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Abstract. The optimal design of structures and systems described by partial
differential equations (PDEs) often gives rise to large-scale optimization prob-
lems, in particular if the underlying system of PDEs represents a multi-scale,
multi-physics problem. Therefore, reduced order modeling techniques such as
balanced truncation model reduction, proper orthogonal decomposition, or
reduced basis methods are used to significantly decrease the computational
complexity while maintaining the desired accuracy of the approximation. In
particular, we are interested in such shape optimization problems where the
design issue is restricted to a relatively small portion of the computational do-
main. In this case, it appears to be natural to rely on a full order model only in
that specific part of the domain and to use a reduced order model elsewhere.
A convenient methodology to realize this idea consists in a suitable combi-
nation of domain decomposition techniques and balanced truncation model
reduction. We will consider such an approach for shape optimization problems
associated with the time-dependent Stokes system and derive explicit error
bounds for the modeling error.

As an application in life sciences, we will be concerned with the opti-
mal design of capillary barriers as part of a network of microchannels and
reservoirs on microfluidic biochips that are used in clinical diagnostics, phar-
macology, and forensics for high-throughput screening and hybridization in
genomics and protein profiling in proteomics.

Mathematics Subject Classification (2000). Primary 65K10; Secondary 49M05;
49M15; 65M55; 65M60; 76Z99; 90C06.

Keywords. Projection based model reduction, shape optimization, time-depen-
dent Stokes system; domain decomposition, balanced truncation, biochips.

The authors acknowledge support by the German National Science Foundation DFG within the
DFG Priority Program SPP 1253 ‘Optimierung mit partiellen Differentialgleichungen’.

                     



76                                               

1. Introduction

The numerical solution of optimization problems governed by time-dependent par-
tial differential equations (PDEs) can be computationally very expensive with
respect to both storage and CPU times. Therefore, serious attempts have been
undertaken to achieve a significant reduction of the computational costs based on
Reduced Order Models (ROMs). ROMs determine a subspace that contains the
‘essential’ dynamics of the time-dependent PDEs and project these PDEs onto
the subspace. If the subspace is small, the original PDEs in the optimization prob-
lem can be replaced by a small system of ordinary differential equations and the
resulting approximate optimization problem can be solved efficiently. Among the
most commonly used ROM techniques are balanced truncation model reduction,
Krylov subspace methods, proper orthogonal decomposition (POD), and reduced
basis methods (see, e.g., the books and survey articles [8, 10, 11, 13, 21, 45, 52]
and the references therein).

Among the challenges one has to overcome when one wants to apply ROM
techniques for optimization problems are the efficient computation of ROMs for
use in optimization and the derivation of error estimates for ROMs. Some aspects
of these questions have been addressed in [3, 4, 16, 17, 18, 31, 32, 33, 36, 37, 38,
41, 42, 49, 50, 55, 56, 57]. In most of these applications, estimates for the error
between the solution of the original optimization problem and the optimization
problem governed by the reduced order model are not available; if they exist, then
only for a restricted class of problems. Different types of error estimates for some
ROM approaches have been discussed in, e.g., [3, 4, 24, 25, 29, 31, 32, 48, 55].

In this contribution, which is based on [2, 4], we will apply balanced trun-
cation model reduction (BTMR) to the optimal design of systems whose opera-
tional behavior is described by the time-dependent Stokes equations. Since BTMR
is essentially restricted to linear time-invariant systems, whereas optimal design
problems are genuinely nonlinear in nature due to the nonlinear dependence on the
design variables, we consider a semi-discretization in space of the time-dependent
Stokes equations (Section 2) and focus on such problems where the design is re-
stricted to a relatively small part of the computational domain. Following the
exposition in [4], we use a combination of domain decomposition and BTMR in
the sense that we keep the full order model for the subdomain subject to the design
and use BTMR for the rest of the domain (Sections 3 and 4). It turns out that
the reduced optimality system represents the necessary optimality conditions of
a reduced optimal design problem featuring a reduced objective functional. This
observation is the key for an a priori analysis of the modeling error (Section 5).
It should be emphasized that the full order model refers to the semi-discretized
Stokes system. Hence, the error induced by the discretization in space is not taken
into account. The main result states that under some assumptions on the objective
functional the error between the optimal design for the full order model and the re-
duced order model is bounded by a constant times the sum of those Hankel singular
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values in the associated singular value decomposition involving the controllability
and observability Gramians that are not used for the derivation of the ROM.

The combination of domain decomposition and balanced truncation model
reduction (DDBTMR) is applied to the optimal design of surface acoustic wave
driven microfluidic biochips which are used for high-throughput screening and hy-
bridization in genomics and protein profiling in proteomics (see [2]). In particular,
we consider the shape optimization of capillary barriers between the channels on
top of the biochips and reservoirs where the chemical analysis of the probes is
performed (Section 6).

2. Optimal design of the Stokes equations
and semi-discretization in space

Let Ω(𝜃) ⊂ ℝ2 be a bounded domain that depends on design variables 𝜃 =
(𝜃1, . . . , 𝜃𝑑)

𝑇 ∈ Θ, where 𝜃𝑖, 1 ≤ 𝑖 ≤ 𝑑, are the Bézier control points of a Bézier
curve representation of the boundary ∂Ω(𝜃) and Θ stands for the convex set

Θ := {𝜃𝑖 ∈ ℝ ∣ 𝜃(𝑖)min ≤ 𝜃𝑖 ≤ 𝜃(𝑖)max, 1 ≤ 𝑖 ≤ 𝑑},

with 𝜃
(𝑖)
min, 𝜃

(𝑖)
max, 1 ≤ 𝑖 ≤ 𝑑, being given. We assume that the boundary ∂Ω(𝜃)

consists of an inflow boundary Γin(𝜃), an outflow boundary Γout(𝜃), and a la-
teral boundary Γlat(𝜃) such that ∂Ω(𝜃) = Γin(𝜃) ∪ Γout(𝜃) ∪ Γlat(𝜃) with pairwise
disjoint Γin(𝜃),Γout(𝜃),Γlat(𝜃). We set 𝑄(𝜃) := Ω(𝜃) × (0, 𝑇 ),Σ(𝜃) := ∂Ω(𝜃) ×
(0, 𝑇 ),Σin(𝜃) := Γin(𝜃) × (0, 𝑇 ),Σlat(𝜃) := Γlat(𝜃) × (0, 𝑇 ), 𝑇 > 0. Denoting by
𝑣 = (𝑣1, 𝑣2)

𝑇 and 𝑝 the velocity and the pressure of a fluid with viscosity 𝜈 in Ω(𝜃)
and by ℓ(𝑣, 𝑝, 𝑥, 𝑡, 𝜃) a given function of the velocity, the pressure, the independent
variables 𝑥, 𝑡, and the design variable 𝜃, we consider optimal design problems
associated with the time-dependent Stokes system of the form

inf
𝜃∈Θ
𝐽(𝜃) :=

1

2

𝑇∫
0

∫
Ω(𝜃)

ℓ(𝑣, 𝑝, 𝑥, 𝑡, 𝜃) 𝑑𝑥𝑑𝑡, (2.1a)

subject to the Stokes flow

∂𝑣

∂𝑡
− 𝜈Δ𝑣 +∇𝑝 = 𝑓 in 𝑄(𝜃), (2.1b)

∇ ⋅ 𝑣 = 0 in 𝑄(𝜃), (2.1c)

𝑣 = 𝑣in on Σin(𝜃), (2.1d)

𝑣 = 0 on Σlat(𝜃), (2.1e)

(𝜈∇𝑣 − 𝑝𝐼)𝑛 = 0 on Σout(𝜃), (2.1f)

𝑣(⋅, 0) = 𝑣(0) in Ω(𝜃), (2.1g)
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where 𝑓 is a given forcing term, 𝑣𝑖𝑛 stands for a prescribed velocity at the inflow
boundary, 𝑛 in (2.1f) is the unit exterior normal, and 𝑣(0) is the velocity distribution
at initial time 𝑡 = 0 with ∇ ⋅ 𝑣(0) = 0.

The discretization in space and time of the optimality system associated with
(2.1a)–(2.1g) gives rise to a large-scale nonlinear optimization problem whose nu-
merical solution requires considerable computational efforts, even if efficient solvers
such as those based on ‘all-at-once methods’ are used. A significant reduction of the
computational complexity can be achieved by projection based model reduction
applied to a semi-discretization in space of the time-dependent Stokes equations,
e.g., by stable continuous elements such as the Taylor-Hood P2-P1 element with
respect to a simplicial triangulation of the spatial domain (cf., e.g., [14, 15, 22]).
Then, the semi-discrete optimization problem reads

inf
𝜃∈Θ
J(𝜃) :=

𝑇∫
0

ℓ(v,p, 𝜃, 𝑡) 𝑑𝑡. (2.2a)

The integrand ℓ in (2.2a) stems from the semidiscretization of the inner integral
in (2.1a), and the pair (v,p) is assumed to solve the Hessenberg index 2 system(

M(𝜃) 0
0 0

)
𝑑

𝑑𝑡

(
v(𝑡)
p(𝑡)

)
= −

(
A(𝜃) B𝑇 (𝜃)
B(𝜃) 0

) (
v(𝑡)
p(𝑡)

)
(2.2b)

+

(
K(𝜃)
L(𝜃)

)
f(𝑡) , 𝑡 ∈ (0, 𝑇 ] ,

M(𝜃)v(0) = v0, (2.2c)

whereM(𝜃),A(𝜃) ∈ ℝ𝑛×𝑛 stand for the mass and stiffness matrices,B(𝜃) ∈ ℝ𝑚×𝑛,
𝑚 < 𝑛, refers to the discrete divergence operator, and K(𝜃) ∈ ℝ𝑛×𝑘,L(𝜃) ∈
ℝ𝑚×𝑘, f(𝑡) ∈ ℝ𝑘, 𝑡 ∈ (0, 𝑇 ). A Hessenberg index 2 system is an index 2 differential
algebraic system where the algebraic variable is absent from the algebraic equation.

Under some assumptions on the matrices M(𝜃),A(𝜃), and B(𝜃), which are
satisfied when using stable continuous elements, we can show continuous depen-
dence of the solution of (2.2b), (2.2c) on the data. For a more detailed discussion
we refer to [4]. This result will play a significant role in the a priori analysis of the
modeling error in Section 5. For ease of notation we drop the dependence on the
design variable 𝜃.

Theorem 2.1. Assume that M ∈ ℝ𝑛×𝑛 is symmetric positive definite, A ∈ ℝ𝑛×𝑛

is symmetric positive definite on Ker B, i.e.,

v𝑇Av ≥ 𝛼 ∥v∥2 , v ∈ Ker B, (2.3)

and B ∈ ℝ𝑚×𝑛 has full row rank 𝑚. Then, there exist positive constants 𝐶1 and
𝐶2 such that ( ∥v∥𝐿2

∥p∥𝐿2
)

≤ 𝐶1 ∥v0∥+ 𝐶2

( ∥f∥L2

∥f∥𝐿2 + ∥ 𝑑
𝑑𝑡 f∥𝐿2

)
. (2.4)
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Proof. Following [43], we introduceΠ := I−B𝑇 (BM−1B𝑇 )−1BM−1 as an oblique
projection onto Ker B𝑇 along Im B and split v(𝑡) = v𝐻(𝑡)+v𝑃 (𝑡), where v𝐻(𝑡) ∈
Ker B and

v𝑃 (𝑡) :=M
−1B𝑇 (BM−1B𝑇 )−1Lf(𝑡) (2.5)

is a particular solution of the second equation of the semi-discrete Stokes system
(2.2b), (2.2c). The semi-discrete Stokes system transforms to

ΠMΠ𝑇 𝑑

𝑑𝑡
v𝐻(𝑡) = −ΠAΠ𝑇 v𝐻(𝑡) +ΠK̃f(𝑡) , 𝑡 ∈ (0, 𝑇 ], (2.6a)

ΠMΠ𝑇 v𝐻(0) = Πv
0. (2.6b)

The pressure p can be recovered according to

p(𝑡) = (BM−1B𝑇 )−1
(
BM−1

(
−Av𝐻(𝑡) + K̃f(𝑡)

)
− L

𝑑

𝑑𝑡
f(𝑡)
)
, (2.7)

where K̃ := K−AM−1B𝑇 (BM−1B𝑇 )−1L. The assertion follows from Gronwall’s
lemma applied to (2.6a), (2.6b) and from (2.5), (2.7). □

3. Balanced truncation model reduction of the semi-discretized
Stokes optimality system

We assume that the integrand ℓ in (2.2a) is of the form

ℓ(v,p, 𝜃, 𝑡) :=
1

2
∣C(𝜃)v(𝑡) +D(𝜃)p(𝑡) + F(𝜃)f(𝑡) − d(𝑡)∣2, (3.1)

where C(𝜃) ∈ ℝ𝑞×𝑛 and D(𝜃) ∈ ℝ𝑞×𝑚 are observation matrices, F(𝜃) ∈ ℝ𝑞×𝑘, is
a feedthrough matrix, and d(𝑡) ∈ ℝ𝑞, 𝑡 ∈ (0, 𝑇 ). Dropping again the dependence
on 𝜃 for ease of notation, the semi-discretized Stokes optimality system consists of
the state equations(

M 0
0 0

)
𝑑

𝑑𝑡

(
v(𝑡)
p(𝑡)

)
= −

(
A B𝑇

B 0

) (
v(𝑡)
p(𝑡)

)
+

(
K
L

)
f(𝑡), (3.2a)

z(𝑡) = Cv(𝑡) +Dp(𝑡) + Ff(𝑡), (3.2b)

Mv(0) = v0, (3.2c)

and the adjoint equations

−
(
M 0
0 0

)
𝑑

𝑑𝑡

(
𝝀(𝑡)
𝜿(𝑡)

)
= −

(
A B𝑇

B 0

) (
𝝀(𝑡)
𝜿(𝑡)

)
+

(
C𝑇

D𝑇

)
z(𝑡),

(3.3a)

q(𝑡) = K𝑇𝝀(𝑡) + L𝑇𝜿(𝑡) + F𝑇 z(𝑡), (3.3b)

M𝝀(𝑇 ) = 𝝀(𝑇 ). (3.3c)
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For the realization of the BTMR, we compute the controllability and observability
Gramians P,Q ∈ ℝ𝑛×𝑛 as the solutions of the matrix Lyapunov equations

ĀPM̄+ M̄PĀ+ K̄K̄𝑇 = 0, (3.4a)

ĀQM̄+ M̄QĀ+ C̄𝑇 C̄ = 0, (3.4b)

where

Ā := −ΠAΠ𝑇 , M̄ := ΠMΠ𝑇 , K̄ := ΠK̃,

C̄ := ΠC̃, C̃ := C− F(BM−1B𝑇 )−1BM−1A,

and Π refers to the oblique projection from the proof of Theorem 2.1. The Lya-
punov equations (3.4a), (3.4b) can be solved approximately by multishift ADI
techniques (cf., e.g., [12, 27, 39, 46]). We factorize P = UU𝑇 ,Q = EE𝑇 and
perform the singular value decomposition

U𝑇ME = ZS𝑛Y
𝑇 , S𝑛 := diag(𝜎1, . . . , 𝜎𝑛) , 𝜎𝑖 > 𝜎𝑖+1 , 1 ≤ 𝑖 ≤ 𝑛− 1. (3.5)

We compute V,W according to

V := UZ𝑝S
−1/2
𝑝 , W := EY𝑝S

−1/2
𝑝 , (3.6)

where 1 ≤ 𝑝 ≤ 𝑛 is chosen such that 𝜎𝑝+1 < 𝜏𝜎1 for some threshold 𝜏 > 0 and
Y𝑝,Z𝑝 are the matrices built by the leading 𝑝 columns of Y,Z.
The projection matrices satisfy

V = Π𝑇V , W = Π𝑇W , W𝑇MV = I.

Multiplying the state equations byW𝑇 and the adjoint equations byV𝑇 and using
the preceding equations results in a reduced order optimality system, where the
reduced order state equations turn out to be

𝑑

𝑑𝑡
v̂𝐻(𝑡) = − Âv̂𝐻(𝑡) + K̂f(𝑡) , 𝑡 ∈ (0, 𝑇 ], (3.7a)

ẑ(𝑡) = Ĉv̂𝐻(𝑡) + Ĝf(𝑡)− Ĥ 𝑑
𝑑𝑡
f(𝑡) , 𝑡 ∈ (0, 𝑇 ], (3.7b)

v̂𝐻(0) = v̂
0
𝐻 , (3.7c)

whereas the reduced order adjoint state equations are given according to

− 𝑑
𝑑𝑡
�̂�𝐻(𝑡) = − Â𝑇 �̂�𝐻(𝑡) + Ĉ

𝑇 ẑ(𝑡) , 𝑡 ∈ [0, 𝑇 ), (3.8a)

q̂(𝑡) = K̂𝑇 �̂�𝐻(𝑡) + Ĝ
𝑇 ẑ(𝑡)− Ĥ 𝑑

𝑑𝑡
ẑ(𝑡) , 𝑡 ∈ [0, 𝑇 ), (3.8b)

�̂�𝐻(𝑇 ) = �̂�
(𝑇 )
, (3.8c)

with appropriately defined Â, Ĉ, Ĝ, Ĥ, and K̂. Due to the stability of W𝑇AV,
the classical BTMR estimate for the error in the observations and the outputs can
be shown to hold true.
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Theorem 3.1. Let z(𝑡),q(𝑡), 𝑡 ∈ [0, 𝑇 ], and ẑ(𝑡), q̂(𝑡), 𝑡 ∈ [0, 𝑇 ], be the observations
and outputs of the full order and the reduced order optimality system as given by
(3.2b), (3.3b) and (3.7b), (3.8b), and let 𝜎𝑖, 1 ≤ 𝑖 ≤ 𝑛, be the Hankel singular val-
ues from the singular value decomposition (3.5). Moreover, suppose that v𝐻(0) = 0
and 𝝀𝐻(𝑇 ) = 0. Then, there holds

∥z− ẑ∥𝐿2 ≤ 2 ∥f∥𝐿2
(
𝜎𝑝+1 + ⋅ ⋅ ⋅+ 𝜎𝑛

)
, (3.9a)

∥q− q̂∥𝐿2 ≤ 2 ∥ẑ∥𝐿2
(
𝜎𝑝+1 + ⋅ ⋅ ⋅+ 𝜎𝑛

)
. (3.9b)

Proof. We refer to Section 7 in [30]. □

4. Domain decomposition and balanced truncation model reduction

For optimal design problems associated with linear state equations, where the
design only effects a relatively small part of the computational domain, the non-
linearity is thus restricted to that part and motivates to consider a combination
of domain decomposition and BTMR. Let us consider a domain Ω(𝜃) such that

Ω(𝜃) = Ω1 ∪ Ω2(𝜃), Ω1 ∩Ω2(𝜃) = ∅, Γ(𝜃) := Ω1 ∩ Ω2(𝜃), (4.1)

where the local area of interest is Ω2(𝜃), whereas the design variables 𝜃 do not apply
to the rest Ω1 of the computational domain. The fine-scale model results from a
spatial discretization by P2-P1 Taylor-Hood elements with respect to a simplicial
triangulation of the computational domain which aligns with the decomposition
of the spatial domain. We have to make sure that the solutions of the Stokes
subdomain problems associated with Ω1 and Ω2(𝜃) are the restrictions of the
solution of the global problem to the subdomains. To this end, the subdomain
pressures p𝑖, 1 ≤ 𝑖 ≤ 2, are split into a constant p0,𝑖 and a pressure with zero
spatial average. While the latter is uniquely determined as the solution of the
subdomain problem, p0 = (p0,1,p0,2)

𝑇 is determined through the coupling of the
subdomain problems via the interface. The fine-scale model is used only in the local
area of interest, whereas a reduced order model based on balanced truncation is
used for the rest of the domain. The objective functional

J(v,p, 𝜃) := J1(v,p) + J2(v,p, 𝜃), (4.2)

J1(v,p) :=

𝑇∫
0

∣C1v1(𝑡) +D1p1(𝑡) + F1f(𝑡)− d(𝑡)∣2 𝑑𝑡,

J2(v,p, 𝜃) :=

𝑇∫
0

ℓ(v2(𝑡),p2(𝑡),vΓ(𝑡),p0(𝑡), 𝑡, 𝜃) 𝑑𝑡,

is assumed to consist of an objective functional J1 of tracking type for subdomain
Ω1, depending only on the velocity and the pressure in Ω1, and an objective func-
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tional J2 for subdomain Ω2(𝜃), depending on the velocities v2 in Ω2(𝜃) and vΓ on
the interface Γ(𝜃) as well as on the pressure p2 in Ω2(𝜃) and on p0.

Grouping the state variables according to x𝑖 := (v𝑖,p𝑖)
𝑇 , 1 ≤ 𝑖 ≤ 2, and

xΓ := (vΓ,p0), the semi-discretized domain decomposed Stokes system can be
written in block structured form according to⎛⎝ P1x1

P2(𝜃)x2

PΓ(𝜃)xΓ

⎞⎠ :=

⎛⎝ E1 0 0
0 E2(𝜃) 0
0 0 EΓ(𝜃)

⎞⎠ 𝑑
𝑑𝑡

⎛⎝ x1

x2

xΓ

⎞⎠ (4.3)

+

⎛⎝ S11 0 S1Γ

0 S22(𝜃) S2Γ(𝜃)
S𝑇1Γ S𝑇2Γ(𝜃) SΓΓ(𝜃)

⎞⎠⎛⎝ x1

x2

xΓ

⎞⎠ =

⎛⎝ N1

N2(𝜃)
NΓ(𝜃)

⎞⎠ f .
Here, the singular block matrices E1,E2(𝜃) and EΓ(𝜃) are given by

E1 :=

(
M1 0
0 0

)
, E2(𝜃) :=

(
M2(𝜃) 0
0 0

)
, EΓ(𝜃) :=

(
MΓ(𝜃) 0
0 0

)
,

whereas S11,S22(𝜃) and SΓΓ(𝜃) are the Stokes matrices associated with the sub-
domains Ω1,Ω2(𝜃) and the interface Γ(𝜃)

S11 :=

(
A11 B𝑇

11

B11 0

)
, S22(𝜃) :=

(
A22(𝜃) B𝑇

22(𝜃)
B22(𝜃) 0

)
,

SΓΓ(𝜃) :=

(
AΓΓ(𝜃) B𝑇

0

B0 0

)
,

and S1Γ,S2Γ(𝜃) are of the form

S1Γ :=

(
A11 B𝑇

11

B11 0

)
, S2Γ(𝜃) :=

(
A2Γ(𝜃) 0
B2Γ(𝜃) 0

)
.

Finally, N1,N2(𝜃) and NΓ(𝜃) are given by

N1 :=

(
K1

L1

)
, N2(𝜃) :=

(
K2(𝜃)
L2(𝜃)

)
, NΓ(𝜃) :=

(
KΓ(𝜃)
L0(𝜃)

)
.

Introducing Lagrange multipliers 𝝀1(𝑡),𝝀2(𝑡),𝝀Γ(𝑡) and 𝜿1(𝑡),𝜿2(𝑡),𝜿0(𝑡), and
partitioning them by means of 𝝁𝑖(𝑡) := (𝝀𝑖(𝑡),𝜿𝑖(𝑡))

𝑇 , 1 ≤ 𝑖 ≤ 2,𝝁Γ(𝑡) :=
(𝝀Γ(𝑡),𝜿0(𝑡))

𝑇 , the Lagrangian associated with (4.2),(4.3) is given by

ℒ(x,𝝁, 𝜃) := J(v,p, 𝜃) +
𝑇∫

0

⎛⎝ 𝝁1(𝑡)
𝝁2(𝑡)
𝝁Γ(𝑡)

⎞⎠ ⋅
⎛⎝ P1x1(𝑡)−N1f
P2(𝜃)x2(𝑡)−N2(𝜃)f
PΓ(𝜃)xΓ(𝑡)−NΓ(𝜃)f

⎞⎠ 𝑑𝑡. (4.4)

We now focus on the optimality system associated with subdomain Ω1.
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Lemma 4.1. The optimality system associated with subdomain Ω1 consists of the
state equations(

M1 0
0 0

)
𝑑

𝑑𝑡

(
v1(𝑡)
p1(𝑡)

)
(4.5a)

= −
(
A11 B𝑇

11

B11 0

)(
v1(𝑡)
p1(𝑡)

)
−
(
A1Γ 0
B1Γ 0

)(
vΓ(𝑡)
p0(𝑡)

)
+

(
K1

L1

)
f(𝑡),

z1(𝑡) = C1v1(𝑡) +D1p1(𝑡) +D0p0(𝑡) + F1f(𝑡)− d(𝑡), (4.5b)

and the adjoint state equations

−
(
M1 0
0 0

)
𝑑

𝑑𝑡

(
𝝀1(𝑡)
𝜿1(𝑡)

)
(4.6a)

= −
(
A11 B𝑇

11

B11 0

)(
𝝀1(𝑡)
𝜿1(𝑡)

)
−
(
A1Γ 0
B1Γ 0

)(
𝝀Γ(𝑡)
𝜿0(𝑡)

)
−
(
C𝑇

1

F𝑇
1

)
z1(𝑡),

q1(𝑡) = K
𝑇
1 𝝀1(𝑡) + L

𝑇
1 𝜿1(𝑡) +D

𝑇
1 z1(𝑡). (4.6b)

Proof. The proof follows readily from (4.2) and (4.3). □
The optimality system for Ω2(𝜃) and the interface Γ(𝜃) can be derived like-

wise. We further have a variational inequality due to the constraints on 𝜃.
We see that (4.5a), (4.5b) and (4.6a), (4.6b) have exactly the form which we
considered before in Section 3. Hence, it is directly amenable to the application of
BTMR.

Lemma 4.2. There exist projection matrices V1,W1 such that the reduced state
equations associated with subdomain Ω1 are of the form

𝑑

𝑑𝑡
v̂1(𝑡) = − W𝑇

1A11V1v̂1(𝑡)−W𝑇
1 B̃1

⎛⎝ v̂Γ(𝑡)
p̂0(𝑡)
f(𝑡)

⎞⎠ , (4.7a)

⎛⎝ ẑ𝑣,Γ(𝑡)
ẑ𝑝,Γ(𝑡)
ẑ1(𝑡)

⎞⎠ = C̃1V1v̂1(𝑡) + D̃1

⎛⎝ v̂Γ(𝑡)
p̂0(𝑡)
f(𝑡)

⎞⎠− H̃1
𝑑

𝑑𝑡

⎛⎝ v̂Γ(𝑡)
p̂0(𝑡)
f(𝑡)

⎞⎠ , (4.7b)

whereas the reduced adjoint state equations are given by

− 𝑑
𝑑𝑡

�̂�1(𝑡) = −V𝑇
1A11W1�̂�1(𝑡) +V

𝑇
1 C̃1

⎛⎝ �̂�1(𝑡)
�̂�0(𝑡)
−ẑ1(𝑡)

⎞⎠ , (4.8a)

⎛⎝ q̂𝑣,Γ(𝑡)
q̂𝑝,Γ(𝑡)
q̂1(𝑡)

⎞⎠ = − B̃𝑇
1W1�̂�1(𝑡) + D̃

𝑇
1

⎛⎝ �̂�1(𝑡)
�̂�0(𝑡)
−ẑ1(𝑡)

⎞⎠+ H̃𝑇
1

𝑑

𝑑𝑡

⎛⎝ �̂�1(𝑡)
�̂�0(𝑡)
−ẑ1(𝑡)

⎞⎠ .
(4.8b)

Since we neither apply BTMR to subdomain Ω2(𝜃) nor to the interface Γ(𝜃),
the corresponding state and adjoint state equations can be derived in a straight-
forward way.
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Lemma 4.3. The state and the adjoint state equations associated with the subdo-
main Ω2(𝜃) read as follows(

M2(𝜃) 0
0 0

)
𝑑

𝑑𝑡

(
v̂2(𝑡)
p̂2(𝑡)

)
= −

(
A22(𝜃) B𝑇

22(𝜃)
B22(𝜃) 0

)(
v̂2(𝑡)
p̂2(𝑡)

)
(4.9a)

−
(
A2Γ(𝜃) 0
B2Γ(𝜃) 0

)(
v̂Γ(𝑡)
p̂0(𝑡)

)
+

(
K2(𝜃)
L2(𝜃)

)
f(𝑡),

−
(
M2(𝜃) 0
0 0

)
𝑑

𝑑𝑡

(
�̂�2(𝑡)
�̂�2(𝑡)

)
= −

(
A22(𝜃) B𝑇

22(𝜃)
B22(𝜃) 0

)(
�̂�2(𝑡)
�̂�2(𝑡)

)
(4.9b)

−
(
A2Γ(𝜃) 0
B2Γ(𝜃) 0

)(
�̂�Γ(𝑡)
�̂�0(𝑡)

)
−
( ∇𝑣2ℓ(v̂2, p̂2, v̂Γ, p̂0, 𝑡, 𝜃)
∇p̂2ℓ(v̂2, p̂2, v̂Γ, p̂0, 𝑡, 𝜃)

)
.

The state and the adjoint state equations associated with the interface Γ(𝜃) are
given by(

MΓ(𝜃) 0
0 0

)
𝑑

𝑑𝑡

(
v̂Γ(𝑡)
p̂0(𝑡)

)
= −

(
AΓΓ(𝜃) B𝑇

0 (𝜃)
B0(𝜃) 0

)(
v̂Γ(𝑡)
p̂0(𝑡)

)
(4.10a)

+

(
ẑ𝑣,Γ(𝑡)
ẑ𝑝,Γ(𝑡)

)
−
(
A𝑇

2Γ(𝜃) B𝑇
2Γ(𝜃)

0 0

)(
v̂2(𝑡)
p̂2(𝑡)

)
+

(
KΓ(𝜃)
L0(𝜃)

)
f(𝑡),

−
(
MΓ(𝜃) 0
0 0

)
𝑑

𝑑𝑡

(
�̂�Γ(𝑡)
�̂�0(𝑡)

)
= −

(
AΓΓ(𝜃) B𝑇

0 (𝜃)
B0(𝜃) 0

)(
�̂�Γ(𝑡)
�̂�0(𝑡)

)
(4.10b)

+

(
q̂𝑣,Γ(𝑡)
q̂𝑝,Γ(𝑡)

)
−
(
A𝑇

2Γ(𝜃) B𝑇
2Γ(𝜃)

0 0

)(
�̂�2(𝑡)
�̂�2(𝑡)

)
−
( ∇v̂Γℓ(v̂2, p̂2, v̂Γ, p̂0, 𝑡, 𝜃)
∇p̂0ℓ(v̂2, p̂2, v̂Γ, p̂0, 𝑡, 𝜃)

)
.

The equations (4.9a), (4.9b) and (4.10a), (4.10b) are complemented by the varia-
tional inequality

𝑇∫
0

∇𝜃ℓ(v2,p2,vΓ,p0, 𝑡, 𝜃) 𝑑𝑡 (4.11)

+

𝑇∫
0

(
�̂�2(𝑡)
�̂�Γ(𝑡)

)𝑇 (
(D𝜃P2(𝜃)(𝜃 − 𝜃)x̂2(𝑡)− (D𝜃N2(𝜃)(𝜃 − 𝜃)f(𝑡)
(D𝜃PΓ(𝜃)(𝜃 − 𝜃)x̂Γ(𝑡)− (D𝜃NΓ(𝜃)(𝜃 − 𝜃)f(𝑡)

)
𝑑𝑡 ≥ 0,

which is supposed to hold true for all 𝜃 ∈ Θ. Here, x̂2 := (v̂2, p̂2), x̂Γ := (v̂Γ, p̂0).
Moreover, N2(𝜃),NΓ(𝜃) and P2(𝜃),PΓ(𝜃) are given as in (4.3).

The following result can be verified by straightforward computation.
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Theorem 4.4. The reduced order optimality system (4.7a)–(4.11) represents the
first-order necessary optimality conditions for the reduced order optimization prob-
lem

inf
𝜃∈Θ
Ĵ(𝜃), Ĵ(𝜃) := Ĵ1(v̂1, p̂1) + Ĵ2(v̂2, p̂2, v̂Γ, p̂0, 𝜃), (4.12)

where the reduced order functionals Ĵ1 and Ĵ2 are given by

Ĵ1(v̂1, p̂1) :=
1

2

𝑇∫
0

∣ẑ1∣2𝑑𝑡, Ĵ2(v̂2, p̂2, v̂Γ, p̂0, 𝜃) :=

𝑇∫
0

ℓ(v̂2, p̂2, v̂Γ, p̂0, 𝑡, 𝜃)𝑑𝑡.

5. A priori estimates of the modeling error

We now focus our attention on an a priori analysis of the modeling error due to
the approximation of the full order model by the reduced order model obtained by
the application of the combined domain decomposition and balanced truncation
model reduction approach. We will show that under some assumptions the error
in the optimal design can be bounded from above by the sum of the remaining
Hankel singular values, i.e., we are able to derive an upper bound of the same form
as in the standard BTMR estimates:

∥𝜃∗ − 𝜃∗∥ ≤ 𝐶
(
𝜎𝑝+1 + ⋅ ⋅ ⋅+ 𝜎𝑛

)
.

One of these assumptions is to require the objective functional J to be strongly
convex.

(A1) There exists a constant 𝜅 > 0 such that for all 𝜃, 𝜃 ∈ Θ there holds(
∇J(𝜃)−∇J(𝜃)

)𝑇
(𝜃 − 𝜃) ≥ 𝜅 ∥𝜃 − 𝜃∥2.

Then, it is easy to see that the error in the optimal design is bounded from above by
the difference of the gradients of the objective functional for the reduced optimiza-
tion problem and the gradient of the objective functional for the full optimization

problem at optimality 𝜃∗.

Lemma 5.1. Assume that the objective functional 𝐽 satisfies (A1). Then, if 𝜃
∗ ∈ Θ

and 𝜃∗ ∈ Θ are the solutions of the full order and the reduced order optimization
problem, there holds

∥𝜃∗ − 𝜃∗∥ ≤ 𝜅−1 ∥∇Ĵ(𝜃∗)−∇J(𝜃∗)∥. (5.1)

Proof. Obviously, we have

∇J(𝜃∗)𝑇 (𝜃 − 𝜃∗) ≥ 0

∇Ĵ(𝜃∗)𝑇 (𝜃 − 𝜃∗) ≥ 0

}
=⇒

(
∇J(𝜃∗)−∇Ĵ(𝜃∗)

)𝑇
(𝜃∗ − 𝜃∗) ≥ 0. (5.2)

Combining (5.2) with the strong convexity of J allows to deduce (5.1). □
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Lemma 5.1 tells us that we have to provide an upper bound for the difference
of these gradients. To this end, we further have to require that the objective
functional J1 associated with the subdomain Ω1 does not explicitly depend on
the pressure. Moreover, as far as the objective functional J2 associated with the
subdomain Ω2(𝜃) is concerned, we assume that the derivatives with respect to the
state variables v2,vΓ,p2 and p0 are Lipschitz continuous uniformly in the design
variable 𝜃.

(A2) The objective functional J1 does not explicitly depend on the pressure,
i.e., it is supposed to be of the form

J1(v1) =
1

2

𝑇∫
0

∣C1v1(𝑡) + F1f(𝑡)− d(𝑡)∣2 𝑑𝑡.

(A3) Treating the states x2 := (v2,p2)
𝑇 and xΓ := (vΓ,p0)

𝑇 in the integrand
ℓ of the objective functional

J2(x2,xΓ, 𝜃) =
1

2

𝑇∫
0

ℓ(x2,xΓ, 𝑡, 𝜃) 𝑑𝑡,

as implicit functions of 𝜃, we assume that for some positive constant 𝐿1

the Lipschitz condition

∥∇𝜃ℓ(x2,xΓ, 𝑡, 𝜃)−∇𝜃ℓ(x
′
2,x

′
Γ, 𝑡, 𝜃)∥ ≤ 𝐿1

(
∥x2 − x′

2∥2 + ∥xΓ − x′
Γ∥2
)1/2

is satisfied uniformly in 𝜃 ∈ Θ and 𝑡 ∈ [0, 𝑇 ].
(A4) There exists a constant 𝐿2 > 0 such that for all 𝜃 ∈ Θ and all 𝜃′ with

∥𝜃′∥ ≤ 1 there holds
max{∥D𝜃P2(𝜃)𝜃

′∥, ∥D𝜃PΓ(𝜃)𝜃
′∥, ∥D𝜃N2(𝜃)𝜃

′∥, ∥D𝜃NΓ(𝜃)𝜃
′∥} ≤ 𝐿2.

Under these requirements, it follows that the difference in the gradients can be
bounded from above by the 𝐿2-norms of the differences between the full and the
reduced states as well as the full and reduced adjoint states.

Lemma 5.2. Assume that (A2), (A3), (A4) hold true. Then, there exists a constant
𝐶 > 0, depending on 𝐿1, 𝐿2 in assumptions (A3), (A4), such that for 𝜃 ∈ Θ

∥∇J(𝜃) −∇Ĵ(𝜃)∥ ≤ 𝐶
( ∥∥∥∥( x2 − x̂2

xΓ − x̂Γ

)∥∥∥∥
𝐿2
+

∥∥∥∥( 𝝁2 − �̂�2

𝝁Γ − �̂�Γ

)∥∥∥∥
𝐿2

)
, (5.3)

where x2 − x̂2,xΓ − x̂Γ and 𝝁2 − �̂�2,𝝁Γ − �̂�Γ are given by

x2 − x̂2 =

(
v2 − v̂2

p2 − p̂2

)
, xΓ − x̂Γ =

(
vΓ − v̂Γ

p0 − p̂0

)
,

𝝁2 − �̂�2 =

(
𝝀2 − �̂�2

𝜿2 − �̂�2

)
, 𝝁Γ − �̂�Γ =

(
𝝀Γ − �̂�Γ

𝜿0 − �̂�0

)
.
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Proof. Expressing the objective functional J in terms of the associated Lagrangian
ℒ according to (4.4), we find that for 𝜃 ∈ Θ there holds

∇J(𝜃)𝑇 𝜃 =
𝑇∫

0

(∇𝜃ℓ(x2,xΓ, 𝑡, 𝜃))
𝑇 𝜃 𝑑𝑡 (5.4)

+

𝑇∫
0

(
𝝁2(𝑡)
𝝁Γ(𝑡)

)𝑇 (
(D𝜃P2(𝜃)𝜃)x2(𝑡)− (D𝜃N2(𝜃)𝜃)f(𝑡)

(D𝜃PΓ(𝜃)𝜃)xΓ(𝑡)− (D𝜃NΓ(𝜃)𝜃)f(𝑡)

)
𝑑𝑡.

Proceeding analogously for the reduced objective functional Ĵ, we have

∇Ĵ(𝜃)𝑇 𝜃 =
𝑇∫

0

(∇𝜃ℓ(x̂2, x̂Γ, 𝑡, 𝜃))
𝑇 𝜃 𝑑𝑡 (5.5)

+

𝑇∫
0

(
�̂�2(𝑡)
�̂�Γ(𝑡)

)𝑇 (
(D𝜃P2(𝜃)𝜃)x̂2(𝑡)− (D𝜃N2(𝜃)𝜃)f(𝑡)

(D𝜃PΓ(𝜃)𝜃)x̂Γ(𝑡)− (D𝜃NΓ(𝜃)𝜃)f(𝑡)

)
𝑑𝑡.

Subtracting (5.5) from (5.4) and using (A3), (A4) gives the assertion. □

Consequently, it remains to estimate the modeling error in those states and
adjoint states associated with subdomain Ω2(𝜃) and the interface Γ(𝜃). For this
purpose, we suppose stability of the semi-discrete Stokes system and the subsystem
associated with subdomain Ω1.

(A5) The matrix A(𝜃) ∈ ℝ𝑛×𝑛 is symmetric positive definite and the matrix
B(𝜃) ∈ ℝ𝑚×𝑛 has rank 𝑚. The generalized eigenvalues of (A(𝜃),M(𝜃))
have positive real part.
The matrixA11(𝜃) ∈ ℝ𝑛1×𝑛1 is symmetric positive definite and the matrix
B11(𝜃) ∈ ℝ𝑚1×𝑛1 has rank 𝑚1. The generalized eigenvalues of (A11(𝜃),
M11(𝜃)) have positive real part.

For the modeling errors in the velocities and the pressures we will show that they
can be bounded from above by the sum of the remaining Hankel singular values.
The same holds true for the errors in the observations in Ω1 and on the interface.

Lemma 5.3. Let x = (x1,x2,xΓ)
𝑇 with x𝑖 = (v𝑖,p𝑖)

𝑇 , 1 ≤ 𝑖 ≤ 2,xΓ = (vΓ,pΓ)
𝑇

and x̂ = (x̂1, x̂2, x̂Γ)
𝑇 with x̂1 = v̂1, x̂2 = (v̂2, p̂2)

𝑇 , x̂Γ = (v̂Γ, p̂0)
𝑇 , be the states

satisfying the optimality systems associated with the full order and the reduced

order model. Then, under assumption (A5) and for v
(0)
1 = 0 there exists 𝐶 > 0

such that ∥∥∥∥( v2 − v̂2

vΓ − v̂Γ

)∥∥∥∥
𝐿2
≤ 𝐶

∥∥∥∥( f
x̂Γ

)∥∥∥∥
𝐿2

(
𝜎𝑝+1 + ⋅ ⋅ ⋅+ 𝜎𝑛

)
, (5.6a)∥∥∥∥( p2 − p̂2

p0 − p̂0

)∥∥∥∥
𝐿2
≤ 𝐶

∥∥∥∥( f
x̂Γ

)∥∥∥∥
𝐿2

(
𝜎𝑝+1 + ⋅ ⋅ ⋅+ 𝜎𝑛

)
, (5.6b)
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⎛⎝ z1 − ẑ1
z𝑣,Γ − ẑ𝑣,Γ
z𝑝,Γ − ẑ𝑝,Γ

⎞⎠∥∥∥∥∥∥
𝐿2

≤ 𝐶
∥∥∥∥( f

x̂Γ

)∥∥∥∥
𝐿2

(
𝜎𝑝+1 + ⋅ ⋅ ⋅+ 𝜎𝑛

)
. (5.6c)

Proof. Since the full order optimality equations for subdomain Ω1 differ from the
reduced order optimality system by the inputs from the interface Γ, we construct
an auxiliary full order system with velocity ṽ1, pressure p̃1, and observations z̃
that has the same inputs as the reduced order system.

E1
𝑑

𝑑𝑡

(
ṽ1(𝑡)
p̃1(𝑡)

)
= − S11

(
ṽ1(𝑡)
p̃1(𝑡)

)
− S1Γ

(
v̂Γ(𝑡)
p̂0(𝑡)

)
+

(
K1

L1

)
f(𝑡),

z̃1(𝑡) = C1ṽ1(𝑡) + F1p̃1(𝑡) + F0p̂0(𝑡) +D1f(𝑡) − d(𝑡),(
z̃𝑣,Γ(𝑡)
z̃𝑝,Γ(𝑡)

)
= − S𝑇1Γ

(
ṽ1(𝑡)
p̃1(𝑡)

)
,

M1ṽ1(0) = v
(0)
1 , L1f(0) = B11M

−1
1 v

(0)
1 +B1ΓMΓ(𝜃)

−1v
(0)
Γ (𝜃).

Then, the standard BT error bound tells us that the error in the observations
between the auxiliary full order system and the reduced order system can be
bounded from above by the sum of the remaining Hankel singular values.∥∥∥∥∥∥

⎛⎝ z̃1 − ẑ1

z̃𝑣,Γ − ẑ𝑣,Γ
z̃𝑝,Γ − ẑ𝑝,Γ

⎞⎠∥∥∥∥∥∥
𝐿2

≤ 2
(
𝜎𝑝+1 + ⋅ ⋅ ⋅+ 𝜎𝑛

) ∥∥∥∥∥∥
⎛⎝ f
v̂Γ

p̂0

⎞⎠∥∥∥∥∥∥
𝐿2

. (5.7)

Considering the errors in the states with v̂1 and p̂1 replaced with the velocity ṽ1

and the pressure p̃1 from the auxiliary system

e𝑣 := (v1 − ṽ1,v2 − v̂2,vΓ − v̂Γ)
𝑇 , e𝑝 := (p1 − p̃1,p2 − p̂2,p0 − p̂0)

𝑇 ,

we see that the errors satisfy an index 2 differential algebraic equation with the
forcing term being the difference in the observations at the interface.

E(𝜃)
𝑑

𝑑𝑡

(
e𝑣(𝑡)
e𝑝(𝑡)

)
= − S(𝜃)

(
e𝑣(𝑡)
e𝑝(𝑡)

)
+

(
g1(𝑡)
0

)
, 𝑡 ∈ (0, 𝑇 ],

M(𝜃)e𝑣(0) = 0.

Here, g1(𝑡) := (0,0, z̃v,Γ − ẑv,Γ)T. Theorem 2.1 implies∥∥∥∥∥∥
⎛⎝ v1 − ṽ1

v2 − v̂2

vΓ − v̂Γ

⎞⎠∥∥∥∥∥∥
𝐿2

≤ 𝐶 ∥z̃𝑣,Γ − ẑ𝑣,Γ∥𝐿2, (5.8a)

∥∥∥∥∥∥
⎛⎝ p1 − p̃1

p2 − p̂2

p0 − p̂0

⎞⎠∥∥∥∥∥∥
𝐿2

≤ 𝐶 ∥z̃𝑣,Γ − ẑ𝑣,Γ∥𝐿2. (5.8b)

Using (5.7) in (5.8a) and (5.8b) results in (5.6a) and (5.6b). □

For the error in the adjoint states, under assumptions (A2), (A3), and (A4),
we can derive a similar upper bound.
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Lemma 5.4. Let x,xΓ be as in Lemma 5.3 and assume that 𝝁 := (𝝁1,𝝁2,𝝁Γ)
𝑇

with 𝝁𝑖 := (𝝀𝑖,𝜿𝑖)
𝑇 , 1 ≤ 𝑖 ≤ 2,𝝁Γ := (𝝀Γ,𝜿0)

𝑇 and �̂� := (�̂�1, �̂�2, �̂�Γ)
𝑇 with

�̂�1 := �̂�1, �̂�2 := (�̂�2, �̂�2)
𝑇 , �̂�Γ := (�̂�Γ, �̂�0)

𝑇 satisfy the optimality systems asso-
ciated with the full order and the reduced order model. Then, under assumptions

(A2), (A3), (A4) and for 𝝀
(𝑇 )
1 = 0 there exists 𝐶 > 0 such that∥∥∥∥∥

(
𝝀2 − �̂�2

𝝀Γ − �̂�Γ

)∥∥∥∥∥
𝐿2

≤ 𝐶
(∥∥∥∥( f

x̂Γ

)∥∥∥∥
𝐿2
+

∥∥∥∥( ẑ1

�̂�Γ

)∥∥∥∥
𝐿2

)(
𝜎𝑝+1 + ⋅ ⋅ ⋅+ 𝜎𝑛

)
,∥∥∥∥( 𝜿2 − �̂�2

𝜿0 − �̂�0

)∥∥∥∥
𝐿2
≤ 𝐶

(∥∥∥∥( f
x̂Γ

)∥∥∥∥
𝐿2
+

∥∥∥∥( ẑ1

�̂�Γ

)∥∥∥∥
𝐿2

)(
𝜎𝑝+1 + ⋅ ⋅ ⋅+ 𝜎𝑛

)
.

Proof. Using the same reasoning as in the proof of Lemma 5.3, we construct an
appropriate auxiliary system for subdomain Ω1 which has the same inputs on the
interface as the reduced order system in the adjoint states. For details we refer to
Lemma 6.2 in [4]. □

Combining the results of the previous lemmas, we obtain the desired a priori
estimate of the modeling error.

Theorem 5.5. Under assumptions (A1)–(A5) let 𝜃
∗ and 𝜃∗ be the optimal designs

obtained by the solution of the full order and the reduced order optimization prob-
lem. Then, there exists 𝐶 > 0 such that

∥𝜃∗ − 𝜃∗∥ ≤ 𝐶
(
𝜎𝑝+1 + ⋅ ⋅ ⋅+ 𝜎𝑛

)
. (5.10)

6. Application to surface acoustic wave driven microfluidic biochips

We apply the model reduction based optimization of the Stokes system to the
optimal design of capillary barriers for surface acoustic wave driven microfluidic
biochips. Microfluidic biochips are used in pharmaceutical, medical, and foren-
sic applications for high throughput screening, genotyping, and sequencing in ge-
nomics, protein profiling in proteomics, and cytometry in cell analysis [47, 53].
They provide a much better sensitivity and a greater flexibility than traditional
approaches. More importantly, they give rise to a significant speed-up of the hy-
bridization processes and allow the in-situ investigation of these processes at an
extremely high time resolution. This can be achieved by integrating the fluidics
on top of the chip by means of a lithographically produced network of channels
and reservoirs (cf. Fig. 1 (left)). The idea is to inject a DNA or protein con-
taining probe and to transport it in the fluid to a reservoir where a chemical
analysis is performed. The fluid flow is induced by surface acoustic waves (SAW)
generated by interdigital transducers placed on a piezoelectric substrate which al-
lows a much more accurate control of the flow than conventional external pumps
[20, 28, 58, 59, 60]. In order to guarantee the filling of the reservoirs with a precise
amount of the probe, pressure driven capillary barriers are placed between the
channels and the reservoirs (cf. Fig. 1 (right)). As long as the pressure is above
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Figure 1. Microfluidic biochip (left) and capillary barrier (right)

a certain threshold, there is fluid flow from the channel into the reservoir (flow
mode). Otherwise, there is no inflow, i.e., the barrier is in the stopping mode. One
of the optimization issues is to design the capillary barrier such that the velocity
and the pressure in the flow mode is as close as possible to a prescribed velocity
and pressure profile.

SAW driven microfluidic biochips are modeled by a system of PDEs consisting
of the linearized equations of piezoelectricity coupled with the compressible Navier-
Stokes equations (see, e.g., [1, 2]). We consider the SAW induced fluid flow in the
fluidic network on top of the biochip and denote by Ω ⊂ ℝ2 the domain occupied
by the fluid. Its boundary is split according to Γ = Γ𝐷 ∪Γ𝑁 , Γ𝐷 ∩Γ𝑁 = ∅, where
Γ𝐷 stands for the part where the SAW enter the fluid filled microchannels. We
further denote by v and 𝑝 the velocity and the pressure, and we refer to 𝜌, 𝜂, and
𝜉 as the density of the fluid and the standard and bulk viscosities. The pair (v, 𝑝)
satisfies the following initial-boundary value problem

𝜌
(∂v
∂𝑡
+ v ⋅ ∇v) = ∇ ⋅ 𝝈 in Ω, 𝑡 ∈ (0, 𝑇 ], (6.1a)

∂𝜌

∂𝑡
+∇ ⋅ (𝜌v) = 0 in Ω, 𝑡 ∈ (0, 𝑇 ], (6.1b)

v(⋅ + u(⋅, 𝑡), 𝑡) = ∂u
∂𝑡
(⋅, 𝑡) on Γ𝐷, 𝑡 ∈ (0, 𝑇 ] (6.1c)

𝝈n = 0 on Γ𝑁 , 𝑡 ∈ (0, 𝑇 ], (6.1d)

v(⋅, 0) = v0, 𝑝(⋅, 0) = 𝑝0 in Ω(0), (6.1e)

where 𝝈 = (𝝈𝑖𝑗)
2
𝑖,𝑗=1, 𝝈𝑖𝑗 := −𝑝 𝛿𝑖𝑗 +2𝜂𝜀𝑖𝑗(v)+ 𝛿𝑖𝑗(𝜉− 2𝜂/3)∇⋅v and u in (6.1c)

stands for the deflection of the walls of the microchannels caused by the SAW.
We note that u can be computed by the solution of the linearized equations of
piezoelectricity (see, e.g., [23]) and that we have neglected the time-dependence
of the domain, since the deflection of the walls of the microchannels by the SAW
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(approximately 10−9𝑚) is small compared to the lengths, widths, and heights of
the microchannels (𝜇𝑚 to 𝑚𝑚).

The SAW induced fluid flow occurs on two different time scales. When the
SAW enter the fluid filled microchannels, sharp jets are created which is a process
that happens within nanoseconds. Then, the SAW propagate along the channels
and experience a significant damping resulting in a flow pattern called acoustic
streaming. This relaxation process happens on a time scale of milliseconds. We
are thus faced with a multiscale fluid flow which can be appropriately handled by
homogenization. Following [1, 35], we introduce a scale parameter 0 < 𝜀≪ 1 and
consider the asymptotic expansions

𝜌 = 𝜌0 + 𝜀 𝜌′ + 𝜀2 𝜌′′ + 𝑂(𝜀3) ,

v = v0 + 𝜀 v′ + 𝜀2 v′′ + 𝑂(𝜀3) ,

𝑝 = 𝑝0 + 𝜀 𝑝′ + 𝜀2 𝑝′′ + 𝑂(𝜀3) .

Here, 𝜌0,v0, 𝑝0 are constant in time and space and represent the known equilibrium
state without SAW excitation, whereas 𝜌′, 𝜌′′ etc. are functions of space and time.
We insert the expansion into (6.1a)–(6.1e) and collect all terms of order 𝑂(𝜀).
Setting 𝜌1 = 𝜀𝜌

′,v1 := 𝜀v
′, 𝑝1 := 𝜀𝑝′, we find that the triple (𝜌1,v1, 𝑝1) satisfies the

following time-periodic initial-boundary value problem for the linear compressible
Navier-Stokes equations

𝜌0
∂v1

∂𝑡
−∇ ⋅ 𝝈1 = 0 in Ω× (0, 𝑇1], (6.2a)

∂𝜌1
∂𝑡

+ 𝜌0∇ ⋅ v1 = 0 in Ω× (0, 𝑇1], (6.2b)

𝑣1 = g1 on Γ𝐷 × (0, 𝑇1], (6.2c)

𝝈1n = 0 on Γ𝑁 × (0, 𝑇1], (6.2d)

v1(⋅, 0) = 0, 𝑝1(⋅, 0) = 0 in Ω, (6.2e)

where 𝑇1 := 2𝜋/𝜔 with 𝜔 being the angular frequency of the time harmonic SAW
excitation, g1 := ∂𝑢/∂𝑡 in (6.2c), and

𝝈1 = ((𝝈1)𝑖𝑗)
2
𝑖,𝑗=1 , (𝝈1)𝑖𝑗 := −𝑝1 𝛿𝑖𝑗 + 2𝜂𝜀𝑖𝑗(v1) + 𝛿𝑖𝑗(𝜉 − 2𝜂/3)∇ ⋅ v1.

Moreover, 𝑝1 and 𝜌1 are related by the constitutive equation 𝑝1 = 𝑐
2
0 𝜌1 in Ω ×

(0, 𝑇1], where 𝑐0 stands for the small signal sound speed in the fluid. The system
(6.2a)–(6.2e) describes the propagation and damping of the acoustic waves in the
microchannels.

Now, we collect all terms of order 𝑂(𝜀2). We set 𝜌2 := 𝜀
2𝜌′′,v2 := 𝜀

2v′′, 𝑝2 :=
𝜀2𝑝′′. Performing the time-averaging ⟨𝑤⟩ := 𝑇−1

1

∫ 𝑡0+𝑇1
𝑡0

𝑤𝑑𝑡 allows to eliminate 𝜌2
from the equations. We thus arrive at the compressible Stokes system

𝜌0
∂v2

∂𝑡
−∇ ⋅ 𝝈2 = ⟨−𝜌1 ∂v1

∂𝑡
− 𝜌0(∇v1)v1⟩ in Ω× (0, 𝑇 ], (6.3a)

𝜌0∇ ⋅ v2 = ⟨−∇ ⋅ (𝜌1v1)⟩ in Ω× (0, 𝑇 ], (6.3b)
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v2 = g2 on Γ𝐷 × (0, 𝑇 ], (6.3c)

𝝈2n = 0 on Γ𝑁 × (0, 𝑇 ], (6.3d)

v2(⋅, 0) = 0, 𝑝2(⋅, 0) = 0 in Ω, (6.3e)

where g2 := −⟨(∇v1)u⟩ in (6.3c) and
𝝈2 = ((𝝈2)𝑖𝑗)

2
𝑖,𝑗=1 , (𝝈2)𝑖𝑗 := −𝑝2 𝛿𝑖𝑗 + 2𝜂𝜀𝑖𝑗(v2) + 𝛿𝑖𝑗(𝜉 − 2𝜂/3)∇ ⋅ v2.

The density 𝜌2 can be obtained via the constitutive equation 𝑝2 = 𝑐
2
0 𝜌2 in Ω×

(0, 𝑇 ]. We use the compressible Stokes system (6.3a)–(6.3e) as a model for the
acoustic streaming. For a theoretical justification of (6.2a)–(6.2e) and (6.3a)–(6.3e)
and a model validation based on experimental data we refer to [2].

For the optimal design of a capillary barrier, we consider acoustic streaming
as described by (6.3a)–(6.3e) in a network of microchannels and reservoirs on top
of a microfluidic biochip with a capillary barrier between a channel and a reservoir
(cf. Figure 2). The computational domain Ω is decomposed into subdomains Ω1 =
Ω ∖ Ω2, and Ω2 = (1.5, 2.5) × (9, 10) mm2. The boundary ∂Ω is split into Γin =
{0}× (9.4, 10),Γout = {10}× (0, 1) mm2, and Γlat = ∂Ω ∖ (Γin ∪Γout). We assume
that an interdigital transducer of width 6mm is placed at Γin and that the input
velocity profile u = (u1,u2) is given by

u1(𝑡, 𝑥1) = 0.6𝜖 sin(2𝜋(−𝑘𝑥1 + 𝑓𝑡)),

u2(𝑡, 𝑥1) = −𝜖 cos(2𝜋(−𝑘𝑥1 + 𝑓𝑡))

with appropriately chosen constants 𝜖, 𝑘 and 𝑓 . We further choose a constant
velocity profile vin(𝑥1, 𝑥2) on Γin × (0, 𝑇 ), outflow boundary conditions on Γout ×
(0, 𝑇 ), and no-slip conditions on Γlat× (0, 𝑇 ). The objective is to design the shape
of the top Γ2,𝑇 and the bottom Γ2,𝐵 of ∂Ω2 in such a way that a prescribed velocity
profile v𝑑 is achieved in Ω2×(0, 𝑇 ) and that the vorticity is minimized in Ωobs (the
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Figure 2. Optimal design of a capillary barrier: The reference domain
Ωref (left, in [m]) and the optimal domain (right, in [m]).
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two bulb shaped structures associated with the lower reservoir in Figure 2). The
subdomain Ω2 is parameterized by representing the top and bottom boundary by
Bézier curves with 𝑑top = 6 and 𝑑bot = 6 control points, respectively. This leads
to a parametrization Ω2(𝜃) of Ω2 with parameters 𝜃 ∈ ℝ𝑑top+𝑑bot .

The shape optimization problem amounts to the minimization of

𝐽(𝜃) =

𝑇∫
0

∫
Ωobs

∣∇ × v(𝑥, 𝑡)∣2𝑑𝑥𝑑𝑡+
𝑇∫

0

∫
Ω2(𝜃)

∣v(𝑥, 𝑡) − v𝑑(𝑥, 𝑡)∣2𝑑𝑥𝑑𝑡 (6.4)

subject to (6.3a)–(6.3e) and the design parameter constraints

𝜃min ≤ 𝜃 ≤ 𝜃max.

The final time 𝑇 is 𝑇 = 0.1 ms, and the bounds 𝜃min, 𝜃max on the design parameters
are chosen such that the design constraints are never active in this example. The
optimal domain Ω(𝜃∗) is shown in Figure 2 (right).

We consider a geometrically conforming simplicial triangulation 𝒯ℎ(Ω) of Ω
that aligns with the decomposition into the subdomains Ω1 and Ω2 as well as the
respective boundaries. The semi-discretization in space is performed by Taylor-

Hood P2-P1 elements. We denote by𝑁
(1)
𝑣 , 𝑁

(2)
𝑣 , 𝑁Γ

𝑣 the number of velocity degrees
of freedom in the subdomains Ω1 ∖ Γ,Ω2 ∖ Γ and in Γ, respectively, and set 𝑁𝑣 =

𝑁
(1)
𝑣 +𝑁

(2)
𝑣 +𝑁Γ

𝑣 . Similarly, 𝑁
(1)
𝑝 , 𝑁

(2)
𝑝 stand for the numbers of pressure degrees

of freedom in the subdomains Ω1,Ω2 and 𝑁𝑝 = 𝑁
(1)
𝑝 + 𝑁

(2)
𝑝 is the total number

of pressure degrees of freedom.
The semi-discretized optimization problems is solved by a projected BFGS

method with Armijo line search [34], and the optimization algorithm is terminated
when the norm of the projected gradient is less than 2⋅10−8. We use automatic dif-
ferentiation [26, 51] to compute the derivatives with respect to the design variables.

We have applied the combination of domain decomposition and balanced
truncation model reduction (DDBTMR) to the semi-discretized Stokes system
(6.3a)–(6.3e) using four different finite element meshes. Figure 3 (left) displays
the convergence of the multi-shift ADI algorithm from [27] for the computation
of the controllability Gramian P and the observability Gramian Q, and Figure 3
(right) shows the computed Hankel singular values for the finest grid problem.
The constant 𝐶 in the estimate (5.10) for the error between the optimal design
parameters, computed by the full and the reduced order problems, depends on
quantities like 𝛼 in (2.3) of Theorem 2.1, the derivatives of A(𝜃) with respect to
𝜃, etc. Numerical experiments indicate that for the current scaling of the problem,
the constant 𝐶 in the estimate (5.10) is large. Therefore, we require a rather small
truncation level of 𝜎𝑝+1 < 10

−12𝜎1 for the Hankel singular values.

Table 1 shows the sizes 𝑁
(1)
𝑣 , 𝑁𝑣 of the full order models on the four grids

as well as the sizes 𝑁
(1)
𝑣 , 𝑁𝑣 of the reduced order models in subdomain Ω1 and

in Ω. For the finest grid, DDBTMR reduced the size of the Ω1 subproblem from

𝑁
(1)
𝑣 = 48324 to 𝑁

(1)
𝑣 = 766. The velocity degrees of freedom in Ω2 ∪ Γ are not
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Figure 3. Convergence of the multishift ADI (left); the largest Hankel
singular values and the threshold 10−12𝜎1 (right).

reduced. On the finest grid these are 𝑁
(2)
𝑣 + 𝑁Γ

𝑣 = 914. Therefore, the reduced
order problem has 𝑁𝑣 = 914 + 766 = 1680 degrees of freedom.

grid 𝑚 𝑁
(1)
𝑣 𝑁

(1)
𝑣 𝑁𝑣 𝑁𝑣

1 167 7482 351 7640 509
2 195 11442 370 11668 596
3 291 16504 451 16830 777
4 802 48324 766 49238 1680

Table 1. The number 𝑚 of observations, the numbers 𝑁
(1)
𝑣 , 𝑁𝑣 of

velocity degrees of freedom in subdomain Ω1 and in Ω for the full order

model, and the numbers 𝑁
(1)
𝑣 , 𝑁𝑣 of velocity degrees of freedom in

subdomain Ω1 and in Ω for the reduced order model.

The optimal shape parameters 𝜃∗ and 𝜃∗ computed by minimizing the full
and the reduced order model, respectively, are shown in Table 2. For the finest grid,

the error between the full and the reduced order model solutions is ∥𝜃∗ − 𝜃∗∥ =
3.9165 ⋅ 10−5.

𝜃∗ (9.8833, 9.7467, 9.7572, 9.8671, 9.1336, 9.2015, 9.1971, 9.1310)×10−3

𝜃∗ (9.8694, 9.7374, 9.7525, 9.8628, 9.1498, 9.2044, 9.1895, 9.1204)×10−3

Table 2. Optimal shape parameters 𝜃∗ and 𝜃∗ computed by minimizing
the full and the reduced order model.
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