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Introduction

The aim of this paper is to make use of Jacobi tensors to study the effects of lower
and upper bounds for the Ricci tensor on the structure of an n + 1 dimensional
riemannian manifold M.

Section 1 of the paper is devoted to preliminaries such as the establishment of
notation and in Sect. 2 we give a more or less self-contained account of those
aspects of the theory of Jacobi tensors which are needed subsequently in the paper.
The surface-type Jacobi equation, (2.5), satisfied by (detJ) 1/", where J is a Jacobi
tensor along a geodesic of M, is of particular importance, as is Lemma 5, which
enables one to compare solutions of this equation with solutions of related
differential inequalities.

Section 3 ist devoted to the study of manifolds whose Ricci tensor is bounded
from below. When this is the case one can use Lemma 5 to compare solutions of
the surface-type Jacobi equation associated to certain Jacobi tensors on M - those
arising from variations of geodesics along hypersurfaces - with solutions of the
corresponding equation on the simply connected model space of constant
curvature whose Ricci curvatures all coincide with the lower bound for the Ricci
tensor on M. It turns out that, when the initial conditions at time t = 0  are the
same, a solution along a geodesic c of M is bounded above by the corresponding
solution on the model space, prior to the first zero of the model space solution.
Furthermore, if the solutions coincide at time t, they must coincide on the whole
interval [0, t] and the curvature tensor along c restricted to the interval [0, t] must
be identical with that of a geodesic on the model space of constant curvature.
Because of this many results concerning the effect of a lower bound for the Ricci
tensor on the structure of M become easy consequences of the behavior of
solutions of the Jacobi equation. In particular, our Theorem 1 and its corollary
provide a generalization of the classical Myer's theorem. Theorem 2 which states
that, when the Ricci curvature along a complete geodesic c is non-negative there
are always conjugate points unless the curvature tensor along c vanishes, is an
extension of a result of Gromoll and Meyer [14]. This extension has also recently
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been obtained by Tipler [24]. In Theorem 3 we show that, when the Ricci tensor
on M is non-negative, any hypersurface must have conjugate points unless the
geodesics normal to it give rise to a parallel unit vector field. In Theorems 4-6,
parts of which are already known (see Bishop [2]), we establish that mean
curvatures and areas of geodesic spheres on M, volumes of geodesic balls, and
mean curvatures of horospheres, when the latter exist and are sufficiently smooth,
are all bounded above by the corresponding quantities on the model space.
Furthermore equality occurs only when the riemannian metric in the interior of a
sphere, ball or horosphere satisfies strong rigidity conditions. For some of the
results of Sect. 3 it is not necessary that the metric on M be positive definite, only
that the induced fiber metric on the normal bundle of the geodesic under
consideration has this property. Such results are therefore either true or have
analogues, some of which we point out, in Lorentzian manifolds. Theorem 2 and
the analogue of Theorem 3 have been established in relativity by Hawking and
Penrose [15].

In Sects. 4 and 5 we consider riemannian manifolds whose Ricci tensors are
bounded from above. Then, if J a Jacobi tensor, one cannot hope to bound
(detJ) ~j~ from below by its counterpart on the model space of constant curvature
whose Ricci curvatures all coincide with the upper bound for the Ricci tensor of
M. For  if such were the case, negative Ricci curvature along a geodesic would be
sufficient to exclude conjugate points and this, by work of Nagano and Smyth
[22], is not true. So, results analogous to several of those in Sect. 3 but with the
inequalities reversed do not hold on manifolds whose Ricci tensor is bounded
from above. However, when the Ricci tensor is negative semi-definite, we are able
in Sect. 4 to obtain lower bounds for the areas of geodesic spheres and for the
mean curvatures of horospheres (Propositions 3 and 4). But these results are not
optimal and, because of the use of convexity in the proofs, are restricted to
manifolds without focal points. In Sect. 5 we take up the problem of trying to find
optimal lower bounds for the areas and volumes of spheres. It turns out that the
scalar curvatures of the spheres play an essential role in the equations. When M is
three dimensional the effect of the scalar curvature is known because of the Gauss-
Bonnet formula and then we are able to get optimal lower bounds (Theorem 7). As
a corollary we obtain the fact that the fundamental group of a compact three-
dimensional manifold without conjugate points and with negative definite Ricci
tensor must have exponential growth, a result which has also been proved by
Smyth (unpublished). We also obtain optimal lower bounds for the volumes of
tubular neighborhoods of closed geodesics in three dimensional manifolds
(Theorem 8).

Section 6 is devoted to Einstein manifolds, i.e. manifolds whose Ricci curva-
tures are all constant. In Theorem 9 we compare the scalar curvatures of geodesic
spheres in an Einstein manifold M with those of the model space of constant
curvature whose Ricci tensor coincides with that of M, and we also show that
horospheres have non-positive scalar curvature. In Theorem 10 we show that an
Einstein manifold is flat precisely when the mean curvatures of the geodesic
spheres centered at one point are Euclidean.
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1. Preliminaries

Let M be an n+  1 dimensional manifold with a complete riemannian metric ( , )
and let T M  be its tangent bundle. Let V be the riemannian connection and R the
riemannian curvature tensor of M. Unless we explicitly state otherwise, geodesics
will be assumed to have unit speed. Let J be some open interval containing the
origin and let c : J ~ M  be a geodesic. Regarded as an immersion, c induces from
T M  an n + 1 dimensional real vector bundle over J .  We will denote this bundle by
zc. Its fiber over t ~ J  is, of course, Tat)M. The normal bundle of c, denoted by vc, is
the subbundle of zc whose fiber over t ~ J  is given by

v,c = {xe T~(tl(M): (x,  c'(t)) = 0}.

We recall that a linear connection on a vector bundle L over a base manifold B
may be regarded as a bilinear operator V which associates to each vector field X
on B and each section tp of L, a section Vx~p of L and satisfies

(i) Vfx~p= fVxtP,
(ii) 17x(ftp) = (X f)~o + fgx t  p

for all real valued C ~ functions on M. The riemannian connection on M induces,
via the immersion c, linear connections on zc, vc and related bundles, e.g.,
Hom(vc, vc) or Akzc. We will also use 17 to denote these connections, we will call
them riemannian connections and we will not distinguish between the operator go"
on M and the induced operator V °_ on the bundle.

Ot
A (1,1) tensor field A along c is a smooth bundle endomorphism of/J, i.e. a

section of Horn(#, #), where # is some subbundle of rc. There are several other
equivalent characterizations of A. It may be regarded, for example, as a real linear
map between the sections of/~ or it may be thought of as a smooth mapping
A :t--.A(t) such that, for each t s J ,  A(t) is an endomorphism of the fiber, Pv of #
over t. Associated to each such A is its adjoint A* with respect to the fiber metric
induced on p by the riemannian metric of M. The riemannian curvature tensor R
of M gives rise to a (1,1) tensor field R, along c which is defined by R~(t)x
= R(x, c'(t))c'(t) for te 0¢ and xe  T~(0(M ). From the symmetries of R it follows that
Rc is self-adjoint and that its restriction to vc is a self-adjoint endomorphism of vc.
In what follows we will sometimes use R to denote R, when there is no danger of
confusion.

2. Jacobi Tensors

A (1,1) tensor field J along c which satisfies the equation

J " + R c o J = 0  , (2.1)

where ' denotes go., is called a Jacobi tensor. Here we are interested mainly in
Jacobi tensors which are bundle endomorphisms of vc, although the analysis is
deafly valid for any subbundle of ~c which is invariant under both t7, and R~. We
recall that a vector field Y along c which satisfies the equation Y"+R(Y,d)c '  is
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called a Jacobi vector field. It is easy to check that a (1,1) tensor field J is a Jacobi
tensor if and only if the section JX defined by JX(t)= J(t)X(t) is a Jacobi vector
field whenever X is a parallel section of vc. Corresponding to any specification of
the initial conditions J(0) and J'(0) there is a unique solution of (2.1). If
Kerd(O)nKerd'(O)= {0}, then J is said to be non-degenerate. This condition is
satisfied precisely when the action of J on linearly independent parallel sections of
vc gives rise to linearly independent Jacobi vector fields. When J(t) is invertible we
can set

U(t) = d'( t)J-  l(t).

Lemma 1. Trace U = (detJ)'/detJ.

Proof. Let X1 ,X  2 ..... X ,  be linearly independent parallel sections of vc and let Y~
=JX~, 1 <=i<n, be the corresponding Jacobi vector fields. Then

( d e t J ) X l  ^ , . .  ^ X . =  }'i ^ . . .  ^ Y.

and if we differentiate both sides covariantly with respect to t we obtain

(de tJ )~t  ^ , . . ^ X , =  ~. Y I ^ . . . ^  Y~'^...^ Y~.
i = 1

Since J '= UJ we have Y[= UY~ for each i and it now follows easily that the right
hand side of the previous equation is equal to (Trace U detJ)X~ ^ ... ^X,.  This
proves the lemma.

If we differentiate U covariantly and substitute into (2.1) we find that U
satisfies the Riccati equation

U' + U 2 + R c = 0. (2.2)

Let Ric be the Ricci tensor of M, set

0 = Trace U

and take the trace of (2.2). This yields

0' + Tr(U 2) + Ric(c', c') = 0. (2.3)

Now let I denote the identity endomorphism of vc, let

u~=(u- v*)/2
be the anti-symmetric part of U and let

U , = ( U  + U*)/2-(O/n)l

be the trace-free symmetric part of U. Then by substitution into (2.3) we obtain

(i' + 02/n + Tr(U 2) + Tr(U~ 2) + Ric(c', c') = 0. (2.4)

Finally, if we set

o=(de t J )  TM
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and

k = (1/n) {Tr(U 2) + Tr(V~) + Ric(d, c')}

then (2.3) reduces to

g"(t) + k(t)g(t)=O (2.5)

which associates with the Jacobi tensor J a Jacobi equation of the type that occurs
on surfaces.

The Wronskian, W(J 1, J2), of a pair of Jacobi tensors is defined by

W(Ja, J2) = J'l* g2 - J*J'2. (2.6)

W(J1, J2) is a section of Hom(vc, vc) and, by using the fact that both Jx and J2 are
solutions of (2.1), one can easily show that it is parallel with respect to the
riemannian connection 17 on Hom(vc, vc).

A non-degenerate Jacobi tensor J is said to be Lagrange if W(J, J ) = 0  or,
equivalently, if U = J ' J  - 1  is self-adjoint at all points where J is invertible. The
importance of Lagrange tensors arises from the fact that, if we have one which is
invertible ever)where in some interval, then every other Jacobi tensor in that
interval can be obtained from it by means of an easy integral formula. See, for
example, [10], Proposition 2.

Lemma 2. The singular points of  a Lagranoe tensor are isolated.

Proof. Let J be a Lagrange tensor and assume that t = 0  is a singular point, i.e.
detJ(0)=0. To establish the lemma it suffices to show that there exists an interval
( - e ,  e) such that, for all t 4:0 in this interval, det J(t)=4= 0. Choose a basis {x t . . . . .  x,}
for the tangent vectors perpendicular to c'(0) in such a way that {x 1 . . . .  x~} form a
basis for Ker J(0), and extend each x i to a parallel section X l of vc. If we denote 17L0l

D
by ~-, then it is easily checked that

Dm .. A J X n )  t = 0~ ( J X 1  ^ .

0 if m < k
= J'(0)x x ̂  . . .^J '(0)xk^J(0)xk+ 1 ̂  ... ^J(O)x ,  if m = k .  (*)

Since {x t . . . .  ,xk} form a basis for KerJ(0), it follows that J(O)xk+ 1 . . . .  , J(0)x, are
linearly independent. Also, since J is non-degenerate, we have KerJ(O)c~KerJ'(O)
= {0}, and so it follows that J'(O)x t . . . . .  J'(O)x k are linearly independent. Since J is
a Lagrange tensor we have W(J,J)=O, i.e. J*J '=J '*J .  Therefore for each i a n d j
we have

( J 'X  i, J X j )  = (JXi ,  J 'X j ) .

If we evaluate this at t=O we see that, for i~_k and j > k ,  <J'(O)xt, J(0)xj) =0,  i.e.
J'(O)x~ is perpendicular to J(O)xj. Therefore J'(O)x 1 . . . .  , J'(O)xk, J(O)xk+ 1 . . . . .  J(O)x,
are linearly independent and so the right hand side of (.) does not vanish when
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m = k. But the left hand side of (.) is equal to

l
t=O

dm I
Therefore ~ ( d e t J ) [  vanishes for m < k  and does not vanish for m=k.

a t - " [  t=o
Therefore there exists some interval ( - e ,  ~) such that, for all t 4= 0 in this interval,
detJ(0 4= 0. The lemma is established.

Now let H be a hypersurface in M which is perpendicular to the geodesic c at
p = c(to) and suppose that H has a unit normal vector field v such that % = c'(to).
For q~H and t ~ J  set

¢(t, q) = e x p ( t -  to)Vq.
Such a mapping ~b : J  x H ~ M  will be called a normal geodesic variation ofc along
the hypersurface H. For each fixed q~ H let cq be the unit speed geodesic given by
cq(t) = dp(t, q). For each t e J  define ~b t : H ~ M  by ckt(q)= q~(t, q) and set H t = ¢kt(H).
Then, clearly, ~bto is the identity mapping on H and it follows via the implicit
function theorem that, if 4, t,: Tq(H)~ T+,<q)(M) is injective, then H t is a hypersurface
of M in some neighborhood of dpt(q). The family {H,}t~ J, will be called the family of

generalized hypersurfaces associated with ~b. Let V be the unit vector field 4~ ~
* 0t"

Then V(~(t,q))=~(t) and, since V is perpendicular to H, it follows easily that, for
each t, V is perpendicular to c~e(TH). Hence, at all points where H t is a
hypersurface, its second fundamental form S t (relative to - 1t) is the restriction to
Z(Ht) of the (1,1) tensor field VV, i.e., for We T(Ht).

St(W ) = VV(W)= VwV. {2.7)

Let xe  Tc(to)(H ), let X be its extension to a parallel section of vc and let
B:T~(to)(H)~Tc(to)(H) be any invertible linear transformation. A section J of
Hom(vc, vc) which, for all rE J ,  satisfies

Jx( t )  = J ( t ) x (o  = ep ABx)  (2.8)
will be called a variation tensor field of the variation q~. Since dpt,(Bx ) is always
perpendicular to c it follows that, for any isomorphism B of T,o)(H), (2.8) defines a
unique variation tensor field J of ~b satisfying J(to)= B. Since

[,t.(TI-I), V]=q~ . [ TH, ~]  =O (2.9)

it follows that J'X = Vv(JX) = V~xV, i.e.

J' =(VV)oJ. (2.10)
Further, from (2.9) and the fact that VvV=O, we have

J " x  = vv(J 'x )= VvV~xV= - R (Jx ,  c')c'
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and therefore J " +  Re o J = 0 .  Since H t is a hypersurface near c(t) precisely when 4~t,
is injective, i.e. when J(t) is invertible, it follows from (2.7) and (2.10) that

J 'J -  t(t) = S t (2.11)

and therefore W(J, J)= O. This establishes that any variation tensor field of ~b is a
Lagrange tensor.

Remark. Let S be the second fundamental form of H at c(to). It follows from {2.8)
and {2.11) that the variation tensor fields of ¢ are those Jacobi tensors along c
which satisfy

(i) J(to): Ta, o)(H)--* T~(to)(H ) is invertible, (2.12)
(ii) J 'J -  ~(to) = S.
We recall that Jacobi vector fields arise as the variation vector fields of one-

parameter geodesic variations. The next proposition shows that their analogues
for variations along hypersurfaces are the Lagrange tensors.

Proposition 1. The following are equivalent:
O) J is a Lagram3e tensor along c.

(ii) J is a variation tensor field of a normal geodesic variation of  c along some
hypersurface H.

Proof (ii):*(i) has been established above. (i)=:,(ii). By Lemma 2 we can choose a
point t o such that J(to) is invertible. Let H be a hypersurface normal to c at
p=C(to), which has a unit normal vector field v satisfying % =  c'(to) and whose
second fundamental form S at p satisfies S=J'J- t( to) .  Define O : J x H - - . M  by
q~(t, q)= exp tvq. Then 4~ is a normal geodesic variation of c along H and J is a
variation tensor of ¢. For more details, see [9].

From the previous proposition and (2.11) it follows that, at all points where a
Lagrange tensor J along c is invertible, V(t)= J'J-1( 0 is the second fundamental
form of a hypersurface H t which intersects c orthogonally at c(t). Let R, Ric denote
the curvature and Ricci tensors which H t inherit from M and let x, ye  Tc(t)(Ht).
Then from the Gauss equation we have

(R(x, y)y, x )  = <R(x, y)y, x )  + <x, Uy)2 _ ( Ux, x) (Uy, y) .

Hence

me(y, y) - ( R( c', y) y, c') = R~"c(y, y) + ( U 2y, y)  - (Tr U)(Uy, y)

and therefore

0 - 2 Ric(c', c') = ~ + Tr(U 2) - (Tr U) 2 ,

where 0 and ~ denote, respectively, the scalar curvatures of M and H t at the point

c(t). I f U o = U - ( I - T r U t I  is the trace-free symmetricpart  of U, then we have
\n /

Tr( U~)= Tr(U 2}-  (Tr U)2/n
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and so the last equation above leads to

Tr(U2)= (1 - 1) (Tr U) 2 + Q - ~ -  2 Ric(c', c'). (2.t3)

If we substitute this into (2.4) and recall that O=TrU, we obtain the following
equation which is, of course, valid only for Lagrange tensors:

0' + 0 2 + Q - ~ -  Ric(c', c') = 0. (2. t4)

Jacobi tensors which vanish at some point of a geodesic and stable Jacobi
tensors (when the latter exist) are important examples of Lagrange tensors (see, for
example, [7, 10, 11]). In the interests of completeness we now describe these
tensors and the variations associated with them. Let x be any unit tangent vector
at peM and let c~, where c~(t)=exptx for t>0 ,  be the geodesic ray defined by x.

The Jacobi tensor A x along c~ which satisfies A~(0)=0, A'(0)=Identity is
Lagrange since the Wronskian W(A~, A~) vanishes at t = 0. For all unit tangent
vectors ve Tp(M) and for 0 < t < ~ set

q~(t, v) = exp tv = exp( t -  to) c'~(to).
The mapping q~ may be regarded as a normal geodesic variation of c~, along any
geodesic sphere 2;= Z,o(p) centered at p with radius t o less than the minimum
distance from p to its cut locus. The Lagrange tensor A~ along c~ is a variation
tensor of ~b. The one parameter family Z t =q St(27 ) of generalized hypersurfaces
associated with ~b consists of the geodesic spheres centered at p.

If there are no points conjugate to p on the ray c~, then for each s>0,  there
exists a unique Jacobi tensor Dx, along c~ which satisfies D~,(0)=Identity,
D~,(s) = 0. If some ray which contains c~ as a proper subset has no pair of conjugate
points, then the Jacobi tensor D~ = l~rn D~, exists, is everywhere invertible along c x
and is Lagrange. D x is called the stable Jacobi tensor for the ray c~. Furthermore, if
c~ can be extended to a maximal geodesic c~ : ( -  o% oo)--,M and no two points of
the maximal geodesic are conjugate, then the extension of D~ is invertible
everywhere.

When the geodesic ray c~ is length minimizing, the horoball B~ associated to x
exists. It is given by

Bx = ,~o 8,(c~(t)),
where Bt(cx(t)) is the geodesic ball of radius t centered at cx(t). The horosphere H x is
the boundary dB~ of the horoball. If H~ is of class C u in some neighborhood of p,
then there is a normal geodesic variation of c~ along H~ for which the stable Jacobi
tensor D~ is a variation tensor field.

A C 2 horosphere H=H x is said to be nice when x can be extended to a unit
normal vector field v so that, for each q~H, the horosphere defined by vq exists and
coincides with H. In that case the mapping • :(0, oo) x H ~ M  where dp(t, q)=exptv~
is a normal geodesic variation of each ray c o and the stable Jacobi tensor D~ is a
variation tensor field for ~b. Furthermore, each member H t = ~bt(H) of the family of
generalized hypersurfaces associated to ~b is a hypersurface and, in fact, a nice
horosphere.



                                   9

When the geodesic ray c x is length minimizing, the function b x :M~IR defined
by

b x( q) = Lira {dist(q, b x( t ) ) - t}
t ~ o O

is a continuous real valued function on M and is called the Busemann function
associated to x. The horosphere H~ is the zero level set of b~ and the horobaU is
B x = b~ 2(_ oo, 0). If H,~ is a nice horosphere, then b~ is C 2 on the closure of the

a
horoball and its gradient is the unit vector field -~b,  ~ .

The existence of nice horospheres is, in general, difficult to establish. However,
they are known to exist on a large class of manifolds which includes all simply
connected manifolds of non-positive curvature. For more detaits, see [9] or [10].

Lemma 3. Let A be the Jacobi tensor along a geodesic c which satisfies A(0)=0,

A' (O) = I, let U = A' A -  ~ and let U o = U - (1Tr U ) l be the trace-free symmetric part
of U. Then Lim Uo(t)= O.

t -~  O

Proof. Set E(t)= A(t)/t for t~0 .  Then it follows (for example, from l'Hospital's
Rule) that lim E(t) = A'(O) = I and lim E'(t)-- ½A"(0)-- 0.

t ~ O t 0

Now tU(t)= A'(t)E- 1(0 and so (tU(t))'= {A"(t)- A'(t)E- l(t)E'(t)} E-  l(t)~O as

t~0.  Therefore tU(t) = I + O(t 2) and U(t) = ~ I + O(t). Hence U~(t) = O(t) and the
lemma follows. t

The next lemma is closely related to Lemma 1 of [11].

Lemma 4. Let c be a complete unit speed geodesic without conjugate points on a
riemannian manifold M. Let v=c'(0) and let Dr, D_v, respectively, be the stable
Jacobi tensors associated with the geodesic rays cv, c_ v. Then D'v(O ) + D'v(0 ) ~0.

Proof. First of all, we recall that if A is a symmetric endomorphism of a vector
space, then A_<_0, means (Ax,  x ) < O  for all vectors x. For t>0,  s < 0  let D t, D S be
the Jacobi tensors along c which satisfy Dr(0)= I, Ds(0)= I, Dr(t)= O, D,(s)= 0. Let
xe  T~to)(M) be normal to c'(0) and let Y be the broken Jacobi field along c which
satisfies Y(0)=x, Y(s)=0, Y(t)=0. If ~ is the Morse index form for c on the
interval Is, t], then ~(Y,Y)=(D',(0)x, x)-(D~(O)x,  x)>=O, since there are no
conjugate points on c. Since LimD't(0)=D'v(0 ) and Lim D's(0)=-D'_~(0), the

lemma now follows.

Lemma 5. Let ..~ denote either > or <_. Suppose k : R ~  is smooth. Let g, s be
smooth functions such that g is a solution of the differential inequality g" + kg ~0,  s is
a solution of the differential equation s"+ ks = O, g(O)= s(O), g'(O)..~ s'(O) and g and s
are both positive in some interval (0, a). Let t a and t s be, respectively, the first positive
zeros of g and s. Then

(i) tg",~t ,.
(ii) g.~s on [0,t~] and equality at a point t o implies equality on the interval

[0, to].
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(iii) g'/g,,,s'/s on (0,Min{ta, ts}) and equality at a point t o implies equality on
the interval (0,to] o r , / f  s(0)4=O, on the interval [0, to].

Proof. Let q=#/s .  The apparent singularity which q has at the origin when s(0)=O
is removable. From the initial conditions, q(O),-, 1. Let p = s2q'= # 's- f ls ' .  Then/7(0)
=(g'(O)-s'(O))s(O),,,O and p ' = ( o " + k g ) s ~ O  on [O,t,]. It follows that p~O, and
therefore q' ~0,  on the interval [0, t,]. Since q' ~ 0 ,  q is monotonic. Therefore q,-, I
on [0, ts] and, if q(to) = 1 for some toe [13, t,], q = 1 on the whole interval [0, t~]. This
establishes Lemma 5 (i) and (ii). Part (iii) is similarly established using the fact that
p(0),~ 0 and p' ,,- 0.

Corollary. Let k, l :~-~IR be smooth functions. Let  v, w be smooth functions such that
v is a solution of  the differential inequality v"+kv+l , , ,O,  w is a solution of  the
differential equation w" + kw + l = O, v(O) = w(O) and v'(O),,, w'(O). Let  s be the solution
of  s"+ ks =0 which satisfies s(0)=0, s'(0)= 1 and let z be its first positive zero. Then
v '~w on [0, ~] and, if  for some t o t  [0, z], V(to)=W(to) , then v = w  on [0, to].

Proof. The function g = v -  w + s satisfies the differential inequality g" + kg,., 0 with
initial data g(0) =0, O'(0)~ 1. By Lemma 5, g-,-s and hence v,.~w on [O,z]. If g(to)
= S(to), then 0 = s and therefore v = w on the interval [0, to].

Remark. Throughout a large part of this section no essential use was made of the
riemannian (i.e., positive definite) character of the metric on M. Consequently,
much of the material is, with appropriate modifications, valid for a geodesic c on a
manifold with pseudo-riemannian metric. This is true, in particular, of (2.1)
through (2.6) and Lemmas 1, 2, 4, and 5. In order that the adjoints of (1,1) tensor
fields along c be defined, it is essential that the fiber metric of the subbundle of zc
on which they act be nondegenerate. This will not be so on the normal bundle of a
null geodesic, i.e, a geodesic satisfying (c', c ' )=0 .  But in that case one can work
with Jacobi tensors which are endomorphisms of some other subbundle on which
the fiber metric is nondegenerate, e.g., all of zc. Then one must replace n in the
equations with the fiber dimension of the bundle on which the Jacobi tensors act
and, if this bundle is a proper subbundle of zc, it may no longer be true that
Trace R c = Ric(c', c'). For more details in the case where c is a null geodesic on a
Lorentzian manifold, see [51.

3. Manifolds Whose Ricci Curvatures are Bounded from Below

In this section we will examine the consequences of a lower bound on the gicci
curvatures. Our basic technique will be to apply (2.5) both the Jacobi tensors
which vanish at some point and to stable Jacobi tensors, obtain related differential
inequalities and use Lemma 5 to make comparisons with model spaces of constant
curvature.

For any Jacobi tensor J which is Lagrange, U = J ' J -  t is symmetric and so (2.5)
simplifies to

g.  + 1 {Tr(U 2) + Ric(c', c')} g = 0, (3.1)
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where

U ~ = U - ( 1 T r a c e U ) l .

If c is either a geodesic of a riemannian manifold or a time-like geodesic of a
Lorentzian manifold, then the fiber metric on the normal bundle vc is positive
definite and hence U,: is positive definite. In particular,

TrUe>__0
and it vanishes only where U~=0. If, in addition

Ric(c', c') __>r

for some constant r, (3.1) leads to the differential inequality

O" +(r/n)g<O (3.2)

for any Lagrange tensor J with det(J) ~ 0.
If k is a smooth real valued function defined on some interval, we will call the

differential equation

s" + ks = 0 (3.3)

a surface Jacobi equation and we will call the related differential equation

u' + u2 + k =O (3.4)

a surface Riccati equation. Throughout this section, unless we explicitly state that
the metric on M is riemannian, c will be either a geodesic on a riemannian
manifold or a time-like geodesic on a Lorentzian manifold. We begin with a
sharpened version of Myer's theorem.

Theorem 1 (Myers). Let c be a unit speed geodesic with Ric(c', c')__> r > 0 and let c(t),
t > O, be the first point conjugate to c(O) along c. Then:

(i) t < lr ]/Fn-~.
(ii) Equality occurs if and only if the restriction R c of  the curvature tensor to the

normal bundle of c satisfies Rc(t)= (r/n)l for all te [0, rr 1 / -~] .

Proof Let J be the Jacobi tensor along c which satisfies J(0)= 0, J '(0)= 1. Then
g = (det J) 1/" satisfies the inequality (3.2) and the initial conditions g(0)= 0, g'(0)= 1
(see Lemma 1). Let s denote the solution of the surface Jacobi equation with
k = r/n, which satisfies the same initial conditions as 9. By Lemma 5 the first
positive zero of g occurs no later than the first positive zero of s. Therefore the first
conjugate point of c(0) occurs at c(t) where t=<nV-n-ff. If t=~rV- ~ ,  then, by
Lemma 5, g = s  on the interval [0, 7r]/n/nff/r]. But then O is a solution of both (3.3)
with k=r /n  and of (3.1). Hence Ric(c',c')=-r and U , - 0 .  But U , = 0  implies that

U =  (~ T r U ) I  andi t  then follows easily from (2.3)and (2.2)that Rc=(r/n)I on the
/

interval [0, n V-ffff].
This form of Myers' Theorem leads to the following corollary.
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Corollary. Let M be riemannian and suppose Ric(x, x)= r > 0  for all unit vectors
x~ TM. Let S, be the n + 1 dimensional sphere of  constant sectional curvature r/n.
Then

(i) diam(M)_~ diam(S,).
(ii) Suppose equality occurs in (i). Let  p, q e M  satisfy d(p, q)= dialla(M) and let c

be any length minimizing geodesic joining p to q. Then p and q are conjugate along c
and the curvature tensor R c is identical with its counterpart along a geodesic of  S r

Proof. O) This is an immediate consequence of the previous theorem since diam(S,)
= rr V ~  and since geodesics do not minimize length beyond the first conjugate
point.

(ii) Without loss of generality choose c so that c(0)=p, c(n Vn-~)= q. Since c is
length minimizing, no conjugate point of c(0) can occur sooner than q and
therefore (ii) also follows easily from the previous theorem.

Remark. For a manifold whose sectional curvatures are all bounded from below by
a positive constant, there is a rigidity theorem of Toponogov which states that the
maximal diameter is attained only when the sectional curvatures are all constant
(see [6], p. 110 or [12], p. 213). In view of Part (ii) of the above corollary one might
ask whether a similar rigidity theorem holds under the weaker assumption that all
Ricci curvatures are bounded from below.

Lemma 6. Let c:[0, ~ ) ~ M  be a geodesic ray with Ric(c',c')_>_0 and let J be a
Lagrange tensor along c with J(0)= I, TraceJ '(0)~ 0. Then J is everywhere invertible
if and only if  R c - 0 and J = I.

Proof. It follows from Lemma 1 that g = (detJ) 1/n satisfies the initial conditions g(0)

1, g'(0)= 1Trace j , (0)< 0. By (3.2) g = 0. Therefore g has a positive zero unless
n

g =  1. If g =  1, it follows from (3.1) that Ric(c',c') and TrU~ both vanish and then,
by an argument identical with that used in the proof of Theorem 1 (ii), the
curvature tensor Rc along c is identically zero.

Theorem 2. Let c : ( -  oo, ~)--*M be a complete geodesic with Ric(c', c')~ O. I f  there
are no conjugate points along c, the curvature tensor R c is identically zero.

Proof If there are no conjugate points, there is a stable Jacobi tensor J which is
everywhere inverfible along c and which satisfies J (0)=l .  By choosing the
orientation of c correctly, we can ensure that TrJ ' (0)<0.  The theorem is now an
easy consequence of Lemma 6.

For time-like geodesics on Lorentzian manifolds, this last theorem is due to
Hawking and Penrose [15]. In the riemannian case Gromoll and Meyer [13] used
the Morse index theorem to show that there were conjugate points if Ric(c'(t), c'(t))
> 0 for some t. Because of the dependence of the proof on the positive definiteness
of the fiber metric on the normal bundle of c, the theorem fails for light-like
geodesics on Lorentzian manifolds. In constant curvature space times, one always
has Ric(c', c ' ) - 0  on a light-like geodesic but such a geodesic can never have
conjugate points as is easily seen by explicitly solving the Jacobi equation.
Actually a result stronger than the previous theorem is true. It can be deduced
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from recent work of Tipler [24] that
t2

lim inf j Ric(c', c') > 0
tl

t l  .---~ - -  gO

t2---+ O0

is enough to guarantee the existence of conjugate points along c, except for the
case where the curvature tensor R c vanishes.

Let H be a hypersurface, let c be a unit speed geodesic which is orthogonal to H
at c(0) and let S be the second fundamental form of H relative to the unit normal
vector field which coincides with c'(0) at c(0). The point c(t) is called a focal point of
H if the Lagrange tensor J along c satisfying J(0) = 1, J'(0) = S, is singular at c(t).

Theorem 3. Let M be a complete, connected riemannian manifold, all of whose Ricci
curvatures are non-negative. Then:

(i) Any hypersurface H without focal points is totally geodesic and exp(vH) is
locally isometric to IR x H.

(ii) I f  M is simply connected and H is complete, then M is isometric to ~ x H.

Proof. (i) Without loss of generality we may assume that H has a unit normal
vector field v. For qeH, telR, define a variation tk by c~(t, q)=exptv~, let c 4 be the
geodesic satisfying cq(t)=exptv~ and let Jq be the Lagrange tensor which is
associated with the variation ~b and satisfies Jq(0)= I. If TraceJ'~(0)>0, then the
Lagrange tensor Yq defined by Yq(t)= Jq(- t )  satisfies Trace Y~(0)< 0. It therefore
follows from Lemma 6 that Jq is singular somewhere unless J~=I. By (2.12),
J'~(O) = S and so it follows that either H has focal points or Jq = I for all qe H. If the
latter case occurs, then J'q=0 for all q~H. Hence H is totally geodesic [since, in
particular, J'q(0)=0] and it follows via (2.8) that the metric on exp(vH) is dt 2
+ (,)[n, i.e. exp(vH) is locally isometric to ~ x H.

(ii) If there are no focal points and H is complete, then e x p : v H ~ M  is a
covering map [17] : and, in fact, a diffeomorphism, since M is simply connected.
Hence H is simply connected, since vH is. So H is orientable and, therefore, a unit
normal vector field can be defined on all of H. It now follows that M =exp(vH) is
globally isometric to ~ x H.

The following proposition about space-like hypersurfaces in Lorentzian
manifolds is an analogue of Theorem 3 (i) (cf. [15]).

Proposition 2. Let M be a Lorentzian manifold, all of whose time-like Ricci
curvatures are non-negative. Let H be a space-like hypersurface and let c be a time-
like geodesic which intersects H orthogonally. Then, if  Rc#~O, it is impossible to
extend c to infinity in at least one direction unless there are focal points of H along it.

Proof. The proof is similar to that of Theorem 3 (i).

We will now investigate the effect of a lower bound for the Ricci tensor on the
mean curvatures of geodesic spheres and horospheres in a riemannian manifold
M, as well as its corresponding effect on the distance functions whose level sets are
these hypersurfaces. The distance function associated with spheres centered at
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p ~ M  is, of course, the riemannian distance to the center. For q~ M this function is
defined by

d( q) = d ~( q) = dist(q,p).

The corresponding function for a horosphere H = H x associated to a unit vector
x ~ T M ,  for which the geodesic ray c x is length minimizing, is the Busemann
function b=b x. We recall (Sect. 2) that, for q~M,

bx(q) = Lim {dist(q, G(t))-  t}.

Each of our geodesic spheres will be assumed to have radius less than the
injectivity radius of its center, i.e., the minimal distance from the center to its cut
locus. So our geodesic spheres will automatically be C ~, diffeomorphic to the
n-dimensional Euclidean sphere S n, and their interiors will be diffeomorphic to an
open ball in ~n+ ~. We will consider only nice horospheres (see Sect. 2). So, in
particular, for a horosphere H,, the associated Busemann function b~ will be C 2 on
the closure of the horoball.

Our second fundamental forms will always coincide with the covariant
derivatives of outward pointing normal vector fields. That means that, for spheres
centered at p, the second fundamental form will be the gradient, IZdp, of the
associated distance function and, for horospheres, it will be the gradient of the
Busemann function.

For any real number r, let S r denote the simply connected n + 1 dimensional
riemannian manifold ofconstant sectional curvature r/n. So, in particular, all Ricci
curvatures of S, are equal to r. Let s denote the solution of (3.3) with k = r/n which
satisfies the initial conditions s(0) = 0, s'(O)= 1. The mean curvature of a geodesic
sphere of radius t in S r is easily computed to be

[ l/rn~cot r V ~ t  if r>O

s ' ( t )  = t h,(t)=n-~-~ if r = 0  13.5)

coth l / - ~ n t  if r <0 .

Furthermore, if r _  0, the mean curvature of a horosphere in S, is

Let 27 t be the geodesic sphere of radius t centered at p e M  and let B t be its
interior. Let h(t):2~t--*]R be the mean curvature of S t and let d:Bt--*~, be the
riemannian distance to the center.

Theorem 4. Let M be a riemannian and suppose all Ricci curvatures are > r. Then:
O) h(t) [q] <=h,(t) at all points q~Z,,.

(ii) Ad~h ,  od on the closure of B r
(iii) If, in either (i) or (ii), equality occurs at all points of f ,  t, then B~ is isometric to

the ball of  radius t in S r

Proof. (i) Let v be any unit tangent vector at p, let c v be the geodesic ray defined by
v and let J~ be the Jacobi tensor along c~ which satisfies d~(0)= 0, J'v(0)= L Then,
along G, the second fundamental forms of the geodesic spheres centered at p are
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given by U = J 'J~ 1 (see Sect. 2) and so their mean curvature is Tr U = ng'/O where
g=(detJv) TM. But g satisfies the inequality (3.2) with initial conditions g(0)=0,
0'(0)=1 and therefore (i) follows from (3.5) and Lemma 5.

(ii) Since the gradient of d is the unit outward normal vector field B to the
spheres centered at p, it follows that Ad=Trl7E But by (2.7) the restriction of VV
to T S  t is the second fundamental form of S t. Therefore (ii) now follows from (i).

(iii) If equality occurs, g'/g = s'/s on ((3, t]. Since g'/g and s'/s satisfy (3.4) with

k=l-[Tr(U~)+Ric(c'v,c',)] and k=r/n  respectively, it follows that U , = 0  and
n

Ric(c'~, c'o)= r on the interval (0, t]. Therefore, by an argument identical with that
used in the proof of Theorem 1 (ii), it follows that the curvature tensor on the
normal bundle of any geodesic ray going out from p is R c = (r/n)I on the interval
[0, t]. This means that the solutions of the Jacobi equation which vanish at p
coincide, on the interval [0, t], with those of a space of constant curvature r/n. In
view of the relationship between Jacobi fields and the derivative of the exponential
map ([13], p. 132), it follows that the diffeomorphism between B~ and a ball of
radius t in S,, obtained by choosing riemannian normal co-ordinates based at the
centers of the balls and letting points with the same co-ordinates correspond, must
be an isometry. This completes the proof of (iii).

Theorem 5. Let M be a riemannian manifold whose Ricci curvatures are bounded
below by some non-positive constant r. Let H be a nice horosphere and let B, b be
respectively, the associated horoball and Busemann function. Let H denote the mean
curvature of  H. Then:

(i) h<  ] / Z ~ .
(ii) Ab < ~ on the closure of B.

Oil) I f  in either O) or (ii), equality occurs at all points of It,  then the followin9 is
true:

(a) B is isometric to (0, oo) × H with the metric

ds 2 = dt z + exp( - 2t ]/r-C- r/n) dH 2 ,

where dH 2 is the induced metric on H.
(b) l f  r=O, H is totally 9eodesic and B is isometric to the riemannian product

O, o~) × H. I f  r <O, then the induced Ricci tensor, RicH, on H is positive semi-definite
and, if  the sectional curvatures on B are bounded, H is flat and B is locally isometric
to a horoball in the simply connected n + 1 dimensional space S, of  constant negative
curvature r/n.

Proof. Let V= Vb on the closure/~ of the horoball. Set v = - V along H and define

~b : [0, ~ ) ×  H - . M  by ~o(t,q)=exptV~. Then the range of ~ is/~ and ~b .~  = -  V.
For each fixed t define ~b t by ~b~(q)= ~b(t, q) and set H t = ~bt(H ).

(i) Let qs H. Then, along the geodesic ray c~ defined by v~, the stable Jacobi
tensor J~ satisfies

J , = L ~ma J ~, ,

where J~t is the Jacobi tensor along c~ which satisfies J~t(0) = I, J~(t) = O. Since J~ is
a variation tensor field of q~ it follows that, at q, the mean curvature of H satisfies
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h = Tr VV= - TrD'~D~ 1(0) = Lim TrY,J  ~ 1(0). But TrJ~J~ 1(0) is the mean curva-
t'-*~ q q

ture at q of the geodesic sphere of radius t centered at c~(t). Hence (i) follows from
Theorem 4 (i) and (3.5),

(ii) For each t>-0 H t is a nice horosphere and so by (i) its mean curvature is
bounded above by -V~Z-~. But the mean curvature of H t is Tr(VV)=Ab. This
proves (ii).

(iii) Suppose the mean curvature of H at q is h = ] / - Z ~ .  Set U = J~Jq- 1 and
g =(detJq) 11~. Then g is a solution of (3.1) which is positive on [0, oo) and from
Lemma 1 it follows that the initial conditions are 0(0)= 1, 9'(0)= h/n = - V-~-7/n
therefore, by Lemma 5, g<-_s on [0, ~ )  where s is the solution of (3.3) with k=r/n
and the same initial conditions. In other words

O(t) < s(t) = exp(-  t ]/~L-~/n).

Moreover O - s  is monotonically decreasing on [0, oe) because (0-s) '  (0)= 0 and

(O-s)"<--  r ( o - s ) ~ O .  But since 0<O=<s and s(t)--+O as t--+oe, it follows that

O-s--+O as t-} oo. Hence, since (0 - s) (0) = 0, we have g--s on [0, oo). Since 0 is a
solution of (3.1) and of (3.3) with k=-r/n, it follows that Ric(c'~,c'~)=r and U~=0.

" 1

Since Uo=O, we have U=-~ (Tr U)I and then, from (2.3) and (2.2), it follows that
n

the curvature tensor on the normal bundle of the geodesic ray c~ is

Re= r I .
tl

Hence, by integration, the stable Jacobi tensor is

J~ = e x p ( -  t 1/L-;/n)l.
Since this holds for each qe H, it follows that the metric on B can be written as

ds 2 = dt 2 + exp( - 2t V ~ - n )  dH 2 ,

where dH 2 is the riemannian metric which H inherits from M. Since each c~ is a
length minimizing geodesic ray, it follows that ~ is a C 2 imbedding of (0, oo) x H
onto B. This proves Theorem 5 (iii) (a).

i f  r = 0, then for each q~ H we have J~-=- I and so, in particular, J'q(0) = 0. Hence
H is totally geodesic and B is isometric to the riemannian direct product
(0, ~)x H.

Let P be a two-plane tangent to H. Then Pt = 4't.(P) is tangent to H t and, if
/(,(P) is the induced sectional curvature of P,, we have, in view of the form of the
metric on B, that

K,(P) =/(0(P) exp(Et V q - ~ ) .  (3.6)

Furthermore, since the second fundamental form of H, is everywhere equal to
~ / n l ,  it follows from the Gauss equation that, if Kt(P) is the ambient sectional
curvature of P,, then

/~,(P) = K, (P) -  -.r (3.7)
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Hence, when all of the sectional curvatures of B are bounded, so are those of H e
and via (3.6) this implies that H is fiat. Therefore, in view of the form of its metric, B
must be locally isometric to a horoball in S,. From (3.7) and the fact that the
curvature tensor along the normal bundle of a geodesic ray c orthogonal to H is R c

r
= - I ,  it follows that the relationship between the Ricci tensors of M and H t is

n
given by

Ricn~ = R i c -  r.

By setting t = 0  we see that the induced Ricci tensor on H must always be positive
semi definite. This completes the proof.

The next theorem describes the effect of a lower bound for the Ricci tensor on
the areas of geodesic spheres and the volumes of geodesic balls. It was originally
proved by Bishop (see [2] and Sect. 11.10 of [3]). As usual S, will be the simply
connected riemannian space of constant sectional curvature r/n and the radius of a
geodesic sphere will be assumed less than the injectivity radius of its center.

T h e o r e m  6 (Bishop). Let M be riemannian with all Ricci curvatures >__ r. Let X t (resp.
Bt) be the geodesic sphere (resp. ball) of  radius t centered at p e M  and let Z t (resp.
Be) denote a geodesic sphere (resp. ball) of  the same radius in S,. Then:

(i) Area (Ze) < Area (Zt).
(ii) Vol(Be)__< Vol(/}t).

(iii) I f  equality occurs in either (i) or (ii) above, then B t is isometric to Br

Proof. (i) Let p be the center of B e, let v be a unit tangent vector at p, let c o be the
geodesic ray determined by v, and let Jv be the Jacobi tensor along c o which
satisfies the initial conditions Jr(0)= 0, J'v(0)= I. For t >_-. 0, set g(t, v)= [det Jr(t)] 1/n.
Then, for each fixed v, g satisfies (3.2) and the initial conditions for g are g(0, v)=0,
g'(0, o) = 1. So, by Lemma 3, it follows that, if t is less than or equal to the minimal
distance from p to its cut locus, we have

o(t, v) <__ s(t},
where s is the solution of (3.3) with k= r/n which satisfies the same initial
conditions as g. Let S = Sp(M) be the space of unit tangent vectors at p and let dv
denote its standard Euclidean volume element. Then we have

Area(Xe) = ~ [g(t, v)]~dv <_ I Is(t)] ~dv = Area(/~,)
S S

and so (i) is true.
(ii) follows immediately from (i) because

t
Vol(Bt) = ~ Area(I;~)dr.

O
(iii) If equality occurs in either (i) or (ii), then certainly Area(Zt) = Area(Zt) and

SO

(Lq(t, v)] ~ -  [s(t) n} dv = 0 .
S

Since g(t, v)~ s(t), it follows from integration theory that g(t, v)= s(t) for almost all
yeS  and so, by continuity, g(t, v)=s(t) for all v. Therefore by an argument similar
to the proof of Theorem 4 (iii), it follows that B t is isometric to Br
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4. Manifolds Whose Ricci Curvatures are Bounded from Above

When the Ricci curvature along a geodesic c satisfies Ric(c', c')<r, the methods of
the previous section fail to give lower bound theorems for volumes, mean
curvatures, etc., because the analogue of (3.2) with the inequality sign reversed is
not true. Indeed, if it were, it would follow that negative Ricci curvature along a
geodesic was sufficient to exclude conjugate points and this cannot be true since
there are examples due to Nagano and Smyth [22] of compact manifolds with
negative definite Ricci tensor which are not even K(zc, 1) spaces. So, if one hopes to
obtain comparison theorems when the Ricci curvatures are bounded from above,
one must seek other inequalities.

If, for a Lagrange tensor J along c, U = J ' J - t  is either positive or negative
definite; then by the Schwartz inequality

(Tr U) 2 > Tr(U 2)
and so, as long as de t J>0 ,  one obtains directly from (2.3) and Lemma 1 the
inequalities

(det J)" + Ric(c', c') det J > 0 (4.1)
and

(det J)" + r detJ  ~ 0. (4.2)

Let v be any unit tangent vector at p~M, let c v be the associated geodesic ray
and let A v be the Jacobi tensor along cv satisfying the initial conditions Av(0 ) =0,
A'v(0) = I. Then , - 1 U = AvA ~ is positive definite for small values of t. The point co(to)
is said to lie on the convexity locus of p if t o is the first positive value of t for which
U(O fails to be strictly positive definite. The minimal distance from p to its
convexity locus is called the convexity radius of p. A manifold has no focal points if
the convexity radius of each point is infinite:

The inequality (4.2) is valid for all Ao for values of t less than the convexity
radius of p. However, it does not yield comparison results analogous to Theorems
4 and 6 for mean curvatures and areas of geodesic spheres centered at p because
g=detJ~ satisfies g'(0)=0 if d imM>2.  Nevertheless, it does give rise to com-
parison results when the convexity radius of p is infinite.

Proposition 3. Let M be simply connected, riemannian with Ric < r < O. Suppose the
convexity radius of pEM is infinite and let Z t be the geodesic sphere of radius t
centered at p. Then there is a constant C such that, for t > 1,

~CSinh(V--S-r-t ) if r < 0
Area(Zt) >-- [Ct if r = O.

Proof. Since M is simply connected and the convexity radius of p is infite, it
follows that the cut locus of p is empty. Therefore, for all t > O, we have

(,) A(O=Area(Z,)= S detd~(t).dv,
Sr(M~

where do is the standard Euclidean measure on the space Sp(M) of unit tangent
vectors at p. It follows from (4.1) that A satisfies the inequality

A" +rA>-O
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and so, by Lemma 5, if t > 1
A(t) > s(t),

where s satisfies # '+  rs=O and the initial conditions s(1)=A(1), s'(1)=A'(1). Since
the convexity radius of p is infinite, it follows from (,) and Lemma i that A' > O.
The proposition now follows easily if one writes down s explicitly.

Proposition 4. Suppose M is simply connected, riemannian without focal points and
that Ric < r < O. Let h denote the mean curvature of a horosphere H and let b be the
associated Busemann function. Then

(i) h > [/~-r at all points of  n .
(ii) Vb > ~ r at all points of M.

(iii) Suppose equality occurs in (i) at some q~H. Then the second fundamental
form of H at q has one eigenvalue which equals ~ and all others vanish.
Furthermore, for any t > O, the same is true for the second fundamental form of the
parallel horosphere b-  i (_  t) at the point where it meets the geodesic that intersects
H orthogonally at q.

Proof (i) We recall that, since M has no focal points, all horospheres are nice (see
[-10], Sect. 5). Let q be an arbitrary point of H, let v = -  Vb be the inward unit
normal vector field on H and let D be the stable Jacobi tensor along the geodesic
ray c determined by vq. Now D = Lim D t where D t is the Jacobi tensor along c

t--~ 00

satisfying Dr(0 ) =I ,  Dr(t)=0 and so U=D'D-1  is negative semi-definite. From
Lemma 1 and the fact that D is non-singular, we see that y = d e t D  is bounded on
[0, oo). Hence y'(0)< - ~ because otherwise, since y is a solution of (4.2), it
would follow from Lemma 5 that y was bounded below by a solution of the
surface Jacobi equation s"+rs=O which is positive and unbounded on [0, oo).
Since the mean curvature of H at q (computed, as usual, with respect to the
outward unit normal field) is h a = -y'(O), (i) now follows.

(ii) is an immediate consequence of (i) since, at any point p of M, Ab equals the
mean curvature of the level surface of b which passes through p.

(iii) If h~ = 1//-~-~, then

z(t) = y(t)-- e-  v=v'

is bounded and, by Lemma 5, positive on the interval [0, ~) .  Furthermore z"__>
- r z > O  and so z ' > 0  since z'(0)=0. Again by Lemma 5, z cannot be bounded on
[0, oo) unless z'-~0. Hence

y(t)=e -F-~t for t > 0 .

Since y satisfies both y" + ry = 0 and the inequality (4.1), it follows that Ric(c', c')--- r
and then, via (2.3) we find that

(Tr U) 2 = Tr(U 2) = - r
along c, where U = D'D-1. Since U is symmetric and negative semidefinite, the
only way the above equation can be satisfied is if, for each t >0,  one of the
eigenvalues of U(t) equals - ~ and all of the others vanish. Since H = b-  1(0)
and since the second fundamental form of b-  l(t) at c(t) equals - U(t), (iii) now
follows.
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5. The Three Dimensional Case

The methods of the previous section, based on the inequality (4.2), do not lead to
sharp lower bound estimates for the areas of spheres centered at a point when the
Ricci tensor of M is bounded above. In order to study this problem further, we
now obtain the differential equation satisfied by the area A(t) of the geodesic
sphere 2~, of radius t centered at pe M. As usual, t is assumed to be less than the
minimal distance from p to its cut locus. Let v be any unit vector tangent at p and
let d v be the Jacobi tensor along the geodesic ray c~ which satisfies the initial
conditions J~(0)=0, J'v(0)=L Let dv denote the standard Euclidean volume
element for the space S=Sp(M) of unit tangent vectors at p. The differential
equation satisfied by A follows easily from (2.14) if we recall (Lemma 1) that, for
each d,,,

0' + 0  2 = (det J J ' / de t  J~,
multiply through by detJ  v and integrate with respect to dv while holding t
constant. The equation is

d2A
dt 2 + ! {0-  Ric(c~, c'~)} detJ~dv = s ~ Qt detJ~dv , (5.1)

where Q denotes the scalar curvature of M and Qt is the scalar curvature of the
geodesic sphere Z t in the metric inherited from M.

If the Ricci tensor of M is bounded above by r, it follows that
• t tfl-- Rlc(cv, co) = nr.

Furthermore, if dim(M)= 3, it follows from the Gauss-Bonnet formula that the
right hand side of (5.1) is equal to 8~r. This is because Ot then equals twice the
Gaussian curvature of Z t and detJ~dv is the volume element of the induced metric
on ~t. So, in three dimensional manifolds with Ricci tensor bounded above, the
area A of geodesic spheres centered at a point satisfies the inequality

d2A
dt 2 + 2rA ~_ 8rr (5.2)

and in the next theorem we show that this inequality leads to optimal lower bound
estimates for A. In the statement of the theorem S r will denote the simply
connected three dimensional riemannian space of constant sectional curvature r/2.

Theorem 7. Let M be a three dimensional riemannian manifold with all Ricci
curvatures ~ r. Let Z t (resp. Bt) be the geodesic sphere (resp. bali) of  radius t
centered at p e M  and let ~'t (resp. Bt) be a gedesic sphere (resp. ball) o f  the same
radius in S r Then for t less than both the injectivity radius of  a point of  S,:

(i) Area(Z,)~ Area(~,~
0i) Vol(n,)>_Vol(B,).

(iii) I f  equality occurs in either (i) or (ii) above, then B t is isometric to 4 .

Proof. (i) The area A(t) of Zt ~s~atisfies the inequality (5.2) with the initial conditions
A(0) = A'(0) = 0 and the area A(t) of 27 t satisfies the equation .4" + 2rA = 8:~ with the
initial conditions 4(0)=,,1'(0)=0. Therefore (i) is a consequence of the corollary to
Lemma 5.
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(ii) follows immediately from (i) since
t

Vol(B,) = j Area(Zt)dt
o

and a similar formula holds for Vol(/~,).
(iii) If equality occurs in either (i) or (ii), then certainly A(0 = A(t) and, in view

of (5.2) and the corollary to Lemma 5, we must have A =A on the interval [0, t].
But then it follows from (5.1), that for all unit vectors ve Tp(M), we have

- Ric(c' o, c'~) = 2r

on the interval [0, t]. Now let x be any unit vector orthogonal to c~. Then there is a
unit vector y orthogonal to both x and c~ such that the left hand side of the
previous equation equals Rio(x, x) + Ric(y, y). Since all Ricci curvatures are __< r, we
must have

So
Rie(x, x) = Ric(y, y) = r.

(R(x, c~)d o, x )  =~ { Rlc(c~, co) + Ric(x, x ) -  Ric(y, y)}
~_  * ¢ t= 2 Rxc(c  ,

and therefore the curvature tensor R c on the normal bundle of c o satisfies
1 • i !Rc = ~ Rm(c o, c~) I (*)

on the interval [0, t]. Hence the Lagrange tensor J~ is of the form

J~ = g d  ,

where the real valued function g~ satisfies the initial conditions g~(O)= O, g'v(O)= 1
and [see (3.1)] the equation

vv J _  • ! eg~ + 2 Rm(c~, co)g ~ =0 .

Since Ric <__ r, by Lemma 5 we have

g~>s

on the interval [0, tJ where s satisfies s" +½rs=0 and the same initial conditions as
2__ g¢ But gv -detJv ,  so, for 0 < ~ < t ,  we have

= j j" s2(  )dv =

So, since A(~)--A(T), g~(z)=s(z). Hence Ric(c' v, do)=r and by (*) the curvature
tensor on the normal bundle of c v is R c-- ~ L But, by an argument identical to that
used in the proof of Theorem 4 (iii); this implies that B t is isometric to a ball of
radius t in the simply connected three dimensional riemannian space of constant

r
curvature ~. This completes the proof of (iii).

The following corollary to Theorem 7 has also been proved by Smyth.

Corollary. Let M be a compact three dimensional riemannian manifold with all Ricci
curvatures <_ r < O. I f  there is a point pE M to which no other point is conjugate, then
the fundamental group of M has exponential growth.
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Proof. Let q be a point over p in the universal covering s p a c e ~  of M. By the
Hadmard-Cartan theorem the exponential map exp~:Tq(M)~M is a diffeomor-
phism and hence the injectivity radius of q is infinite. By Theorem 7 the volume of
the geodesic ball of radius t centered at q e / ~  is at least equal to the volume of a
ball of equivalent radius in the simply connected three dimensional riemannian
space of constant negative curvature r/2. Hence, by Milnor [20], the fundamental
group of M has exponential growth.

Techniques similar to those used in the proof of Theorem 7 can also be used to
estimate the volume of a tubular neighborhood of a closed geodesic in an
orientable three dimensional manifold M.

Let c be a smooth closed geodesic of length L with no self-intersections and let
vc be its normal bundle. By the tubular neighborhood of c with radius t we mean
the image under the exponential mapping of {v~vc:llvtl <t}. Let S be the unit
normal bundle of c, i.e. S = { w v c : [ l v l [ = l } ,  and for t~(0,~),  v~S, set q~(t,v)
=exptv. For fixed t define ~o t : S ~ M  by q~t(v) = ~o(t, v) and let 27, denote the image of
S under ~o t. There exists a positive number t o such that ~b maps (0, to)x S
diffeomorphically into M. We will call the largest such number the injectivity
radius of the exponential map on vc, we will denote it by i(c) and, in what follows,
assume t < i(c). Then Xt is always an imbedded two torus and the boundary of the
tubular neighborhood of radius t around c.

For any v~ S the map ~b may be regarded as a normal geodesic variation of the
geodesic ray c o along any (fixed) one of the hypersurfaces 27,. Suppose v is tangent
to M at the point c(u) and let {E 1, E 2, E3} be the positively oriented orthonormal
basis for T~u~(M) such that E 2 = c'(u) and E a = v. Let J~ be the Jacobi tensor along
the geodesic ray c v whose initial conditions are specified relative to the basis
{E 1, E2} by the matrices

then Jr is easily seen to be a Lagrange tensor associated to the variation q~ and,
furthermore, Jr depends smoothly on v.

If we proceed as in the derivation of (5.1) we fred that the area A(t) of the torus
I~ t satisfies a similar equation except that the right hand side is now zero, since the
Euter characteristic of a torus vanishes, and dv is now the Euclidean area element
which gives 2~L as the total area of S. As a consequence it follows that A(t)
satisfies the inequality

d2A { ~ 0  if
dt 2 t- 2rA _ 0  if

where Ric is the Ricci
a(o) = Lira a(t)  = 0

t--~ ¢O

A'(O) = Lim A'(t) = ~ (det Jv)'(O)dv = 2~L
t~°O S

t = O

Ric ~ r (5.4)
R i c _ r ,

tensor of M. Moreover the initial conditions for A are
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Let s be the solution of s"+ 2rs = 0  which satisfies the initial conditions s(0)=0,
s'(0) = 1, i.e.,

/ ~ r  sin 1 / ~ t  if r>O

s(t)=~t if t = 0

~ s i n h ~ 2 r t  if r < 0 .

The next theorem describes the effect of upper and lower bounds for the Ricci
tensor on the size of a tubular neighborhood of a closed geodesic in an orientable
three dimensional riemannian manifold. The proof follows from Inequality (5.4) by
argument similar to those used in the proof of Theorem 7 and so will be omitted.

Theorem 8. Let M be an orientable three dimensional riemannian manifold and let c
be a smooth closed geodesic of length L and without self intersections. Let B t be the
tubular neighborhood of radius t around c, let Xt be its boundary and suppose that
t <u(c), the injectivity radius of the exponential map on the normal bundle of c.
Suppose the Ricci tensor of M satisfies Ric--~ r where ,~ means either <= or >__. Then

(i) Area(Xt) ~ 2nL s(t).
t

(ii) Vol(Bt)-,, 21tL ~ s(u)du.
0

(iii) I f  equality occurs in either (i) or (ii), then 13, is of constant sectional curvature
r/2.

An immediate consequence of the theorem is the following

Corollary. Let M be a complete orientable three dimensional riemannian manifold
whose Ricci tensor satisfies Ric < r. Let c be a smooth closed geodesic of length L
without self intersections and let i(c) be the injectivity radius of the exponential
mapping on the normal bundle of c. Then

[ ~ [ 1 -  cos ( l /~ i (c) )  ] if r > 0

Vol(M)>__~ nL(i(c)) 2 if r = 0
/

/ ? [ 1 - c o s h ( 1 / - S ~ i ( c ) ) l  if r < 0 .

Remark. The volume of M can equal the lower bound when r>0,  e.g., i f M = S  3 or
Ip3(~) with constant curvature metrics. However, if r ~  0, the lower bound cannot
be attained. To see this, let z =i(c) and suppose that the lower bound on the
volume of M is attained. Then M is identical with /~(c), the closed tubular
neighborhood of c with radius z and is, by Theorem 8, a space of constant
sectional curvature. Let AT/be the universal covering space of M, let c be a lift of c
and let B,(~) be the tubular neighborhood of ~ with radius ~. For any gen l (M ),
either g(E)= ~ or dist(~, g~)> 2z. It follows that h4 can be expressed as the union of
the closed tubular neighborhoods with radius z of the lifts of c and that the
interiors of these neighborhoods are mutually disjoint. Since these neighborhoods
are convex, such a union is possible only if their boundaries are totally geodesic
and this is false.
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Remark. In attempting to use the techniques of this section in higher dimensions,
one is confronted with the problem of finding a suitable lower bound for the right
hand side of (5.1). However, in general, there seems no reason to expect such a
bound for there are no a priori restrictions on 0z. This is so because any smooth
function can be the scalar curvature of a sphere of dimension -> 3 ([191 Theorem
6.4).

6. Einstein Manifolds

A riemannian manifold M is said to be an Einstein manifold if all Ricci curvatures
are equal to a constant r. As usual S, denotes the simply connected riemannian
space of constant sectional curvature r/n. Let O(t) denote the scalar curvature of a
geodesic sphere of radius t in St, i.e.

(n-- 1 ) r s i n - 2 ( l / ~ t )  if r>O
~(t)= (n--1)nt -2 if r=O

- (n -1)rs inh-2(V-&-~t )  if r<O.

In the next theorem we use Jacobi tensors to show that the scalar curvature of
geodesic spheres and horospheres in Einstein manifolds satisfies sharp bounds.

Theorem 9. Let M be an Einstein manifold with all Ricci curvatures equal to r.
(i) Let ~,t(resp. Bt) be the #eodesic sphere (resp. ball) of radius t centered at

peM, let Q~ denote the scalar curvature of  Z, and suppose t is at most equal to the
convexity radius of p. Then, for each qe~,t, we have

o,(q)~o(t)
and, if equality occurs at all points q of Zt, then B t is isometric to a geodesic ball of
radius t in the space of constant curvature S r.

(ii) I f  M is simply connected and without conjugate points, then each nice
horosphere H has non-positive scalar curvature. Further, if the scalar curvature of H
vanishes and the sectional curvatures of the associated horoball B are bounded, then
B is isometric to a horoball in the space of constant curvature S r

Proof. (i) Suppose q = exp~ tv. Let h,(q) be the mean curvature of 2~, at q. Then, since
t is at most the convexity radius of p, we have hz(q)>O. From (2.13) applied to the
Jacobi tensor Jv along the geodesic ray c a which satisfies the initial conditions
J~(0) = O, J~(O)= I, it follows, since M is Einstein, that

e,(q)< ( 1 -  ~)(h,(q))2 +(n-1)  r,

where h~ denotes the mean curvature of ~z. If/;(t) denotes the mean curvature of a
geodesic sphere of radius t in S t, then by Theorem 4, h,(q)~_ h(t) and, since h,(q)>= O,
we have

(h,(q))2 _~ (/~(t)) 2 .

But
~ 0 - -  ns'(t)/s(t),
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where s satisfies s"+ (r/n)s = 0 and the initial conditions s(0)= 0, s'(0)= 1. Hence, by
an easy computation,

If equality occurs at all points q of Z t, then we must have hi(q)= h(t)Vq and by
Theorem 4 (iii), B t must be isometric to a ball of radius t in the space of constant
curvature S,.

(ii) The proof of (ii) is similar to (i) except that stable Jacobi tensors are used. If
H has scalar curvature 0H and mean curvature h, then, for each q~It, we have

On(q)<=(l-!)(h(q))2+(n-1) r.

By Theorem 5 (i), h(q)<= ~ - ~ .  Let v be the inward unit normal vector to H at q
and let D~, D_~ be, respectively, the stable Jacobi tensors along the geodesic rays
c~, c_ v. Then h(q)= -TrD; (0 )  and so by Lemma 4 Tr(D'v(O))<h(q ). But, by an
argument identical with the proof of Theorem 5 (i), it follows that

T r ( -  D'_ v(O)) < ~ nr.

Hence h(q)>- - ~ and therefore

(h(q)) z < - hr.

Hence Qn(q)<0 for all qeH. Further, if 0n--0  then h(q)= ~ for all qeH and
so, by Theorem 5 (iii), it follows that H is flat and the horoball B is isometric to a
horoball in S,.

Theorem 10. Let M be a complete connected Einstein manifold. Then M is flat if and
only if there is some point peM such that all geodesic spheres Z,t(p) , t>0 ,  around p
have constant mean curvature nit.
Proof If M is flat the condition is dearly satisfied. Conversely, suppose the
condition is satisfied. Let v be any unit tangent vector at p, let c be the geodesic ray
determined by v, let Jv be the Jacobi tensor along c satisfying J~(0) = 0, J'~(O) = I and

let U~= U -  (1Tr U)I be the trace-free symmetric part of U = J ' j ]  l. Since TrU(t)

= n/t, it follows from (2.4) thatTr U 2 = - Ric(c', c'). So, since M is Einstein, Tr U 2 is
constant and therefore, in view of Lemma 3, we have

Tr U 2 = - Ric(c', c') = 0

along c. Since U~ is symmetric, Uo=0  and so U is of the form U=(1TrU)L  By

(2.2) the curvature tensor R c is of the same form and so, since TrRc = Ric(c', c ')= 0,
we have R c = 0. Hence J~(t)= tI for t >= 0 and so the Jacobi fields which vanish at p
are identical with those of a flat space. Therefore, in view of the relationship
between Jacobi fields and the differential of the exponential map ([13], p. 132),
expp: Tp(M)--.M is a local isometry, i.e. M is fiat.
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