has been decided to hide the technical details
from the verifier. This has been realised by designing the defining parallel pro-
grams in a way such that the programs are recursive and always terminating
within one step. Therefore, a verifier will only be confronted with a very small
set of different procedure names, not the program code itself. Every non-passive
state in the statechart, which is, inactive, considered, possible, ready,
activated and suspended is represented by a separate program, encapsulating
the possibilities of the representing state. Passive states do not require further
procedures.

Asbru procedures are designed similar to state-charts, where state and control
are separated. The overall state in the case of Asbru can be divided in several
parts, namely the state of all the currently running plans, which is defined in
specification asbru-state-history, the currently known condition of the pa-
tient, defined in patient-data-history, technical information like variables,
stored in a data structure defined in variable-history. Finally, communica-
tion between a plan and its relatives or the plan and the environment is part
of the state. While the former is defined in a data structure defined in speci-
fication plan-com, the latter can be found in a data structure in specification
environment-aggregation. The only information encoded in the programs is
the way, a plan may react within the next step, so the plan “knows” its own
state from the program constellation, but no more.

3 Proof obligations

A proof obligation or property may for example describe, that an Asbru plan
adheres to an indicator, which is a medical quality assurance instrument. It may
also be a technical property, for example, that a plan always terminates at some
point or that it does not disturb execution of another plan running in parallel.
Proof obligations consist of two parts; one of the parts of the property describes
the behaviour of the Asbru plan hierarchy, the other one the expected behaviour.
Behaviour of the Asbru plan hierarchy can be further broken down into system
description, system configuration and environment assumption.
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3. PROOF OBLIGATIONS

3.1 System description

Within our implementation of the Asbru semantic, the system description con-
sists of synchronous parallel running programs. Each program represents one
Asbru plan, therefore plan hierarchies are represented by a number of parallel
running plans.

As the execution of Asbru plans is somewhat generic, all plan types are rep-
resented by the same set of programs. Procedures vary in the parameters with
which they are called and every different active state has its own program repre-
sentation. There is one procedure describing the behaviour of an inactive plan,
one describing the behaviour of a considered plan and so on. Details of the ex-
ecution state are also integrated into the procedure parameters. These include,
for example, the currently running children of the plan.

Although the plans work on different aspects of the global state regarding their
own advance through the plan state hierarchy, it is not necessary to launch the
plans with different Asbru state variables, as the state variables contain the
current state of all Asbru plans. Each plan selects values relevant for itself. For
one plan, this data is the state of the parent and all the children, which has
influence on the abortion and completion behaviour of the plan. The Asbru plan
procedures have been carefully designed such that concurrent write access to the
same data fields cannot happen.

Within a proof obligation, the procedures look the following way:
considered# (sk, sk0; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGQ)

activated# (sk, sk0, skx1, skx2, skx3, n, m;
Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG, PCO0)

The first part of the example represents a considered Asbru plan, while the sec-
ond represents an active plan, a state which is further elaborated. The semicolon
in the procedures separate the value parameter in the first half from the var pa-
rameters in the second half. The technical difference is, that operations on the
value parameters are side effect free, so assignments to value parameters are lost
after termination of the procedure and only have effects within the procedure
and possibly sub-procedures. The variables sk and skO are of type string and
contain the name of the plan itself (sk) and the name of the parent plan (skO0).

The dynamic variables Tick, Patient, PDH, VH, AC, ASH, AS, PCand EAGG
are equal for all Asbru plans on the sequent, that is, all Asbru plans work on
the same variables here. Most of these variables are considered read-only, with
the exception of the AS variable, representing the Asbru state, where each plan
is required to enter its current state. The variables are mostly required for the
plans to be able to evaluate their conditions.

Plans leaving the evaluation phase bound for the activation phase require addi-
tional parameters. The three lists skx1, skx2, skx3, that accompany an active
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3. PROOF OBLIGATIONS

plan depict the subplans of this plan and describe to some extend the status,
in which they are. The skx1 list contains all subplans that are currently active
themselves, the skx2 list those, that are in the evaluation phase and the skx3
list contains all subplans, yet in inactive state. Plans that are terminated do not
appear in those lists. The natural number counters, n and m, are necessary when
dealing with cyclical plans. For all other plan types, they are ignored. This tech-
nical report does omit details about cyclical plans and will focus on the other
plan types.

As can be seen in the example, the activated procedure has an additional PCO
variable. Figure 2 visualises the view of parent and child towards these variables.
As can be seen there, the PC variable, which is present in all asbru procedures
is merely for receiving signals from a (possibly anonymous) parent, while the
second variable, PCO, is used to send signals to the children.

father
activated#(...PC, EAGG, PCy)

/\

child, childy
considered#(..., PCo, EAGG) activated#(..., PCo, EAGG, PCy)

Fig. 2. internalised PC variables

3.2 System configuration

As described in Sect. 2, Asbru procedures are defined in a way similar to state-
charts. Therefore, the current state of the system can not be read from program
pointers. Instead, the state is stored in predicate logic formulas. These formulas
are called system configuration. It has been decided to combine similar parts
of the system configuration into one variable. Five different types of data have
been identified, that have to be considered.

Asbru state First of these types is the state of the Asbru plans, currently
running. This has been called the Asbru state. The history of Asbru states is
necessary when dealing with time annotations. The representing data structure
is called Asbru state history. In principle, an Asbru state consists of a mapping
of plannames and plan status. A mapping may look this way:

AS[‘praoa’] = considered
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3. PROOF OBLIGATIONS

AS[‘toan’] = activated

There are two ways how to write down the current system configuration, an ex-
plicit one and an implicit one. First examples of verification had been done with
the explicit denotation, however this concept has been found to be inadequate
when combined with the proof decomposition described later on. Therefore with
all currently conducted verification examples, the implicit denotation has been
chosen.

explicit

AS = as0[‘praoa’, considered]
[‘toan’, activated]

vs. implicit

AS[‘praoa’] = considered

AS[‘toan’] = activated

As can be seen above, the explicit notion of the Asbru state is done by taking
an basic Asbru state asO for all the subplans that are not explicitly mentioned.
This concept of ‘invisible’ plans is especially important when dealing with proof
decomposition. The basic Asbru state is then updated.

Asbru state history and Asbru state have been separated because of the con-
current write access of several plans. This issue can be handled better in less
complex data structures as the Asbru state versus the Asbru state history, where
the latter is a generated data type with pairs of Asbru state and time variables.

Variable, patient and patient data Patient data is the knowledge that has
been gathered from the patient. The structure of the denotation of the data is
similar to the one used with the Asbru state history. However, as there is no
concurrent write access to the patient data, the separation between the current
state and history states is not necessary.

It is important to realize, that the patient data does not necessarily represent
the patients real condition! Instead, at certain time points measurements to the
patient may be made and therefore the data transferred from patient to patient
data. From the authors point of view this was the best possible mapping of the
real world to this model. As with reality, the patient, not the patient data is
affected by treatments and the result of treatment are not automatically visible
to the medical personal.

As with the Asbru state, there is an explicit and implicit way of writing it down,
with only the implicit being used. The example depicts, that at current state
the measurement called bilirubin is at level observation.

(PDH[AC] [‘bilirubin’]) .val = observation
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Variables are conceptual and technical similar to patient data, however they
do not represent physical measured data, instead they represent the result of
calculations, return values of plans and so on.

Environment aggregation and plan communication The environment ag-
gregation summarises all signals that may be sent to the plans by the environ-
ment, which is the medical personal. Those signals do not include the signals sent
by a father to its children (for example regarding plan activation). Signals stored
in the environment aggregation are the signals to determine the evaluation of
manual activated or overridable asbru conditions.

Each entry in the environment aggregation is linked to a plan via its key and
consists of two sets of six signals each, one confirmation required and one
overridable signal for each condition. The following example depicts the knowl-
edge, that a plan called pob is currently receiving its override signal to its filter
condition:

EAGG/['pob’] .override .filter

Signals, sent from a parent to its child are stored within the Plan Com data
structure. Should the plan pob receive its consider signal from its parent, it
could be written on the sequent as

PC[‘pob’] .consider
but may be rewritten to
PC['pob’] = mk-pce(true, boolvar, boolvar0)

mk-pce is the constructor of an plan-com entry and takes three signals, consider,
activate and retry, which correspond to the SC, E and RA signals respectively
in Figure 1.

3.3 Environment assumption

In principle the environment is allowed to change every variable arbitrarily. Usu-
ally this has to be forbidden to some extend. The environment assumption is
therefore a temporal logic formula restricting the behaviour of the environment.
Usually this restriction comes in three different flavours, first to forbid the en-
vironment completely to change a variable, second to force the environment to
change a variable in a deterministic way, for example, advancing a clock, and
third to guarantee certain variable assignments in a nondeterministic way, for
example guarantee the existence of a time, where a signal is sent.

One example for the first case is the Asbru state. This data structure is only to
be accessed by the plan representing procedures. The environment is not allowed
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to change Asbru state fields that are associated with plans for which procedures
are running. Such an environment assumption can be written down as follows:

O ( AS”[‘praca’] = AS’[‘praoa’]
A AS”[toan’] = AS’[‘toan’])

Another example would be, that the father of a running plan, that is not written
on the sequent itself, is never suspended. This still allows the father to terminate
or run through. Such a property is written down like

O AS”[‘dwa’] # suspended

An example for the second case, changing a variable in a deterministic way, is
the logging of the Asbru state history. As the plans only change the Asbru state,
not the history. This logging is done by the environment.

0 ( ASH?[AC”][pob] = AS’[‘pob’]
A ASH?[AC”]['0b] = AS’['0b?))

The third example are liveness properties, stating for example that user per-
formed plans are finally ended by the medical personal. Such properties are
typically leads to properties.

O (ASH[AC]['ob’] = ready — < PC[‘ob’| .consider)

4 Symbolic Execution of Asbru

Our proof method is based on a sequent calculus with calculus rules of the

following form:
n+aA ... InEA,

I'-A

name .

Rules are applied bottom-up. Rule name refines a given conclusion I' = A with
n premises [; - A;. Furthermore, we heavily rely on the possibility to rewrite
sub-formulas. A rewrite rule is given as

name: @ < P .

With this rule, formula ¢ can be replaced by an equivalent formula v anywhere
within a given sequent.
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4. SYMBOLIC EXECUTION OF ASBRU

4.1 Normal form

The idea of symbolic execution of arbitrary temporal formulas — Asbru plans
being just a special case thereof — is to normalise all the temporal formulas of
a given sequent by rewriting the formulas to a so called normal form which
separates the possible first transitions and the corresponding temporal formulas
describing the system in the next state. Afterwards, an overall step for the whole
sequent is executed (see below). More formally, an Asbru plan (or temporal
formula) is rewritten to a formula of the following type

TANOQ

with 7 being a formula in predicate logic describing a transition as a relation
between unprimed, primed and double primed variables. In general, a system
may also terminate, i.e., under certain conditions, the current state may be the
last. Furthermore, the next transition can be nondeterministic, i.e., different 7;
with corresponding ¢; may exist describing the possible transitions and corre-
sponding next steps. Finally, there may exist a link between the transition 7; and
system ¢; which cannot be expressed as a relation between unprimed, primed,
and double primed variables in the transition alone. This link is captured in
existentially quantified static variables X; which occur in both 7; and ¢;. The
general pattern to separate the first transitions of a given temporal formula is

70 N last Vv \/ T,L_l(ﬂ Xi. T Ao ;).

We will refer to this general pattern as normal form.

4.2 Rewriting temporal operators to normal form

We have defined a set of rules to rewrite arbitrary temporal formulas to normal
form [2]. To automatically rewrite the formula, select an arbitrary sub-formula
and apply rule normal form as shown in Figure 3.

An alternative to rewriting the formula to normal form in a single step is to
apply rules to the top level operator only. For every temporal operator there
is a rule to execute the operator, e.g. rule if is applicable for a conditional
if ¢ then ¢ else 1o, rule if, for a procedure rule call can be applied (see
Figure 4).

In both cases, it is important to simplify the result afterwards. Therefore, it is
recommended to use the predefined set of heuristics TL Heuristics to automat-
ically apply all of the rules simplifying the result.

4.3 Executing an overall step

Assume that the antecedent of a sequent has been rewritten to normal form.
Further assume — to keep it simple — that the succedent is empty. (This can be
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KIV Specification Observation

File Thearems Proof Control Coal Strategy Simplifier Unit  Edit iew Latex Print  Fault Trees Config

FrescribeObservation Open goals: 1. Current goal: 1. Proof steps: 1

simplifier l~lloc ((AS"")["pob”] = (AS')['pob’] A Tick” '},
weak simplifier [asbru-plan#( pob’, ‘ob
switch formula left e nt, PDH, VH, AC, ASH, AS,

weakening generalise
induction
WD induction
structural induction

o ([FRM
cut formula rewrite

=-=-=- Complex rules ---
call

call weaken

s
AS[ “pob”
F

insert lemma rewrite with context
insert spec-lemma weaken

insert rewrite lemma --- Strategies ---
insert elim lemma simplify with sets
insert proof lemma normal form

insert equation Sl TEOE e
——- Induction —-- show environment
extract liveness
generalise

——— Complex rules —-=

-

Fig. 3. Rewriting sub-formulas to normal form

o, 'tA Y, TFA dis 1 o, T'F A z
eV, I A e IX. o FA X

where X fresh with respect to free(y) \ {X} U free(I', A)

X, X, X - X1,X2,A
Ta,A A" Taarams ¥ ’
— 1 st ———— Sip
T, last 7,0 @

where X, X1, X2 fresh with respect to free(p, )

Table 2. Rules for executing an overall step
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KIV Specification Observation

File Thearems Proof Control Coal Strategy Simplifier Unit  Edit iew Latex Print  Fault Trees Config

FrescribeObservation Open goals: 1. Current goal: 1. Proof steps: 1

simplifier l~lloc ((AS"")["pob”] = (AS')['pob’] A Tick” '},

weak simplifier [asbru-plan#(‘pob’, ‘ob

switch formula left === Induction === nt, PDH, VH, AC, ASH, AS,
weakening generalise
induction Ao | ——— Complex rules ——-
WD induction iS[ pob e

call weaken

structural induction
o ([FRM
cut formula

insert lemma revrite with context

revrite

insert spec-lemma weaken

insert rewrite lemma --- Strategies ---
insert elim lemma simplify with sets
insert proof lemma normal form

insert equation s==Infol=o=
——- Induction —-- show environment

extract liveness
generalise
——— Complex rules —-=

Fig. 4. Rewriting the top-level operator
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4. SYMBOLIC EXECUTION OF ASBRU

assumed as formulas in the succedent are equivalent to negated formulas in the
antecedent. Furthermore, several formulas in the antecedent can be combined to
a single normal form.)

n
70 N last Vv \/ A_1(5| Xi. T Now) F

With the two rules dis [ and ex [ of Table 2, disjunction and quantification can
be eliminated. For the remaining premises,

0 A last - T N\ o ;-

the two rules [st and stp can be applied. If execution terminates, all free dynamic
variables A — no matter, if they are unprimed, primed or double primed — are
replaced by fresh static variables X. The result is a formula in pure predicate
logic with static variables only, which can be proven with standard first order
reasoning. Rule stp advances a step in the trace. The values of the dynamic
variables A and A’ in the old state are stored in fresh static variables X; and
Xs5. Double primed variables are unprimed variables in the next state. Finally,
the leading next operators are discarded. The proof method now continues with
the execution of ;.

We have implemented a rule step which automatically rewrites every temporal
formula of the sequent to normal form, and executes an overall step. Further-
more, the predefined set of heuristics TL Heuristics + Ezec includes a heuristic
to automatically execute steps. The heuristic executes steps breadth first.

4.4 Executing Asbru

We have defined procedures to implement the semantics of Asbru (see Sect. 2).
These procedures can be executed with the existing set of rewrite rules.

It is recommended to first try to execute a step with rule step. However, if
normalising all of the temporal formulas of the given sequent results in too
many case distinctions, the application of step takes too long. In this case, abort
the application of step with the stop button and execute the procedure defining
the Asbru plan with manual application of rules. It is recommended to use the
set of heuristics TL Heuristics to ensure that those rewrite rules which do not
give case distinctions are automatically applied. It remains to expand procedures
and to normalise those conditionals for which the conditions cannot be decided
automatically.

4.5 Simplifier rules
Simplifier rules for Asbru plans Axiom -def defines plan Observation

toan-def:
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4. SYMBOLIC EXECUTION OF ASBRU

asbru(‘toan’)
= mk-asbru-def(
mk-aasbruc(
mk-acond(\ pdh, vh, ash, as, ac.
pdh[ac][‘parameter-any-forms-of-metastasis-in-the-SN’] .val,
default-ata),
false, false),
setup_condition,
suspend_condition,
resume_condition,
abort_condition,
complete_condition,
anyorder,
false,
‘praoa’ + ‘and’ ’,
wait-for-n(1,'praca’ + ‘and’ + []),
false); used for: s, Is;

For verification it is inefficient to replace every reference to plan Observation
with the complete definition. Instead, additional simplifier rules can be defined
which rewrite the different slots of the definition.

toan-filter:  asbru(‘toan’).filter
= mk-aasbruc(
mk-acond(\ pdh, vh, ash, as, ac.
pdh[ac][‘parameter-any-forms-of-metastasis-in-the-SN’] .val,
default-ata),
false, false),

toan-setup : asbru(‘toan’).setup = setup_condition;

toan-suspend : asbru(‘toan’).suspend = suspend_condition;
toan-reactivate : asbru(‘toan’).reactivate = resume_condition;

toan-abort : asbru(‘toan’).abort = abort_condition;

toan-complete : asbru(‘toan’).complete = complete_condition;

toan-type : asbru(‘toan’).type = anyorder;

toan-retry : asbru(‘toan’).retry = false;

toan-subplans  : asbru(‘toan’).subplans = ‘praoa’ + ‘and’ ’;

toan-waitfor : asbru(‘toan’).waitfor = wait-for-n(1, ‘praca’ + ‘and’ ’);
toan-opt-wf : asbru(‘toan’).opt-wf = false;

This strategy of simplifier rules has an additional advantage. Aside from the
faster execution and simplification it reduces the effort to reprove properties
after plans have been changed. It is therefore recommended to define a set of
such simplifier rules for every Asbru plan.

Simplifier rules for Asbru semantics As KIV generally applies rewrite rule,
after a syntactical match between the rule precondition and some formulas on
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4. SYMBOLIC EXECUTION OF ASBRU

the sequent has been achieved, it is important to try to define and achieve a
canonical form of the sequent.

This allows to establish the validity of the premise and thus the automated clos-
ing of open goals in certain cases. Also, it is possible to identify non information
carrying formulas and eliminate them from the sequent. Consider the following
example

F ps = inactive — (ps = considered « false)

Precondition of this rule is, that a plan state variable is assigned the value
‘inactive’. If this is written down on the sequent, then all occurrences of formulas,
where the same plan state is set to considered are replaced by false. This can
have two possible effects. One, if the rewritten formula is in the succedent of
the sequent, the result will be an instance of a rule called false right, which
eliminates the false, thus clearing up the sequent. Should, however, the rewritten
formula exist in the antecedent, then an application of rule false left would
be possible and the goal would be immediately closed.

Another way of simplification is to convert terms to a canonical form, for example
when considering multiple updates. In practice it is not wanted to have a too
large number of simplifier rules for several reasons, one of them being the reduced
efficiency. Reducing terms to a canonical form allows to formulate only a limited
number of simplifier rules for this very form instead of dozens of rules for each
special case. One example of such reducing rules is written down below.

F sk < skl — (skl1’ + sk’ =sk’ + skl )
Fsk’+ sk’ =sk’

This rule would result in the ordering of sets via something like the bubble sort
algorithm. As the simplifier in KIV applies such simplification rules also to sub-
formulas, it is not necessary to define additional rules where one has to consider
the set to contain more than two elements.

The second rule in conjunction with the first rule eliminates all doubly inserted
elements, such that all sets on the sequent will be written down in a canonical
way. This may be necessary because the test for equality of sets can be ascribed
to a test for syntactical equivalence.

Sometimes the precondition of a rule is not written down on the sequent syn-
tactically but can be deducted from knowledge on the sequent. Take for exam-
ple the above mentioned precondition sk < ski. Although, given < to be the
lexicographical alphabetical ordering, it is true that ‘ob’ < ‘rt’, this will in
principle not be written down on the sequent. Therefore, KIV allows for the
formulation of more general simplifier rules.

sk < skl F (skl’ + sk’ =sk’ 4 skl ’)
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Can be used as a simplifier rule, where for every instance of skl ’> + sk ’ it
is tried to prove that sk < ski1. This, of course is much less efficient and in
general such a proof will not be doable, as soon as variables are involved.

Therefore, there is a third possibility for such rules to be formulated, which is
sk < skl F ((*skl)’ + (*sk) > =sk’+ skl )

where the asterisks meaning is, that sk has to be a constant, not a variable. As
the ordering on concrete strings is always decidable, this will only result in a
minor efficiency loss while the simplifier is working.

Many such simplifier rules for the basic data types are already defined in the base
libraries and even more where defined within the Asbru part of the library to deal
with the specifics of Asbru. In general it should be thoroughly evaluated, whether
new simplifier rules are useful in principle or not. One has to be aware that
by inserting a simplifier rule within the library, the behaviour of the simplifier
might be changed for more verifiers than oneself. This could result in the replay
of proofs to be less automated and even in cyclic application of simplifier rules,
which results in an unusable simplifier.

Much effort has been spent to make the simplification strategy as simple and
efficient as possible, so in principle it is strongly suggested to consult with the
designers of the Asbru semantics before changing it.

4.6 Induction

The execution of Asbru plans often loops. For example, if a plan is activated, it
normally waits for its complete or abort condition to be satisfied. Also, if a plan
is in ready state, it waits for its parent to send the activate signal. Refer to the
state chart describing the semantics of Asbru [3] for more possible cycles.

In case of a cycle, induction must be used to close the proof. Induction is initiated
with rule VD induction. If a safety property is verified, this safety property can
be used for induction. Otherwise, an expression of type nat must be provided
which is ensured to decrease during execution. After the loop has been executed,
induction can be applied by selection of the corresponding node in the proof tree
where execution of the loop has started. Right click on the corresponding node
and choose apply VD induction (see Figure 5).

4.7 Heuristics

Heuristics define a set of rules that are automatically applied to a sequent.
For example, it is recommended to automatically apply simplification rules to
a sequent after execution of a step is completed. With simplification rules, a
number of sequents can be closed automatically, the remaining sequents are in
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Fig. 5. Using apply VD induction

general more readable. Use the predefined heuristic set TL Heuristics for this
purpose.

Sometimes rule applications can make proofs more difficult or more painstaking.
Consider an example, where the real state of the system is hidden in a disjunc-
tion, such that state = state; V states. In that case, it might be useful
to split the disjunction, because the simplifier can close both resulting goals or
both resulting goals have to be treated in a different way.

On the other hand, it might also be possible to close the goal without knowing
details about the state, for example because there is a contradiction within
another set of PL formulas.

Therefore, there is no general rule, when to split case distinctions and when not
to do it. Such decisions can be automated by the choice of simplifier rules. One
could for example especially select or deselect a set of rules containing a rule case
distinction, or do so more specialised by stating, rule case distinction should only
be applied, when the formula to process has a certain syntactical form.

For simple properties, it is possible to also automate step execution and the
application of induction. Use the predefined heuristic set T'L Heuristics + Exec
for this purpose. However, the heuristics do not automatically generalise goals.
Therefore, if it is necessary to generalise the current state, and also if it is nec-
essary to manually simplify first order formulas, it is recommended to manually
execute steps.
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5 Verifying a single Asbru plan

We try to verify a simple property of the Asbru plan ‘sentinel node procedure, pa-
tient information’, abbreviated to ‘SNpi’. The property is named SNpi-Intention.

5.1 proof obligation

(: system configuration :)
AS[‘SNpi’] = inactive,
PC[‘SNpi’] .consider,
(: system description :)
[inactive#(‘SNpi’, sk; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG)],
(: environment assumption :)
O AS”[‘SNpi’] = AS’['SNpi’]
F (: property :)
O ( [Frame AS, Tick]
A frame(AS’, AS, ‘SNpi’ "));

As can be seen in the proof obligation, the verification begins with the SNpi’
plan in the inactive state with its consider signal being sent by the anonymous
parent sk. This can be read from the state of PC, where the consider signal
for ‘SNpi’ is set and AS, which is set to inactive in the slot concerned with
‘SNpi’. Also, the procedure describing the system is the inactive# procedure.
In this example, the only assumption for the environment is, that it does not
change the AS field of ‘SNpi’.

5.2 First step

The proof obligation as described above can be seen as node 1 in Fig. 6. We
now apply a temporal logic step. According to the scheme, described in Sect. 4.
Possible results of this step can be seen from Fig. 1. From the inactive state,
the step started from, it is only possible to move forward to state considered, as
the SC is satisfied. The resulting proof obligation is marked as node 2 in Figure 6

Technically, this is what happens during the system transition of the TL step:
The ‘SNpi’ field of the AS variable is set to considered, while the procedure
representing the plan is changed to considered#. After the system transition
follows the environment transition. There, all variables but AS are changed
arbitrarily. For AS, the slots other than ‘SNpi’ may again be changed arbitrarily.

After complete execution of the TL step, knowledge about the current status of
the consider signal of ‘SNpi’ is lost. Some static variables may remain on the
sequent, describing some intermediate states. However, in the given goal, these
static variables are of no importance and can be discarded manually to improve
the readability of the sequent.
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Fig. 6. Proof tree for SNpi-intention

An example for such static variables is given below, where some knowledge about
intermediate states of the parent of ‘SNpi’ is still written on the sequent.

[var PCO = init
in activated#(‘SNpi’, sk0, [], [], asbru(sk) .subplans, 1, 1
; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG, PCQ0],
INDHYP-nat(N + 1),
as[sk0] # aborted, as[sk0] # completed

5.3 Further steps

In every further step, the possibility of plan ‘SNpi’ terminating has to be con-
sidered. Once plan ‘SNpi’ terminates, its representing program will terminate.
This will result in a first order proof obligation, which can be dealt with auto-
matically by the simplifier.

Execution continues until plan ‘SNpi’ is ready, to be seen in node 3 in Fig. 6.
The proof obligation there is

(: system configuration :)
AS['SNpi’] = ready,
(: system description :)
[ready#(‘SNpi’, sk; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG)],
(: environment assumption :)
O AS”['SNpi’] = AS’['SNpi’]
F (: property :)
O ( [Frame AS, Tick]
A frame(AS’, AS, ‘SNpi’ "));
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After executing the next TL step, we receive two proof obligations. In the first,
the activate signal has been sent and ‘SNpi’is activated:

activated# (‘SNpi’, sk, [], ], [], 1;
Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG, PCO0)

In the second premise, the plan is still in state ready.
ready#(‘SNpi’, sk; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG)

The reason for these two premises is as follows: In Fig. 1 the outgoing arc from
ready is guarded. The guard is only satisfied, if an activate signal is sent to the
plan by its respective parent. However, it is not guaranteed, that this signal will
be sent. Therefore, ‘SNpi’ may stay in the ready state indefinitely. Induction
can be used to close this premise.

Proof continues with an activated ‘SNpi’ plan as seen in node 4 in Figure 6.
After the execution of another step, four further premises are generated. In the
first premise, the plan is aborted, in the second completed. These goals can be
closed easily. In the third premise, ‘SNpi’ is still activated. We can solve this
goal again with induction.

In the fourth proof obligation, marked as node 5 in Fig. 6, ‘SNpi’ is suspended.
We need a further temporal step here, resulting in two open premises, one, where
the state remained suspended - a goal where again induction can be applied - and
a second goal, where the plan becomes activated again. In this goal, induction
is possible to the last state, where ‘SNpi’ was activated, which is node 4 in
Figure 6. Therefore, this proof is closed.

5.4 Rely guarantee approach

The original proof obligation is rather weak. It has only been verified, that the
property holds, if the environment never changes the state of the ‘SNpi’ slot of
the AS variable. This has been a deliberate weakening of the proof obligation,
to better illustrate the structure of an asbru proof in KIV.

Assume a trace, where the environment violates the environment assumption in
the fifth TL step. Obviously, this trace is not allowed, so the Asbru procedures
may show arbitrary behaviour within this trace. Especially, ‘SNpi’ may violate
the property in the first step. Therefore, a stronger version of the property is
wanted.

Our proposed solution is generally known as the “rely guarantee” or “assumption
commitment” approach. This has been proposed for example by [1]. We will
present our implementation of this idea.

A first step towards a strengthened properties is the use of the unless operator.
The unless operator allows us to force a system — the plan ‘SNpi’ in that case

19 of 33



5. VERIFYING A SINGLE ASBRU PLAN

— to show desired behaviour up to the point, where unwanted behaviour in the
environment can be noted. This can be done in the following way:

(: guarantee :)
([Frame AS, Tick] A frame(AS’, AS, ‘SNpi’ ’))
unless (: negated rely :)
- AS”[‘SNpi’] = AS’[*'SNpi’]

? =R
o —_ —0

G R 7

J

G

G
G
Fig. 7. Property violation with unless

However, we could further strengthening this. In our execution engine, system
and environment transitions alternate. The unless as stated above, allows the
upper trace in Fig. 7. As the environmental transition follows the system tran-
sition, the systems may again violate the property before the misconduct of the
environment occurred. What would be wanted was the lower trace. This can be
formulated in our example as

(: system configuration :)
AS[‘SNpi’] = inactive,
(: system description :)
[inactive#(‘SNpi’, sk; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG)]
F (: property :)
([Frame AS, Tick] A frame(AS’, AS, ‘SNpi’ 7))
unless ( (: repeated guarantee :)
[Frame AS, Tick] A frame(AS’, AS, ‘SNpi’ ’)
(: negated rely :)
A = AS”['SNpi’] = AS’['SNpi’]

Looking closely at the presented example, one can see, that in this case, an even
stronger property can be formulated. The plan ‘SNpi’ should never violate the
property, even if the environment assumption is violated. As ‘SNpi’ does not
require the AS variable for its progression, the proof should not be considerable
different, once the environment assumption is omitted.

Also it is possible to omit the state of the PC variable. If an inactive plan
does not get its consider signal, the procedure will terminate. However, with a
terminating system, the property is trivially satisfied, which leads to the property
below.

20 of 33



6. COMPOSITIONAL VERIFICATION OF LARGE HIERARCHIES

(: system description :)
[inactive#(‘SNpi’, sk; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG)]
(: property :)
O ( [Frame AS, Tick]
A frame(AS’, AS, ‘SNpi’ ));

|_

6 Compositional verification of large hierarchies

Aim of this section is to provide a hands on approach on the modular verification
of a medically relevant property. For this, we will take a look at an intention,
stating After axilla clearance, the axilla should not normally be irradiated. We
will first describe the property, then the expected problems when using symbolic
execution, as presented in Sect. 5 and finally our proposed solution.

6.1 Guideline Background

The guideline used as a basis for our verification work is dealing with the treat-
ment of breast cancer. The guideline is structured into eight chapters, where
chapters one through six deal with the treatment of the disease in different
phases. The verification work described here is done in the first chapter. This
chapter deals with treatment of operable invasive breast cancer and DCIS, which
is ductual carcinoma in situ.

Treatment may consist of surgery as well as chemotherapy or radiotherapy. For
this paper, we are especially interested in surgery of the axilla and the follow up
treatments of it.

6.2 Medical goal and translation

Our proof obligation is a medical property. Good practice medicine should en-
sure, that after azilla clearance, the axilla is not normally irradiated. This goal
has been processed according to the translation patterns described in [6]. Result
of this translation process was the finding, that axilla clearance should be asso-
ciated with the Asbru plan clearance of axilla node, abbreviated to ‘cand’. It
has been determined, that the irradiation of the axilla can be associated with
the Asbru plan primary radiotherapy of the axilla, abbreviated to ‘praoa’.

According to the translation pattern, some starteventtrigger and some ende-
venttrigger have to be defined describing the interval of time, during which the
desired behaviour — the non-activation of plan ‘praoa’ — has to be observed.
The starteventtrigger is defined as the time point, where plan ‘cand’ is com-
pleted, the endeventtrigger is defined as the time of termination of the dealing
with azilla plan (abb. ‘dwa’). The plan ‘dwa’ has been chosen, because it is the
first common parent of ‘cand’ and ‘praoca’. The relevant section of the Asbru
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. active plan

D passive plan

asbSN ‘ ‘ cand ‘ ‘ gppse

SNpi ‘ praoa

‘ pfpc ‘ ‘ andp epan irt ‘

Fig. 8. Section of the Asbru plans of chapter 1

plan hierarchy can be seen in Figure 8, the proof obligation is written down
below.

[inactive#(‘dwa’, ‘treat’
; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG)],
Tick,
O ( (AS”)['dwa’] = (AS")['dwa’] A (AS”)[‘cand’] = (AS’)[‘cand’]
A AS”[‘praca’] = AS’[‘praca’] A AS”[‘toan’] = AS’[‘toan’]
A (= Tick’ — PDH”[AC”] = PDH’[AC]) A Tick”
A suspended # (AS”)[‘treat’]),
= StartEventTrigger A = EndEventTrigger,
AS[‘praoa’] = inactive,
O (if (AS[‘cand’] # completed A AS’[‘cand’] = completed)
then StartEventTrigger”
else (StartEventTrigger’ < StartEventTrigger”)),
O (if ( StartEventTrigger A AS[‘dwa’] # completed
AS’[*dwa’] = completed)
then EndEventTrigger”
else (EndEventTrigger’ <> EndEventTrigger”)),
O (if (StartEventTrigger A = EndEventTrigger” A activated = AS[‘praoca’])
then GoalFailed”
else (GoalFailed” < GoalFailed’)),
F O (StartEventTrigger — activated # AS[‘praca’] V EndEventTrigger)

In our work, we distinguish between active and passive plans. These terms are
relative to the verification of one property. Plans, designated as active somehow
contribute to the fulfilment of the property. This can be, because their plan state
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is relevant for the evaluation of the property, they are parents of such plans or
guarantee certain environmental conditions by their filter and setup conditions.

As can be seen in Fig. 8, plans directly relevant for the evaluation of the property
have a white background. Other active plans are shaded with a dark grey, passive
plans in a light grey. All in all, the section of the hierarchy contains 12 plans in
four hierarchical layers.

This is a rather large hierarchy. Although the use of the verification technique,
described in Section 5 is possible, it is not advised. The indeterminism inherent
in some of the plans would lead to a very large proof. Instead it is suggested to
abstract the subplans of ‘dwa’. For this, we propose to use the rely guarantee
approach already sketched in Section 5.4.

6.3 Proof idea

Verification complexity grows with the number of indeterministic controls, like
the any-order control, and execution speed falls with the number of ||s operators.
Therefore, it is recommended to use a different approach towards verification of
such hierarchies. An approach reducing the overall number of parallel running
plans and hiding the indeterminism.

One example, how this works, is in the hierarchy in Fig. 8 with the plan azilla
node dissection, abbreviated ‘and’. It might be important for the property de-
scribed in Sect. 6.2, if plan ‘and’ aborts or completes its execution. However,
it seems to be unimportant if, for example, its subplan ‘pfpc’ or its subplan
‘irt’ was responsible for the abortion of ‘and’. Therefore we aim to have
an abstraction of plan ‘and’. This abstraction should start running, when the
procedure representing ‘and’ is spawned. The abstraction should indeterminis-
tically complete or abort at some point. During its execution, this abstraction
should maintain basic properties like the non-interference with AS slots of plans
outside the ‘and’ subtree.

In a similar way, we seek abstraction properties for all the plans but ‘dwa’.
For the passive plans ‘gppse’ and ‘asbSN’, these properties will be similar to
that of ‘and’. The property for ‘toan’should be, that its child ‘praoa’ is not
activated as long as ‘toan’ has not been activated on its own. For ‘cand’ it is
necessary to know, that after ‘cand’s termination, ‘cand’ will no longer change
its state.

We will now concentrate on the sub hierarchy controlled by plan ‘toan’. We
aim to verify, that plan ‘praoa’ cannot get activated, as long as ‘toan’ gets
activated itself. We further want to show, that ‘toan’ always completes, if the
parent ‘dwa’ does not terminate. For this, we have to know, that the necessary
child ‘praoa’ cannot abort or reject.

In the following section, we will show how to verify the abstraction for plan
‘praoa’, afterwards how to combine this abstraction with one for plan ‘dwa’.
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Finally, we will show, how these three proofs can be used in the verification of
the abstraction of plan ‘toan’.

6.4 Verifying simple RG Properties

We try to verify a property of the “plan primary radiotherapy of the axilla”,
‘praoa’. The property is named praoa-non-abort. With this property, we ab-
stract the behaviour of ‘praoca’ in a way, that the plan may not abort or reject,
as long as the parent does not abort. Also, it is necessary to state, that the
plan will not be activated unless it receives its activate signal from its parent
‘toan’.

We also verify a technical property, that slots in the AS variable other than
‘praoa’ are left alone. This property can be guaranteed without any assumption
to the environment, while the other part of the property needs two assumptions,
the parent not aborting and the state of the AS slot of ‘praoa’ not to be changed
by the environment. For technical reasons, the property has to be written down
in a certain syntactical form:

praoa-non-abort:
F (: system description :)
[inactive#(‘praoa’, sk; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG)]
(: current state :)
—  AS[‘praoa’] = inactive
(: first part of property :)
— O ([FRM AS, Tick] and frame(AS, AS’, ‘praca’ "))
(: guarantee of second part of property :)
A = (AS[‘praoa’] = aborted A not AS[‘praca’] = rejected)
(: repeated guarantee of second part of property :)
unless (- AS[‘praca’] = aborted
A = AS['praca’] = rejected
(: negated rely of second part of property :)
A (= AS?[‘praca’] = AS’['praoa’]
V terminatedP (AS]sk])))

After start of the verification, the proof obligation is automatically rewritten to

praoa-non-abort:
(: system description :)
[inactive#(‘praoa’, sk; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG)],
(: current state :)
AS[‘praoa’] = inactive
F  (: first part of property :)
O ([FRM AS, Tick] and frame(AS, AS’, ‘praca’ ’))
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(: guarantee of second part of property :)

A = (AS[‘praoa’] = aborted A not AS[‘praoa’] = rejected)
(: repeated guarantee of second part of property :)
unless (- AS[‘praoa’] = aborted

A = AS['praoa’] = rejected
(: negated rely of second part of property :)
A (= AS?[‘praca’] = AS’[‘praoa’|

V terminatedP(AS[sk])))

Which falls into two separate proof obligations, splitting the property at the
leading conjunction in the succedent. Both proofs will be described separately.

Verification Verification of the first part of the property very closely resembles
verification of the property in Section 5.

Verification of the second part of the proof obligation praca-non-abort is again
similar to the verification done in Section 5. With some specific knowledge about
the plan ‘praoca’ regarding its termination behaviour, some side arms no longer
show up. Due to the non existing filter and abort conditions and the fact, that
the parent of ‘praoa’ may not abort — as stated by the environment assumption
— the corresponding cases do not have to be considered.

Combining TL properties It is sometimes necessary to combine different TL
properties in a way that they can be rewritten as a single property. Take for
example the previous proof, where it had to be verified, that AS slots other
than ‘praoa’ are left alone, as well as ‘praoa’ will not abort. In such cases,
sometimes the proving of sub properties can take considerable more effort than
in the current case. It is not too unlikely, that a verifier does not get the property
right in the first attempt. Going along the lines of Murphys law, usually this is
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discovered when working on the last open premise. In that case, much of the
previous proof effort may be lost or may be subject to replay. We therefore
suggest to decouple the properties.

Assuming, the property is written down as

System
—  state_for_prop_1 A state_for_prop_2
—  propl
A prop2

we suggest to formulate two properties

System
—  state_for_prop-1
— propl

and

System
—  state_for_prop_2
— prop2

and use them as rewriting rules to prove the original property. That way, if errors
are for example found in state_for_prop_2 or even within prop2 only a partial
proof is affected.

6.5 Combining rely guarantee properties

Although the abstraction of Asbru plans may allow for faster application of
induction, the effort for verification stays virtually the same. The reason for
this is, that complexity is not mainly based on the programs themselves, but on
their number. Therefore the ultimate goal is not the abstraction of plans but the
reduction of parallel operators.

It is possible to combine different RG properties that are executed in parallel
into one single RG property. The result of such combinations is a great reduction
in the number of generated goals after a temporal logic step. It is obvious, that
two parallel unless formulas can generate more indeterminism than one.

The suggested procedure is to determine a RG property which is a generalisa-
tion of the synchronous parallel combination of RG properties and verify in a
separate proof, that the generalisation is indeed valid. This property can then
be used within the main proof to eliminate parallel operators, thus increasing
the performance of the TL step and reducing complexity by reducing the inde-
terminism.
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There has been found a compositional theorem to reduce the combination of two
RG properties into one to a mere predicate logic one. This holds for both, the
combination of unless properties and the combination of always properties. There
is no automated support for the application of this theorem, yet. Therefore,
application of this theorem can only be done manually outside the KIV system.
Alternatively, it is possible to prove the abstraction to be correct in a temporal
logic proof.

In many cases the resulting rely is merely a combination of both single relies and
the same holds for the guarantees. For example in the praoa-non-abort proof
fusing two always properties the guarantees for both properties are

O ( [FRM AS, Tick]
A AS = AS’[‘and’, AS[‘and’]][‘andp’, AS[‘andp’]]
[‘epan’, AS[‘'epan’]][‘irt’, AS[‘irt’]]
[‘pfpe’, AS['pfpc’]])

and
O ([FRM AS, Tick] A AS’ = AS[‘'praca’, (AS’)['praca’]])
the resulting guarantee is

0 ( [FRM AS, Tick]
A AS = AS’[‘and’, AS[‘and’]][‘andp’, AS[‘andp’]]
[‘epan’, AS[‘epan’]][‘irt’, AS[‘irt’]]
[‘pfpc’, AS['pfpc’]]['praoca’, (AS”)['praoa’]])

The combination is something quite similar as the conjunction of both properties,
however, the equation for the Asbru state variable makes things a little bit more
complex here. Both processes are allowed to modify their AS slots independently.
This is stated inversely, where it is said, that all other slots are left unchanged.
Simply combining the properties would lead to a situation, where no slot in the
AS could be changed.

6.6 Using rely guarantee properties

The properties described in the section 6.4 can be used to reduce the complexity
of other proofs. It is obvious, that the complexity grows with every additional
subplan that has to be considered for the verification of the property. With the
rely guarantee approach, it is possible to abstract a complete plan hierarchy of
several levels to a single, flat TL formula. Consider the previous sections. It is
not hard to see, this technique can also be applied to more complex plans.

This section will describe how to use the abstracted properties with the verifi-
cation of a RG property. For this, we will take a sub property to be used in the
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proof of the medical goal described in Section 6.2. This proof obligation is called
toan-20, defined in specification treatment-axilla.

Our proof obligation is

l_
(: system description :)
[inactive#(‘toan’, sk; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG)]
(: system configuration :)
— ( AS[‘toan’] = inactive and PC[‘toan’] .consider
(: guarantee :)
— ( (not terminatedP(AS[‘toan’]) and not laststep)
unless ( (: regular exit :)
AS[‘toan’] = completed
(: negated rely :)
V AS[sk] = suspended
V terminatedP(AS[sk])
V (AS’)[‘toan’] # (AS”)[‘toan’]
V (AS’)[‘praoa’] # (AS”)['praca’]))

For a better understanding, we would like to further explain this property.

Within the system description, it can be seen, that the top level plan for this
property is ‘toan’, which is the above mentioned treatment-of-axilla-node. We
have left the parent anonymous, so should this plan ever become part of another
plan hierarchy with another parent, this property might be reused.

As can be seen, a system configuration is given within this property. The reason
for this is not, that the plan requires it for its execution, but that the property
might be violated initially. Should the system start with the Asbru state of
‘toan’ being set to terminated, the guarantee would be violated initially.

The guarantee verified here, is, that the plan ‘toan’ will never abort or reject
and thus either run infinitely long or complete its execution. There is a slight
deviation of the “pure” RG scheme. We allow for a regular exit without the
violation of the environment assumption here, that is, we consider our property
to hold, if the plan completes, which is not a violation of the rely.

The rely is, that the parent of plan ‘toan’ is not suspended or terminated.
The latter one is necessary, as every plan immediately aborts, once it can be
established that its parent is either aborted or completed. Also, we need the
environment not to touch the Asbru state of ‘“toan’ itself and one of its children,
‘praoa’ which is the plan primary-radiotherapy-of-axilla. In case, the Asbru
state of that child is changed to aborted or rejected by the environment, ‘toan’
might abort, because ‘praoa’ is a necessary child of ‘toan’.

The property is symbolically executed in the manner described in section 6.4 to
the point, where the subplans of ‘toan’ are spawned. After the spawning, the
subplans are rewritten by their respective RG properties.
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[var PCO = init[‘praoa’ > + ‘and’ ’, true, false, false]
in begin
activated# (‘toan’, sk, [], ‘praca’ > + ‘and’ 7, [], 1
; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG, PC0
) lls
begin
inactive#(‘praoa’, ‘toan’
; Tick, Patient, PDH, VH, AC, ASH, AS, PC0, EAGG
) Ils
inactive##(‘and’, ‘toan’
; Tick, Patient, PDH, VH, AC, ASH, AS, PC0, EAGG
)

end
end

]

[var PCO = init[‘praoa’ > + ‘and’ ’, true, false, false]
in begin
activated# (‘toan’, sk, [], ‘praca’ ’ + ‘and’ 7, [], 1
; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG, PCO0

) s
begin
[PL( o ( [FRM AS, Tick]
A frame(AS, AS’, ‘praoca’ ’))
A ( AS[‘praoa’] # aborted
A rejected # AS[‘praoa’])
unless ( aborted = AS[‘praoa’|
A rejected # AS|[‘praoa’|
A (- (AS?)['praoa’] # (AS’)[‘praca’]
V terminatedP(AS[‘toan’]))))
 lls
[PL O ( [FRM AS, Tick]
A frame(AS, AS’, ‘and’ + ‘pfpc’ + ‘andp’ + ‘epan’ + ‘irt’ 7))
]

end
end

]

After this rewrite step, the properties are linked together by a lemma like those
described in section 6.5. The outcome of this lemma application in combination
with some simplification is

[var PCO = init[‘praoa’ ’ + ‘and’ ’, true, false, false]
in begin
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activated# (‘toan’, sk, [], ‘praca’ > + ‘and’ 7, [], 1
; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG, PC0
B
[PL ( ©( [FRM AS, Tick]
A AS = (AS[‘and’, (AS")[‘and’]][‘andp’, (AS’)[‘andp’]]
[‘praca’, (AS")['praca’]]['epan’, (AS’)['epan’]]
| [irt’, (AS)[irt"]]['pfpe’, (AS")['pfpe]]
A ( aborted # AS[‘praoa’]
A rejected # AS[‘praoa’]))
unless ( aborted # AS[‘praoa’]
A rejected # AS[‘praoa’|
A (- (AS”)['praca’] # (AS’)[‘praca’]
V terminatedP(AS[‘toan’])))

]

end

]

As can be seen here, the property is a combination of unless and always prop-
erties, putting every sub property holding unconditionally into the always part
and only those necessary into the unless part. Our experience shows, this form of
formulation does reduce proof effort and increase execution speed, so in principle
we have here a trade off between more complex property formulation and more
efficient verification of the main proof.

After this lemma application, the knowledge about the states of ‘and’ and
‘praoa’ is weakened. As the RG properties abstract from the control flow of
the asbru plans, the knowledge, that ‘and’ and ‘praoa’ are inactive here is no
longer important. For ‘praoa’ the only important thing is, that it is neither
aborted nor rejected initially, which is guaranteed by the unless formula. As
there is no active contribution of ‘and’ all knowledge can be discarded.

This drastic procedure is only advisable, as long as the property for the sub-
plan does not contribute in an active sense or the active contribution can be
guaranteed by the RG property. Otherwise, it could be crucial to know, that a
certain subplan is not active, not completed or not aborted. There is however no
generic possibility to foresee all possible generalisations. Formulation of those is
a creative step.

This is the goal before application of the step rule

N = N” + 1 until Boolvar,
[var PCO = pc
in begin
activated# (‘toan’, sk, skx, sky, [], 1;
Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG, PC0

) s
[PL ( O( [FRM AS, Tick]
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A AS’ = (AS['and’, (A )[ and’]][‘andp’, (AS’)[‘andp’]]
[epan’, (AS")['epan][irt’, (AS)['irt]]
: ['pfpc’, (AS)['pfpc’]]['praca’, (AS)['praca’]]
A ( AS[‘praoa’] # aborted
A AS[‘'praca’] # rejected)
unless ( AS[‘praoa’] # aborted
A AS[‘praca’] # rejected
A (- (AS?)['praoa’] # (AS’)[‘praca’]
V terminatedP(AS[‘toan’]))))

]

end

I,
INDHYP-nat(((N + 1) + 1) + 1) + 1) + 1),
AS[‘praoa’] # completed, AS[‘toan’] = activated,
AS[‘praca’] # aborted, AS[‘praoa’] # rejected
F ( AS[‘toan’] # rejected
A AS[‘toan’] # aborted A AS[‘toan’] # completed
A — laststep)
unless ( AS[‘toan’] = completed V AS[sk] = suspended
V terminatedP(AS[sk]) vV (AS")[‘toan’] # (AS”)[‘toan’]
V (AS’)[‘praoa’] # (AS”)[‘praca’]

Looking closely, one will notice the plan lists describing the running and evalu-
ated subplans of ‘toan’ have been abstracted to generic values. Although this
is not strictly necessary, it has been found to reduce the proof effort by a factor
of three to four. Although this abstraction leads to some more goals after the
initial step, the fact that all goals without terminating plans can be closed by
induction makes up for this.

After applying a temporal logic step, three types of proof obligations are gen-
erated. One type, where predicate logic reasoning is necessary, one type where
induction can be used. In a third type of goals, the system description changed,
because ‘toan’ has completed. In these goals, further temporal logic reasoning
is necessary.

In some cases it can be necessary to abstract from the lists of the activated pro-
cedure again after it has been found, that further steps are necessary. Although
it can never happen, that plan names are inserted out of nowhere, it can happen,
that plan names move from one list to another.

Plans can only move from the right handed lists to the left handed lists. They
can also drop from the lists. This should be considered, before further steps.
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6.7 Generic properties

As mentioned above, proof for certain properties always follows a certain scheme.
The resemblance is so high, that verification efforts can be combined. After some
generalisation proof obligations can be obtained and verified, sufficient to satisfy
multiple more specialised proof obligations. Such generic properties, to be reused
for multiple proofs mark one of the keys to significantly reduce the overall proof
effort.

To come up with such generic properties, it is necessary, to find out the essential
structural part of the original property. In the above mentioned case of ‘praoa’
and ‘SNpi’, it is only important to know, that ‘praoa’ is a user-performed plan
with no children of its own, the same as the ‘SNpi’ plan in Section 5.

Therefore, the following property is defined

user-sane:
(: system description :)
F  [inactive#(sk, skO; Tick, Patient, PDH, VH, AC, ASH, AS, PC, EAGG)]
(: requirements to the plan :)
— ( asbru(sk) .type = user A asbru(sk) .subplans = ||
(: property :)
— O ([FRM AS, Tick] and frame(AS, AS’, ‘praoa’ "))

Verification of this property is almost identical to the corresponding property in
Section 5.4. With this property, among many others, the first proof obligation
praoa-non-abort can be verified.

6.8 Conclusion

Our experience comparing the head on approach with symbolic execution and
the abstraction (also called proof decomposition) shows great potential with
the latter technique. Symbolic execution with larger plan hierarchies leads to
unacceptable proof sizes. In contrast, the proof decomposition technique leads to
proofs of almost constant size, where only the size of the proofs of the auxiliary
lemmas vary. However, for those the technique can be applied recursively to
reduce effort for their proofs.

Right now there has been gathered much more experience with the direct sym-
bolic execution than the proof decomposition. Therefore the limits of this ap-
proach have not yet been found. As of now, it seems as the use of this proof
technique is not as straight forward as the symbolic execution, meaning that
more knowledge and experience is required by the verifier. Furthermore it is not
yet as well automated as the symbolic execution and it seems that some of the
predicate logic goals are inherently difficult to automate with the necessity of
instantiation of quantifiers or the application of lemmas that - on first sight -
can not be applied automatically.
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