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Abstract— The development of industrial robotics applica-
tions is a complex and often a very expensive task. One of the
core problems is that a lot of implementation and adaptation
effort can only be done after the robotic hardware has been
installed.

This paper shows how Microsoft Robotics Studio (MSRS)
can facilitate the fast prototyping of novel industrial applica-
tions and thus lower the overall development costs. Microsoft
Robotics Studio is a development tool for creating software
for robotic applications. It includes an asynchronous, service-
oriented runtime and a realistic physics-based simulation en-
vironment. This allows for testing and improving software
prototypes before any hardware is installed.

As an example control software for a vision of tomorrow‘s
production automation systems has been implemented and
evaluated in the simulation environment of MSRS.

I. INTRODUCTION

During the last two decades the complexity of automated

production processes has steadily increased. This led on the

one hand to a dramatic increase in productivity but on the

other hand to a steep rise in development costs for the

production system. A major part of these costs are costs

for development of control software. This is mainly (but

not only) because software components have to be either

developed in isolation and subsequently need to be integrated

after the whole plant has been installed (this approach is

typically very expensive as it often requires many changes

and error corrections) or the software is only developed after

the plant has been installed (this approach means that the

installation time for the whole plant is increased). In most

industrial scenarios a mixture of both approaches is taken.

A new third approach can be to develop software in a

simulated environment of the plant. This allows for early start

of the software development process as well as early testing

and validation. Such an approach requires two ingredients:

first of all a simulation environment in which the plant

can be easily modeled and second the control software

- for the simulated plant – must be easy to adapt from

controlling a simulated world to controlling the physical

plant and its robots. A framework which promises to fulfill

both requirements is Microsoft Robotics Studio [1]. It is

a service-oriented framework for software development of

robotic applications. Instead of using real hardware, software

can be developed within a simulated environment using

a realistic physics engine which has been developed for

computer games. Furthermore, the service-oriented architec-

ture allows the simulated hardware to be easily substituted

with real hardware and enables the development of modular

applications which are orchestrated from low-level services.

This paper shows that it is possible to use Microsoft

Robotics Studio for prototyping control software for in-

dustrial robotic applications. It also describes benefits, po-

tentials, risk and limitations of this approach. The results

are demonstrated on an illustrative example of a vision of

tomorrows automated production systems.

In Sect. II a brief introduction to Microsoft Robotics

Studio and its main technologies is given. Sect. III describes

an example scenario, its design and implementation The last

Sect. IV summarizes the results and gives an overview of

possible next steps.

II. MICROSOFT ROBOTICS STUDIO

In this section, a short summary of the Microsoft Robotics

Studio is given. For more detailed information see the online

documentation at [1]. The Microsoft Robotics Studio, re-

leased in December 2006, is a Windows-based development

environment for developing robotics applications for a vari-

ety of hardware platforms. The target groups are academic,

hobbyist and commercial software developers. It includes a

lightweight asynchronous, service-oriented runtime, a visual

programming environment as well as a realistic 3D physics-

based virtual environment for the simulation of robotics

software. The Microsoft Robotics Studio runtime consists of

two main components: the Concurrency and Coordination

Runtime (CCR) and the Decentralized Software Services

(DSS).

The Concurrency and Coordination Runtime [2] is a code

library accessible from any language targeting the .NET

2.0 Common Language Runtime. It provides a concur-

rent, message-based programming model for service-oriented

applications. The CCR manages asynchronous operations,

deals with failure scenarios and enables concurrency without

the use of manual threading and synchronization. Software

components are loosely coupled within the runtime, as they

only interact through asynchronous messages.

The central component of the CCR is a Port, which

represents a typed FIFO queue of items and is used as a point

of interaction between any two software components. A port

can only accept items of its designated type. Several inde-

pendent port instances can be grouped into a Portset allowing

for a component to accept different item types. Basically, a
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Fig. 1. Main components of a service in the DSS application model [1]

portset defines the interface of a software component within

the CCR.

Usually, items posted on a port are not directly processed.

Instead, an arbiter can be registered for each port to deter-

mine how items are handled. An arbiter can, for example,

simply receive these items and pass them to a method.

However, arbiters can even be composed to express complex

coordination patterns (e.g. joins, choices and interleavings)

and as a result facilitate the coordination between multiple

operations within a component. After the arbiters for a port

are determined, they have to be activated. As items are posted

on a port, the activated arbiters decides how to process the

item and schedules it for execution. Note that this is the

source of asynchronous behavior within the CCR.

The Decentralized Software Services (DSS) runtime pro-

vides a distributed service-oriented application model on top

of the CCR. An application is a composition of services

where each service has a state and a set of operations

over that state including support for event notification and

structured data manipulation. By orchestrating these services

either programmatically or via the Visual Programming Lan-

guage, complex applications can be created and composed

anew to create even more complex applications. Moreover,

the DSS runtime provides a hosting environment for services

(DSS node) and a set of infrastructure services for service

creation, discovery, logging, debugging, monitoring and se-

curity.

Microsoft Robotics Studio also introduces the SOAP-

based Decentralized Software Services Protocol (DSSP) [3].

Its operations are intended to be a superset of the meth-

ods defined by HTTP (e.g. Delete, Get, Post and Put)

providing support of structured data manipulation and event

notification. Due to a different protocol characteristics, DSSP

is designed to complement HTTP. Hence, DSS can use both

DSSP and HTTP for communicating with services. DSSP

defines operations for service state retrieval (e.g. Get) as

well as for modifying the state (e.g. Insert and Update).

Furthermore, a service can receive event notification by sub-

scribing to another service using the Subscribe operation.

A DSS service instance is always created and executed

within the context of its hosting environment, a DSS node.

Figure 1 shows the main components of a service in the DSS

application model. The Service Identifier is a URI and refers

to a particular instance of a service running on a particular

node. The Contract Identifier is also an URI and refers to the

contract of the service. A contract is a short description of

the service behavior facilitating the composition and reuse of

services. The State is the representation of a service at a given

point in time and describes its current contents. To compose

more and more complex applications, services must be able

to interact with each other in an efficient and deterministic

way. Hence, the DSS application model offers the concept of

partner services. Specifying a set of Partners implies that a

service interacts with and possibly depends on these services

in order to operate properly. Partner services are specified

by service identifiers and can either run on the same DSS

node or across the network. The Main Port is a CCR portset

where messages from other services arrive. The accepted

messages are determined by the type of the main port and

must be either operations defined by HTTP or DSSP. For

every valid operation on the main port, a Service Handler

must be registered to handle the incoming message. In the

DSS application model a service implementation interacts

with another service by sending messages to its main port.

Additionally, a service can subscribe to other services and

will be notified when a particular event has occurred. For

each subscription, a service will receive Notifications on a

separate CCR port.

Furthermore, Microsoft Robotics Studio includes a visual

3D physics-based simulation environment which supports the

creation of advanced robotics scenarios without the need of

expensive hardware. The simulation environment includes

the AGEIA PhysX Technology [4] for enabling real-world

physics. So the simulation environment allows programmers

to easily prototype robotics applications with real-world

physics and test software before deploying it on hardware.

The simulation environment is also implemented as a

service and must be partnered with in order to use the

simulation. If an application adds the simulation engine

service as a partner, a simulation window will automatically

open when the application is started. Objects representing

hardware and physical objects in the simulated world are

called entities and consist of both a graphical 3D represen-

tation and a physical model. The first is a complex mesh

setting up the detailed appearance, whereas the latter only

approximates the mesh with simple shapes and is used for

physical calculations and collision detection. Entities can be

linked with services in order to be controlled from outside

the simulation environment. Usually, entities like robot arms,

carts, or sensors are linked with a service and therefore are

controlled by the services.

III. PROTOTYPING PLANT CONTROL SOFTWARE

In this section, we show how Microsoft Robotics Studio

can help for prototyping industrial robotic applications. In

the first part of this section a vision of tomorrows production

systems is presented. The second part shows challenges in

developing such a system and how they can be solved.

The last part of this section details how MSRS helped in

rapid prototyping the control software, how it supported



evaluation of quality of the control system and elaborates

some experiences we made.

A. Case study

Traditionally production automation systems are very

static in their nature. Process flow is fixed during de-

sign/installation time and optimized for maximum efficiency.

While this approach is very useful for mass production it

still has several drawbacks. The two most important ones are

lack of failure tolerance and a high effort for adaptation to

new production processes. This in general makes production

automation on rarely available for small series.

Fig. 2. Standard role allocation of the production cell

A new idea is to build “organic” production systems. The

idea of organic computing [5] and autonomic computing[6]

is to build system which show “organic” behavior. Organic

means in this context, that the system automatically adapt to

changes in their environment. These capabilities are called

self-healing (adapting to failures), self-organizing (working

jointly to solve a task) or self-adapting (changing and adapt-

ing to new jobs and tasks). In the context of production

automation an (organic) adaptive production cell which for

example autonomously reconfigures itself after component

failures or adapts dynamically to new tasks.

In this paper an adaptive production cell consisting of

three KUKA Lightweight Robots (LWR), four autonomous

carts and two storages is considered (see Fig. 2). The goal

is to process workpieces according to a given workplan. In

the example, the workplan is to drill a hole, to insert a

screw into this hole and then to tighten the screw (short:

DIT). Each of the LWRs is capable of using any of the

three required tools (Driller, Inserter and Screwdriver). The

workpieces are transported through the cell with autonomous

carts. As changing the tool of a robot requires a lot of time,

the standard configuration is to let the robots specialize and

transport the workpiece from robot to robot. This situation

is depicted in figure 2.

If a failure occurs (e.g the drill of the drilling robot

breaks) then a traditional production system would come

to a standstill. It is obvious that this behavior is not really

Fig. 3. A failure occurs

necessary as the affected robot could simply specialize for

some other job. An adaptive production cell would now try

to automatically find such a solution, reconfigure itself and

start operation again (these situation are shown in Fig. 3 and

in Fig. 4).

Fig. 4. Reconfigured production cell

Similar reconfigurations are easy to imagine, which can

cope with new robots/carts or changes in workpieces. It is

worth mentioning that also failure analysis and verification

was applied at this model. A more detailed report on the

application, especially the safety and self-healing related

questions may be found in [7][8].

B. Modelling and Design

The last part described a vision. It did not outline how such

a system can be built. It is clear, that designing a system

with all the mentioned capabilities will be more difficult

than design a traditional static control system. In [9] an

approach for design and construction of organic computing

systems is described. For lack of space we will not go

into the details of this approach in this paper. the only

important point for now is, that many organic computing



systems can be split into two parts: one part which provides

the basic functionalities (functional part) and one part which

comprises the “organic” part of the system. In the example

the functional part consists of the actual control software

of robots, carts and storages: i.e. point-to-point movements,

opening/closing grippers, changing tools etc.

The organic part of the system is a planning component,

which constantly monitors the systems components and its

environment. Whenever it detects anomalies or problems, it

searches for possible solutions to re-achieve the goals of the

system. This is basically done by reconfiguring components

(i.e. changing specialization of robots, reassign transportation

routes etc.). For more details on design, construction and

analysis of such organic control algorithms, we refer to [10],

[7].

Assume now, that a process for construction of such an

organic algorithm is available and assume further that this

algorithm has been implemented. The open question is now.

“Will this proposed algorithm really work for the production

cell?”. The answer of this question is not easy by any means.

The problem is, that besides the actual computations of

reconfigurations a lot of meta knowledge about the system

has to be considered. For example if transportation routes

are reallocated, then it must be assured that carts won‘t

collide on these new routes. It must also be assured, that

if carts approach the robots from different directions, the

robots then recognize this and are still able to locate and

take workpieces for processing. These and other problems

can only be considered if either real hardware is used or if

a simulated environment is available. MSRS allows for very

realistic physical simulation of the hardware.

C. Implementation

The adaptive production cell as in Sect. III-A (together

with a reconfiguration algorithm) has been modelled in

Microsoft Robotics Studio. The main application is imple-

mented as a DSS service, which sets up the simulation en-

vironment by partnering with the simulation engine service.

This includes the initialization of the 3D scene by populating

the simulation world with entities as well as the creation of

required services. The required entities and its positions are

read from an XML file facilitating different spatial configu-

rations. According to the service-oriented application model,

the main application uses further services to represent the

production cell. These services are implemented as modular

and reusable DSS services for Microsoft Robotics Studio.

The robots are based on and reusing the KUKA LWR3

arm and gripper implementation from the KUKA Edu-

cational Framework [11], a set of services implementing

KUKA robots for Microsoft Robotics Studio. These low-

level services (open and close gripper, change arm angles) are

controlled by the CellRobot service that uses transformation

and motion planning services from the KUKA Educational

Framework to provide high-level functions for the simulated

robots on its main service port. Apart from the default DSSP

operations Get and Update that allow to retrieve and replace

the current service state thereby enabling serializing and

saving the service state as well as stopping and resum-

ing service operations, the CellRobot service contains a

Configure method to set the current task and the currently

supported capabilities, allowing the user to cause errors in

the simulation environment. Furthermore, there are Take and

Drop to make the robot take a workpiece from a cart standing

below it or drop an already taken workpiece to another cart.

The Process operation is used to tell the robot to perform

one of its capabilities on the taken workpiece, and Reset

asks the robot to return to a controlled initial state (e.g.

to restore a safe state after an error). Take and Drop are

implemented much like conventional robot programs as a

sequence of linear and point-to-point movements and gripper

commands, whereas the Process action is abstracted to only

changing the color of the workpiece for better visualization.

The cart implementation in CellCart uses a differen-

tial drive with two wheels. It is based on the service

SimulatedDifferentialDrive from the KUKA Educa-

tional Framework with tiny changes in shape and color

and reduced height to increase stability. Its main operation

Drive is used to command the cart to a certain position.

Therefore, the cart first rotates toward its destination by

applying opposite forces to both wheels. As the carts are

symmetric and do not distinguish between front and rear,

this can always be achieved by rotating less than 90 degrees.

Afterwards, they drive forward or backward until they have

reached the expected position. The drive operation is finished

after rotating to the target direction.

The workpieces are simply boxes with notches to allow the

robot gripper to take them firmly. For the simulation, they

are created and destroyed at the storages, and their color

tells what jobs have already been done on them. A video

demonstration of the cell including reconfiguration can be

found at [12].

Applications outside Microsoft Robotics Studio can con-

trol the simulated services using either an HTTP interface or

a connector class based on it. The functionality includes the

creation and deletion of workpieces, the movement of the

carts as well as controlling the robots. Moreover, it allows

to control the environment to for e.g. enable or disable

capabilities of the robots (more on this topic in the next

paragraph).

So far, simulation services described previously – as well

as their operations – could be part of a traditional production

cell. Their cooperation could be achieved by implementing

a simple, inflexible controlling service. However it is now

possible to simply wrap the organic reconfiguration algo-

rithm into an DSS and use it to dynamically (re-)configure

the robots.

In order to be controlled by an organic reconfigura-

tion service, all simulation services implement wrapper

operations to provide a common interface. The operation

OrganicConfigure is called to inform services that they

were assigned a new task (handled by robots to display a

new current task using the mentioned Configure opera-

tion). Together with implementations of OrganicStop and

OrganicReset – based on the Reset operations if required



Fig. 5. Simulation of the adaptive production cell with MSRS

– these allow the services to be reconfigured in a safe and

controlled manner when a problem with the current configu-

ration occurs. Implementations of OrganicCommand provide

a common interface for robot or cart specific operations, e.g.

Drive or Take, described by the the name of the operation

and the partner to cooperate with, e.g. the robot or storage

to drive to for Drive). 1

Building a working simulation and programming the men-

tioned wrappers took less than one man-week. Developing

a suitable reconfiguration algorithm is easy at the first look.

But only the simulation can show how good the high level

algorithm work for the actual example and show where

physical limitations have to be taken into account.

D. Simulation

For simulation the robots, storages and carts are placed in

a production hall with robots and storages mounted at the

ceiling (see Fig 5). The robots contain a display showing the

the current task and available capabilities and can process

workpieces that are placed on carts below them. The place-

ment of the actors in the production cell is configured using

an XML file, so different numbers or locations of actors can

easily simulated by changing the configuration file.

The simulation is started by running the application

RobotCellSimulation which itself is a DSS service run-

1Note, that instead of implementing the wrapper operations in the
simulation services, another service layer could be introduced. Due to
simplification, we have abstained from doing so.

ning inside a DSS node. It initializes the further required

services for 3D and physics simulation as well as for

the simulated robot cell. Afterwards it creates the adaptive

controller services to start processing in the production cell.

To test and demonstrate the self-configuration abilities of

the adaptive controlling agents, a control GUI using the

HTTP interface is implemented that allows users to trigger

failure of a robot’s tool. This allows for testing the recon-

figuration algorithm and its interplay with real (simulated)

hardware.

We made the experience, that in this scenario reconfig-

uration works fairly good. However, the rapid prototyping

approach led to some additional points of synchronization

between robots, storages and carts, which were not im-

mediately obvious when the reconfiguration algorithm has

been designed. It also turns out, that for more complex

geometries carts have to be enhanced, such that collision

free transportation can be guaranteed.

IV. CONCLUSION

We already started studying the presented example of an

adaptive productive cell in 2005 in the context of research in

the domain of organic computing. In this context the adaptive

production cell was only one of the case studies we used for

evaluation of our method.

The topic of the work presented in this paper was now:

“How would one make use of organic computing principles

and methods for building an production automation system?”



For this task MSRS was a great help. The main reason is,

that only a realistic, physical simulation is precise enough

for checking the usability of control software for production

automation. This is because there exist a lot of implicit

dependencies between components (like the acceleration of

a cart and the mass of the transported objects), which must

be taken into account. MSRS here really helps a lot. We also

made the experience, that building a model of the hardware

and its environment is really easy. The control software can

then be implemented as a single (or also multiple) service(s).

This is very beneficial for software re-use and composition.

On the other hand it also turned out, that there exists a

variety of limitations. Computing power and only a limited

number of robots is one of them. However, more important

(and more difficult to estimate) is the accuracy of the sim-

ulation. As a matter of fact MSRS use different algorithms

for planning robot motions than real KUKA robots. It is also

not possible to directly use the developed control software

as real robots are not (yet) controllable by DSS services. So

this will be part of our future research.

Summarizing, we think the MSRS is a very good tool for

developing and rapid prototyping robotic applications. The

presented example is only one of the possible application

domains. But it shows all challenges which a traditional

control software would also face (and some additional ones).

It turned out, that using MSRS‘s simulated environment

allows for faster and cost effective development of software,

but can not replace evaluation and testing on real hardware.
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