International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

59

Modeling Security-Critical Applications with UML
In the SecureMDD Approach

Nina Moebius, Wolfgang Reif, Kurt Stenzel
Department of Software Engineering and Programming Lagesia
University of Augsburg
86135 Augsburg, Germany
{moebius, reif, stenze@informatik.uni-augsburg.de

Abstract—Developing security-critical applications is very dif- model functional behavior, security properties are added o
ficult and the past has shown that many applications turned out the formal level.
to be erroneous after years of usage. For this reason it is desiréb In the paper we only introduce the models showing the final
to have a sound methodology for developing security-critical _ . L
applications. We present our approach, called SecureMDD, to view of the system which is used t_o generate code and_ the
model these applications with the unified modeling language formal model. Of course, the creation of these models is a
(UML) extended by a UML profile to tailor our models to security ~ process that consists of several iterations and the UML dia-
applications. We automatically generate a formal specification grams evolve step-by-step. A disadvantage of UML is the lack
suitable for verification as well as an implementation from the of a comprehensive semantics directly usable in a veriéioati

model. Therefore we offer a model-driven development method t This leads to difficulties f ificati f daks
seamlessly integrating semi-formal and formal methods as well system. This leads fo dificuiies for verincation o mode

as the implementation. This is a significant advantage compared Well as for generation of code. This is solved by defining
to other approaches not dealing with all aspects from abstract a mapping from the semi-formal to a formal presentation
models down to code. Based on this approach we can proveysing abstract state machines (ASM) [2]. These have a well-
security properties on the abstract protocol level as well as the defined and relatively simple semantics [3] [2]. Our formal

correctness of the protocol implementation in Java with respectd ification i binati f algebrai ifications
the formal model. In this paper we concentrate on the modeling specilication I1s a combination of algebraic specincatons a

with UML and some details regarding the transformation of this ASMSs. Algebraic specifications are used for the descriptibn
model into the formal specification. We illustrate our approach the used data types as well as the attacker model. ASMs are

on an electronic payment system called Mondex [1]. Mondex has ysed for the protocol dynamics. For verification we use the
become famous for being the target of the first ITSEC evaluation interactive theorem prover KIV [4].

of the highest level E6 which requires formal specification and Furthermore, we generate Java resp. Java Card code for

verification. i
Index Terms—model-driven software engineering, UML, secu- Smart card applications. Our group proposes a method t@prov
rity, cryptographic protocols, verification that an implementation is a refinement of the abstract formal
model [5] by using the Java Calculus [6] [7] implemented in
KIV.

I. INTRODUCTION . .
The major advantage of our approach with respect to other

We focus on secure applications such as electronic tigketiexisting techniques (e.g. [8]) is that we give a method seam-
or electronic payment systems. In this paper we concentrgesly integrating modeling, formal methods as well as an
on smart card applications. To guarantee the security sethémplementation.

(usually) distributed applications security protocolséxh on In this paper we describe the first part of the development
cryptographic primitives are used. Since it is very hard forocess, i.e. the modeling of the application with UML. lais
design such protocols correctly and without errors, we psep extended and improved version of [9]. Our approach is fatuse
to use formal methods for verification. on an easy to learn, and intuitive way of building the reqliire

UML describes different views on various parts of a systermodels, and abstracts from details of the formal specitioati
There exist several kinds of diagrams emphasizing diftereor the implementation. To model internal behavior, we edten
aspects of an application. In our approach we use use caaetivity diagrams with a UML-like language and use a syntax
to describe the functional and security requirements of thigat is close to the one of an object oriented programming
system under development. Class diagrams are used to mdalejuage. Our approach provides an opportunity to generate
the static view of an application. To design the protocol formal model as well as runnable code without paying
resp. to define the interaction steps between the componaaitention to the specifics of the formal specification and
of the system we use sequence diagrams. To define thmplementation which are harder to create and understard th
processing of messages and internal behavior of componehis UML models.
we additionally use activity diagrams. The communication Section Il gives an overview of our SecureMDD approach.
structure of the system and the abilities of the attacker dre Section Il the SecureMDD UML profile and the used
modeled by deployment diagrams. At the moment, we ongecurity data types are presented and a short introduation t

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

60

the Model Extension Language (MEL) is given. Our modelinthe formal model or Java(Card) code. To model the flow of
technique is illustrated by an electronic payment appbeat information and the processing of messages, activitiyrdiag
called Mondex that is introduced in Section IV. In Sectioextended with MEL expressions are used.
V we present the modeling of a security-critical applicatio In a next step, the MEL expressions are parsed and stored
on the platform-independent level in detail and descrilee tin an abstract syntax tree. The 'Extended UML Model is
platform-specific model in Section VI. Section VIl gives seman instance of the UML metamodel which is extended by an
details about the MEL syntax and grammar. In Section VIHbstract syntax tree of the MEL languag@®). The generation
we shortly address some specifics regarding the generdtiorisodone automatically using model-to-model transfornretio
Java Card code, Section IX exemplifies some details of theAfterwards, as well with model-to-model transformations,
transformation from UML into the formal model. Section Xdifferent platform-specific models (PSM) are generat@®)).(
addresses related work and Section XI concludes. On this level, the UML meta model is used. On the one
Il. THE SECUREMDD A PPROACH hand, a model showing the smart card specific information is
. . . . enerated. This includes primitive types used in Java Card,
In this section we give an overview of our framewor) . o .
?gva Card expressions in activity diagrams as well as the

which aims to develop secure applications (see Fig. 1). T %a%nslation of the stereotypes used in the previous model to

approach is based on model-driven software developm . :
(MDSD) methods. The developer creates a UML model (%‘ava classes. More details about the PSM can be found in

ect. VI. A smart card application always consists of one
the system under development. Then, several model-todmodée : .
: ._Qr more cards as well as a terminal with a card reader
(M2M) and model-to-text (M2T) transformations are appheﬁ1 . .)
. at communicates with the smart card. The terminal can be
and finally, Java(Card) code as well as a formal model are : . .
enerated mpler_nented using any programming language but Java is
9 ' used in our approach. Since in this paper we concentrate on
the modeling of the smart card part of an application, we omit
the platform-specific model for generating the terminalecod
[On the other hand, we generate a platform-specific model
UML Model ® containing details regarding the formal model which is lbdase
iatform- on algebraic specifications and abstract state machinedAS
independent < l M2M The expressions given as a MEL model are translated into
syntactically correct ASM rules.
Extended UML) In a next step, a 'Java Model’ resp. a 'Formal ASM Model’
L Model is generated from the platform-specific models. The Java
om ot model is an abstract syntax tree of Java whereas the ASM
/ \ model is an abstract syntax tree of ASMs. Then, in a model-
to-text (M2T) transformation, these models are transfarme
into Java Card code resp. a formal specificati@)(The
latter can be used to prove security properties of the mddele
models m2m l l m2m application using our interactive theorem prover KIV [1Br
hand-written formal models we already developed a method
Java Model Formal AsM Model | (4) to prove security properties [11] [12].
L The model-to-model transformations are implemented with
M2t l lmz'r the language QVT [13] and all model-to-text transformagion
with XPand [14].

UML Model UML Model @

platform-specific

platform-specific Formal Modelbasedon (5
implementations Java(Card) Code Abstract State Machines

IIl. THE SECUREMDD PROFILE AND THE MODEL

Fig. 1. Overview of the SecureMDD Approach EXTENSION L ANGUAGE

The approach starts with the modeling of a security-ctitica In this section some security related data types and a UML

application with UML. We model the complete applicationPrOf”e which is tailored to cope with specifics regarding
ecurity-critical smart card applications are introducedr-

i.e. the static view, the structure of the system as well as (t]% he Model E o L VEL) that i q
dynamic parts of an application. Since UML does not provid@ermere, the Model Extension Language (MEL) that is use
to extend UML activity diagrams is explained.

abilities to model the whole dynamic view, we extend th
UML, especially UML activity diagrams, by a language calle
Model Extension Language (MEL). This language allows for
modeling of e.g. assignments and creation of objects. To model a security-critical application with UML it is

In the first step, the developer creates a UML model @xpedient to define a few data types that are useful in these
the system under developmed@j. This model is platform- applications. Figure 2 shows the data types defined for the
independent, i.e. it does not contain any specifics reggrdiSecureMDD approach.

. Predefined Security Datatypes

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

61
Koy Nonce to label a class representing a smart card terminal with a
e -nonce : String card reader. These stereotypes are used in class diagrams
= to describe the static view of the application as well as in
deployment diagrams to define the structure of the system. In
T . 5 Secreti deploymgnt diagrams we use the meta model.elemtmte
‘ ‘] —| [secret : String to describe the components of the system. SinceNbde
element is derived from the meta model elem€tassit is
HashedData SignedData EncData sufficient to extend the meta cla€dasswith the stereotype.
-hashed : String -signed : String -encrypted : String In the SecureMDD approach the message types exchanged
during a protocol run are modeled as classes instead of
<<primitive>> <<primitive>> <<primitive>= operations. This is motivated by the fact that data in smart
— Sl Eoc.ean card applications is sent from resp. to the card in the form of

sequences of bytes. Thus, the idea is to have a message as a
Fig. 2. Security Datatypes defined for the SecureMDD Appoac (S€rialized) object 'nStead.Of a remote method call. m fagu
4 the stereotypes annotating message classes are given.

A A . <<stereotype>> <<stereotype>>
One important aspect is the use of keys. Thus, we define Message Usermessage
an abstract claskey that contains a cryptographic key. To [Ciass] [Class]

capture the difference between symmetric and asymmetric
encryption, i.e. public and private, keys, three subckssfe
the Key class exist. Furthermore, a cldssnce representing
nonces, i.e. random numbers used only once, is given. For
example, nonces are used in cryptographic protocols talavoi Here, we distinguish message objects exchanged between
replay attacks. Besides we define a tyBecret which the card and the terminal and message objects sent from the
contains values that have to be kept secret, e.g. pin nurobergiser of the system to the system, for example by entering
pass phrases. We explicitly distinguish secrets from pimi data using a GUI. The latter is explicitly modeled because fo
strings because this simplifies the formal verification of sgerification we need a formal model of the whole application,
curity properties. The classé¢dashedDat a, Si gnedDat a including the user inputs. Since the messages are defined in
and EncDat a represent data that is hashed, digitally signegie class diagram, the stereotypes extend the metaClass

resp. encrypted. To facilitate the modeling on an abstractFigure 5 shows the stereotypes to label data classes and
level without committing to an implementation language weonstants.

additionally use primitive classes callédunber, String

Fig. 4. UML stereotypes annotating message classes

and Bool ean that represent numbers, strings as well as <<stereotype>> | |<<stereotype>>| |<<stereotype>>
boolean values. data Constant status

[Class] [Class] [Property]
B. The SecureMDD Profile

Since UML is designed only to model standard application
scenarios there is a need to extend it to specific application Fig. 5. UML stereotypes defining data, constants and status
domains. For this reason the Object Management Group
(OMG) [15] provides a mechanism to extend the scope of
UML in a lightweight way by defining UML profiles. A profile
extends the UML meta model and defines a set of stereoty
tagged values and constraints.

In this section the SecureMDD UML profile is introduced

These classes extend the meta cl@ssiss. Classes an-
notated with stereotypedatas- are non-cryptographic data
pt?/%es. Classes not annotated with any stereotype are eonsid
ered as«datg> data type. To define constants used in the
models the stereotypecConstant- is used. The stereotype
< status> indicates the state of a component. While executing

S S a protocol it is often essential to keep track of the step
Smartcard Terminal . .

[Ciass] [Class] in the protocol that must be executed next. Depending on
this step, the component may react differently by processin
the next message or abort if the received message differs
from the expected one. All possible states are modeled as an
enumeration. An association between the component class, i
the terminal or the smart card, to the state class (annotdtbd

Figure 3 illustrates the stereotypes defined for the corstereotype<statuss) indicates the state of the component.
ponents of a smart card application, i.e. one stereotype tdrigure 6 shows the stereotypes defined for digital signafure
annotate a class representing a smart card and one stereogymryption and hashing.

Fig. 3. UML stereotypes defining the components smart card emairial

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

<<stereotype>>| |[<<stereotype>>| |<<stereotype>> <<stereotype>> R Sreotype==
SignData PlainData HashData hibend e
[Ciass] [Class] [Class] [CommunicationPath] [Node]
-read : boolean
-send : boolean
-suppress : boolean
<<stereotype>> <<stereotype>> <<stereotype>> . e
signed encrypted hashed UML stereotypes specifying the attacker capab#iti
[Property] [Property] [Property]

62

message. The aim is to have a language that can be used to
model cryptographic protocols and at the same time is more
abstract than a programming language. For example, MEL has
a copy semantics and the developer does not have to take care

If data modeled in the diagram is going to be signedbout memory management and object creation which must
encrypted or hashed, it is annotated with stereotyfpe handled with care on smart cards. Since MEL is tailored to
< SignData>, <PlainData> resp. <HashData>. These model the protocols of security-critical applications;antains
stereotypes extend the meta cla8sass. Furthermore, we several keywords resp. predefined methods to express e.g.
define stereotypes that denote the signing, encryption. respcryption, decryption, the generation of nonces and hash
hashing of data. If data is going to be encrypted duringalues. More details about MEL are given in Section VII.
a protocol run, the data class is marked with stereotype
< PlainDatas. If this data is encrypted and the result stored
in a field of, e.g. the smart card or a message object,
the corresponding association between this object and théfrhe SecureMDD approach is illustrated with the Mondex
PlainData object is annotated with stereotygencrypted>. application which is introduced in this section.
In the class diagram we do not specify which key is used Mondex cards are smart cards that are used as electronic
for encryption. Since this is a dynamic aspect, the concrgigrses with the aim of replacing coins by electronic cash.
encrypt operation including the specification of the useyl kevlondex is owned by Mastercard International [1]. The main
is specified in activity diagrams. Note that the generatith® field of application is the secure transfer of money from one
formal model and Java Card code would also be possible if Wghart card to a second card. To perform a transfer both cards
omit the use of the stereotypesSignData>, <PlainData> are inserted into a smart card terminal that also acts as user
and <HashData>, i.e. all required information is alreadyinterface. The security properties that have to be verifiaed f
given when using the remaining stereotypes. However, we feg@ondex are that no money can be created and any value must
that it is good practice to use them because they increase eeaccounted for. In detail, this means that no money can
readability of the platform-independent models. be loaded onto a Mondex card without subtracting it from

To verify certain security properties that have to hold fe t another card. Furthermore, if a transaction fails, no money
modeled system it is necessary to describe a possible ettagould be lost. The Mondex case study recently received a lot
resp. his abilities. An attacker may be able to interferenwiof attention because its formal verification has been setsup a
the communication between smart card and terminal. This cachallenge for verification tools [16] that several groupg] [
be modeled appropriately with deployment diagrams. We uas well as our group [18] [19] worked on. For Mondex, sev-
the communication path element to annotate the capabilitieral approaches dealing with formal methods and verifinatio
an attacker has to affect the communication. For this p@rpagnodel-checking, theorem proving and constraint solveigte
we define the stereotypeThreat>. The stereotype has threeBut, they are not combined with an engineering discipline fo
tagsr ead, send andsuppr ess that indicate if the attacker system development. Rather, they use only formal techsique
is able to read messages sent over that path, send or suppiksisspecification and verification of the Mondex application
messages. In some scenarios an attacker may try to forgi @ahe SecureMDD approach software engineering techniques
component, e.g. he may program his own smart card. Ifamd formal methods are integrated.
fake component is conceivable it is annotated with stemdty The Mondex application is another example that the design
<forgeable>. The stereotypes defined to describe the attackgf security-critical systems is difficult. While verifyinghe
are shown in Figure 7. security of the application our group has found a flaw in the

i original protocol [16]. Exploiting this flaw it is possible t

C. The Model Extension Language (MEL) cause a denial of service attack that fills the memory of the

The Model Extension Language (MEL) is used to extenchrd. In this state the card is disabled unless the ownemetu
activity diagrams. It is a simple language whose expre#to the bank. More details about the flaw can be found in [18].
sions are used iAct i on elementsSendSi gnal Acti ons, The protocol given in this paper is a slight modification af th
Accept Event Act i ons as well as iguar ds to model e.g. original protocol introduced in [20] and avoids the deniél o
object creation, assignments, conditions, or the sendirng oservice attack.

Fig. 6. UML stereotypes for encryption, hashing and sigrestu

IV. MONDEX

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

V.

In

MODELLING OF SECURIT¥CRITICAL SMART CARD
APPLICATIONS WITH UML

this section our method to develop a security-critical

application is introduced. All steps and artefacts are exem
plified by the Mondex application. In subsection V-A the > _
description of functional and security requirements usisg S€curity Requirements:
cases is given. In subsection V-B our methodology to describ
cryptographic protocols on a very abstract level is inticetl

In subsection V-C the modeling of the static view using class
diagrams is presented, subsection V-D describes the specifie
cation of the dynamic behavior using activity diagrams and
the Model Extension Language. Subsection V-E introduces th ¢
modeling of the communication model as well as the attacker
abilities using deployment diagrams.

A. Use Cases describing functional and security requirdmen

Use cases are used to capture functional requirements of
the system in an informal way. As in a traditional softwar@ayment using Internet
engineering process one or more use cases are written fasic Flow:
describe the interaction between the system and exterttabac 1) A customer wants to pay with his Mondex card using
or systems. They describe the application in a way that can

easily be understood. In our modeling method, use cases are

the basis for the sequence and activity diagrams that ak use
to build the formal model as well as executable code. Below

five

of the use cases for Mondex are given. The first one, 3)

Person-to-Person Payment, is then used as running example
in the following subsections.

63

already reduced on the customer card but has not been
added to the card of the shop owner this is recorded

on both cards. To recover the original balance of the

customer card both cards have to be shown at the bank
(see use case "Recovery of Money”).

No money is lost: If a transfer fails, either no money is
charged from the customer card or if money was already
charged it can be recovered correctly.

An attacker is not able to program his own card such that
he can use it as customer card and pay with it.

It is not possible to load money onto a card without
subtracting the same amount from a second card, i.e. no
money can be created.

It is not possible that a shop owner debits a higher amount
than has been agreed.

an internet shop.

) He inserts his card into his card reader (which is

connected to his PC) and opens the web presentation
of the shop.

He selects the products he wants to buy, enters his postal
address for shipment and selects that he wants to pay
now.

A connection to the remote card reader of the shop
owner is established. The Mondex card of the shop
owner is in this reader.

The amount to pay is transferred from the card of the
customer to the card of the shop owner.

The system confirms the transfer.

The customer removes his card from the reader.

The shop owner sends the goods to the customer.

3) The balance of the customer card is lower than the
amount to pay: The systems aborts and returns an error
message.

4) The entered amount added to the current balance of

4)
Person-to-Person Payment
Basic Flow:
1) The customer of a shop wants to pay with his Mondex 5)
card.
2) He as well as the shop owner insert their cards into the6)
corresponding card reader. 7)
3) The shop owner enters the amount to pay. 8)
4) The customer confirms the amount and starts the transfdiernative Flows:
of money. .
5) The entered amount is transferred from the card of the
customer to the card of the shop owner.
6) The system confirms the transfer by returning a receipt.e
7) Both participants remove their cards from the reader.

Alternative Flows:

3) The entered amount is wrong: The shop owner cancels’
the process.

4) The customer does not agree with the entered amount:
He cancels the transfer and the system aborts.

5) The balance of the customer card is lower than the

amount to pay: The systems aborts and returns an error
message.

5) The entered amount added to the current balance of

the shop card exceeds the maximum value that can be
loaded: The system aborts and returns an error message.
5) An error occurs while transferring the money or one of
the participants removes his card too early: The system
aborts and returns an error message. If the amount was
already reduced on the customer card but has not been
added to the card of the shop owner this is recorded
on both cards. To recover the original balance of the
customer card both cards have to be shown at the bank
(see use case "Recovery of Money”).

the shop card exceeds the maximum value that can BBCUrty Requirements:

loaded: The system aborts and returns an error message.
5) An error occurs while transferring the money or one of

see use case "Person-to-Person Payment”

the participants removes his card too early: The systeRecovery of Money
aborts and returns an error message. If the amount waasic Flow:

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

64

1) If a transaction fails (i.e. money was charged from the 4) The customer removes the card from the reader.
customer card but has not been added to the shop cas@tkrnative Flows:
both participants of the transfer go to the bank.

2) Showing their Mondex cards it can be discovered if and
what amount of money was reduced from the customg

« 3) The customer removes his card from the reader too
early: No money is paid out.

ro. .
ecurity Requirements:

card.])
3) The system adds the corresponding amount to the cus® 1he amount paid out in cash equals the balance of the
tomer card. card.

« If returning the cash to the card owner the balance of the

Alternative Flows: .
card is set to zero.

« 3) If the amount added to the current balance of the

customer card exceeds the maximum balance of the card
the amount will be paid out in cash. Other use cases cover the viewing of the last transactions,

storing money of different currencies on the same card or
i(_g)ayments using mobile phones. Also the recharge of money
shouing the cac gain K = not posse to force S he METeLor e useafmoney i cash s of s ark
recovery again. g P ' P

« It can be detected if the transfer has been aborted af%? large to present here we only model the transfer of money

Security Requirements:
« If money was lost it can be recovered only once,

the amount was added to the shop card. In this case etween a shop owner card and a customer card (Use Case

0
. erson-to-Person Payment).
money is recovered. y)

B. The Protocol Description
Recharge of money at an automatic teller machine (ATM) Our goal is to give an intuitive way to model security

Basic Flow: protocols. A reader of the model should be able to understand
1) The card owner goes to the ATM (within his bank) anthe protocol without getting lost in details. We use seqeenc
inserts his Mondex card. diagrams to specify the protocol steps and the flow of infor-
2) The card owner specifies the details of his bank accountation. The idea is to start with a very abstract view of the
3) He authorizes by entering his PIN number. possible protocols and refine these sequence diagramsystep b
4) The system checks that the PIN is correct. step. The diagram shown in Fig. 8 shows the final sequence

5) The card owner enters the amount he wants to rechardegram for "Person-to-Person Payment”. At this point the
6) The entered amount is debited from the bank accountmtocol which is later implemented is already elaboratduls

the card owner and loaded onto the card. diagram is used as basis to develop the complete dynamic
7) The card owner removes his card from the terminal. behavior of the system using activity diagrams. Note that we
Alternative Flows: do not show the diagrams that were drawn while working out

« 4) The entered PIN is not correct: The system retur@€ final models. _ o
an error message and asks for retry. After three times!N€ Sequence diagram contains one lifeline for each compo-

entering a wrong PIN the card is locked. nent participating in the protocol and additionally oneliiie _
« 5) The balance of the owners bank account is less thigf the "user”. The user represents the customer of theervi
the entered amount: The system returns an error mess@gé usually initiates a protocol, i.e. 'sends’ the first naggs
and requests to enter a lower amount. For Mondex, we distinguish the card of the shop owner (in
« 5) The entered amount added to the current balance!B¢ following calledto purse) and the card of the customer
the card exceeds the maximum value that can be loadéf:the following calledfrom purse). Since a Mondex card can

The system returns an error message and requests to edf@sto card as well asrom card this distinction is only to
a lower amount. achieve a better readability of the diagrams.

Security Requirements; The protocol used for payments between two persons (see

Fig. 8) works as follows:
+ The amount loaded onto the card equals the one charge he user, i.e. the shop owner, initiates the protocol run

from the bank .account. It IS not possible to load mone&y, sending the value to be transferred to the terminal
onto a card without reducing the bank account by tQ%Tr ansf er Money). Afterwards the terminal queries the

correct amount. purse to provide its data, e.g. its name (= unique number), by
sending the instructioiget Dat a. The to purse returns this
Discharge at an ATM data (messag@®esGet Dat a). In a next step the terminal
Basic Flow: sends a message callest art From to the from purse
1) The card owner inserts his card into an ATM at the bantuhich initiates the transfer on thfer ompurse. This message
2) He selects that he wants to have repaid the money. contains all information required to start the transfes, the
3) The ATM pays out the amount currently stored onto thealue to be transferred as well as the unique data of the other
card and sets the current balance of the card to zeropurse. Then, thdrom purse sends &t art To message to

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

65

User <<Smartcard>> <<Terminal>> <<Smartcard>> sary because the generated code (e.g. Java Card vs. Java) anc
to : Purse term : Terminal from : Purse . .
| : :] the formal model differ depending on the type of component.
\ In the Mondex application we have the clddsr se which is
representing the smart card as well as Tiee m nal .

|
|
|
| The message types are modeled as classes. Here, we use ar
|

I 1 UTransferMoney

|
I
| 2: GetData

3: ResGetData

abstract class annotated with stereotypdlessage> from

4: StartFrom

which all concrete message classes are derived. In Fig. 9

[A — several concrete message classes, Regy, Val and Ack,
. StartTo . .
m are defined. Note that these messages are derived from the
7. Req N messages modeled in the corresponding sequence diagmam (se
& fieg Fig. 8).

L All data types are modeled as classes and annotated
= with corresponding stereotypes, i.exdatg> for non-

| 9: Val

|
|
|
|
|
|
|
|
|
|
: 10: Val cryptographic data types andPlainData>, <HashData>
|
|
|
|
|
|
|
|

and «SignData> for data that is going to be encrypted,
1 Ak n | hashed or signed. In the Mondex model we have defined

| the data clas®ur seDat a that consists of the unique name
ﬂ‘ of the purse as well as a sequence number that increases
after every protocol run and ensures the uniqueness of every
PayDet ai | s. A PayDet ai | s object records the details of
! ! the current transaction, i.e. the participating purses a w
as the amount to transfer. Furthermore, we define one class
called Msgcont ent that is going to be encrypted and thus
annotated with stereotyp&PlainData>. This class contains
the pay details of the current transaction and a message flag
the terminal which forwards it to tht purse. This messagedenoting if the (encrypted) data belongs tReq, Val or
contains all data required to run a transfer and, after veupi Ack message. If this flag is omitted, the following atack is
it, the to purse initiates the transfer. Note that from now ORossible.
the terminal Only forWardS message that |t I’eceives, |e |fAn attacker Captures and Suppresse@eﬁ] message and
receiving a message from tfi®m purse, it forwards it to the |ses the contained encrypted data to send a colatt
to purse without modifying the message or its state. In a neessage to the sender. Receiving this message, the sender of
Step, after CheCking that the received transfer infornmaiso the Req message, i.e.the purse, assumes that threm purse
correct, theto purse generatesReq(uest) message to requeshas decreased its balance correctly and increases itschalan
a transfer, i.e. requests the decrease of the balance &bthe Then, the balance of thie purse has been increased without
purse. After receiving this message them purse decreasesdecreasmg the balance of tfem purse.
its balance and sends backval (ue) message which states sjnce an object of typdkgcont ent is encrypted and
that its balance has been decreased. Then, tthgurse afterwards sent with aReq, Val or Ack message, the
increases its balance and sends back\ek(nowledgement) corresponding associations are annotated with stereotype
message that confirms the transfer. <encrypted>. To denote the types of used attributes we use
the self defined primitive typeBlunber , Bool ean as well
as String and the security data types described in IlI-A.
To cover associations with multiplicity greater than one we

In the following the modeling of the static view of a smartise a predefined list. For example, tRer se class has an
card application is introduced. To model specifics regardirexception log for failed transactions. This is modeled by an
the domain of security-critical applications we use the UMlssociation with multiplicity 0..LOGLENGTH. This excepti
profile as well as the security data types defined in Sectitwy is translated to a list that can be accessed with predkfine
[ll. The method is exemplified by the Mondex application bunethods e.g. to add an object to the list. These predefined
is applicable for smart card applications in general. operations are later used in the activity diagrams.

Fig. 9 illustrates the class diagram of the Mondex applica- The possible states a component may be in are defined as
tion. Note that the diagram only shows the part of the statém enumeration. An association from a component to this
view which is needed for Person-to-Person payments, otlegrumeration, annotated with stereotygestatuss- defines the
parts e.g. regarding the recovery or recharge of money atates of a component. A purse may be in stdbbE, EPR
omitted. (expecting requestEPV (expecting value) oEPA (expecting

Every component of the system, i.e. smart card and tereknowledge). Since the terminal simply forwards messages
minal, are represented by a class annotated with stereotypahe cards and accepts all kinds of messages, it needs no
< Smartcarth- resp.<Terminalts-. This distinction is neces- state.

Fig. 8. Protocol Description for Person-to-Person Payment

C. Static View of the System

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

66

<<data>>
PayDetails
<<enumeration>>
-value : Number _od
State p
R stant> PayDetails(value : Number, from : PurseData, to : PurseDat
s IDLE +PayDetails(value : Number, from : PurseData, to : PurseData) 1
EPR
'SES EPV 0.LOGLENGTH -pdAuth
N EPA
-STARTTO -exlog 1
-ACK -state
-LOGLENGTH : Number = 10 <<status>>
<<Terminal>> <<Smartcard>>
Terminal Purse
-value : Number -balance : Number
-sesskey : Symmkey f
1 rom
-exlogcounter : Number
\ -to 1
\ / 1 <<data>>
ResGetBalance
\ / -data PurseData
-bal :N
balance : Number \ / B rino
\l A -sequenceNo : Number
<<Message>>
GetBalance Message -dataTo -dataTo
7
q—
GetData N StartFrom 1 1
T T -value : Number
ResGetData
Req Val
StartTo Ack -encmess 1
<<encrypted>> <<PlainData>>
1 Msgcontent
<<gngryptggl>%
1 -encmess -msgflag : Number
<<encrypted>> -encmess
1 -encmess 1
<<encrypted>>

Fig. 9. Static View of the Mondex application

Person payments is given. The whole activity diagram can be
found in the appendix.

D. Dynamic Behavior For each component participating in the protocol one swim

Sequence diagrams describe the sequence of messagedangt exists in the diagram. As in the sequence diagram we
is exchanged between components but do not capture inteff@fe a swim lane for the user, thte as well asfrom
actions or the behavior in case an error occurs. For thigrse and for the terminal. A protocol can be divided into
reason we additionally use activity diagrams that extered tRegments where one segment consists of one protocol step. A
sequence diagrams and describe changes in the intermal g¥g@tocol step has the following parts: A component receaves
of the components after processing a message. The activitgssage, performs several tests to check whether the reessag
diagram describes the communication as well as the sequetsceorrect and can be handled and processes the data. Finally
of actions taken as a result of receiving a message. At tfift¢ component may send a message to another component.
point we use our Model Extension Language (MEL) whichVe useSendSi gnal Acti ons to denote the sending of a
was shortly introduced in Section . MEL allows to deserib messageAccept Event Act i ons to indicate the receiving
e.g. creation of objects, assignments or guards of comditioof & message as well a&cti on elements to denote MEL
We use activity diagrams instead of UML state diagran®xpressions like object creation, assignments and calls of
because they turned out to be hard to read and confusing péedefined operations.
applications we focus on (with many condition checks). The segment in Fig. 10 shows the swim lane of the terminal

For each use case we define one activity diagram. Fomoa the left as well as the one of tlfie®m purse. The terminal
better readability we additionally allow the definition afts sends &t ar t Fr ommessage to thigom purse. This message
activities that are called within an activity. In Fig. 10 opart contains theval ue to be transferred as well as the data of the
of the activity defining the protocol executed for Person-tdo purse. Theérom purse receives this message. The content of

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

67

F "4 "
StartFrom (value, dataT o)
via Term From ’

| % startFrom(value, dataTo) |

ABORT() :

—HEl—> ABORT s L

[Exlogeounter < LOGLENGTH]
ABORT() :

2 else N ABORT h 3®

[state == IDLE]

e {e—1

ABORT() :

. |else] o ABORT h
[CheckyalueseqnoFromivalue, dataTo sequenceho

ABORT() :

- [else] 5 ABORT s %@

[dataTo.name k dataname]

pdAuth.from := data;
pdAuth.to ;= dataTo;
pdAuth.value = value;

R

data.sequenceNo++;)

state = EPR;
| encmess: Msgcontent := create

Msgcontent(Constants.STARTTO,
pdAuth);

]

enc : EncData:=
| encrypt(sesskey.encm ess);

l

StartTo(enc) StartTo(enc)

[startTo(enc)via
TermTo

- —

Fig. 10. Mondex Activity Diagram showing the sending, reggj and processing of &t art Fr ommessage. On the left side one can see the swim lane
of the terminal, on the right side the one of thiem purse

it, i.e. the value and data, are handled as local variablesn,T MEL and used for symmetric and asymmetric encryption.
the purse checks if the counter which counts the exceptign [dhe result of the encryption of data is an object of type
entries is less than the possible maximum length. If not, tlncDat a that consists of a string containing the encrypted
protocol aborts. The abort step is defined in a separateitgctidata (see Section Ill). ThisncDat a object is stored in a local
diagram and is called from this protocol (defined by a rakeariable enc. Afterwards aSt art To message containing
element). A sub activity has access to the properties of a cothe createdenc object is sent to the terminal. The terminal
ponent but not to the local variables. If the condition issdi#d receives this message and forwards it to thepurse. The

it is tested whether thet at e of the purse is set tDLE. keyword vi a denotes to which components the message is
Next, it is checked if the received value and sequence numisent resp. denotes the used port (see subsection V-E for more
of the to purse fulfill certain conditions, for example that thealetails). If the communication path is unique, e.g. the gurs
value to be transferred is greater than zero. These cheeks@ily communicates with the terminal, the a keyword can

also defined in a separate activitheckVal ueSegnoFrom be omitted.

which has two parameters and returns a boolean value withActivity diagrams are used to define the communication
the result of the tests. Since a sub activity has no accesbtween the different components as well as the process$ing o
the local variables, these have to be passed as argumeatsiessage, i.e. they are used to model cryptographic pistoco
The sub activity can be found in the appendix. If one of thg applications with large protocols it may be desirable to
checks fails theABORT sub activity is called. Otherwise, theadd some code by hand after generating the modeled parts of
purse modifies some fields, e.g. the figddAut h is filled the system instead of creating activity diagrams for theleho
with the current pay details, the pursessquenceNo is application. For this reason the developer can add own rdetho
increased and thet at e is updated toEPR. Our Model calls where the corresponding method bodies are added later
Extension Language has a copy semantics but updates of figdgshand on code level. Note that this causes problems resp.
modify the fields of the original object. In a next step, #consistencies when verifying the security of the system
local variableencress of typeMsgcont ent is created and, using a formal model automatically generated from the UML
in the next action, encrypted with the symmetric key storeflodels. To ensure that the security properties which anesgro

in field sesskey. The encrypt method is predefined in on the formal model also hold on code level, the formal model

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

68

has to be a suitable representation of the code. This me: fead
that all changes and additions which are made on the cc suppress) <<Smartcard>>
<<Terminal>> <<Threat>> <<forgeable>>
(by hand) have to be done on the formal model as well. Terminal TermTo CardTo Smartcard
E. Attacker and Communication Model TermErom CardFrom
To verify cryptographic protocols it is necessary to for Pl
mally specify the communication infrastructure as well & TermUser ppress)

an attacker model. Almost all formal approaches (e.g. [2
[22]) for verifying cryptographic protocols use a rathanpie
model of communication and the Dolev-Yao [23] threat mode
There, no constraints regarding the communication strectt
are given and it is assumed that the attacker may access UserTerm
communication links, i.e. he can read all messages sent o Usor
that link, suppress them or write messages on that chammel
these approaches (mainly addressing internet protodols) i
ignored that certain components cannot communicate irect
with other components for physical reasons. Fig. 11. Deployment Model for Mondex

Also, the possibility that some connections are secure
against eavesdropping and others are not, is abstracted awa
In contrast, our formal model is not limited to Dolev-Yamplatform. For the Mondex application, we distinguish three
attackers. The main reason for an attacker model with retugaatforms: one for the terminal, one for the smart card as wel
(but more realistic) abilities is that it becomes possilde tas one for the formal model. In this section we present the
have simpler protocols still preserving the desired séguristatic view of the platform-specific model for the smart card
properties. in more detail.

In our approach we explicity model the existing connec- Figure 12 shows the platform-specific class diagram of the
tions. For each connection we denote if the attacker is ableNMondex application.
read or suppress messages and whether he can send messagieshe class diagram the abstract data types for the smart
over that channel. But these annotations do not suffice ¢ard are replaced by Java Card [24] specific data types. Note
describe all possibilities an attacker might have. For edem that Java Card does not support integers or strings. Thus, al
an attacker could program his own forged smart card. If thields of typeNunber are translated to shortSt ri ngs are
protocol has a flaw such that the forged card takes advantagmslated into byte arrays ambol ean are replaced by the
of the weakness of the protocol it may be possible that tava type boolean. Furthermore, for each class a constructo
attacker gains some information e.g. about secret keys. is added.

UML provides the use of deployment diagrams to define the One main aspect of the PSM is the removal of stereo-
physical structure of a system. In our approach we use thentypes dealing with cryptography which were used in the
describe the communication structure as well as the attacktatform-independent model. Instead, some classes and in-
model of our application. Fig. 11 shows the deploymenérfaces are added. The resulting class diagram is close to
diagram for the Mondex application. the structure of the Java Card code but omits some technical

The components participating in the application are matleldetails. Remember that in the platform-independent model
as nodes. The terminal has one connection tddhmirse, one the encryption of data was modeled by adding a stereo-
to the from purse as well as one to the user. If a componetyipe named<encryptegs> to the corresponding association.
sends a message it has to be determined which connecflithe referenced class is then annotated with a stereotype
is used for sending. To be able to reference the connecticg®lainData> which denotes that this data type can be
the connection ends, also called ports, are named. If niltigncrypted. In the platform-specific model we add an interfac
connections exist between two components, the connectimalled Pl ai nDat a which is implemented by all classes that
that is used for sending is addressed usingutha keyword were marked askPlainData> in the PIM. Moreover, we
in the activity diagram. add the data typ&ncDat a that represents encrypted data.

For Mondex we assume that an attacker may have fdlhis class has a fieldncr ypt ed of type byte array which
access to the connections between terminal and carst@res the encrypted data. Since the Java Card Crypto API
Thus, these connections are marked withad, send and operates on byte arrays, it is of type byte[]. The class has tw
suppr ess. Furthermore, an attacker may program his owstatic methodsencr ypt anddecr ypt, which correspond
smart card and use it as a Mondex card to attack the systetn.the predefined methods of the same name defined in MEL.
The encr ypt method takes an object of tygeey and a
Pl ai nDat a object and returns aBncDat a. Thedecr ypt

Based on the platform-independent model of the applicarethod operates onkey and arEncDat a object and returns
tion a platform-specific model (PSM) is generated for eadhe decryptedPl ai nDat a. The classeSt ar t To, Req, Val

VI. PLATFORM-SPECIFICSMARTCARD MODEL

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

<<status>> | <<enumeration>>
PlainData () ghagcontent Purse ste | Sis e
- <~ — - . X N
| QRdia: shot 52';123 i %@%‘mkey EPR -REQ : byte = 1{readOnly}
+Msgcontent(msgflag : short, pd : PayDetails i ng “ENCDATA - byte - 2{readOnly}
+process(msg : Message) -RESGETBALANCE : byte = 3{readOnly}
_ “GETBALANGE : byte = 4{readOnly}

“GETDATA : byte = 5{readOnly}

-STARTTO : byte = 6{readOnly}

T Tl Bl javacard.framework.Applet -VAL : byte = 7{readOnly}
| -ACK: byte = 8{readOnly}

“"RESGETDATA : byte = 9{readOnly}
I STARTFROM : byte = 10{readOnly}
-exlog -pdAuth MSGCONTENT : byle = 11{readOnly}
0.LOGLENGTH | 1 “PURSEDATA : byte = 12{readOnly}
“PAYDETAILS : byte = 13{readOnly}

PayDetails

ResGetBalance

P Lvalue : short

-balance : short

SimpleComm

+PayDetails(value : short, from : PurseData, to : PurseData

+ResGetBalance(balance : short)|

+process(apdu : APDU)
+sendMsg(msg : Message)
+process(msg : Message)

StartFrom

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! |
| | GetData -value : short g _from 1o 1
I +StartFrom(value : short, dataTo : PurseData l ! ! -data !
| | +GetData() PurseData -codin
| 7 " = Coding
| | ResGetData faneLbye [?;r\]on
| = +encode(¢ : Codeable, destination : byte [0..])
| +ResGetData(dataTo : PurseData -dataTo |+PurseData(name : byte [0..*], sequenceNo : short +decode(in : byte [0.."], offset : short) : Codeable’
| 1 = +encodeShort('s : short)
| | - +decodeShort(in : byte [0.."]) : short
| - +encodeByteArray(b : byte [0.."])
| | V2 +decogeayle(ArraF);(m): byte [0..]) : byte [0..*]
- +encodeReq(r : Req
| +encodeEncData(e : EncData)
| | i Message | ~ +decodeEncData(in : byte [0.."]) : short
> I +decodeReq(in : byte [0..*]) : Req
| ! r 7 +encodePayDetails(pd : PayDetails)
| | | ‘ T 7z +decodePayDetails(in : byte [0.."]) : PayDetails
- +
|
| I _
| Val Ack -c
I 1
I -
- <<Constant>>
I L / > - Constants
-encmess
~ o I e StartTo 1 1 1 +REQ : byte = 1
~
‘ > - S oo encmess +STARTTO : byte = 3
A ot X +StartTo(encmess : EncData) _encmess EncData +Agé : bﬁg =4

_______ +gelCode(s:shon) T T T T T T T T T T T T T T e

+encrypt(k : Key, plain : PlainData) : EncData
+decrypt(k : Key, e : EncData) : PlainData
+EncData()

Fig. 12. Smart card-specific class diagram of the Mondex egtbin

andAck were defined in the PIM with associations to the clasgpplication using the predefined stereotypes without think
Msgcont ent (annotated with<PlainDatas>). Now, these about a possible implementation. Then, in a next step, these
classes have associations to the clBsgDat a and hence abstract models are translated into more Java Card specific
reflect the implementation with Java Card. models automatically.

To communicate with the terminal we add a class
Si npl eComm which defines two methods to receive and
process a message as well as a method for sending a message this section the MEL language is presented in detail. The
This class extends the cladppl et defined in the Java Card syntax of MEL is shown in Fig. 13. It is based on Java, but a
API. The classPur se that represents the smart card extendstle bit more UML-like.
the classSi npl eComm The description of the grammar can be read from top

Since the communication between card and terminal ¢ bottom. MEL can be used in UMLActi ons, in
based on byte arrays we additionally need a serializatigML guar ds, and in UML SendSi gnal Acti ons and
mechanism that serializes the objects that are sent to #hecept Event Acti ons which are treated differently. A
terminal. This is realised by a class nam€ddi ng that (normal) action can contain either one expression, or a list
defines methods for serialization and deserialization @heaof statements. A statement in MEL is simply an expression
object which is sent during a protocol run. More details @bofollowed by a semicolon. Java statements like conditional,
the implementation in Java Card as well as the generationlebp, return etc. are not supported, but must be modeled with
code can be found in [25]. activity diagram elements. MEL expressions and types are

The activity diagrams of the platform-specific model stila subset of Java expressions and types. The most obvious
have the same structure but the MEL expressions are parsetssions are arrays and generic types. The idea is to use
and replaced by Java Card expressions. more abstract data types like lists or sets instead of arrays

It is easy to see that our platform-independent model is &eneric types may be added for non-Java Card applications
abstracted view of a security-critical smart card appigcat in the future. MEL contains aerlseexpression that may only
that can be created without knowing technical details abdog used on top-level in a guard (UML also defiredse as
programming with Java Cards. It is possible to model am special guard). A local variable declaration (locvardecl

VIlI. THE MODEL EXTENSION LANGUAGE

Start = Action| Guard
| SendSignalActiorj AcceptEventAction

Action = Expr| Stm*
Guard = Expr
SendSignalAction = Expr
AcceptEventAction = Expr

Stm = Expr;

Expr = Locvardecl| Assignment| CreateExpi MethodCall
| BinaryExpr| UnaryExpr| LiteralExpr | FieldAccess
| Name| (Expr) | else

ExprList =¢ | Expr[, Expr]*

Locvardecl = Identifier. Type | Identifier: Type := Expr
Assignment = Expr= Expr
CreateExpr = create Identifi€rExprList)
MethodCall = Identifie ExprList)
| Expr . Identifier (ExprList)
BinaryExpr = Expr Binop Expr
UnaryExpr = Unop Exptt Expr Unop
LiteralExpr =true | false | NumberLiteral| StringLiteral
FieldAccess = Expr Identifier
Name = Identifieq Name. Identifier

Identifier =Legal Java identifier (JLS 3.8)

Type = Name

Binop===|!=|<|>|<=|>=|+]|-- |*|/|%
| and | or | via

Unop =+|-- | ++|-- | not | #

NumberLiteral =Legal Java integer literal (JLS 3.10.1)
StringLiteral =Legal Java string literal (JLS 3.10.5)

Fig. 13. The MEL language used in activity diagrams

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

70

id1, id2, ...are interpreted as local variables with the types
of the attributes and associations@fassnameFor example,
Start From(val , pd) means that &t art Fr ommessage

is receivedval becomes a local variable of typeinber that

is initialized with theval ue attribute, angpd becomes a local
variable of typePur seDat a containingval ue. dat aTo
(see the class diagram in Fig. 9). The scope of a local variabl
ends at the border of a swim lane.

MEL has a do-what-I-mean flavor that is very convenient
for modeling. This can be considered as syntactical sugar. F
example, the static members of a class can be accessed withou
a classname: The name resolution will interpsétat e ==
| DLE (see Fig. 10) astate == State. | DLE. Further-
more, MEL ignores object identities. In a communication
scenario with cryptographic protocols objects are almesen
identical, because messages treat objects as data. Tieerefo
== can be used to compare objects, and is interpreted as an
equals test that compares attributes.

The annotated abstract syntax tree is essential for error
checking as well as for the correct generation of code (e.qg.
== may become arequal s method call). The idea is to
make the MEL language easy to use for a modeler, but still as
precise as a programming language. In the future, MEL can be
extended if it is useful, for example with OCL-like constisic
for collections. However, control flow should be modelednwit
activity edges.

VIIl. GENERATION OF CODE

Smart cards are small, secure computers with a size of 1
x 1 centimeters and a thickness of less than 1 millimeter.
For example, the subscriber identity module (SIM) of mobile
phones is a smart card, the new electronic passports camtain

Fig. 13, technically not an expression in Java) has a UMkontactless smart card, and smart cards are used as payment

like syntax, similarly an assignment=(instead of simply=).

cards, health cards, for access control. Java Card [26],i$27

Logical operations must be written asd, or, not instead of a version of Java [28] tailored to smart cards. More than 3.5
&& , ||, !. A new prefix operation i# that denotes the lengthbillion Java smart cards have been issued up to now [29].

of a list or the size of a set. Another new operatioris that

Java Card has the same syntax and semantics as Java, but

may only be used on top-level in send and accept actions dhe programming style is usually very different from ‘notma
specifies the communication paths over which a messageléwa programs. The reason for this are the severe resource

sent or received.

restrictions (memory and speed) of smart cards. Java Card

After parsing a MEL expression an annotated abstrdags no Strings, no floating point arithmetic, and no Integers
syntax tree in the form of a model is created in the sankairthermore, threads and garbage collection are not stgzpor
manner as by a Java compiler. Annotating MEL requires Tohe missing garbage collection means that the programmer
context (the classes of the class diagram), and a curresg clanust be very careful when he creates objects or arrays becaus
(the swim lane of the activity diagram), and must be dortbe allocated memory will never be freed.

in sequential order following the control flow of the actyit

The communication with a smart card is realized by us-

diagram to capture the scope of local variables. Identifier aing APDUs [30] (application protocol data units), essdhtia
classified as either local variables, fields, classes ett.fam sequences of bytes in a predefined format. The Java Card
every method call a suitable method declaration must ex&Pl for the communication works with byte arrays. The
(either in the class diagram, or in the predefined types, ornmissing garbage collection and the communication API ieduc

a sub activity diagram), and so on.

a programming style that is usually not object-orientech-Ty

An Accept Event Act i on must be used as an entry poinically, Java syntax is used to manipulate byte arrays dyrect
into a swim lane. It must contain a method call of the forromitting object-oriented paradigms like modularizationda

Classname(id1,id2,. ., pptionally followed by avia Identifier.

encapsulation. Examples can be found in [31] that contains

The Classnamanust name a message class, and the identifigro different Mondex implementations based on byte arrays.

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

71

In our opinion, one challenge of model-driven code gerin the attacker knowledge because this data is not secret and
eration approaches is to reduce the gap between input @sdumed to be known by the attacker.
target platforms. For this reason, we decided to make furthe In the formal model the components of the systems are
use of the classes defined in the platform-independent modé¢fined as differenagentsthat communicate by exchanging
(and later transformed to platform-specific classes) atbtief messages. The formal model captures the behavior of the real
transforming the object-oriented view of the applicatiotoi world that is related to the application. In the real world,
a program consisting of byte array representations for eattany Mondex cards exist. To model the transfer of money,
object resp. class. Thus, the purse class implementing titeleast two cards (agents in the formal model) are needed.
protocol steps of the cryptographic protocol operates @ tndeed, it may be possible that there exists an attack on the
data types defined in the platform-independent model by theotocol that needs three or more cards, and does not work
developer. with only two cards. In this case a formal model with only

However, the communication is still based on byte arrayvo cards would be grossly flawed, because the proofs of the
This means, to transmit data between a smart card andegurity properties would succeed for a protocol that is in
terminal the message objects as well as associated objasts rreality insecure. Therefore the formal model has an anyitra
be converted into byte arrays and back again. The easiest Wway finite, number of cards (more precisely: instances fohea
to do so is to serialize each message object before sendinggent type). To represent the communication we explicitly
and after receiving a byte array message to convert it iréo ttnodel the possible connections between two agents. Since
corresponding message object. This is done using an ermgcodimore than one communication path between two agents may
similar to a TLV encoding [32], [33]. This encoding is highlyexist, we additionally use ports to distinguish the pathse T
application dependent because Java Card does not suppdermation about communication paths and ports is taken
reflection. Therefore it is ideally suited for automatic eodfrom the deployment diagram. To model the sending and
generation. receiving of messages in the formal model we use inboxes

Another challenge is the missing garbage collection. THessentially queues) for each component and port. An inbox
required objects cannot be created during the protocolbuns is of type message list and contains all messages that were
must be allocated once beforehand and reused. In our appro@seived by an agent but not yet processed.
we generate code for an object store that allocates theregjui The dynamic part of the system is modeled as an abstract
objects and manages them, i.e. if an object is needed itst&te machine (ASM). The state of the ASM consists of the

requested from the store. More details on the code generatftates of all agents. In the Mondex example the state of the

can be found in [25]. purse consists of the values of the attributes and assmusanif
thePur se class. A step of the ASM applies one ASM rule and
IX. GENERATION OF AFORMAL MODEL EOR transforms the state. A run of the ASM is a sequence of single
VERIEICATION steps and creates a trace, i.e. a sequence of its statesceA tra

models arbitrary protocol runs that could happen in the real

To prove the security of the system under development werld. Since many different events occur in the real world.(e
automatically generate a formal model based on algebraie attacker may choose to interfere with a communication or
specifications and abstract state machines suitable for ot) an adequate formal model is the set of all possible $tace
interactive theorem prover KIV. The static aspects of th¢the protocol is secure for all possible traces we assurae th
modeled application are defined by algebraic specificatiotie protocol is secure in the real world. Therefore the ASM
whereas the dynamic part of the system is translated into st allow the same choices that are possible in the reatiworl
abstract state machine (ASM) [2]. The formal model uses the. the ASM must be indeterministic. We model the real world
application-dependent data types which are defined in #ssclby defining an ASM rule that nondeterministically chooses an
diagram, i.e. specifications exist for the messages, plaia dagent which — if possible — executes a protocol step. If for
and so on. We use application-dependent types instead aéxample thePur se agent is chosen, it is checked whether
generic type as used in [34] [12]. Since the formal model the inbox (of the connection to the terminal) is non-empty.
used for interactive verification, it is very helpful to hase If so, the first message is taken and processed. If the inbox
formal model that is close to the UML models. is empty, another agent is chosen by the ASM. If the first

To model the attacker we define the attacker knowledgeessage is of typ8t ar t Fr om the ASM rule describing the
which contains all (relevant) data known by the attackqrocessing of &t art Fr om message is executed. This rule
during a protocol run, similar to [34] and [35]. The attackeis shown in listing 1. To generate the ASM rule, the activity
knowledge contains all data that is part of a message atidgrams are used as input (see Fig. 10).
can be analyzed by the attacker. In the Mondex example thidt is not the purpose of this paper to describe the syntax
includes the encrypted content of theq, Val and Ack and semantics of the ASM rules as they are used in the KIV
messages. If the attacker does not know the key he cansgstem. Therefore, we give just an informal overview of the
decrypt the content, but with an insecure protocol he maxample rule. The content of tHat art Fr om message, i.e.
later learn the key, and then decrypt the data. All non-sgcurtheval ue and thePur seDat a of thet o purse, are stored in
critical data such as the amount to load is not explicitlyesfo local variables (lines 2 and 3 in listing 1). Next, it is chedk

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

1 STARTFROW
2 let value = innsg.val ue,

3 dataTo = innsg.dataTo in

4 if exlogcounter(ag) < LOGENGTH
5 then

6 if state(ag) = IDLE

7 t hen

8

9

pdAut h(ag) .from:= data(ag);

10 pdAut h(ag) .to := dataTo;

11 pdAut h(ag) .val ue := val ue;

12 data(ag) .sequenceNo : = data(ag)

13 . sequenceNo + 1;
14 state(ag) := EPR

15

16 | et encness = nkMsgcont ent (

17 STARTTO, pdAut h(ag)) in

18 I et enc = encrypt(

19 sesskey(ag), encness) in
20 out msg(ag) := nkStartTo(enc);

21 el se ABORT#
22 el se ABORT#

Listing 1. ASM rule of processing a StartFrom message

72

One relevant security property for Mondex is that the
sum of money stored on all Mondex cards plus the sum of
money stored in all (valid) exception logs does not increase
or decrease over the time. This implies that no money is lost
or created during a transfer of money, even in the presence of
an attacker. This property can be formulated as a theorem in
the formal model and proved with our theorem prover KIV.
Of course, since a card may be recharged, this holds only for
the use case 'Person-to-Person Payment'.

In previous work Haneberg [12] [36] developed a formal
model based on ASMs and verification techniques to prove the
security of an abstract model. This approach was succéssful
used in several case studies. The formal model introduced
in this section is based on the one by Haneberg but uses
application-dependent data types instead of a generic data
format.

X. RELATED WORK

Basin et al. [37] [38] present a model-driven methodology
for developing secure systems which is tailored to the domai
of role-based access control. The aim is to model a compenent
based system including its security requirements using UML

extension mechanisms. To support the modeling of security

aspects and of distributed systems several UML profiles are
if the exception log has free entries (line 4). The expraessiaefined. Furthermore, transformation functions are defined
exl ogcount er (ag) is specific for the formal modehg that translate the modeled application into access control
is a variable for aPur se agent. As mentioned previously,infrastructures. The platforms for which infrastructurase
the formal model contains an arbitrary number Rifr se generated, are Enterprise JavaBeans, Enterprise Sefeices
agents, andg is the agent chosen in this ASM step. AgentdNet as well as Java Servlets.
are modeled with dynamic functions in the formal model, i.e. Another approach that is related to ours is UMLSec devel-
exl ogcount er is a function that maps Bur se agent to oped by Jan ikjens [8]. As in our approach he proposes to
the value of itsex| ogcount er attribute. It can be read asuse UML for the development of security-critical applicats.
ag. exl ogcount er. Similar functions exist for all attributes UMLSec defines a UML profile which adds security-relevant
and associations oPurse (pdAut h(ag), state(ag), information to the UML diagrams. Security properties are
...). Then the ASM rule checks whether the state of thexpressed by using stereotypedrjdns provides tool support
card is set tol DLE (line 6) and performs some additionalfor verifying properties by linking the UML tool to a model
checks. If all tests succeed, several attributes and adgnt checker resp. automated theorem provers. By doing so, the
of the considered agestg, in this case the purse agent, arsecurity properties mainly addressed are those that are ex-
updated (lines 9 - 14). An update means that the correspgndpressed by the predefined stereotypes. The relevant formal
dynamic function is modified (therefore the function is edll model reflects an abstracted view of parts of the entire syste
‘dynamic’). In a next step, a local variabncness of type In our approach we concentrate on a transformation process
Msgcont ent is created with thersgf | ag STARTTO that that generates a formal model of the entire application whic
indicates &t ar t To message and the current pay details (linean be used for interactive verification of all system aspect
16). Then, this variable is encrypted by using a predefin&hsed on the generated formal model, we can express and
encrypt function (line 18). The dynamic functiomit nsg that prove application dependent security properties such as "N
is generated automatically for each agent stores the messagpney can be created within the Mondex application”. In
that is going to be sent after termination of the ASM rule fotontrast to UMLSec we additionally focus on the generation
processing &t art Fr ommessage. In our case,Shart To of running Java Card code as well as the proof that this code
message is sent next and storaat nmsg (line 20). If one of is a refinement of the formal model.
the checks made in the beginning fails, the protocol abbins (In [39] Kuhimann et al. model the Mondex system with
21 and 22). The abortion is defined in a separate ASM ruléML. Only static aspects of the application including metho
called ABORT#. It can be seen that the structure of the ASBIgnatures are defined by using UML class diagrams. To
rule follows the structure of the activity diagram, but uses specify the security properties that have to be valid the
different syntax, and has a semantics that is similar to MEApproach uses the object constraint language (OCL). The
(e.g. copy semantics), but not identical (dynamic fundiand specified constraints are checked using the tool USE (UML-
inboxes are not part of MEL). based Specification Environment). USE validates a model by

testing it, i.e. it generates object diagrams as well asesgzp.

diagrams of possible protocol runs. The approach neither
considers the generation of code nor the use of formal methog}
to prove the security of the modeled application. The models
are only validated by testing. [3]

Alam et al. [40] present a model-driven security enginegrin
framework for B2B-workflows. They introduce a domain- 4
specific language for specifying access control policiegiwh
is used in the context of UML models. Furthermore, a UML
profile for trust management is defined. After modeling 4]
B2B application with UML, it is then translated into low-lelv
web service artefacts using model-to-model and modedsto-t 6]
transformations.

Deubler et al. present a method to develop security-ctitica
service-based systems [41]. For modeling and verificatien t []
tool AutoFocus [42] is used. AutoFocus is similar to UML and
facilitates the modeling of an application from differeimws.
Moreover, the tool is linkable to the model checker SMV. Thd8l
approach focuses on the specification of an application Witﬁ]
AutoFocus and, in a next step, the generation of SMV input
files and formal verification using SMV. The generation of
secure code is not part of the approach. [10

XI. CONCLUSION [11]

We presented our SecureMDD approach for the modelir[g]
of security-critical systems, especially smart card aygpions,
with UML. Using this model-driven method UML models
can be automatically translated into a formal model th
is used to verify the security of our models. Furthermorgy)
executable code can be generated automatically. In thisrpap5]
we focused on the modeling with UML, i.e. the use of ou[r16]
UML profile which is tailored to security-critical applidgahs
and our Model Extension Language that we use in activity7]
diagrams to describe cryptographic protocols. We propose_a
modeling technique that is easy to learn and abstracts frdH
specifics regarding the formal specification or implemeortat
One disadvantage of UML is that it is only semi-formally
defined. Since in our approach the UML models are transla
into abstract state machines, we give them a formal sensantic
We do not define a semantics for UML in general but only
consider those parts that are used in our approach and w! L‘q]w
are interpreted in the context of security-critical apgtions.

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

73

REFERENCES

Mondex MasterCard International Inc., URL: http://www.mondeat

E. Borger and R. F. &k, Abstract State Machines—A Method for High-
Level System Design and AnalysisSpringer-Verlag, 2003.

Y. Gurevich, “Evolving algebras 1993: Lipari guide,” iBpecification
and Validation MethodsE. Borger, Ed. Oxford Univ. Press, 1995, pp.
9 — 36.

M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thuyrtfsormal
system development with KIV,” ifundamental Approaches to Software
Engineering T. Maibaum, Ed. Springer LNCS 1783, 2000.

H. Grandy, K. Stenzel, and W. Reif, “A Refinement Method flava
Programs,” in Formal Methods for Open Object-Based Distributed
Systems (FMOODs}ser. LNCS, vol. 4468. Springer, 2007.

K. Stenzel, “A formally verified calculus for full Java G&t in Algebraic
Methodology and Software Technology (AMAST) 2004, Pracgsd
C. Rattray, S. Maharaj, and C. Shankland, Eds. Springer LRCI%,
2004.

K. Stenzel, “Verification of Java Card Programs,” Ph.Dssdirtation,
Universiit Augsburg, Fakudtt fir Angewandte Informatik,URL:
http://www.opus-bayern.de/uni-augsburg/volltext@2.22/,or
http://www.informatik.uni-augsburg.de/forschung/didations/, 2005.

J. Jirjens,Secure Systems Development with UMBpringer, 2005.

N. Moebius, D. Haneberg, G. Schellhorn, and W. Reif, “A diéting
Framework for the Development of Provably Secure E-Commerce
Applications,” in International Conference on Software Engineering
Advances (ICSEA) 2007 IEEE Press, 2007.

] M. Balser, W. Reif, G. Schellhorn, and K. Stenzel, “KI\0For Provably

Correct Systems,” irCurrent Trends in Applied Formal Methodser.
LNCS 1641, Boppard, Germany. Springer-Verlag, 1999.

D. Haneberg, G. Schellhorn, H. Grandy, and W. Reif, fiieation of
Mondex Electronic Purses with KIV: From Transactions to ausity
Protocol,” Formal Aspects of Computingol. 20, no. 1, January 2008.
H. Grandy, D. Haneberg, W. Reif, and K. Stenzel, “Depéhg Provably
Secure M-Commerce Applications,” Bmerging Trends in Information
and Communication Security (ETRICSgr. LNCS, G. Miller, Ed., vol.
3995. Springer, 2006, pp. 115-129.

“Eclipse Modeling Project,” http://www.eclipse.drgodeling/.

“Open Architecture Ware,” http://www.openarchitecware.org/.
Object Management Group (OMG), “The unified modeling laage,”
2006. [Online]. Available: www.uml.org/

J. Woodcock, “First steps in the verified software grahdllenge,TEEE
Computey vol. 39, no. 10, pp. 57-64, 2006.

C. Jones and J. Woodcock, Edgormal Aspects of Computing
Springer, January 2008, vol. 20 (1).

G. Schellhorn, H. Grandy, D. Haneberg, N. Moebius, and R#if,
“A Systematic Verification Approach for Mondex Electronic rBes
using ASMs,” inDagstuhl Seminar on Rigorous Methods for Software
Construction and AnalysidJ. G. J.-R. Abrial, Ed. Springer LNCS
5115, 2008.

g] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif, “TMendex

Challenge: Machine Checked Proofs for an Electronic Plirsésormal
Methods 2006, Proceedingser. LNCS, J. Misra, T. Nipkow, and
E. Sekerinski, Eds., vol. 4085. Springer, 2006, pp. 16-31.

S. Stepney, D. Cooper, and J. Woodcock, “AN ELECTRONIIRSE
Specification, Refinement, and Proof,” Oxford University Coriy

Our technique has evolved over several case studies. E.g. we Laboratory, Technical monograph PRG-126, July 2000.

have analyzed an application where a smart card is used as
copycard for a library [35]. Another case study deals with gpy;
application to buy cinema tickets using a mobile phone [12].

At the moment our approach is tailored to smart card
applications but we are going to extend it, e.g. to servicgs;
oriented architectures, in the future. For example, thenger
electronic health card which consists of smart card parts ??]
well as services that are realized as SOA, would fit into this
domain. Another focus of future research is to build in thgs]
expression of security properties on the level of platform-
independent modeling, for example by supporting the use [Qg]
OCL expressions.

1h L. C. Paulson, “Inductive analysis of the internet il TLS,” Com-

puter Laboratory, University of Cambridge, Tech. Rep. 448¢.01997.

G. Lowe, “Breaking and Fixing the Needham-Schroeder liBey
Protocol Using FDR,” inTools and Algorithms for Construction and
Analysis of Systems, Second International Workshop (TAC&fringer
LNCS 1055, 1996, pp. 147-166.

D. Dolev and A. C. Yao, “On the security of public key poobls,”

in Proc. 22th IEEE Symposium on Foundations of Computer Seienc
IEEE, 1981, pp. 350-357.

Java Card 2.2 Specificatiopn Sun
http://java.sun.com/products/javacard/.
N. Moebius, K. Stenzel, H. Grandy, and W. Reif, “Modetizn Code
Generation for Secure Smart Card Applications,” 26th Australian
Software Engineering ConferencelEEE Press, 2009.

Application Programming Interface Java Card Platform, &ien 2.2.1
Sun Microsystems Inc., URL: http://java.sun.com/prodyescard/.

Microsystems Inc., 2002,

International Journal On Advances in Software, vol 1 no 1, year 2008, http.//www.iariajournals.org/software/

[27] Sun Microsystems, “Java Card 3.0 Platform Specificgtion
http://java.sun.com/javacard/3.0/specs.jsp, 2008.

[28] J. Gosling, B. Joy, G. Steele, and G. Braclihe Java (tm) Language
Specification, Third Edition Addison-Wesley, 2005.

[29] Sun Microsystems, “Press release,” April 22 2008. [@eli Available:
http://www.sun.com/aboutsun/pr/2008-04/sunflash.2@0g0L.xml

[30] ISO 7816-4 — Identification Cards — Integrated cicuit(s) d=rwith
contacts — Part 4: Organization, security and commandsriterchange
International Standards Organization, 1995.

[31] H. Grandy, N. Moebius, M. Bischof, D. Haneberg, G. Sthel
horn, K. Stenzel, and W. Reif, “The Mondex Case Study:
From Specifications to Code,” University of Augsburg, Techh
Report 2006-31, December 2006, uRL: http://www.informatik-
augsburg.de/lehrstuehle/swt/se/publications/.

[32] H. Grandy, R. Bertossi, K. Stenzel, and W. Reif, “ASNght: A Verified
Message Encoding for Security Protocols,"Snftware Engineering and
Formal Methods, SEFM |IEEE Press, 2007.

[33] O. DubuissonASN.1 - Communication Between Heterogeneous Systems
Elsevier-Morgan Kaufmann, 2000.

[34] L. C. Paulson, “The Inductive Approach to Verifying @tpgraphic
Protocols,”Journal of Computer Securitywol. 6, pp. 85-128, 1998.

[35] D. Haneberg, H. Grandy, W. Reif, and G. Schellhorn, fiyéng Smart
Card Applications: An ASM Approach,” ilnternational Conference on
integrated Formal Methods (iFM) 2008er. LNCS, vol. 4591. Springer,
2007.

[36] D.Haneberg, H. Grandy, W. Reif, and G. Schellhorn, tiyéng Security
Protocols: An ASM Approach,” in2th Int. Workshop on Abstract State
Machines, ASM 05D. Beauquier, E. Brger, and A. Slissenko, Eds.
University Paris 12 — Val de Marne, &eil, France, March 2005.

[37] D. Basin, J. Doser, and T. Lodderstedt, “Model Driverc@#y: From
UML Models to Access Control InfrastructuresdCM Transactions on
Software Engineering and Methodologyp. 39-91, 2006.

[38] T. Lodderstedt, D. A. Basin, and J. Doser, “SecureUMLUNL-Based
Modeling Language for Model-Driven Security,” idML 2002 - The
Unified Modeling Language, 5th International Conferen2€02, pp.
426-441.

[39] M. Kuhimann and M. Gogolla, “Modeling and validating Mabex
scenarios described in UML and OCL with USHEbrmal Aspects of
Computing vol. 20, no. 1, pp. 79-100, January 2008.

[40] M. Alam, R. Breu, and M. Hafner, “Model-Driven Securityngineering
for Trust Management in SECTETJSW vol. 2, no. 1, pp. 47-59, 2007.

[41] M. Deubler, J. Ginbauer, J. i¥jens, and G. Wimmel, “Sound devel-
opment of secure service-based systems,Pinceedings of the 2nd
International Conference on Service Oriented Computi®CM, 2004,
pp. 115-124.

[42] M. Broy, F. Huber, and B. Séitiz, “AutoFocus - Ein Werkzeugprototyp
zur Entwicklung eingebetteter Systemdyiformatik, Forschung und
Entwicklung vol. 14, no. 3, pp. 121-134, 1999.

APPENDIX

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

[ABORT():
ABORT
Sl

ResGetData(data)

[state == IDLE]

ata) viato

<

StartTo(enc)

~~ ResG mm(dmroﬂ

StartFrom(value, dataTo) .

75
User to: Purse term: Terminal from: Purse
UTransferMoney(/ UTrnnsferMoney(value)I
GetData() <— | Getd

via from

StartTo(enc)

StartTo(enc) via to

[msg:Msgcontent := \
I decrypt(sesskey, enc); J

[msg.pd to == data]
ABORT() :

ABORT ’h ._)®

Ne——
[msg.msgflag == STARTTO]

ABORT() :

ABORT = H@

N —

(t dataTo) [
el
s

[exlogcounter ;LOG_I£NGTH])

[state == IDLE]

ABORT() :
ABORT

[Checl(VaIueSeqr;t;f;}om(-\v'a|ue, dataTo sequenceNo

ABORT() :
h \

[dataTo.name |= data.name]

pdAuth.from := data;
’ pdAuth.to := dataTo;

pdAuth.value := value;

v

1:/ data.sequencelo++;)

(state:=EPR;

Msgcontent(Constants.STARTTO,
pdAuth);

!

enc : EncData := J

" encmess : Msgcontent := create J

ener

Fig. 14. Mondex Activity Diagram for Transferring Money, P4

[msg.msgflag == STARTTO]
" ABORT():

< lelse [B . R

el
[exlogcounter < Constants LOGLENGTH]

SR - -

—

[CheckValueSegnoTo(msg pd.value,
msg.pd to.sequenceNo)]

< " ABORT(:
else ABORT

th

[msg.pd.from.name = data.name]

'pdAu‘th.from := msg.pd.from;
l pdAuth.to := data;
pdAuth.value := msg.pd.value;

[' data.sequencelo++; '
[state := EPV; ’)

(__msg.msgﬂag := REQ;)

(:'em: := encrypt(sesskey, msg);),

= Req(enc)

¢

Req(enc)

Req(enc)

Val(enc)

e

{"

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

5 Req(enc)

[ABORT(): |
ABORT

[state == EPR]

‘msg : Msgcontent := decrypt
‘_ (sesskey,enc);

[msg.msgflag == REQ and msg.pd == pdAuth]

" balance := balance - pdAuth.
| value; J

[state := EPA;

(msg.msgflag := VAL;)

(_ enc := encryp‘l(sesskey,msg);)

"val(ene) 3

Fig. 15. Mondex Activity Diagram for Transferring Money, P2

76

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Val(enc)

Vallenc) <

Val(enc) via

Valfenc) <—

" ABORT():
ABORT

[state == EPY]

msg : Msgcontent :=)
decrypt(sesskey,enc); J

[msg.msgflag == VAL and
msg.pd == pdauth]

" balance := balance + pdAuth.
l value;

)

('em: = encrypt(sesskey,msg);)

" ABORT():
ABORT :

to

Ack(enc) .

Fig. 16.

%, Ack{enc) i

Ack(enc) -

via from : g

= s

> Ack(enc)

ARORT())
BORT }_)®
\ '*1 -

[state == EPA]

msg : Msgcontent:=
decrypt(sesskey,enc); J

ABORT():
ABORT
| rh f*®

[msg.msgflag == EPA and msg.pd == pdAuth)

Mondex Activity Diagram for Transferring Money, P8

77

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

p :Purse

<<structured>>

exlog :=exlog +
pdAuth;

[state == BEPV or state == EPA]

data.sequenceNo++;

state = IDLE;

Fig. 17. Mondex Activity Diagram for Subactivity Abort()

p : Purse

<s<structured>>
CheckValueSeqnoTo

value : Number J seqno : Number J !
*[— I? [
|
|

|

(result : \
Boolean; |

|

\
I
\
I
I
I
I
I
I
I
I
| else = B
< >—L-J-;£\ result: false,_)
|
I
\
\
|
I
\
I
I
I
|

[segno >=0 and value > 0]

result :=true;)

N
[result : Boolean

Fig. 18. Mondex Activity Diagram for Subactivity CheckValBegnoTo(value : Number, segno : Number): Boolean

78

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Fig. 19.

<<structured>>
CheckValueSeqnoFrom

‘ value : Number seqno : Number

Mondex Activity Diagram for Subactivity CheckValBeqgnoFrom(value : Number, segno : Number): Boolean

79

